1 - 5 of 5
rss atomLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
  • Presentation: 2018-12-19 10:00 K53, Stockholm
    Romson, Joakim
    KTH, Skolan för kemi, bioteknologi och hälsa (CBH), Kemi, Tillämpad fysikalisk kemi.
    Methods for protein analysis by capillary electrophoresis and mass spectrometry2018Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Protein analysis is important to understanding biological systems, but sample diversity necessitates a multitude of analysis techniques and methods. Challenges that are addressed include analysis of low abundance samples, fractionation to reduce sample complexity, and automation to reduce time and cost.

    Matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) is an important technique for protein characterization. In Paper I, the sensitivity of MALDI-MS was enhanced through the fabrication of a hydrophobic coating for the MALDI target plate, yielding analyte concentration. The plate outperformed a commercial concentration plate.

    Capillary electrophoresis (CE) separation offers low sample consumption and high efficiency, and in Paper II, offline CE-MALDI-MS fractionation was employed. A robot system for automation was constructed and used in analysis of spermatophore proteins from the butterfly Pieris napi. The robot was also used in automated on-target trypsin digestion under a lid of liquid fluorocarbons, a simpler and cheaper alternative to controlled humidity chambers. An indication of indigenous proteolysis of the sample was seen.

    Electrospray ionization (ESI) is the other technique for protein analysis in MS. In Paper III, the biomarker protein osteopontin (OPN) was analyzed by ESI-MS in order to find suitable conditions for its detection. A preliminary optimization of solvents and ionization conditions was done, and tandem MS (MSn) performed to increase the reliability of identification.

    Fulltekst tilgjengelig fra 2019-12-19 11:25
  • Presentation: 2018-12-20 10:00 Pacific, Stockholm, Sweden
    Liljenström, Carolina
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Hållbar utveckling, miljövetenskap och teknik, Hållbarhet, utvärdering och styrning.
    Life cycle assessment in early planning of transport systems: Decision support at project and network levels2018Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The Swedish Climate Policy Framework implies that the Swedish transport sector must reduce its greenhouse gas emissions to nearly zero by 2045. Previous studies have – using life cycle assessment – shown that indirect greenhouse gas emissions from the vehicle and infrastructure life cycle are significant and should be considered in transport policy and planning of transport systems, in addition to direct emissions of vehicle operation.

    The aim of this thesis is to contribute with knowledge on climate impact and primary energy use of transport systems for decision-support in early planning at project and network levels, and evaluate and demonstrate how life cycle climate impact and primary energy use can be assessed in early planning. This thesis includes three papers that contribute to achieving this aim. Paper I developed a methodological approach to assess annual climate impact and primary energy use of Swedish road, rail, air, and sea transport infrastructure at a network level. Paper II then expanded this system to the assessment of the Swedish transport system at a network level, including national and international freight and passenger transport by road, rail, air, and sea. At the project level, Paper III examined how LCA can be used as decision-support in choice of road corridor, considering the practical prerequisite of data availability in early planning and usefulness of results in the decision-making process.

    Paper I showed that the annual climate impact of Swedish transport infrastructure is around 3 million tonnes CO2 equivalents and that the annual primary energy use is around 27 TWh. Road infrastructure accounted for the largest proportion of impacts – around 70% of the climate impact and around 80% of the energy use. Paper II showed that the annual climate impact of the Swedish transport system was around 44 million tonnes CO2 equivalents and the primary energy use was around 178 TWh. Road transport and aviation together accounted for 90% of the climate impact and primary energy use. Indirect impacts were significant, especially for road and rail transport, accounting for 30% of the total climate impact and primary energy use. Paper III found that (1) collection of project specific data should focus on parameters that differentiate the road corridors, that can be influenced in early planning, and that are not directly related to the road length and (2) life cycle assessment based models used in early planning should include nation specific generic data approved by the national road authority. 

  • Presentation: 2019-01-21 10:00 Q2, Stockholm
    Čičić, Mladen
    KTH, Skolan för elektroteknik och datavetenskap (EECS), Reglerteknik.
    Control of vehicle platoons and traffic dynamics: catch-up coordination and congestion dissipation2019Licentiatavhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    Traffic congestion is a constantly growing problem, with a wide array ofnegative effects on the society, from wasted time and productivity to elevated air pollution and increased number of accidents. Classical traffic control methods have long been successfully employed to alleviate congestion, improving the traffic situation of many cities and highways. However, traffic control is not universally employed, because of the necessity of installing additional equipment and instating new legislation. 

    The introduction of connected, autonomous vehicles offers new opportunities for sensing and controlling the traffic. The data that most of the vehicles nowadays provide are already widely used to measure the traffic conditions. It is natural to consider how vehicles could also be used as actuators, driving them in a specific way so that they affect the traffic positively. However, many of the currently considered strategies for congestion reduction using autonomous vehicles rely on having a high penetration rate, which is not likely to be the case in the near future. This raises the question: How can we influence the overall traffic by using only a small portion of vehicles that we have direct control over? There are two problems in particular that this thesis considers, congestion wave dissipation and avoidance, and platoon catch-up coordination.

    First, we study how to dissipate congestion waves by use of a directly controlled vehicle acting as a moving bottleneck. Traffic data can help predict disturbances and constraints that the vehicle will face, and the individual vehicles can be actuated to improve the overall traffic situation. We extend the classical cell transmission model to include the influence of a moving bottleneck, and then use this model to devise a control strategy for an actuator vehicle. By employing such control, we are able to homogenize the traffic without significantly reducing throughput. Under realistic conditions, it is shown that the average total variation of traffic density can be reduced over 5%, while the total travel time increases only 1%.

    Second, we study how to predict and control vehicles catching up in order to form a platoon, while driving in highway traffic. The influences of road grade and background traffic are examined and vehicles attempting to form a platoon are modelled as moving bottlenecks. Using this model, we are able to predict how much the vehicles might be delayed because of congestion and adjust the plan accordingly, calculating the optimal platoon catch-up speeds for the vehicles by minimizing their energy consumption. This leads to a reduction of energy cost of up to 0.5% compared to the case when we ignore the traffic conditions. More importantly, we are able to predict when attemptingto form a platoon will result in no energy savings, with approximately 80% accuracy.

  • Presentation: 2019-01-22 10:00 U61, Stockholm
    Bekele, Abiy
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Byggvetenskap, Byggnadsmaterial.
    Application of Automated Non-contact Resonance Testing for Low Temperature Behavior of Asphalt Concrete2019Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Impact resonance testing is a well-documented non-destructive testing method and its applications on asphalt concrete have also been implemented successfully. The test is carried out manually by inducing an impact in order to excite the test specimen and taking measurements of the vibrational response. In an effort to improve the manual procedure of impact resonance testing, an automated non-contact methodology is developed and its applicability with regards to low temperature behaviors of asphalt concrete is investigated. Results from this work show that repeatable fundamental resonance frequency measurements can be performed on a disc shaped specimen in an automated manner without the need to open the thermal chamber. The measurements obtained from the new method have been verified by taking similar resonance frequency measurements using an instrumented impact hammer. It has also been shown in this work that the proposed method is suitable to investigate the lone effects of cyclic thermal conditioning on asphalt concrete without any other possible biasing effects associated with contact in the conventional testing. A hysteretic behavior of stiffness modulus is obtained on three different asphalt concrete specimens subjected to repeated low temperature cyclic conditioning. Reduced modulus values at each temperature are obtained in all the tested specimens after a low temperature stepwise conditioning at temperatures from 0oC to -40 oC. This observed behavior shows that the dynamic modulus of the tested specimens is affected by low temperature conditioning. The norm of the complex modulus decreases and the phase angle or damping ratio increases after low temperature conditioning. Hence, valuable and practical low temperature characteristics of different asphalt concrete mixtures can possibly be obtained by using the proposed methodology.

  • Presentation: 2019-02-01 14:00 rum A124 , KTH Arkitekturskolan,, Stockholm
    Hällgren, Nina
    KTH, Skolan för arkitektur och samhällsbyggnad (ABE), Arkitektur.
    Designing with Urban Sound: Exploring methods for qualitative sound analysis of the built environment2019Licentiatavhandling, monografi (Annet vitenskapelig)
    Abstract [en]

    The licentiate thesis Designing with Urban Sound explores the constitution and qualitative characteristics of urban sonic space from a design-oriented and practice-based perspective. The act of lifting forth and illuminating the interaction between architecture, the creation of sound and a sonic experience aims to examine and develop useful tools and methods for the representation, communication and analysis of the exterior sonic environment in complex architectural spaces. The objective is to generate theoretical and practical knowledge within the field of urban sound planning and design by showing examples of different and complementary ways of communicating and analyzing sound than those which are commonly recognized.