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Abstract

The emergence of heterogeneous networks and the rapid increase of
Voice over IP (VoIP) applications provide important opportunities for the
telecommunications market. These opportunities come at the price of in-
creased complexity in the monitoring of the quality of service (QoS) and
the need for adaptation of transmission systems to the changing environ-
mental conditions. This thesis contains three papers concerned with quality
assessment and enhancement of speech communication systems in adverse
environments.

In paper A, we introduce a low-complexity, non-intrusive algorithm for
monitoring speech quality over the network. In the proposed algorithm,
speech quality is predicted from a set of features that capture important
structural information from the speech signal.

Papers B and C describe improvements in the conventional pre- and
post-processing speech enhancement techniques. In paper B, we demon-
strate that the causal Kalman filter implementation is in conflict with the
key properties in human perception and propose solutions to the problem.
In paper C, we propose adaptation of the conventional postfilter parame-
ters to changes in the noisy conditions. A perceptually motivated distortion
measure is used in the optimization of postfilter parameters. Significant im-
provement over nonadaptive system is obtained.

Keywords: quality assessment, non-intrusive, quality of service, post-
filter, speech coding, speech enhancement, noise reduction, additive noise,
multiplicative noise, tandeming, perceptually optimal processing, distor-
tion measure, speech enhancement, optimal lag, Kalman filter, causal filter,
Kalman smoother, AR model.
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Introduction

This thesis is about incorporating knowledge of human perception into
speech quality estimation and speech quality enhancement systems. The
key properties of the human perception are covered in the first part of the
thesis introduction. Then the introductory part continues with a discussion
of the state-of-the-art in speech quality estimation, pre-processing speech
enhancement, and post-processing speech enhancement. The main body
of the thesis consists of three articles that present the contributions of the
author to the problems discussed in the introduction.

1 Introduction to Human Perception

Sound is a longitudinal pressure wave consisting of compressions and rar-
efactions of air molecules. Compressions are zones where air molecules have
been forced into a tighter configuration by the application of energy, and
rarefactions are zones where air molecules are less tightly packed, see Fig. 1.

As sound travels as pressure waves through the air, it is collected by the
pinna of the outer ear, Fig. 2. The outer ear includes also the auditory

canal that ends at the ear drum. Through the auditory canal, which is
air-filled, the sound is carried to the ear drum located in the middle ear.
The auditory canal filters the sound, giving a resonance at approximately
5 kHz. The middle ear space is connected to the back of the throat by the
eustachian tube. The eustachian tube is normally closed, but opens when we
swallow, equalizing the middle ear pressure with the external air pressure.
The middle ear mechanically conveys the sound pressure to the ear drum,
exciting the fluid in the cochlea. The mechanical middle ear system not only
conveys, but amplifies the pressure forced on the fluid. The main purpose of
the cochlea is to transfer the pressure changes of the fluid to neural firings
in the auditory nerve.

The process of transduction (transforming mechanical vibrations into
electrical signals) is performed by specialized sensory cells within the
cochlea. There are approximately 3 500 inner hair cells and 11 000 outer hair
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Figure 1: A longitudinal pressure wave.

Figure 2: The human peripheral auditory system consists of three parts:
the outer, middle, and inner ear. The function of the outer ear
is to collect the signal. In the middle and inner ear the acous-
tical waves are transformed into nerve impulses, transmitted
to the brain.

cells. These hair cells connect to approximately 24 000 nerve fibers. The
rocking of the stirrup in the oval window shakes the fluid within the cochlear
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causing movement of the hair cells. The cochlea acts as if it were made up
of overlapping filters having bandwidths equal to the critical bandwidth.
The filters closest to the cochlear base respond to the higher frequencies,
and those closest to its apex respond to the lower frequencies.

The outlined peripheral auditory organ (ear) is the first major compo-
nent of the auditory perception system, shown in Fig. 3. It processes an
acoustic pressure signal by first transforming it into a mechanical vibration
pattern on the basilar membrane, and then representing the pattern by a
series of pulses to be transmitted by the auditory nerve. The second ma-
jor component of the auditory perception system is the auditory nervous
system (brain), where cognitive processing is performed.

 

extracted 
patterns 

internal 
representation 

speech 
signal AUDITORY 

PROCESSING 
COGNITIVE 

 PROCESSING 

Figure 3: Low- and high-level processing steps in the sound perception
mechanism.

The way in which the brain processes extracted patterns is largely un-
known. Many studies have shown how humans perceive tones and bands of
noise [1], [2]. Based on that knowledge, many auditory models that simulate
the functionality of the human ear, have been created [1–4].

It is well known that the ear’s frequency resolution is not uniform on the
Hertz scale. The peripheral auditory system contains a bank of bandpass
filters with overlapping passbands. The bandwidth of each auditory filter
is called the critical bandwidth. Commonly used quantitative description
of the critical bandwidth is the Equivalent Rectangular Bandwidth (ERB).
Each ERB band corresponds to a width of approximately 0.9 mm on the
basilar membrane. The conversion from Hertz f to ERB scale is given by:

ERB(f) = 0.108 f + 24.7. (1)

Other perceptually based scales are the Bark and Mel scales. The conversion
from Hertz to Bark b frequency scale is defined as:

b(f) = 6 sinh−1

(
f

600

)
. (2)

A third perceptually motivated scale is the Mel frequency scale, which is
linear below 1 kHz and and logarithmic above that frequency:

m(f) = 1127 ln

(
1 +

f

700

)
. (3)
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A well-established fact is that perceived loudness (a subjective measure
of sound intensity) is related to signal intensity in a complex, nonlinear
way. A logarithmic function is typically used as a rough approximation to
convert the signal intensity to perceived loudness [5].

An important property of human auditory system is the non-uniform
equal loudness perception of tones of varying frequencies. In general, tones
of differing pitch have different inherent perceived loudness. The sensitivity
of the ear varies with frequency. The ear’s sensitivity is not only a function
of frequency, but of absolute hearing thresholds as well, as shown in Fig. 4.

Figure 4: Equal loudness contour diagram.

Many studies have demonstrated time- and frequency-masking effects.
Masking is defined as the increase of the threshold of audibility of one sound
(maskee) in the presence of another sound (masker). The masking may
occur simultaneously in time (frequency masking), as illustrated in Fig. 6.
Another form of masking is non-simultaneous (forward or backward time
masking), shown in Fig. 5.

Despite of the significant progress in the area of psychoacoustics, there
are still open questions to be answered, particularly with respect to complex
signals. Most of the psychoacoustical experiments are performed with sim-
ple sounds. However, speech (which is the focus of this thesis) is a complex
and dynamic signal, which is not always perceived as a superposition of its
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Figure 5: Non-simultaneous masking occurs before and after the masker.
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Figure 6: Simultaneous masking occurs when a strong tone makes the
nearby tone inaudible.

basic components. The perception of a complex signal, such as speech, is
not well understood. Some evidence of the importance of the dynamics in
the speech signal is presented in [6–8].

Incorporation of the knowledge of human auditory processing in state-
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of-the-art speech enhancement systems is the essence of papers B and C,
presented in this thesis. In the past a number of psychoacoustical concepts
have been integrated successfully into speech and audio coding [9–17].

In paper B we study the perceptual differences between the causal and
non-causal implementations of the widely used linear mean squared error
filters. After demonstrating that the causal implementation is in conflict
with human perception, we propose improvements on the existing systems.

The focus of paper C is on the adaptation of the commonly used speech
coding postfilter to changes in environmental conditions. The proposed
adaptation is based on an advanced psychoacoustical model. The postfilter
structure itself is based on the masking properties of the human auditory
system, and its parameters are set based on listening tests.

The discussion so far has been concerned with the low-level processing
step of the human auditory system, where the speech waveform is trans-
formed into a nerve excitation. The importance of the high-level processing
performed by the brain is demonstrated in paper A. We hypothesize that at
the high-level processing step, performed by the brain, structural informa-
tion is extracted from the signal and compared with already stored patterns.
This was confirmed by the test results of the performed simulations. Fur-
thermore, the proposed speech quality assessment measure demonstrated
higher accuracy than the current state-of-the-art.

2 Speech Quality Estimation in Telecommu-

nication Systems

Speech communication systems, and especially VoIP systems, can suffer
from significant call quality degradation, caused by noise, echo, etc. [18].
Internet protocol (IP) networks guarantee neither sufficient bandwidth for
the voice traffic, nor a constant, acceptable delay. Dropped packets and
varying delays introduce distortions not found in traditional telephony. In
addition, if a low bit-rate codec is used in VoIP to achieve a high compres-
sion ratio, the original waveform can be significantly distorted. All these
factors can affect psychological parameters like intelligibility, naturalness,
and loudness that determine the overall speech quality. The influence of
physical network parameters on psychological quality parameters is sum-
marized in Table 1.

There are two broad classes of speech quality metrics: subjective and ob-
jective. Subjective measures involve humans listening to a live or recorded
conversation and assigning a rating to it. Objective measures are computer
algorithms designed to estimate quality degradation in the signal. Speech
quality is a complex psycho-acoustic phenomenon within the process of hu-
man perception. As such, it is necessarily subjective, even different people
interpret speech quality differently. However, the objective measures are
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Table 1: Different physiological characteristics of speech quality and
their dominant dependencies on physical network character-
istics. Intelligibility measures the quality of the perception of
the meaning or information content of what the talker has said.
Naturalness is the degree of fidelity to the talker’s voice. Loud-

ness is the absolute loudness level at the listener’s side. The
symbol ”+” denotes dependency on the parameter.

Psychological Parameters
Physical

Parameters Intelligibility Naturalness Loudness Quality

Signal Level + + + +
Noise + +

Freq. Response + + + +
Distortion + + +

Delay + +
Echo + +

Packet Loss + +

Table 2: Comparison of Subjective and Objective Methods for Quality
Estimation. The symbol ”+” is used to denote that the method
is advantageous over the other method, denoted by ”-”.

Subjective Measures Objective Measures
Cost - +

Reproducibility - +
Automation - +

Unforeseen Impairments + -

widely used since they have several critical advantages over the subjective
measures, see Table 2.

2.1 Subjective Measures

In subjective tests, human participants assess the performance of a system in
accordance with opinion scale [19], [20]. Two general categories of subjective
quality measures are conversational quality measures and listening quality
measures. Conversational quality refers to how listeners rate their ability to
converse during the call (which includes listening quality). In conversational
tests, a pool of listeners are placed into interactive communication scenarios,
and asked to complete a task over the phone. By evaluating the efficacy
of the performance of the task, the listeners provide a quality measure for
effects like delay, echo, and loudness. Listening quality refers to how listener
rate what they ”hear” during the call. Listening quality ignores effects such
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as echoes at the talker side or transmission delays.

In an Absolute Category Ratings (ACR) test, a pool of listeners rate
a series of audio files using a five level impairment scale. After obtaining
individual scores, the mean opinion for each audio file is calculated. To
achieve reliable results, test are performed with a large pool of listeners and
under controlled conditions. Mean Opinion Score (MOS) is the most widely
used method to evaluate the overall speech quality. MOS is a five level scale
from ”Bad” do ”Excellent”, as shown in Table 3.

Table 3: Table of grades in the MOS scale.

Bad 1
Poor 2
Fair 3
Good 4
Excellent 5

In Degradation Category Rating (DCR) tests, listeners hear the ref-
erence and the test signals sequentially, and are asked to compare them.
Degradation MOS (DMOS) is an impairment grading scale to measure how
the different distortion in speech are perceived, see Table 4.

Table 4: Table of grades in the DMOS scale. Listeners are asked to
describe degradation in the signal.

Very annoying 1
Annoying 2
Slightly annoying 3
Audible, but not annoying 4
Inaudible 5

A variation on the DCR test is a Comparison Category Rating (CCR)
test. Listeners identify the quality of the second stimulus relative to the
first one on the scale presented in Table. 5.

DCR tests are more common in audio quality assessment [21,22], while
speech coding systems are typically assessed by an ACR test. One example
of a DCR test is a MUlti Stimulus test with Hidden Reference and Anchor
(MUSHRA) [21], a method for the subjective assessment of intermediate
quality level of coding systems. MUSHRA is a double-blind multi-stimulus
test method with a hidden reference and hidden anchors. In this test, the
subjects are required to score the stimuli according to the continuous quality
scale from 0 to 100. The listener records his/her assessment of the quality



2 Speech Quality Estimation in Telecommunication Systems 9

Table 5: Table of grades in the CCR test. Listeners grade the perceived
quality of a speech signal in relation to a reference speech signal.

Much better 3
Better 2
Slightly better 1
About the same 0
Slightly worse -1
Worse -2
Much worse -3

Figure 7: Graphical user interface for the MUSHRA test. The test
subject can compare the files under test (buttons A-F) with
the original signal (button REF).

with the use of sliders on an electronic display, see Fig. 7.

A classification of the most popular ACR and DCR tests, standardized
by the ITU, is presented in Fig. 8. Major conceptual differences between
the two tests are: 1) in ACR even an original signal can receive low grade,
since listeners compare with their internal model of ”clean speech”, 2) DCR
tests provide a quality scale of higher resolution, due to comparison of the
distorted signal with one or more reference/anchor signals.

A procedure that is not so commonly used nowadays is Diagnostic Ac-
ceptability Measure (DAM) [23]. It provides more systematic feedback and
evaluates speech quality on 16 scales. In contrast to most other measures,
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Subjective Quality Assessment 
of Speech and Audio 

Absolute Category Ratings Degradation Category Ratings 

ITU-T P.800, ITU-T P.830 
ITU-R BS.1534, ITU-R BS.562 

ITU-T P.800, ITU-T  P.830 

Figure 8: The two major types of subjective quality assessment methods
and related ITU standards and recommendations.

trained listeners are used in the DAM test. A weighted average of all scales
forms a composite measure that describes the condition under test.

An example of an intelligibility test is the Diagnostic Rhyme Test (DRT),
which uses a set of isolated words to test for consonant intelligibility in
the initial position. The test consists of 96 word pairs that differ by a
single acoustic feature in the initial consonant. The Modified Rhyme Test
(MRT) [24] is an extension to the DRT. It tests for both initial and final
consonants. A set of six words is played one at a time and the listener marks
which word he/she thinks he/she hears.

Reference conditions (well defined conditions) of processed speech are
commonly used in listening tests. The most popular one is the Modulated
Noise Reference Unit (MNRU) [25]. The MNRU is a reference condition
that adds amplitude modulated noise to a speech signal. The main reason
to introduce MNRU conditions is that they can provide a spread in quality
level, which increases the accuracy of the human ratings.

2.2 Objective Measures

Subjective listening or conversational tests can be used to gather first-hand
evidence about perceived speech quality, but such tests are often expensive,
time-consuming, and labor-intensive. Objective quality algorithms can be
used instead, but they have to be properly ”calibrated” to the output of
subjective quality tests.

Typically, the accuracy of an objective metric is determined by its cor-
relation with MOS scores for a set of data. The estimation performance is
assessed using the correlation coefficient R and the root-mean-square error
(RMSE) ε, between the predicted quality Q̂ and the measured subjective
quality Q. The RMSE is given by

ε =

√∑N
i=1(Qi − Q̂i)2

N
, (4)
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and the correlation coefficient is defined as

R =

∑N
i=1(Q̂i − µQ̂)(Qi − µQ)

√∑N
i=1(Q̂i − µQ̂)2

√∑N
i=1(Qi − µQ)2

, (5)

where µQ and µQ̂ are the mean values of the introduced variables and N is
the number of MOS labeled utterances used in evaluation. The evaluation
is typically done over a large multi-language database that contains a wide
range of distortions, e.g., [26].

Some objective quality measures are designed to estimate the listening
subjective quality, while others estimate the conversational subjective qual-
ity. Alternatively, the classification of objective quality measures can be
based on the type of input information they require: intrusive quality mea-
sures require access to both the original and distorted speech signal, while
the non-intrusive measures base their estimate only on the distorted signal.
A general classification of objective quality measures and the corresponding
ITU standards is presented in Fig. 9.

 

Objective Quality Assessment 

Listening Quality Conversational Quality 

Intrusive Non-Intrusive 

E-Model  
ITU-T G.107 

PESQ  
ITU-T P.862 

P.SEAM  
ITU-T P.563 

Figure 9: Classification of objective quality assessment methods and
related ITU standards.

Intrusive Listening Quality Measures

Historically, most objective quality measures are designed to estimate sub-
jective listening quality in an intrusive manner. The simplest and most
common quality assessment measures are SNR and SSNR. The overall SNR
distortion measure between an original s and distorted y speech vectors is
calculated as:

dSNR(s,y) = 10 log10

(
sT s

eT e

)
, (6)

where e = s - y. The vector dimension is sufficient to contain the entire
utterance.
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The SSNR is calculated by splitting the two vectors into smaller blocks
and calculating a SNR value for each of these blocks. The final SSNR value
is obtained by averaging the per-block SNR values:

dSSNR(s,y) =
1

N

N∑

n=1

10 log10

(
sT
n sn

eT
nen

)
, (7)

where N is the total block number, n is the block index, and the per-block
error vector is defined as en = sn − yn. A typical block length is 5 ms.

SNR and SSNR are simple to implement, have straightforward interpre-
tations, and can provide indications of perceived speech quality for a specific
waveform-preserving speech systems [27]. Unfortunately, when used to eval-
uate coding and transmission systems in a more general context SNR and
SSNR show little correlation to perceived speech quality.

Frequency-domain measures are known to be significantly better cor-
related with human perception, but still relatively simple to implement.
One of their critical advantages is that they are less sensitive to signal mis-
alignment. Perhaps the most popular frequency domain measure is the
gain-normalized SD, which is widely accepted as a quality measure of coded
speech spectra. It evaluates the similarity of two autoregressive envelopes:

dSD(s,y) =
1

N

√√√√
N∑

n=1

∫ π

−π

(
10 log10

(
Ps(ω, n)

Py(ω, n)

))2
dω

2π
, (8)

where N is the total number of frames, Ps(ω, n) and Py(ω, n) are the autore-
gressive spectra of the clean and processed signal. Other popular frequency
domain measures include the Itakura-Saito, Log-Likelihood, and Log-Area-
Ratio measures.

During the last two decades the researchers have moved their focus to
the class of perceptual domain measures. These measures are based on
models of human auditory perception. The Bark Spectral Distortion (BSD)
is one of the first objective measures based entirely on a model of human
perception [28]. It calculates the averaged Euclidean distance between the
original and distorted speech signals in the Bark domain.

Perceptual Speech Quality (PSQM) [29] is a perceptually motivated
speech quality assessment algorithm, designed to assess the performance
of speech codecs and impairments encountered in networks. Since the accu-
racy of PSQM was not sufficient, the most successful measures, evaluated
by the ITU in the 1990s, were combined into an improved model Percep-
tual Evaluation of Speech Quality (PESQ), which was accepted as ITU
recommendation in 2001 [30]. Like PSQM, PESQ is intended to be used
for measuring quality of narrowband telephone signals. PESQ is certified
to provide speech quality estimate in the following environments: speech
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codecs, transmission channel errors, speech input level at the codec, noise
added by the system, time warping, packet loss, and time clipping. The
current research focus is on the development of a wide-band extension for
PESQ [31].

Significant standardization efforts have been made in the area of objec-
tive audio quality assessment. These efforts resulted in the development of
the Perceptual Evaluation of Audio Quality (PEAQ) measure [32], which is
the ITU standard for audio quality assessment.

The PSQM, PESQ, and PEAQ algorithms for quality estimation are
based on the following algorithmic blocks: 1) the signals are processed by a
filter that simulates the frequency response of a typical telephone headset,
2) a Hoth noise is injected to model a typical listening environment, 3)
an intensity warping is performed, to model the relationship between signal
power and perceived loudness, 4) a loudness scaling is performed to equalize
the momentary compressed loudness of the two signals, and 5) the distance
between the transformed signals is calculated and mapped to an estimate
of MOS value. The general scheme of the perceptually motivated distortion
measures, is presented in Fig. 10.
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Figure 10: The distance between signals is calculated after applying a
perceptual transform.

The final part of the human judgement process entails cognitive pro-
cessing in the brain, where compact features are extracted from auditory
excitations. It is easy to notice that the forementioned objective quality
assessment algorithms incorporate knowledge of the low-level auditory pro-
cessing, but neglect the high-level cognitive processing, performed by the
brain. One exception is the Measuring Normalizing Blocks (MNB) algo-
rithm [33], [34], which utilizes a relatively simple perceptual transform, but
a sophisticated error pooling system. Another example can be found in [35],
where the authors recognize the importance of the high-level cognitive pro-
cess and apply a statistical data mining approach. In the approach of [35],
a large pool of candidate features is created and the ones that lead to the
most accurate prediction of perceived quality are selected. In Fig. 11 the
desired desired (which is not realizable with the current knowledge of high-
level cognitive processes, as performed by the human brain) is illustrated.
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Figure 11: Desired scheme of perceptually motivated speech quality as-
sessment measure.

The differences between Fig. 10 and Fig. 11 demonstrate the weakness
of the majority of existing perceptually motivated speech quality assessment
measures. These algorithms exploit the knowledge of the human auditory
system to weight more the error signal in regions where it is more audible.
However, more audible does not necessarily mean more objectionable, since
the latter is dependent of the a-priori information in the human brain. There
is no guarantee that less audible parts of the signal may not be of higher
importance for the pattern extraction and comparison process performed
by the human brain, after the signal has been perceptually transformed.

Non-Intrusive Listening Quality Measures

In many applications requiring speech quality assessment, the original
speech signal may not be available, or it may be difficult to align it to
the processed speech signal. In such cases, an attractive alternative ap-
proach is to predict the speech quality from the processed signal only. Such
a type of quality assessment is important in monitoring of communication
systems, such as wireless communications and VoIP. An objective measure
for non-intrusive speech quality assessment based on the temporal envelope
representation of speech can be found in [36]. A different approach to non-
intrusive quality assessment is presented in [37], where the authors model
the limitations of the human vocal tract and estimate the level of speech
distortion from the parameters that violate the resulting constraints.

The majority of non-intrusive quality assessment algorithms perform a
similar perceptual transform on the input signal, but offer a large variety of
mapping schemes [38–41], such as Hidden Markov Models (HMM), Gaussian
Mixture Models (GMM), Neural Networks, etc. The ITU standard of non-
intrusive speech quality assessment can be found in [42]

A non-intrusive speech quality assessment system, based on a speech
spectrogram, is presented in [43]. An interesting concept in this approach
is that accurate estimation of speech quality is achieved without a percep-
tual transform of the signal. Similar concepts can be found also in recent
advances in image quality assessment, e.g. [44].
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Objective Measures for Assessment of Conversational Quality

The objective measure that provides an estimate of the conversational sub-
jective quality is the E-Model [45]. In contrast to the previously described
schemes, the E-Model is a purely parametric model. It is a transmission
rating model that monitors many different parameters and combines their
values into an end-performance factor. The E-Model was originally used as
a network planning tool, but it has gained a wider acceptance and nowadays
is used non-intrusively over the network as a passive monitoring tool.

The objective of the E-model is to determine a transmission quality
rating, i.e., the ”R” factor, with range typically between 0 and 120. The ”R”
factor can be converted to estimated listening and conversational quality
MOS scores. The E-model does not compare the original and received
signals directly. Instead, it uses the sum of equipment impairment factors,
each one quantifying the distortion due to a particular factor. Impairment
factors include the type of speech codec, echo, averaged packet delay, packet
delay variation, and the fraction of packets dropped. As an example, let us
consider a system with distortion due to the codec Icodec, averaged one-way
delay Idelay, packet delay variation Idv, and packet loss Ipacketloss. Then,
the transmission quality factor can be calculated as:

R = R0 − Icodec − Idelay − Idv − Ipacketloss, (9)

where R0 is the highest possible rating for this system. The broader scope
of conversational quality assessment, as compared to listening quality as-
sessment, is illustrated in Fig. 12. Note that both P.SEAM and E-Model
are non-intrusive, i.e., they do not require the original signal(s).

The discussed measures of listening and conversational quality are de-
signed to predict the speech quality from the simultaneous effect of large
number of distortions. An objective quality assessment measure can also be
designed to operate in a particular environment only (e.g., specific speech
coding standard). These constraints can significantly improve the accuracy
of the system and reduce complexity and memory requirements [46].

3 Pre-Processing Speech Enhancement Tech-

niques

Historically, pre-processor single-channel speech enhancement algorithms
have been considered in the context of robust speech coding, see Fig. 2.
These algorithms are designed to operate in an environment where only the
noisy signal is available [47], and both facilitate the operation of the speech
codec and improve the perceived sound quality at the end user.

In a single-channel application, the noise suppression algorithm requires
an additional module for the estimation of the noise and clean speech statis-
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Figure 12: Non-intrusive monitoring of listening and conversational
quality over the network.
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Figure 13: Configuration of noise suppression (NS) as a speech enhance-
ment pre-processor for speech codec.

tics. Some of the most commonly used voice activity detectors (VAD) and
soft-decision methods can be found in [48–52]. The underlying idea in all
these algorithms is that the noise statistics can be estimated from the signal
segments, either in the time or in the frequency domain, where the speech
energy is either low, or the speech signal is not present at all.

The classical noise suppression scheme is based on the idea of spectral
subtraction [53]. It is widely used nowadays, mainly because of its simplicity.
Spectral subtraction schemes are based on direct estimation of the short-
time spectral magnitude of clean speech. A drawback of this algorithm is
the musical noise effect [54], [55]. Musical noise consists of tones with the
same duration as the window length of algorithm and with a different set
of frequencies for each frame. Musical noise is a result of variability in the
power spectrum.

In an attempt to improve on the perceptual performance, a generaliza-
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tion of spectral subtraction was proposed, in the form of nonlinear spectral
subtraction [56]. A theoretically motivated approach to improve on speech
and noise parameter estimation is proposed in [57].

Speech enhancement can be based on a signal subspace methods [58],
[59], or wavelet based methods [60–62]. In signal subspace methods, speech
distortion is minimized, subject to a constraint on a residual noise level.
In practice, both wavelet and subspace methods achieve noise reduction
through thresholding.

The use of models for speech and/or noise improve the performance of
speech enhancement systems. Different models for speech and noise have
been investigated: the sinusoidal model was used in [63], the autoregressive
model in [64], [65], [66]. More advanced modelling, based on HMM, is used
to capture speech dynamics in [67], [68].

A-priori information may be incorporated in the noise suppression al-
gorithms not only through the type of the model, but also in the form of
model parameters. Recent advances in noise suppression algorithms exploit-
ing a-priori speech and noise information, in the form of parameters of AR
processes, can be found in [69] and [70].

Due to the constant interest from the speech coding industry many at-
tempts have been made for standardization of noise suppression algorithms.
Examples of standardized algorithms can be found in [71–73]. Because of
the complexity of the problem, none of the candidate algorithms passed the
minimum requirements, in the recent standardization effort [74]. Current
state-of-the-art public algorithms are described in [75–77].

In the following, we consider only noise suppression algorithms designed
to improve the quality of the perceived speech signal. For completeness
mention that noise suppression pre-processors are also used in the context
of robust speech and speaker recognition, or in noise suppression systems
optimized for the performance of the speech codec parameters [78].

3.1 Linear Minimum Mean-Squared Error Filters

Let us consider the problem of observing a speech signal in the presence of
additive noise:

yk = sk + vk. (10)

With yk, sk and vk we denote discrete-time samples of noisy speech, clean
speech and noise, respectively. We assume that the signals are random
processes and that speech and noise are uncorrelated and zero-mean.

Let s = [sL . . . s1] denote a segment of length L of the clean speech signal,
and the noisy observation y is defined analogously. Let us consider the
optimal estimator of s, given only the statistically related noisy observations,
in the mean-squared error sense. That is, we seek the estimate ŝ that
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minimizes

E{(s − ŝ)(s − ŝ)T }. (11)

We search for the optimal estimator as an arbitrary function of the obser-
vation y, say ŝ = g(y). It is well known that the solution to (11), the
optimal minimum mean-squared estimator of a random variable s given the
value of another random variable y, is given by the conditional expectation,
e.g., [79]:

ŝ = E{s|y}
.
=

∫ +∞

−∞

sf(s|y)ds, (12)

where f(s|y) is the conditional pdf of s, given y.
In this thesis, we consider the problem of finding a linear minimum

mean-squared estimator and study applications of smoother and filter in
speech enhancement. We note that for Gaussian variables, the linear es-
timator is the optimal estimator, e.g., [80]. Thus, an equivalent starting
point would have been the assumption of Gaussianity for our signals. In
the case of a linear filter, the estimate is based only on the past and current
observations:

ŝF
k = E{sk|yk, yk−1, . . . , y1, y0} (13)

The smoother is based on a certain amount of future noisy observations, in
addition to the past and present observations:

ŝS
k = E{sk|yk+M , yk+M−1, . . . , yk, . . . , y1, y0}. (14)

A consistent theory that deals with the data-dependent linear MMSE
filters was first formulated by Norbert Wiener [81]. The name of Norbert
Wiener is typically associated with the non-causal formulation of the op-
timal linear mean squared-error estimator of sk given all the observations
{ym}+∞

m=−∞:

ŝk =

+∞∑

m=−∞

hmy(k − m). (15)

The frequency response of the IIR Wiener filter, which is the solution to
the above posed problem is given by

H(ejω) =
Psy(ejω)

Py(ejω)
, (16)

where Py(ejω) is the power spectrum of the noisy signal, and Psy(ejω) is
the cross-power spectrum. If the noise and the signal are uncorrelated, we
have the relation Psy(ejω) = Ps(e

jω), where Ps(e
jω) is the power spectrum

of the clean signal. This holds true for the application of speech observed
in additive background noise. A difficulty with the Wiener filter is that the
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Ps(e
jω) is not known and must be estimated by subtracting the estimated

noise power spectrum from the noisy-speech power spectrum.
In some applications, it is desirable to minimize or avoid system delay.

In such a case, the estimate is to be based only on the current and past
observations:

ŝk =

+∞∑

m=0

hmy(k − m). (17)

This problem turns out to be considerably more complex. A spectral fac-
torization has to be performed first, Py(z) = σ2

0Q(z)Q(1/z), and then the
causal IIR Wiener filter can be found [82], [83]:

H(ejω) =
1

σ2
0Q(z)

[
Psy(z)

Q(1/z)

]

+

. (18)

The operator [·]+ yields the ”causal (positive-time) part”. The difficulty
of performing spectral factorization is the main reason for not using the
optimal causal Wiener filter in speech enhancement applications.

The problem of spectral factorization and, therefore, the causal filter
implementation, is overcome by the Kalman filter theory. It offers a method
to recursively obtain the estimates (13) and (14). This theory has a number
of advantages over the previously discussed Wiener filters: 1) Kalman filters
can be used with non-stationary signals, 2) Kalman filters can be extended
easily to the vector case, 3) Kalman filters require only a finite number of
past observations.

The above listed properties make the Kalman filters attractive for speech
enhancement applications. Kalman filtering techniques were first applied
to speech enhancement for white-noise case in [84], and later extended to
colored noise [85]. Most of the studies, concerned with the application of
Kalman filtering in single-channel speech enhancement, focus on parameter
estimation schemes, e.g., [86], [87], [88], [89]. Different iterative schemes for
joint parameter and signal estimation are proposed in [85], [90], and [91].

In the following, we shall introduce the notation needed for the definition
of the Kalman filtering recursion in the context of the speech enhancement.
As is standard practice, we model the speech as an autoregressive process:

sk =

p∑

j=1

ajsk−j + wk, (19)

where wk is a white noise excitation process and the speech model order is
typically set to p = 10 for 8 kHz sampled speech. Equations (1) and (2) can
be represented in state space form:

xk+1 = F xk + G wk (20)

yk = HT xk + vk,
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where xk = [sk sk−1 . . . sk−p+1]
T is a p-dimensional state vector, and

G = H = [1 0 . . . 0]Tp×1. The state transition matrix is given by:

F =




a1 a2 · · · ap−1 ap

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




p×p

. (21)

The presented speech model is not unique. A speech model that is more
closely related to the speech production mechanism is proposed in [92]. An
extension based on the ARMA model is discussed in [93]. However, for the
sake of simplicity in this presentation we follow the model defined by (2 -
3).

Assuming that the signal and noise parameters are known, the optimal
minimum mean-square linear state estimate is obtained using the Kalman
filter equations [79]:

Pk|k−1 = FPk−1|k−1F
T + GQGT (22)

Kk = Pk|k−1H(R + HT Pk|k−1H)−1

Pk|k = [I − KkH
T ]Pk|k−1

x̂k|k−1 = Fx̂k−1|k−1

x̂k|k = x̂k|k−1 + Kk(yk − HT x̂k|k−1),

where Kk is the Kalman gain and x̂k|k and x̂k|k−1 are the filtered and
predicted estimate of the state. The prediction-error covariance is given by
Pk|k−1 = E{(xk − x̂k|k−1)(xk − x̂k|k−1)

T } and Pk|k = E{(xk − x̂k|k)(xk −
x̂k|k)T } is the filtering-error covariance. The measurement and driving noise
variances are given by R = σ2

v and Q = σ2
w. At each time instant the speech

sample estimate can be obtained by ŝk = HT x̂k|k.
It is relevant to discuss the differences between time-varying and time-

invariant [79] system. The Kalman filter can also be implemented in a
steady-state mode, which has computational advantages. For the stationary
case it is easy to note that the error covariance Pk|k−1 and the Kalman
gain Kk are dependent only on the data statistics, but not on the actual
observations {yk} and, therefore, can be pre-computed before the filter is
actually started. The error covariance can be found as a solution of the
steady-state discrete-time Riccati equation, e.g. [80]:

P = FPFT − FPHT (R + HT PH)−1HPFT + GQGT . (23)

Let P̄ be the positive definite solution of (23), then the stationary filter gain
can be found as:

K = P̄HT (R + HT P̄H)−1. (24)
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Figure 14: Stationary and time-varying Kalman gain for a representative
voiced speech segment.

A simple way to find the solution of (23) is to iterate and use the fact that
limk→∞ Pk|k−1 = P̄. After the stationary Kalman gain is obtained, the
Kalman algorithm reduces to:

x̂k|k = x̂k|k−1 + K(yk − HT x̂k|k−1). (25)

The use of the time-invariant Kalman implementation was first proposed
in [84] for saving on computational complexity. Differences between time-
varying and time-invariant Kalman filter implementations in the context of
speech enhancement are studied in [94]. The difference between the time-
variant Kalman filter (5) and the time-invariant implementation (23-25) is
attributed to the fact that the former approach enables accurate modelling
of the transients at frame boundaries. In Figure 14, the time-invariant
Kalman gain is plotted against the time-variant gain for a voiced speech
segment. The first element of the Kalman gain vectors is used in the plot.
When k is small, the time-varying Kalman gain is ”large” in order to obtain
a fast decay of the transient, whereas the gain decreases with time so that
the variance is small as well.

Next, we discuss the difference between the Kalman smoother and the
Kalman filter. Since the noisy measurement set available to the filter, is
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a subset of measurements, available to the smoother, the obvious relation
holds:

E{(sk − ŝS
k )(sk − ŝS

k )T } ≤ E{(sk − ŝF
k )(sk − ŝF

k )T } (26)

However, this relation does not tell much of the perceptual differences be-
tween the two algorithms, which is of greater importance. This topic is
investigated in paper B of this thesis.

The efficient implementation of the Kalman-fixed interval smoother is
based on the Rauch-Tung-Stribel recursion [95]. Let the index 0 is assigned
to the current speech sample, and the smoother delay is M samples. This
leads to a ”two-pass” algorithm. First, we run the Kalman filter over the
interval [0,M ] and for each time instant k collect the values x̂k|k−1, Pk|k−1

and Pk|k. Then, the smoothed state estimates and the corresponding sample
estimate are obtained in reversed order k = M,M − 1, . . . , 0, through the
recursion:

x̂k−1|M = x̂k−1|k−1 + Pk−1|k−1F
T P−1

k|k−1[x̂k|M − x̂k|k−1]

ŝk−1 = HT x̂k−1|M .

In paper B, we use Bryson-Frazier recursion [79], which is alternative to
the outlined Rauch-Tung-Stribel algorithm. The Bryson-Frazier recursion
is selected in the paper to facilitate the presentation and has no practical
advantages over the Rauch-Tung-Stribel recursion.

3.2 Perceptually Motivated Algorithms

In the last decade, researchers have turned their attention to integrating the
available knowledge of the human auditory system into noise suppression
algorithms.

The study presented in [96] is focused on attenuation of musical noise,
produced by the signal subspace speech enhancement algorithms. The basic
concept is to place a perceptual-postfilter at the output of the signal sub-
space algorithm. This postfilter utilizes properties of the human auditory
system, in an attempt to attenuate the residual noise with minimal speech
distortion. The residual noise attenuation is based on an estimate of the
masking threshold function.

Approaches to incorporate properties of the human auditory system di-
rectly into signal subspace methods or in subtraction based methods are
presented in [97] and [98] respectively. A similar formulation the perceptual
postfilter is used to further enhance the output of a Kalman filter-based
noise suppression system [99], [100].

An estimate of the masking threshold function is used to control the
parameters of a subtractive type noise suppression system in [101] and [102].

The perceptually motivated approach for speech enhancement, proposed
in [103], avoids calculation of the masking threshold function. Instead,
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the method integrates the perceptual weighting technique, used in CELP
coding [104], with subtractive type noise suppression algorithm.

4 Post-Processing Techniques Speech En-

hancement Techniques

In addition to the discussed pre-processor speech enhancement techniques
that aim at attenuating acoustic background noise, speech enhancement can
be achieved by a post-processor, Fig. 1. Typically, the purpose of the post-
processor speech enhancement processing is to attenuate the quantization
noise in the synthesized speech signal.
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Figure 15: Configuration speech codec - speech enhancement post-
processor.

In a speech decoder the synthesized speech is typically processed by a
formant postfilter that emphasizes the formant frequencies and deempha-
sizes the valleys in between [105]. Additionally the synthesized speech can
be processed by a pitch postfilter [106]. The purpose of a pitch postfilter is
to emphasize frequency components at pitch harmonic peaks.

4.1 Theoretical Motivation

The existence of a postfilter at the speech decoder can be motivated formally
by rate-distortion theory. This theory indicates that encoding at low bit
rates with respect to squared-error distortion will result in a decoded signal
with a spectrum different from that of the original signal [107], [108]. This
theoretical result is often referred to as reverse water-filling. It suggests that
the synthesis filter should differ from signal model filter. The presented in
this section relations are valid under Gaussian assumption, but that we
assume the basic principles carry over to speech signals.

The operation of the postfilter can be understood from graphs in power-
spectral domain. Let λ be an auxiliary variable the control the operating
point of an ideal coder. The area below both λ and the power spectrum
P (ω) defines the distortion, see Fig. 16. Since the reconstructed signal and
the quantization error are independent in an ideal codec, the sum of the
distortion and the power spectrum of the reconstructed signal forms the
power spectrum of the original signal. The relationship between the power
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Figure 16: The reverse water-filling principle.

spectra of the reconstructed signal ŝ and original signal s is

Pŝ(ω) = max (Ps(ω) − D(R), 0) , (27)

where distortion is denoted by D, and rate by R

R =
1

4π

∫ +π

−π

max

[
0, log

(
Ps(ω)

λ

)]
dω (28)

D =
1

2π

∫ +π

−π

min [λ, Ps(ω)] dω, (29)

Despite of the fact that postfilters are historically designed to reduce the
perceived loudness of the excess noise in spectral valleys, in the light of
reverse water-filling theory, the postfilters can be considered as an approx-
imate implementation of the difference between a signal model filter and a
synthesis filter.

4.2 Long- and Short-Term Postfiltering

There are two main types of postfilters. A formant postfilter reduces the
effect of quantization noise by emphasizing the formant frequencies and
deemphasizing the spectral valleys, while a pitch postfilter aims at empha-
sizing frequency components at pitch harmonic peaks.
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The motivation for the postfiltering function arises from knowledge of
the human auditory system, and particularly the concept of signal masking.
In general, the masking threshold has a peak at the frequency of the tone,
and monotonically decreases on both sides of the peak. This means that the
noise components near the tone frequency (speech formants) are allowed to
have higher intensities than other noise components that are farther away
(spectrum valleys).

Psychoacoustical experiments show that the speech formants are much
more important than spectral valleys, and the intensity of the spectral
valleys can be significantly attenuated, without causing an audible dis-
tortion [109]. Therefore, by attenuating the signal component in spectral
valleys, the postfilter only introduces minimal perceived distortion in the
speech signal, still achieving noise reduction.

A general formant postfilter is given by a pole-zero filter [106]:

Hs(z) =
A(z/γ1)

A(z/γ2)
. (30)

A(z/γ) = 1 +
∑p

k=1 ak(z/γ)−k is the adaptive short term prediction-error
filter, γ1 and γ2 are fixed parameters that control the degree of spectral
emphasis, 0 < γ1 < γ2 < 1, and p is the order of LP analysis, typically set
to ten.

A problem with the basic formant postfilter of equation (30) is that it
generally has a low-pass character, and the processed speech sounds muffled.
It is desirable to develop a formant postfilter that has no spectral tilt. Ht(z)
is a tilt correction filter of the form [106]:

Ht(z) = (1 − µ z−1), (31)

and it is controlled by the parameter µ that can be a function of the first
reflection coefficient [110].

The energy of the synthesized signal is typically lower than the energy
of the postfiltered signal. An adaptive gain control factor Gs compensates
for the time-varying gain difference between the synthesized speech vector
ŝ and the postfiltered speech vector ŝf ,

Gs =

√
ŝT ŝ

ŝT
f ŝf

. (32)

The gain is usually computed over 5 ms blocks, and linearly interpolated
over time. Finally, the combined short-term postfilter can be expressed as:

H(z) = GsHs(z)Ht(z). (33)

The postfilter parameters are set to different values values, dependent on the
particular speech codec. For example in G.723.1 [111] γ1 = 0.65, γ2 = 0.75,
and µ is a function of the firs reflection coefficient.
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The most popular form of the pitch postfilter is described in [106]:

Hl(z) = Gl
1 + ρ1z

−Λ

1 − ρ2z−Λ
, (34)

where Λ is the pitch lag, the coefficients ρ1 and ρ2 control the gain of the
pitch postfilter, and the overall gain Gl equalizes the energy of the input
and output signals and is calculated similarly to the automatic gain control
Gs in the formant postfilter.

The described formant and pitch postfiltering structure is not unique.
A variant of code-excited linear prediction postfilter design technique that
uses a frequency-domain approach, has been developed for sinusoidal coding
systems [112]. This postfilter is a normalized, compressed version of the
spectrally flattened vocal tract envelope. Let us define R(ω) by

log R(ω) = log A(ω) − log T (ω), (35)

where A(ω) is the spectral envelope, and T (ω) is a first-order all-pole model
of the spectrum tilt:

T (ω) =
1

1 − a1e−jω
. (36)

a1 is defined as the coefficient in the first order LP analysis, i.e., ratio
between the first and zeroth order correlation coefficients. Then R(ω) is
normalized to have unit gain, and root-γ compression rule is applied, with
γ ∈ (0, 1)

R̃(ω) =

[
R(ω)

Rmax

]γ

(37)

Both the formant and pitch postfilters are still open research topics.
Recent studies on the pitch postfilter can be found in [113], [114], and a
novel form of the formant postfilter has been proposed recently in [115].

In [106] it was noted that in addition to quality enhancement of coded
speech, the postfilter can be used for general speech enhancement. Exper-
iments with the postfilter, or similar structures, in a general speech en-
hancement application can be found in [116–121]. In paper C we extend
this idea by adapting the postfilter parameters to changing environment
conditions. The adaptation is based on the advanced psychoacoustically
motivated measure [3].

5 Summary of Contributions

The focus of this thesis is on quality assessment and enhancement of speech
communication systems. The main contributions of the thesis can be sum-
marized as follows: 1) explaining and solving the conflict between mean
square error causal linear filters and human perception, 2) improving the
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postfiltering scheme used in speech coding, based on a psychoacoustically
motivated distortion measure, and 3) proposing a novel, low-complexity,
concept for non-intrusive speech quality assessment. Short summaries of
the three papers included in the thesis are presented below.

Paper A: On Causal Algorithms for Speech Enhancement

Kalman filtering is a powerful technique for the estimation of a signal ob-
served in noise that can be used to enhance speech observed in the presence
of acoustic background noise. In a speech communication system, the speech
signal is typically buffered for a period of 10 to 40 ms and, therefore, the
use of either a causal or a noncausal filter is possible. We show that the
causal Kalman algorithm is in conflict with the basic properties of human
perception and address the problem of improving its perceptual quality.
We discuss two approaches to improve perceptual performance. The first is
based on a new method that combines the causal Kalman algorithm with
pre- and postfiltering to introduce perceptual shaping of the residual noise.
The second is based on the conventional Kalman smoother. We show that
a short lag removes the conflict resulting from the causality constraint and
we quantify the minimum lag required for this purpose. The results of
our objective and subjective evaluations confirm that both approaches sig-
nificantly outperform the conventional causal implementation. Of the two
approaches, the Kalman smoother performs better if the signal statistics are
precisely known, if this is not the case the perceptually weighted Kalman
filter performs better.

Paper B: Low Complexity, Non-Intrusive Speech Quality Assess-
ment

Monitoring of speech quality in emerging heterogeneous networks is of great
interest to network operators. The most efficient way to satisfy such a
need is through non-intrusive, objective speech quality assessment. In this
paper we describe an algorithm for monitoring the speech quality over a
network with extremely low complexity and memory requirements. The
features used in the proposed algorithm can be computed from commonly
used speech-coding parameters. Reconstruction and perceptual transfor-
mation of the signal is not performed. The critical advantage of the ap-
proach lies in generating quality assessment ratings without explicit distor-
tion modelling. The results from the performed simulations indicate that
the proposed output-based objective quality measure performs better than
the ITU-T P.563 standard.
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Paper C: Generalized Postfilter for Speech Quality Enhancement

Postfilters are commonly used in speech coding for attenuation of quantiza-
tion noise. In the presence of acoustic background noise or distortion due
to tandeming operations, the postfilter parameters are not adjusted and the
performance is not optimal. We propose a modification that consists of re-
placing the non-adaptive postfilter parameters with parameters that adapt
to variations in selected parameters obtained from the noisy speech, e.g., the
spectral flatness. This generalization of the postfiltering concept can handle
a larger number of distortions, but has the same computational complex-
ity and memory requirements as the conventional postfilter. Test results
indicate that the presented algorithms improve on the standard postfilter,
as well as on the combination of a noise attenuation pre-processor and the
conventional postfilter.
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