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Abstract 
 
 
 
Successful integration of simulations within the Network-Based Defence (NBD), 
specifically use of simulations within Command and Control (C2) environments, 
enforces a number of requirements. Simulations must be reliable and be able to 
respond in a timely manner. Otherwise the commander will have no confidence in 
using simulation as a tool. An important aspect of these requirements is the provision 
of fault-tolerant simulations in which failures are detected and resolved in a 
consistent manner. Given the distributed nature of many military simulations systems, 
services for fault-tolerance in distributed simulations are desirable. The main 
architecture for distributed simulations within the military domain, the High Level 
Architecture (HLA), does not provide support for development of fault-tolerant 
simulations. 
 
A common approach for fault-tolerance in distributed systems is check-pointing. In 
this approach, states of the system are persistently stored through-out its operation. In 
case a failure occurs, the system is restored using a previously saved state. Given the 
abovementioned shortcomings of the HLA standard this thesis explores development 
of fault-tolerant mechanisms in the context of the HLA. More specifically, the design, 
implementation and evaluation of fault-tolerance mechanisms, based on check-
pointing, are described and discussed. 
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Sammanfattning 
 
 
 
Framgångsrikt nyttjande av simulering som ett verktyg inom ramen för det 
Nätverksbaserade Försvaret (NBF) och ledningssystem innefattar fullgörande av ett 
antal krav. Simuleringar måste vara tillförlitliga (robusta) och kunna leverera 
resultat inom givna tidsramar. En viktig aspekt av detta är stöd för feltoleranta 
simuleringar som inkluderar detektering av fel och återställning av felande 
komponenter. Många av de simuleringar som återfinns inom det militära är 
distribuerade till sin natur. Den mest väletablerade standarden för distribuerade 
simuleringar, High Level Architecture (HLA), stödjer dock inte feltolerans i någon 
större utsträckning. Därav är det viktigt att utveckla metoder för feltolerans inom 
ramen för HLA i syfte att på sikt kunna införliva simuleringar i NBF. 
 
En vanligt förekommande metod för feltolerans inom distribuerade system är att 
kontinuerligt spara ett systems tillstånd under dess exekvering. Om ett fel inträffar 
återställs systemet genom att utnyttja det senaste sparade tillståndet. Detta arbete ser 
på möjligheterna att utveckla mekanismer för feltolerans inom HLA genom att 
utnyttja detta angreppssätt. Arbetet beskriver design, utveckling och analys av en 
mekanism som möjliggör feltoleranta HLA-baserade simuleringar. 
 
 
Nyckelord: HLA, Feltolerans, Distribuerad Simulering, Federat, Federation 
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1. Introduction 

1.1 Background 
Modeling and Simulation (M&S) in the context of Command and Control (C2) 
systems and the Network-Based Defense (NBD) provide efficient means for decision 
support, planning of operations, as well as training. Simulation tools in these settings 
supply the decision maker with support that enables faster decisions, and also 
improves the overall quality of decisions made. Thus, in order for simulations to be 
considered beneficial in the context of C2 systems and the NBD, they must respond in 
a timely-fashion and at the same time provide reliable results. 
 
Today, methodology for distributed simulations is important in the development of 
simulation systems. This is motivated by the nature of many of today’s simulation 
models, requiring access to vast processing capacity, and the benefit of simulation 
decomposition to promote reuse and/or connection of geographically dispersed units. 
The High Level Architecture (HLA) is the most widely adopted standard for 
distributed simulations in the defense sector. In HLA a simulation model is 
decomposed into logical units referred to as federates, whereas the simulation (a set of 
federates) is referred to as a federation.  

1.2 Motivation 
The distribution of a simulation system certainly has its merits but will typically lead 
to a higher failure rate. This is simply due to the fact that the probability for failure 
increases as the number of machines of the distributed simulation system rises. From 
the perspective of a decision support system the failure of a critical simulation 
component is in most cases unacceptable. If time is a constraining factor, rerunning a 
simulation due to malfunction is not plausible, and an undetected failure may interfere 
negatively with simulation results, which may bring catastrophic side effects. 
 
Given this, it is crucial to provide services for failure detection and recovery to enable 
robust execution of simulations, i.e. support for fault-tolerance is required for 
distributed simulations in the context of C2 systems and the NBD. The HLA standard 
does not treat fault-tolerance extensively, nor has the research community explored 
this topic sufficiently. The next generation of the HLA, the HLA Evolved, focuses 
more on fault-tolerance compared to its predecessors, but the new standard mainly 
addresses detection of faults. Thus, it is necessary to develop scalable and efficient 
means of failure recovery in HLA-based distributed simulations.   

1.3 Problem formulation 
In this thesis we investigate how to design, develop, test and analyze Fault-Tolerance 
(FT) mechanisms that can be used in HLA-based distributed simulations. In 
particular, we are interested in FT mechanisms that utilize check-pointing protocols. 
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We will also investigate the efficiency of the FT mechanisms, since time is essential 
in many situations where simulation is used as a real-time decision-support tool.  

1.4 Thesis Outline 
 
Chapter 2 gives a brief introduction on distributed systems as a basis for 
understanding terms and acronyms used in later sections and chapters. Furthermore, it 
provides some general definitions related to fault-tolerance and specifically addresses 
check-pointing as a basis for leveraging fault-tolerance in distributed systems. 
 
Chapter 3 describes fault-tolerance in the context of distributed simulations. First, a 
brief introduction to distributed simulations is provided, after which the High Level 
Architecture (HLA) is described, especially time-management in HLA since this is of 
importance for the fault-tolerance mechanism described in this thesis. Moreover, this 
chapter provides some information regarding the next generation of the HLA and the 
extended fault-tolerance support provided in this version. Finally, some recent work in 
enabling fault-tolerant HLA-based simulations is described. 
 
Chapter 4 presents the scientific contributions of this thesis. It gives a short 
description of the context within which fault-tolerant HLA-based simulations has 
been explored. It then briefly describes the Distributed Resource Management System 
(DRMS) that provides fault-tolerance services for HLA-based simulations and the 
fault-tolerance mechanism implemented in this system. Finally, this chapter describes 
the results and conclusions drawn from the experiments made in order to evaluate the 
fault-tolerance mechanism. 
 
Chapter 5 discusses some possible extensions to the fault-tolerance mechanism 
proposed in this thesis and provides some crucial points for further evaluation of the 
mechanism. 
 
Chapter 6 provides references used in chapter 1 to 5. 
 

1.5 Summary of scientific contribution 
The main contributions of this thesis have been published in conference proceedings 
and in a journal as described below: 
 

I. M. Eklöf, J. Ulriksson & F. Moradi. 2003. NetSim – A Network Based 
Environment for Modeling and Simulation. NATO Modeling and Simulation 
Group, Symposium on C3I and M&S Interoperability, Antalya, Turkey. 

 
Summary and contribution: This paper describes development of a common 
environment for M&S, referred to as NetSim, supporting the Swedish Armed 
Forces in a C2 context. The author of this thesis contributed to the development 
of this paper in cooperation with J. Ulriksson and F. Moradi and was primarily 
responsible for the section on resource management and distributed simulation 
execution through the DRMS.  
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II. M. Eklöf, M. Sparf, F. Moradi, & R. Ayani. 2004. Peer-to-Peer-Based Resource 
Management in Support of HLA-Based Distributed Simulations. SIMULATION 
80: 181 – 190. 

 
Summary and contribution: This paper describes the initial architecture and 
implementation of the DRMS. Further, it discusses federate migration that could 
be utilized for load-balancing purposes or fault-tolerance.  The author of this 
thesis developed the initial ideas and design of the DRMS in cooperation with 
M. Sparf, F. Moradi and R. Ayani. He was also responsible for implementation 
of the HLA-related components of the system and main contributor to the paper. 

 
III. M. Eklöf, F. Moradi & R. Ayani. 2005. A Framework for Fault-Tolerance in 

HLA-Based Distributed Simulations. Proceedings of the 2005 Winter Simulation 
Conference (WinterSim), Orlando, Florida. 

 
Summary and contribution: This paper describes a refined architecture and 
implementation of the DRMS. Further, a mechanism for fault-tolerance in HLA-
based distributed simulations is proposed. The author of this thesis was the main 
contributor to the development of the refined DRMS and the fault-tolerance 
mechanism.  

 
IV. M. Eklöf, F. Moradi & R. Ayani. 2006. Evaluation of a Fault-Tolerance 

Mechanism for HLA-Based Distributed Simulations. Proceedings of the 20th 
Workshop on Parallel and Distributed Simulations (PADS), Singapore. 

 
Summary and contribution: This paper describes an evaluation of the proposed 
fault-tolerance mechanism in the context of the refined DRMS. The author of 
this thesis was responsible for conducting the evaluation of the proposed fault-
tolerance mechanism and main contributor to the development of this paper.  
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2. Fault-tolerance 

In this chapter a brief introduction to distributed systems and fault-tolerance is given. 
More specifically, this chapter addresses check-pointing methods as a basis for fault-
tolerance in distributed systems.  

2.1 Distributed systems 
Several definitions of distributed systems exist. In [Tannenbaum & Steen 2002] the 
following definition is provided: 
  
“A distributed system is a collection of independent computers that appears to its 
users as a single coherent system” 
 
An important notion of a distributed system is that its hardware, i.e. individual 
computers of the system, is autonomous. Further, the actual distribution of the system 
is transparent to its users, meaning that they perceive it as an ordinary, non-distributed 
system. 
 
Parallel and distributed simulations are often conceptualized as a set of Logical 
Processes (LPs). In the following sections we use the concept of LPs to describe 
distributed systems. To deliver functionality, the LPs of a distributed system exchange 
messages. The message exchange is carried out by means of a communication 
protocol such as Remote Procedure Call (RPC) or Remote Method Invocation (RMI). 

2.2 Fault-tolerance in distributed systems 
In a distributed system, a failure is often partial, i.e. one or some of the components of 
the system fails. A partial failure is most often not critical since the entire system will 
not be brought down. The failure of an LP may have an impact on the proper 
operation of other LPs. However, in some cases other LPs may remain unaffected. In 
contrast to this, a failure in a non-distributed system will often cause malfunction of 
the entire application. 
 
[Tannenbaum & Steen 2002] defines four aspects that are important in understanding 
fault-tolerance. First of all, fault-tolerance is strongly associated with something 
called dependable systems, which in turn covers the following features: 
 

1. Availability 
2. Reliability 
3. Safety 
4. Maintainability 

 
Availability refers to the probability that a distributed system is able to deliver its 
services in an expected way at any given time. Reliability refers to the probability that 
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the distributed system can deliver its services during a certain time interval. Safety 
means that a temporary malfunction of the distributed system will not cause disastrous 
effects. Finally, maintainability describes how easy it will be to repair a distributed 
system that does not function in an expected way. These definitions give some basic 
understanding of the requirements that are imposed on a fault-tolerant distributed 
system. 
 
If a system can not meet its promises, it is said to fail. In a service oriented distributed 
system, this means that when one or more of the individual services cannot perform in 
an intended manner, it has failed. An error is part of a system’s state, which may 
cause a failure in the system. For instance, if data packets are sent over a network, 
some of these may be corrupted as they reach their destination, potentially causing the 
receiving component to fail. Finally, the cause of an error is a fault. In the case of 
corrupted data packets, the cause may originate from a bad transmission medium 
[Tannenbaum & Steen 2002] 
 
Occurring faults are either transient or permanent. Transient faults occur for a limited 
time interval and are usually caused by some temporary breakdown in parts of the 
system. Permanent faults are caused by major breakdowns in system components and 
persist until failed components are fixed or replaced. Generally, development of fault-
tolerant services for distributed systems considers permanent faults [Agarwal 2004].  
 
As expected there are numerous potential causes for a failure in a distributed system 
and these faults will induce different types of failures as well. Based on [Cristian 
1991; Hadzilacos & Toueg 1993], [Tannenbaum & Steen 2002] outlined a 
classification scheme for failures, as shown in table 1. 
 

Table 1. Classification of failures in a distributed system [Tannenbaum & Steen 2002]. 
Type of failure Description 
Crash failure A server halts, but is working correctly until it halts 
Omission failure 

- Receive omission 
- Send omission 

A server fails to respond to incoming requests 
A server fails to receive incoming messages 
A server fails to send messages 

Timing failure A server’s response lies outside the specified time interval 
Response failure 

- Value failure 
- State transition 

failure 

A server’s response is incorrect 
The value of the response is wrong 
The server deviates from the correct flow of control 

Arbitrary failure A server may produce arbitrary responses at arbitrary 
times 

 
The purpose of implementing fault-tolerant distributed systems is to avoid failures, 
even though faults are present. Ideally, a fault-tolerant system should mask the 
presence of faults. A distributed system comprises several sub-systems, whose failure 
should not affect the overall system performance [Agarwal 2004]. 
 
There is no general method for fault-tolerance in distributed systems, but two 
reoccurring phases can be identified, error detection and recovery. There are 



 9

numerous techniques for recovery in distributed systems. These can be classified into 
two main categories [Damani & Garg 1998]: 
 

- Replication-based techniques 
- Check-pointing-based techniques 

 
In replication-based approaches one or more copies of an LP is maintained in addition 
to the main LP. In case of failure, one of these replicas will take the failed LP’s place. 
In check-pointing-based approaches, states of individual LPs are saved on a stable 
storage device. In case of failure, an LP is restarted using the last stable state saved on 
stable storage. The following sections will describe fault-tolerance techniques based 
on check-pointing and more specifically address rollback recovery.  

2.2.1 Check-pointing techniques 
The purpose of fault-tolerance services of a distributed system is to enable recovery of 
the system to a consistent state in case of failure. If considering a single process, i.e. a 
uni-processor application, this is fairly simple. The process saves checkpoints on 
stable storage and recovers, in case of failure, using the latest saved state. However, if 
a system comprises multiple communicating LPs, then it becomes more complicated. 
In this case the system state includes the states of all LPs [Agarwal 2004] and it is 
required to do the recovery based on a consistent system state. [Chandy & Lamport 
1985] defines as consistent system state as one where messages received by LPs and 
reflected in their states are at the same time reflected as sent messages in other LPs 
states. 
 
A fundamental device used in check-pointing-based approaches is the stable storage. 
All LPs of a distributed system have access to this device and use it periodically to 
save check-points. At a minimum, the checkpoint in this case comprises the states of 
all individual LPs. Given the requirements on the fault-tolerance protocol, the design 
of the stable storage device will differ. The purpose of the stable storage device is to 
enable persistent storage of check-points through-out the operation of the system. If 
only transient faults are tolerated the stable storage could reside in the local context of 
an LP, e.g. local disk in each host. Given that non-transient faults are tolerated this is 
not sufficient. Non-transient faults are permanent faults and thus, the stable storage 
must reside outside of the hosts of the participating LPs, e.g. a replicated file system 
[Elnozahy et al. 2002]. 
 
The saving of checkpoints to stable storage can be accomplished in two different 
ways; either by coordinated or un-coordinated check-pointing. As the name implies, 
in coordinated check-pointing, LPs cooperate in producing a snapshot of the system 
state. In un-coordinated check-pointing, LPs report their states to stable storage 
individually, which of course will have an effect on how the recovery of a failed LP is 
accomplished, see next section for details.  

2.2.2 Rollback recovery 
One way of realizing check-pointing-based recovery is to employ rollback recovery. 
In this approach, a consistent system state is reached by rolling back participating LPs 
in time when recovering from a failure. Section 3.1.2 provides more information on 
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the rollback mechanism. Thus, the fundamental idea of rollback recovery is to bring a 
system back to a system consistent state in case a fault causes inconsistencies. 
However, it is not certain that the consistent state is one that occurred prior to the 
failure. The recovery protocol just assures that it is a state that can occur in a failure 
free execution [Elnozahy et al. 2002].  
 
Looking at a distributed system as a set of LPs exchanging messages, i.e. a message-
passing system, rollback recovery becomes a fairly complicated matter. This is 
because messages exchanged during execution impose inter-LP dependencies. The 
effect of this may become evident upon failure and subsequent recovery of an LP. 
Due to the inter-LP dependencies, LPs that have not failed may also be forced to 
rollback. This is commonly referred to as rollback propagation.  
 

 
Figure 1. Rollback propagation in case of rollback. 

 
Consider the case depicted in figure 1 where two LPs exchange messages. Grey boxes 
indicate states of LPs, which are successively saved during the operation of the 
system. In case LP1 fails during the operation of the system it will initiate a recovery 
based on a state that has not recorded the sending of message m. This requires that 
LP2 makes a rollback to a state that does not record the receipt of message m. In this 
case LP2 uses state e in the rollback procedure. Otherwise the states of the LPs would 
be inconsistent, i.e. the state of LP1 (state c) does not record the sending of message m 
whereas the state of LP2 (state f) records the receipt of that exact message. In the 
worst case a system may rollback to the initial state from where the execution began, 
which is referred to as the domino effect. 
 
One way of avoiding rollback propagation, and in the worst case the domino effect, is 
to use coordinated check-pointing. In this case a system consistent state exist, which 
can be seen as a lower bound for rollback. Un-coordinated check-pointing does not 
guarantee absence of rollback propagation or the domino effect but is advantageous in 
the sense that each LP decides when to take the snapshot. Thus, taking the checkpoint 
when the state comprises small amounts of data may reduce the communication 
overhead.  
 
Independent check-pointing 
As the name implies, LPs do not cooperate to produce their checkpoints in 
independent check-pointing. Instead, check-points are established individually by all 
LPs. LPs maintain two different logs, namely the volatile log and the stable log. The 
volatile log records check-points of the LP state for each processed event. 
Periodically, samples are taken from the volatile log and brought to the stable log. In 
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case of recovery, an LP uses the last saved state in stable log as the current state. 
Next, the recovered LP sends a message to each neighboring LP, stating the number 
of messages the recovered LP has sent to the concerned LP in the current state. Then, 
the neighboring LP checks if the number of messages received from the recovered LP 
in the current state is greater than the number in the received message. If this is the 
case the neighboring LP is rolled back to a state where these numbers are equal. The 
rollback will in turn produce rollback messages for other neighboring LPs. Finally, 
when the states of all LPs are consistent with the states of neighboring LPs, a globally 
consistent state is reached [Agarwal 2004]. 
 
Coordinated check-pointing 
In coordinated check-pointing, LPs cooperate in order to produce a snapshot of the 
system state. Coordinated check-pointing simplifies the process of LP recovery and 
avoids the domino effect.  A common approach used in coordinated check-pointing is 
to block the communication while the snapshot is taken. One of the LPs acts as a 
coordinator broadcasting a request for execution of the check-point procedure. The 
LPs flush all communication channels and produces a tentative check-point after 
which an acknowledgement is sent to the coordinator. When all LPs have 
acknowledged production of a check-point the coordinator sends a commit message, 
which instructs the LPs to make the tentative check-point the current one, thus 
removing the old check-point. After this the LPs resumes normal execution. There are 
also non-blocking coordinated check-pointing schemes available [Elnozahy et al. 
2004]. 
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3. Fault-tolerance in distributed simulations 

In this chapter a brief introduction to distributed simulations and the HLA is given. 
Moreover, support for fault-tolerance in HLA is discussed and some related work is 
presented.  

3.1 Distributed simulations 
Simulation systems are usually categorized as being either continuous or discrete. In 
continuous systems state variables change continuously over time, whereas in a 
discrete system changes occur at certain points in time. The latter is usually referred to 
as Discrete Event Simulation (DES). There are two main approaches for advancing 
time in a DES, namely [Moradi and Ayani 2003]: 
 

• Time-stepped approach where the simulation time is advanced by a fixed time 
interval 

• Next-event approach where the simulation time is advanced to the time of the 
next event 

 
A traditional DES runs on a single processor machine and thus behaves in a sequential 
manner. However, as modern simulation models require vast amounts of processing 
capacity a sequential machine will not suffice. To cope with large simulation systems, 
a number of techniques for parallel and distributed simulations have been developed. 
Parallel DES (PDES) aims at reducing the time spent on executing a simulation 
through parallelization of the system. Distributed simulation on the other hand aims at 
executing several interacting simulation models on a network of computers. The 
benefit of distributed simulation is increased reuse of simulation models, enhanced 
interoperability between simulation models and potential for massive scalability 
[Moradi and Ayani 2003]. 
 
When designing a parallel or distributed simulation system it is required to 
decompose the target system into logical units. These units are usually referred to as 
Logical Processes (LPs). Depending on the simulation task at hand the decomposition 
differs, but usually an LP represent a physical process of some kind. The LPs of a 
simulation system communicates through exchange of time-stamped messages 
(events). Each LP maintains its own logical time and operates on a list of received 
events. 

3.1.1 The High Level Architecture – HLA 
Today, the High Level Architecture (HLA) is the de-facto standard for distributed 
simulations in the defense domain. HLA was originally developed by the Defense 
Modeling and Simulation Office (DMSO) to support reuse and interoperability across 
the large number of simulations developed and maintained by the U.S. Department of 
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Defense (DoD). The HLA baseline definition was completed in 1996, and since 2000, 
the HLA is an approved open standard through the Institute of Electrical and 
Electronic Engineers (IEEE) – IEEE Standard 1516. 
 
An HLA-based simulation is referred to as a federation, whereas individual 
participating components are called federates. Federates can be of numerous types, 
ranging from manned simulators to federation support systems. A federation is 
formed by connecting individual federates to a Run-Time Infrastructure (RTI). The 
RTI is an implementation of the HLA standard and provides basic services that enable 
interaction between participating federates [Kuhl et al. 1999].  Figure 2 illustrates a 
simple federation in which three federates are connected to the RTI and interact 
through defined services. 
 

 
Figure 2. Federate interaction through services provided by the Run-Time Infrastructure (RTI). 

The HLA standard comprises three major components; the HLA framework and rules 
[HLA Framework and Rules 2001], the HLA federate interface specification [HLA 
Interface Specification 2001] and the HLA Object Model Template [HLA Object 
Model Template 2001]. Below, these components are briefly described: 
 

- HLA Framework and Rules: This document defines the HLA, its 
components and the responsibilities of federates and federations. To ensure 
consistency of an HLA federation, two sets of rules must be obeyed. The first 
set of rules defines that [HLA Framework and Rules 2001]: 

 
1. Federations shall have an HLA Federation Object Model (FOM), 

documented in accordance with the HLA Object Model Template 
(OMT). 

2. In a federation, all simulation-associated object instance 
representations shall be in the federates, not in the RTI. 

3. During a federation execution, all exchange of FOM data among joined 
federates shall occur via the RTI. 

4. During a federation execution, joined federates shall interact with the 
RTI in accordance with the HLA interface specification. 

5. During a federation execution, an instance attribute shall be owned by 
at most one joined federate at any given time. 
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The second set of rules defines that [HLA Framework and Rules 2001]: 
 

1. Federates shall have an HLA Simulation Object Model (SOM), 
documented in accordance with the HLA OMT. 

2. Federates shall be able to update and/or reflect any instance attributes 
and send/or receive interactions, as specified in their SOMs. 

3. Federates shall be able to transfer and/or accept ownership of instance 
attributes dynamically during a federation execution, as specified in 
their SOMs. 

4. Federates shall be able to vary the conditions (e.g. thresholds) under 
which they provide updates of instance attributes, as specified in their 
SOMs. 

5. Federates shall be able to manage local time in a way that will allow 
them to coordinate the data exchange with other members of a 
federation. 

 
- HLA Federate Interface Specification: The HLA was defined to provide a 

common architecture for M&S, integrating various simulations. Thus, HLA 
relies on a standardized inter-federate interaction API. The HLA federate 
interface specification document defines this interface [Seiger 2000]. The 
interface specification defines six basic types of RTI services, these are [HLA 
Interface Specification 2001]: 

 
1. Federation Management (FM): FM refers to the creation, dynamic 

control, modification and deletion of a federation execution. Thus, the 
FM services are used to control federation wide activities during a 
federation execution.   

2. Declaration Management (DM): DM refers to the declaration of 
individual federates to receive and/or produce certain types of data. 
The DM services manages the publish/subscribe model for the data 
exchange within a federation. 

3. Object Management (OM): OM refers to registration, modification, 
and deletion of object instances, but also the sending and receipt of 
interactions. Thus, OM manages the lifecycle and message passing for 
object instances. 

4. Ownership Management (OSM): OSM refers to the transfer of 
ownership of object instance attributes between federates. Thus, OSM 
enables cooperative modeling of a given object instance across a 
federation. 

5. Time Management (TM): TM refers to means of ordering the delivery 
of messages throughout a federation execution. Thus, TM provides 
services for coordinating the federate time advancement along the 
federation time axis. 

6. Data Distribution Management (DDM): DDM refers to the reduction 
of both the transmission and the reception of irrelevant data. Thus, 
DDM provides services that make the data transmission among 
federates more efficient. 
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- HLA Object Model Template (OMT): The OMT defines the format and 
syntax for representing the information in HLA object models. This includes 
object, attributes, interactions and parameters. The OM could be seen as a 
template for documenting information in HLA federations. The OM comprises 
two different templates, namely the Federation Object Model (FOM) and the 
Simulation Object Model (SOM). The purpose of the FOM is to define the 
data exchange in a standardized and common format, for a set of federates of a 
federation. The SOM specifies what capabilities an individual federate can 
bring to a federation [HLA Object Model Template 2001]. 

3.1.2 Time management in HLA 
As computers in a distributed simulation do not share a common clock it is required 
that a virtual time, usually referred to as logical time, is introduced for each member 
of the simulation. A time synchronization protocol is used to maintain the logical time 
of members and ensures the causal ordering of events. 
 
Within time-stepped simulations, time is advanced in fixed time steps. A time-stepped 
federate will use a time step, s, which also represents the federate’s lookahead value. 
Given that the federate is at logical time t, it will produce events having a timestamp 
of t + s, t + 2s, etc. In figure 3, the evolution of a typical time-stepped simulation is 
illustrated. The solid line in figure 3 represents the federate’s logical time, whereas the 
dotted line represents the lower bound of timestamp for events that the RTI will 
accept.  The federate performs the cycle of requesting advancement of time (TAR in 
figure 3) and being granted the requested time (Grant in figure 3) [Kuhl et al. 1999].  
 

 
Figure 3. Evolution of time in a time-stepped simulation [reproduced from Kuhl et al. 1999]. 

Consider the case where the federate makes a request to advance its time to t + 2s. At 
this point the federate’s logical time is at t + s and it must produce events having a 
time-stamp of at least t + 3s (given by the dotted line). This is because the RTI 
interpret a time advancement request (TAR) from a federate as a promise saying that 
it will not produce events earlier than the request time. The federate in the example 
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will not be granted advancement to t + 2s until all other joined federates have made a 
time advancement request for this time. The pace at which a time-stepped federation 
will progress, will of course be dependent on the performance of each federate. A 
federate, performing extensive computation between the Grant and TAR will slow 
down the entire federation [Kuhl et al. 1999]. 
 
The HLA Time Management Design Document [HLA TM 1996] describes the life of 
a time-stepped federate in the following way: 
 
Become time-regulating and constrained 
While federation execution still in progress: 

Compute state of federate at time now. 
Provide any changed information to the RTI. 
Receive all external events in the time step. 
Invoke one of RTI’s Time Advance Request with the supplied 
argument 

(now + step) 
Respond to possible RTI requests for Reflect Attribute Value 
and Receive Interaction 
Honour RTI’s invocation for Time Advance Grant 

 
In this context, time-constrained means that the federate receives TSO (Time Stamp 
Ordered) events in time stamp order, whereas time-regulating means that the federate 
is able to send TSO events. 
 
In addition to the time-stepped approach, a federation can utilize the conservative 
approach. In the conservative case the federation is event-driven. Basically, the 
federate processes the event with the smallest future logical time, i.e. the federate can 
not receive events having a time-stamp smaller than this. The federate process events 
received from other federates and correspondingly advances its logical time according 
to the time-stamp of these events. Thus, the logical time will not progress in even 
steps during the simulation execution [Kuhl et al. 1999]. 
 
The HLA Time Management Design Document [HLA TM 1996] describes the life of 
an event-driven federate in the following way: 
 
Become time-regulating and constrained 
While federation execution still in progress: 

Tslocal = the time stamp of next local event 
Invoke RTI’s Next Event Request with the supplied 
argument Tslocal 
Handle possible RTI requests for Reflect Attribute Values 
 and 

Receive Interaction by using RTI’s Update Attribute 
Values 
and/or Send Interaction services. 

Receive RTI’s Time Advance Grant 
If (no TSO messages were received since the Next Event 
 Request call) 

Now = Tslocal 
Process the next local event notice identified 
above 

Else 
Now = time stamp of the received TSO message 

 
The time-warp synchronization protocol, proposed by [Jefferson 1985], is the most 
well known optimistic synchronization protocol. In the time-warp protocol, logical 
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processes (LPs), or federates, are allowed to process events optimistically. This means 
that a situation can occur where the time-stamp of a received message is smaller than 
the time-stamp of a previously processed event; this is called a straggler message. 
This implies that LPs are also allowed to send messages optimistically. When a 
straggler message is received, the receiving LP needs to correct its logical time to less 
or equal the time-stamp of the straggler message, this is called rollback. In the 
rollback process, events that have been processed, having a greater time-stamp than 
the straggler message, needs to be unprocessed. Further, additional events, sent to 
other LPs, generated from processing these events needs to be annihilated. The 
annihilation of events is accomplished by sending anti-messages to concerned 
receivers of the original events. Anti-messages will also induce rollback if the time-
stamp of the anti-message is smaller than the time-stamp of the latest processed event. 
 
Below, an example of how the time-warp algorithm manages rollback is described. In 
figure 4, the event queue of an LP is illustrated. Black boxes represent processed 
events, white boxes unprocessed events, grey boxes output messages, whereas grey 
circles represent snapshots of the LP state. At the stage illustrated in figure 4, the LP 
has processed an event for time 15 and saved a snapshot of its state. 
 

 
Figure 4. Event queue of a logical process (LP). 

Next, a straggler message with time stamp 5 reaches the LP, as illustrated in figure 5. 
At this stage, the LP must rollback event 7, 11 and 15 since these must be processed 
after the current straggler message. Thus, the LP restores using the snapshot taken 
after processing event 4. The states for event 7, 11 and 15 are deleted. Further, the LP 
must annihilate output message 14 since this was caused by processing event 11, 
which now has been rolled back (unprocessed). Therefore, the LP sends an anti-
message for output message 14. 
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Figure 5. A straggler message reaches the logical process causing rollback. 

The event queue of the LP after completion of the rollback is illustrated in figure 6. At 
this stage the LP resumes execution by processing event 5 (the straggler message). 
The LP must also manage the case when it is reached by an anti-message from 
another LP. If an LP receives an anti-message for an event that has not been processed 
yet it is simply deleted. This occurs if for example the LP in figure 5 receives an anti-
message for event 17. However, if the current event already has been processed a 
rollback is generated. For example, if the LP in figure 5 receives an anti message for 
event 15, it must un-process and then delete event 15, as well as restore from the 
snapshot produced after processing event 11. 
 

 
Figure 6. Event queue of logical process following rollback. 

The HLA Time Management Design Document [HLA TM 1996] describes the life of 
a time-warp federate in the following way: 
 
Become time-regulating and constrained 
GVT = 0.0 
flushQueueRequest (min time stamp among local events) 
while (GVT < FederateEndTime) 

nextEventTS = min time stamp among local events 
if timeAdvanceGrant (t) has not been invoked 

Allow RTI to deliver events 
Add non-retraction events to message list 
Add retraction events to retraction list 

else 
GVT = t /* Note: this is the federation time */ 
fossilCollect (GVT) 
flushQueueRequest (nextEventTS) 

while (message list is not empty) 
if (TS of the head of message list < TS of last processed 
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 event) 
rollback to TS of the head of message list 

enqueue head of message list into federate’s local event 
 queue 

remove head of message list 
while (retraction list is not empty) 
 find retractionlist head in unprocessed or processed 
 message queue of federate 
 if the head of retraction list has been processed 
  rollback (head of retraction list) 
 delete head of retraction list from federate 
dequeue next event to be processed 
save state 

Process event 

3.2 Supporting fault-tolerance in HLA 
The issue of fault-tolerance in distributed systems has been researched extensively 
and a range of solutions exist today. However, techniques for fault-tolerance in 
distributed simulations have not been developed at the same pace. Research in this 
area has been quite sparse to date [Kiesling 2003]. Considering the broadened 
application of M&S in various domains, this aspect of fault-tolerance certainly needs 
more coverage. If distributed simulations are incorporated in future military command 
and control systems, these simulations must be reliable. In a mission critical system, 
supporting a decision maker in short decision cycles, it is not acceptable to have 
unreliable simulation components, i.e. components that upon failure do not support 
recovery and need to be rerun to ensure a consistent execution. Apart from 
influencing the effectiveness of a simulation execution, failures that are not recovered 
and managed timely may impact the simulations results negatively. 
  
Today, the support for implementation of fault-tolerant federations, based on the 
HLA, is weak. If a federate of a federation fails, simply restarting the federate may 
leave the simulation in an inconsistent state. The only viable option has been to restart 
the entire application [Damani & Garg 1998], potentially initiating the restarted 
federation using previously saved states of the individual federates. However, using 
the save and restore features of the Management Object Model may cause a 
significant overhead as reported in [Zajac et al. 2003] and [Rycerz et al. 2005]. 
Moreover, the save facility of the HLA is performed in a local context, meaning that 
states are not available outside of the node where a federate resides. Also, the HLA 
provides no means of detecting failures in a federation. 

3.2.1 Fault-tolerance in HLA Evolved 
Currently, work is carried out to define the next generation of the HLA standard, 
through the HLA Evolved track. This work is expected to be completed in 2006. An 
interesting aspect of HLA Evolved is that the issue of fault-tolerance has been covered 
more extensively, compared to earlier versions of the HLA. In HLA Evolved, a 
common semantics for failure is defined and mechanisms for fault-detection are 
provided.  
 
Basically, two additions have been made to the Management Object Model (MOM). 
These are two interactions named federate lost and disconnected. The purpose of these 
interactions is to signal the failure of a federate, from the perspective of a federation 
(federate lost) and from the perspective of a federate (disconnected). Federates 
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subscribing to the federate lost interaction will be notified by the RTI when a member 
of the federation is lost (link to the RTI is broken). Subscribing to the disconnected 
interaction means that when a federate loses its link to the RTI it is notified internally 
to initiate an attempt to reconnect. When a federate is lost, the RTI has the 
responsibility to resign on behalf of the failed federate [Möller et al. 2005]. 
 
Figure 7 illustrates the life cycle of a federate with respect to faults. In the not 
connected state in figure 7, the federate will attempt to connect to the RTI using the 
Connect call. Faults occurring in this state are covered by the fault-tolerance of HLA 
Evolved. In the next state, the federate is connected. At this stage, faults are managed 
by HLA Evolved, bringing the federate to the not connected state. Similarly, in the 
joined state a fault will bring a federate to the not connected state. Figure 7 illustrates 
the use of the disconnected interaction added to the FOM, which triggers a reattempt 
to connect and join. 
 

 
Figure 7. Federate life cycle in the presence of faults [reproduced from Möller at el. 2005]. 

A number of levels, where faults can occur in a federation, were envisioned when 
considering fault-tolerance for HLA Evolved. These are [Möller et al. 2005]: 
  

1. Communications: Typical faults occur when a cable is disconnected or the 
link between two remote sites is lost 

2. Computer hardware: Faults may arise if components of a computer fails, e.g. 
power supplies malfunctions or hard drives crashes 

3. Operating system: The host system of a federate freezes or certain 
components, such as drivers and processes, fail 

4. RTI components: A failure may result from crashed, or corrupt, RTI 
components 

5. Federate: A federate may crash or degrade 
6. Federation: Faults may occur if federates of a federation do not follow 

predefined agreements, e.g. interpret data in a unintended manner 
7. Users: Unintentionally, users may trigger faults on lower levels, or terminate 

federates at the wrong time. 
 
HLA Evolved will probably ease development of fault-tolerant federations but some 
crucial aspects are still not covered. In HLA Evolved federates are notified (if 
desirable) of a failed federate but no mechanism for recovery is provided. 

3.2.2 Related work 
Even though fault-tolerance in the context of the HLA has not been researched 
extensively, some researchers address this issue. In [Lüthi and Berchtold 2000] a 
structured view of fault-tolerance in parallel and distributed simulation is given and 
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possible solutions are outlined. Several papers address the issue of run-time federate 
migration, which represent a fundamental function in building an infrastructure for 
reliable execution of federations. In [Tan et al. 2005] the issue of federate migration is 
explored. In order to make distributed simulation executions more efficient the 
workload should be uniformly distributed over available nodes. One way of 
maintaining the workload distribution over time is to implement run-time federate 
migration. The paper describes a mechanism that allows migration of federates, 
executed on nodes with high workload, to nodes having less workload. 
 
In [Bononi, et al. 2003] an adaptive framework, the generic adaptive interaction 
architecture (GAIA), is outlined that supports the dynamic allocation of model entities 
to federates in an HLA-based simulation framework. The potential benefit of this 
framework is the reduction of messages being communicated among separate 
execution units. This is achieved by a heuristic migration policy that assigns model 
entities to executing federates as a trade-off between external communication and 
efficient load balancing. Load balancing is required to avoid the concentration of 
model entities over a small number of execution units, which would degrade the 
performance of the simulation. The proposed mechanisms proved beneficial in 
simulating a prototype mobile wireless system by reducing the percentage of external 
communication and by enhancing the performance of a worst-case scenario.  
 
In [Cai et al. 2002] an alternative approach to dynamic utilization of resources for the 
execution of HLA federations is presented. In this case, the framework is based on 
grid technology, more specifically services of the Globus Grid toolkit. Each federate 
in the proposed architecture is embedded in a job object that interacts with the RTI 
and a load management system (LMS). The LMS performs two major tasks through 
the use of a job management system and a resource management system. These 
systems carry out load balancing whenever necessary and the discovery of available 
resources on the grid. 
 
In [Lüthi and Großmann 2001] a resource sharing system (RSS) is presented that uses 
idle processing capacity in a network of workstations to execute HLA federations. 
The owners of workstations within a local-area network (LAN) can control the 
availability of their computers, through a client user interface, for the execution of 
individual federates of a federation. Computers that are willing to share their 
resources are registered with the RSS manager that performs elementary load 
balancing. The RSS is built around a centralized manager that relies on an ftp server 
for the storage and migration of federates. Currently, there are no extensive fault-
tolerance mechanisms included in the RSS implementation, but as this is an important 
feature of distributed simulations and not well supported in the HLA, the RSS will 
eventually include functionality for check-pointing and management of replicated 
federates and fault detection. 
 
In [Berchtold and Hezel 2001] a replication-based concept for fault-tolerant 
federations is presented, called R-FED. The concept supports both Byzantine and fail-
stop failures. In the approach, some FT specific components manages a set of replicas 
of the federates and detects failures in the federation. 
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3.3 Summary 
For successful integration of simulations within the NBD, and in C2 settings, a 
number of requirements must be met. Simulations must be reliable and be able to 
respond in a timely fashion. Otherwise the commander will have no confidence in 
using simulation as a tool. An important aspect of these requirements is the provision 
of fault-tolerant simulations in which failures are detected and resolved in a consistent 
way. Given the distributed nature of many military simulation systems, services for 
fault-tolerance in distributed simulations are sought. The main architecture for 
distributed simulations within the military domain, the HLA, does not provide support 
for development and execution of fault-tolerant simulations. First, mechanisms for 
detection and signaling of failures within a simulation are required. These features 
will most likely be part of the next generation HLA, developed within the HLA 
Evolved track. Second measures for recovery of failed federates, to ensure consistent 
federation executions, are needed. This aspect is not part of the blueprints for the next 
generation HLA. 
 
Given the abovementioned shortcomings of the HLA standard, this thesis explores 
development of fault-tolerant mechanisms for the HLA. Specifically, the thesis 
addresses recovery in federations synchronized according to the time-warp protocol, 
which is accomplished through the use of a rollback-recovery scheme. 
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4. Contribution of the thesis 

This chapter contains the main contribution of the thesis. First a common environment 
for M&S, the NetSim environment, is described briefly as a context and motivation 
for the development of fault-tolerant distributed simulations. Second, the architecture 
and implementation of the Distributed Resource Management System (DRMS), 
enabling fault-tolerant distributed simulations are described. This is followed by a 
description of the fault-tolerance mechanism implemented within the framework of 
the DRMS. Finally, results from an evaluation of the proposed fault-tolerance 
mechanism are outlined and discussed. 

4.1 The NetSim environment explained 
This section outlines the concept of network-based M&S in general and its role in 
modern C2 systems. Further, an overview of a network-based M&S environment, 
called NetSim, supporting computer-based collaborative work, distributed resource 
sharing and fault-tolerant distributed simulations is given. 

4.1.1 M&S in modern C2 systems 
Use of M&S in a C2 context provides efficient means for decision support, 
simulation-based acquisition (SBA), training and planning of operations. The 
potential gain from coupling C2 and M&S systems have been discussed and studied 
during recent years, see for example [Tolk 2003] or [Carr 2003], and the HLA has 
been proposed to bridge the gap that currently exists between the two domains. 
 
Use of M&S in the C2 domain will provide the decision maker with tools that enable 
fast decisions in short decision cycles, but also that improves the quality of decisions 
that have been made. However, the application of simulations in these environments 
will require a high level of interoperability and collaboration between various actors, 
i.e. systems interoperability and means of collaboration between decision makers, 
technical staff etc. Given this, it is crucial to provide support for computer-based 
collaborative work, efficient sharing and use of M&S-related resources through a 
common framework, built on standards, e.g. standards for distributed simulations 
(HLA) and common information exchange data models. Also, simulations provided 
through C2 systems must respond in a timely fashion and ensure high quality output, 
thus fault-tolerance is crucial in these settings.  
 
When coupling the C2 and M&S domains it is important to consider the last decade’s 
rapid development in web and network technologies. It is of interest to see how web 
and Internet technologies can facilitate integration and also change the way we model 
and execute simulations. To explore these aspects the NetSim project was initiated at 
the Swedish Defence Research Agency (FOI). 
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4.1.2 Vision of NetSim 
The purpose of the NetSim environment is to provide a common M&S environment 
managing issues of interoperability, availability and reusability of simulation models. 
The intended environment will cover the complete M&S cycle, from conceptual 
design to execution of simulations. In the environment, Subject Matter Experts 
(SMEs), software developers, VV&A agents etc., can meet to share each others 
resources and expertise, but also to collaborate in real-time. The main areas of 
consideration for the NetSim environment are computer supported collaborative M&S 
and distributed resource sharing and use. 
 
The NetSim environment is based on a Service-Oriented Architecture (SOA). Figure 
8 illustrates an overview of this architecture. The top layer comprises various M&S-
related tools, e.g. tools for composition of simulations by a single user or 
collaboratively by a group of users. The M&S-tools derive their functionality from 
various NetSim specific services. These are denoted DRMS, CC and Repository in 
figure 8. As mentioned before, the DRMS provides services for execution of 
simulations. The CC (Collaborative Core) provides services to support collaborative 
work, whereas the Repository provides lookup of available resources within the 
environment, e.g. simulation models, simulations and computing capacity. The 
NetSim services are based on various overlay network technologies such as Web 
Services, Grid Services, peer-to-peer or the HLA RTI. Throughout all layers, a 
common syntax and semantics is used to ensure interoperability. Further, security is 
considered an integral part of all layers. The purpose and scope of the NetSim 
environment is described in greater detail in part II, paper I. Also, [Eklöf et al. 2004] 
and [Eklöf et al 2005] provide descriptions of the architecture and prototype 
implementation of the NetSim environment. 
 

 
Figure 8. Architecture of the NetSim environment. 

4.1.3 Summary  
This section addresses several important aspects of enabling the use of M&S in future 
C2 systems. Among these aspects the provision of fault-tolerant distributed 
simulations is a key challenge. In a C2 context, simulations must be reliable, i.e. 
simulations must respond in a timely fashion and must provide reliable outputs, 
otherwise the decision makers will have no confidence in using them. Today, HLA is 
the key technology for distributed simulations within the military community and 



 27

HLA does not provide fault-tolerant services in its present form. Thus, fault-tolerance 
mechanisms for HLA must be developed before the full potential of M&S will be 
seen in the C2 domain. 

4.2 The Distributed Resource Management System 
In this section the issue of resource management in NetSim is described in greater 
detail. More specifically the Distributed Resource Management System (DRMS) is 
described at a conceptual level. A requirement on DRMS is run-time migration of 
simulation models between host-environments in a network. This function is 
fundamental for development of fault-tolerance mechanisms in the context of DRMS. 

4.2.1 DRMS - An overview 
The basic idea behind the DRMS is that users within an M&S community should be 
able to execute processing intensive simulations regardless of what kind of hardware 
they possess. To do this, idle processing capacity on a network is utilized to perform 
the execution on behalf of the users. This feature is transparent to the individual users, 
which are entirely detached (if desirable) from the process of managing the execution 
process, i.e. the process of locating, allocating and monitoring computers used for the 
execution. Owners of desktop computers, willing to contribute their idle processing 
capacity, download and install an application that under certain circumstances 
(decided by the desktop owner) shares the processing capacity of its host machine. 
The desktop owner always has the ability to withdraw shared hardware resources at 
any time. The DRMS simplifies the process of deploying, configuring and executing 
federations by enabling the user to manage these tasks from a central location, i.e. the 
users own desktop computer.  
 
Further, the DRMS supports run-time migration of federates, i.e. transfer of federates 
between host-environments during the federation execution. This function is used for 
several purposes: 
 

1. User-triggered migration: the owner of a computer, used in a federation 
execution, chooses to withdraw shared processing capacity, which triggers 
migration of a federate to a new host environment.  

2. Load-balancing migration: to gain better performance in the federation 
execution the most suitable distribution of federates among available 
computers can be sought. Since conditions may change during a federation 
execution, migration may be used as basis for a run-time optimization scheme. 

3. Failure migration: in case a federate, its host environment, or a network 
connection to a remote site fail, migration is used to restore a federation 
execution 

 
In the context of the DRMS, user-triggered and failure migrations have been explored. 
Migration for the purpose of load-balancing has not been covered. 

4.2.2 DRMS implementation 
Two implementations of the DRMS concept described above have been made. The 
first implementation is based on peer-to-peer technology and is described in greater 
detail in part II, paper II. The second implementation is based on web services and is 
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presented paper III. The following section provides a brief description of the 
implementations. 
  
In the first version of the DRMS, peer-to-peer technology was used for the 
implementation, more specifically the JXTA technology. JXTA is an open-source 
project initiated by Sun Microsystems aiming at providing system and community 
interoperability, platform independence and technology ubiquity for peer-to-peer 
solutions. A basic entity in a JXTA-based system is a peer, which can be seen as a 
virtual communication point. In any peer-to-peer system, a peer constitutes the 
fundamental processing unit. In JXTA, the notion of a peer group is also important. A 
peer group assembles multiple peers into a group within which services and resources 
are shared. In the JXTA implementation of the DRMS two different types of peers are 
present; one called Manager Resource (MR) and the other Computing Resource (CR). 
As the name implies, the MR is responsible for managing the execution of a 
simulation on behalf of a user, or a group of users, whereas the CR is responsible for 
executing a simulation component, in this particular case an HLA federate. 
 
Given the concept of a Network-Based Defence, where capabilities are exposed as 
services, the NetSim project adopted a Service Oriented Architecture (SOA). Thus, 
the architecture and implementation of the DRMS was revised and a web services-
based solution was developed. Three main service types were defined, namely 
Execution, RemoteJob and Repository. The Execution service is equivalent to an MR 
in the JXTA-based implementation, whereas the RemoteJob service can be seen as a 
CR. Figure 9 illustrates the interrelations among the services and the service interfaces 
employed. 
 

 
Figure 9. Services and service interfaces of the web services-based implementation. 
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The Repository service manages meta-data that describes various resources, e.g. 
simulation models, data and RemoteJob services. When deployed in a host 
environment, the RemoteJob service registers meta-data in the Repository service. 
This meta-data describes features such as the hardware and software configuration of 
the host machine, e.g. the CPU speed and installed Java version. If the RemoteJob 
service accepts a request from the Execution service to execute a federate, it 
downloads the required code from an FTP server. The Execution service is used from 
the NetSim environment to manage the execution of an assembled simulation. First, 
the Execution service fetches available RemoteJob services from the Repository 
service. Then the Execution service finds a suitable distribution of the simulation 
components (federates) given the available RemoteJob services. The distribution is 
resolved by matching hardware and software requirements of the federates with the 
features of the RemoteJob services. During a federation execution the Execution 
service monitors the federation to detect failures and to initiate a recovery mechanism 
in case a failure occurs.  

4.2.3 Summary 
The peer-to-peer-based version of the DRMS showed the feasibility of utilizing idle 
storage and processing capacity in a network of workstations, to execute HLA-based 
distributed simulations. This work yielded a solution for migration of federates in a 
federation utilizing a time-stepped synchronization scheme. However, the 
implementation suffered from two major drawbacks. First, the migration of federates 
was a coordinated activity, which could not be used for migration in case of failure, 
i.e. it only supported user-triggered migrations. Second, the implementation only 
supported time-stepped federations. To overcome these drawbacks and in order to 
adapt to the service-oriented architecture of NetSim, a web services-based solution 
was developed. This work showed the feasibility of implementing fault-tolerance in 
time-warp federations using web services and the RTI communication infrastructure.  

4.3 Fault-tolerance enabled DRMS 
In this section the fault-tolerance mechanism implemented within the framework of 
the refined DRMS is described briefly. In part II, paper III and IV, a more elaborate 
description of this is given.  

4.3.1 Fault-tolerance mechanism 
To realize reliable execution of time-warp federations, a checkpoint-based rollback 
recovery protocol was developed. In check-pointing-based approaches, states are 
reported from individual LPs to what is commonly known as stable storage. When a 
failure occurs, an LP is restored using the latest saved state on stable storage. 
 
The fault-tolerance mechanism implemented in the DRMS utilizes the RTI 
communication infrastructure. This means that an extension to the Federation Object 
Model (FOM) is introduced, which enables check-pointing and federate recovery. 
Checkpoints are reported to a stable storage component, which is a member of the 
federation execution. The stable storage component is deployed by the Execution 
service (described in the previous section), which also comprises a simple component 
for detection of failures in the federation. However, the failure-detection phase has 
been treated superficially in this work.   
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4.3.2 An example of federate recovery 
Consider a case where four federates form a simple airport simulation federation. In 
this simple example only one type of event exists, the time of arrival of an airplane to 
an airport. The federates represent airports managing arrivals and departures of 
airplanes. The processing of an event in this case simply means scheduling the arrival 
of the airplane at a new destination, i.e. in one of the other federates. Thus, in each 
federate we have an event queue, comprising arriving airplanes. When an event is 
processed, it will generate a new event (arrival of an airplane) in another federate 
(airport). The federation is synchronized according to the time-warp protocol 
(described in section 3.1.2), thus, the federates process events optimistically, and 
similarly, produce events for other federates optimistically. Given the topology of the 
federates (airports), which is a fully connected network, the message exchange is 
fairly homogeneous. 
 
Consider the event queue configuration of four federates of this federation as Global 
Virtual Time (GVT) equals 10, see table 2. The letters in the event queue column 
indicate the origin (airport) of events (airplanes), whereas the following numbers 
indicate the arrival time. In the output column, the letters indicate the destination of 
the airplanes and the following numbers indicate the arrival time at destinations. 
 

Table 2. Event queues of federates preceding migration. 
 

Airport Event Queue Output 
A B12 C15 
 B14 D17 
   

B D9 A12 
 C12 A14 
 C21 - 
   

C D11 B12 
 A15 B21 
   

D A8 C11 
 A17 - 

 
The process of federate recovery, in case of failure, resembles a rollback to GVT. 
However, special care is needed since the failed federate is not able to produce anti-
messages. In this case, message annihilations must be performed separately by each 
federate. For instance, consider the case where federate A in table 2 fails. During the 
absence of federate A (due to migration), federate B, C and D will continue the 
federation execution. However, as federate A does not report any checkpoints to 
stable storage during that time, GVT will not be increased during the migration. When 
federate A has been redeployed in a new host environment and initiated using the 
latest saved state from stable storage, it requests resend of all messages. This request 
first triggers annihilation of messages in federate B, C, and D, after which the resend 
takes place. Given the event queue configuration in table 2, the following actions will 
be taken: 
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- Federate C annihilates event A15 
- Federate C sends anti-message for event B21 
- Federate B annihilates event C21 
- Federate D annihilates event A17 
- Federate B resends event A12 
- Federate B resends event A14 

 
The configuration of the event queues of the federates, post migration, is presented in 
table 3. At this point the federation is synchronized and can resume normal execution. 
 

Table 3. Event queues of federates following migration. 
 

Airport Event Queue Output 
A B12 - 
 B14 - 
   

B D9 A12 
 C12 A14 
   

C D11 B12 
   

D A8 C11 
 

4.3.2 Summary 
The fault-tolerance mechanism of the DRMS uses the RTI as means of 
communication to enable check pointing and federate recovery. This implies that 
federates conform to certain requirements in order to be executed within the 
framework of DRMS. Also, the introduction of fault-tolerance in any kind of system 
will impose a cost. Regardless of the approach chosen for implementing fault-
tolerance, replication-based or check-pointing-based fault-tolerance, the system must 
cope with increased network traffic and consumption of more hardware resources. 
The implemented fault-tolerance mechanism is capable of managing non-transient 
failures, however management of multiple concurrent failures are currently not 
supported. 

4.4 Evaluation of the fault-tolerance approach 
In this section, an evaluation of the proposed fault-tolerance mechanism for time-warp 
federations is briefly presented. The evaluation considers the cost of using fault-
tolerant federations, in terms of message overhead caused by the fault-tolerant 
mechanism. A comparison is made between federation executions, with and without 
fault-tolerance, when faults are triggered at different stages of the simulation. If the 
fault-tolerance mechanism is utilized when faults occur, failed federates are recovered 
and the federation can resume normal execution. In case the fault-tolerance 
mechanism is not used, a fault causes rerun of the entire federation. Note that the 
evaluation does not consider required time for a consistent federation execution, but 
focuses on number of generated messages. For the purpose of evaluating the fault-
tolerance mechanism a simple test federation was developed. This test federation 
consists of four federates, forming a fully connected network. Time synchronization is 
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carried out by means of the time-warp protocol, and in case of failure, a rollback 
recovery scheme is employed to restore the federation. In part II, paper IV, a more 
comprehensive description of the test federation is given along with an in-depth 
presentation of the evaluation. 

4.4.1 Results 
Figure 10 shows the difference in total number of generated messages for six different 
simulation executions, namely: 
 

1. 0 faults – no FT 
2. 0 faults – with FT 
3. 1 fault – no FT 
4. 1 fault – with FT 
5. 3 faults – no FT 
6. 3 faults – with FT 

 
For the zero faults case, the total number of generated messages is greater if the FT 
mechanism is implemented. This is due to the extra communication induced by 
communicating federate states to stable storage. If one fault is introduced during the 
simulation execution the total number of messages is almost equal, regardless if the 
FT mechanism is used or not, as illustrated in figure 10. When three faults are 
triggered during the simulation execution the total number of messages is greater for 
simulations that do not utilize the FT mechanism, see figure 10. 
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Figure 10. Total number of messages generated for the zero, one and three faults cases, with and 

without use of the FT mechanism. 

Figure 11 provides an alternate view of the experiments. In this case the difference in 
total number of messages, given a mean failure time of five consecutive intervals of 
the simulation, between the non FT and FT cases is depicted. The y-axis in figure 11 
represents the difference in number of generated messages between the non FT and 
FT cases, whereas the x-axis represents the logical time interval of the federation 
executions. As indicated in the figure, the overhead for the FT cases is greater than the 
extra communication caused by the faults in the non FT cases for the first three 
intervals. In the fourth interval the total communication cost is almost equal, whereas 
in the fifth interval the FT case shows better performance over the non FT case. 
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Figure 11. Difference in total number of messages, assuming one fault, between the non FT and 

FT cases for mean failure times of five intervals. 

4.4.2 Analysis of efficiency 
In order to analyze the cost, in terms of time required for federation execution, of 
using the fault-tolerance mechanism, a simple cost model is defined. Consider the 
worst-case scenario in the one fault case where a federate fails at the end of the 
federation execution. We define ( )NFTC  as the cost (required time) for executing the 
federation when the FT mechanism is not implemented. Let ( )FTC  be the cost 
(required time) for executing the federation using the FT mechanism. Further assume 
that one of the federates of the federation fails during the execution. Then we can 
define the cost, ( )NFTC  and ( )FTC , as: 
 

NkRMkNFTC ++=)(  
 

and 
 

rNsNkskMNMsrMkFTC ++=+−+++= ))(()(  
 

where 
 

• N: number of event-messages executed until the end of a simulation 
• M: number of event messages executed from the beginning of a simulation 

until a federate fails 
• k: average cost of processing one event-message 
• s: amortized cost of saving one message on the stable storage 
• R: cost of reinitiating the simulation in NFT case 
• r: cost of resuming (restoring) a failed federate in the FT case 

 
As mentioned above, the worst case performance, assuming one fault, equals the case 
when a federate fails at the end of the federation execution. Thus, in this case M will 
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approach N ( NM = ). Under this assumption we can compare ( )NFTC  and ( )FTC  in 
the following way: 
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If we assume that the cost of restarting the federation in the NFT case and the cost of 
resuming a federate in the FT case is negligible compared to the cost of processing 
event-messages or saving states on stable storage then: 
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Under such an assumption: 
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Given the above formula we can describe the efficiency of an FT federation. The 
formula indicates that the efficiency depends on how expensive the amortized cost of 
saving messages on the stable storage is in relation to the cost of processing event-
messages. Figure 12 illustrates the efficiency, )()( FTCNFTC , as a function of s/k 
provided that k is constant.  
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Figure 12. Efficiency of simulation executions, C(NFT)/C(FT), as a function of s/k. 

The amortized cost of saving messages on the stable storage depends on how 
frequently states are saved, i.e. the state-saving interval employed. However, the state-
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saving interval is coupled to the cost of restoring a failed federate (r). In case states 
are saved infrequently, a failed federate may be forced to rollback to a point in time 
far back in its past. This in turn may cause rollback of other federates, which all in all 
increases the cost of restoring the failed federate. Thus, it is of interest to find a 
suitable state-saving interval that take into account the communication overhead, 
caused by the FT mechanism, and the cost of restoring a failed federate.  
 
Furthermore, the efficiency, or s, is coupled to the hardware configuration of the 
stable storage device. A slow stable storage device will of course degrade the 
efficiency of an FT simulation. The s parameter also embeds the impact of sizes of 
states. Federates that require large allocations of memory for representation of their 
state will have a large impact on the efficiency. Large states will require more 
bandwidth and more time to save and extract. In this context it would be valuable to 
investigate approaches that take into account when during the life-time of a federate 
states are small. By avoiding saving of states that are large, the efficacy of an FT 
simulation can be improved. 

4.4.3 Summary 
The overhead caused by the FT mechanism is justifiable, especially when considering 
the worst-case scenario for federate failure times. In the worst-case a federate fails 
near the end of the federation execution, which in the non FT case will double the 
number of messages required for a fault-free execution. The performance of the FT 
mechanism (as indicated in figure 11), is coupled to the total number of event-
messages of the federation. An increase of the amount of event-messages will yield 
better performance for the FT-mechanism since the number of checkpoint messages 
will remain the same. Moreover, if additional faults are introduced during the 
federation execution the benefit of the FT-mechanism will become even more 
apparent. 
 
As the cost-model and figure 12 indicate, the cost of using the stable storage device 
has essential impact on the efficiency of FT federations. In this context, it is of 
importance to determine which state-saving interval to use and to provide a fast and 
reliable implementation of the stable storage component. The inclusion of FT 
mechanisms in distributed simulations will always impose a cost. However, this cost 
can be reduced by careful design of algorithms and use of high-performance 
hardware. 
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5. Future work 

In order to verify the proposed fault-tolerance mechanism, it should be evaluated in 
the context of a real simulation system. The federation used in the tests is rather 
simple. Above all, the exchange of messages in this federation is far more 
homogeneous compared with most federations. Thus, the fault-tolerance mechanism 
should be tested in various types of federations, considering the pattern of the 
message exchange, to get an estimate of its suitability under different conditions. 
Also, different types of federates (federations) will require different amounts of 
payload in their checkpoints, i.e. federates require different amounts of data for 
representation of a state. Given this, it would be of interest to investigate the impact of 
sizes of checkpoints on the performance of the fault-tolerance mechanism. 
 
Furthermore, the design of the current fault-tolerance mechanism does not consider 
multiple concurrent failures. Given that more than one federate fails at the same time, 
the mechanism in its present form does not guarantee that the restoration will bring 
back the federation to a consistent state. Thus, it would be of interest to extend the 
current mechanism to handle these situations as well. 
 
Currently the fault-tolerance mechanism is integrated in the code of the federates that 
will form a robust federation. In order to simplify development of fault-tolerant 
federations some kind of middle-ware system should be developed. This middle-ware 
should abstract fault-tolerance aspects away from the developer. However, the design 
of such middle-ware means that the fault-tolerance mechanism needs to be 
generalized. Currently, the mechanism is targeting federations synchronized 
according to the time-warp protocol. A middle-ware for fault-tolerance should provide 
services for other types of time-synchronization schemes, as well as federations 
comprising a mixture of federate types. 
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Interoperability, Antalya, Turkey, 2003. 
 
 
 
 
Abstract 
Modelling and Simulation (M&S) is a powerful tool that is used to support training and 
analysis of military operations, development of military concepts and gradually, it is 
becoming an integral part of modern C3I systems. As the web has evolved, new ways of 
carrying out modelling and simulation and realizing C3I systems have emerged. These 
achievements address some of the research issues considered vital for future development of 
the M&S/C3I domain. Firstly, web related technologies provide means of overcoming the 
interoperability barriers, for example through standardized data exchange formats (such as 
XML), platform independent software (for example Java) and shared knowledge of a domain 
(semantics). Secondly, networked environments offer ways of setting up virtual organisations, 
sharing common goals and interests, to efficiently collaborate in problem solving. Finally, 
computer networks promote efficient sharing of resources, which for example could increase 
the reuse of existing models or utilize idle processing capacity of computers. 
 
At the Swedish Defence Research Agency (FOI) there is ongoing research, targeting the role 
of network/web based technologies in M&S, to support defence communities in their work. 
Our vision comprises an environment supporting the entire M&S-process, including 
conceptualization, scenario definition, design, development and execution. All these tasks 
should be maintained by a framework for collaboration, which lets users; developers, 
analysts, administrators etc, jointly work on a project. During the first phase of this research 
focus has been on efficient resource sharing and means of collaboration. Through 
experimental research and implementation of a prototype (NetSim), methods and techniques 
have been identified to form a framework for collaborative work, resource management and 
distributed execution. 
 
Following current trends within development of networked applications, decentralized (Peer-
to-Peer) solutions were of primary focus when implementing the prototype. Based on the open 
source Peer-to-Peer platform JXTA, two distinct components of our envisioned system were 
implemented, namely; a decentralized resource management system deploying a network of 
workstation for execution of HLA federations and a collaborative environment for joint 
modelling of federations. Our results show that the utilization of Peer-to-Peer concepts for 
resource sharing and collaboration are favourable in terms of scalability, robustness and 
fault tolerance. The technology allows formation of virtual organisations without the need of 
intermediate resources like centralized and powerful servers. However, some aspects of our 
implementation temporarily rely on central control, thereby diminishing the benefits of the 
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Peer-to-Peer paradigm. Future research will therefore address distributed algorithms for 
synchronisation of collaborative work and a more flexible and extendable approach to 
resource management. Furthermore, as many studies have pointed out before, one of the 
great challenges of any type of Peer-to-Peer system is discovery and matching of resources. 
This is an area that deserves great attention when planning for the next generation C3I/M&S 
tools. 
 
1. Introduction 
C3I systems of the future Network-Centric Defence are dependant of the network and 
require interoperability between different components of the system. During the past 
decades the Modelling and Simulation (M&S) community, particularly the area of 
distributed simulation, has explored the possibility of coupling live and simulated 
systems in joint exercises and hence addressed the interoperability issues from many 
perspectives. Therefore, many of the challenges that future C3I systems are facing 
have already been dealt with by the M&S community. 
 
M&S as an integrated part of C3I systems could provide means for decision support, 
simulation based acquisition, planning, training, etc. Furthermore, M&S could be 
employed as a tool for development of C3I systems, e.g. for studies, test and 
verification. The mutual benefit of a close collaboration between C3I and M&S 
systems has been identified and discussed during recent years [1] and the High Level 
Architecture (HLA) has been suggested as a mean to interface and increase 
interoperability between the two systems. 
 
The High Level Architecture (HLA) is an IEEE1 standardized architecture (HLA 
1516), that provides means of connecting independently developed components 
(federates) to form simulations (federations). A simulation is formed by connecting 
individually developed components to a Run-Time Infrastructure (RTI), which 
implements the HLA standard. The RTI resembles a distributed operating system for 
simulations by providing services that enable interaction between participating 
components [2]. 
 
Integrated computer based decision support tools have also been identified as an 
important part of future C3I systems [3]. The fundamental idea is to make decisions 
faster and at the same time improve the quality of the decisions made. Tools that are 
accomplishing this are generally based on simulation systems, which often require 
interoperability and collaboration between different actors, such as decision-makers, 
field commanders, and technical staff etc. To realize these ideas efforts have been 
made within the area of computer based collaboration, enabling sharing of various 
resources, work areas, tools and environments. These techniques will not act as a 
substitute for real human-human work, but can be used for bridging distances and 
increasing and facilitating cooperation. 
 
An evolving technology that could provide a fundament for modern C3I systems is 
Peer-to-Peer (P2P) [4, 5]. The technology offers advantages such as live peer 
interaction and collaboration, ad-hoc networking and robust and fault-tolerant systems 
through redundant application and communication paths. P2P-technologies aim at 
                                                 
1 The Institute of Electrical and Electronics Engineers 
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utilization of resources at the edges of Internet as opposed to the traditional client-
server model. P2P can be seen as an alternative network architecture that does not 
exclude, but does not naturally build upon centralized solutions [6]. Essentially, P2P 
is about community and mutual sharing of resources, by organizing nodes into groups 
sharing common interests and goals.  
 
The aim of this paper is to give an overview of work related to web/network based 
modelling and simulation carried out at the Department of Systems Modelling, 
Swedish Defence Research Agency. Moreover it provides an insight in ongoing 
research in this area and its relation with integrated M&S/C3I systems. 
 
2. Background 
 
2.1 Interoperability 
Connecting systems of various types developed for different purposes, during 
different technological eras and for different platforms, inflicts major difficulties, 
especially in terms of interoperability. It is required that systems are capable of 
communicating between them, but also that the communication is semantically and 
syntactically agreed upon. If these basic requirements are not met, systems may 
interoperate for the wrong reasons. The problem of interoperability is important to 
address in the management of highly distributed systems like distributed simulations 
and C3I systems. The issue of interoperability has been of major concern within the 
modelling and simulation community for some time now. Already during the 80’s, 
efforts were made to standardize distributed simulations to facilitate interoperability 
among simulators, simulation models etc. The efforts made and experience gained in 
this forum, are definitely worth considering when planning for and developing 
integrated future C3I – M&S systems. Moreover, the rapid development of 
web/network related technologies brings new possibilities for overcoming the 
interoperability barriers and problems related to availability and management of 
resources. For example, through new ways of exchanging data (XML), distributing 
resources (P2P and Grid computing), and assuring semantic and syntactic correctness 
(Semantic Web initiative2). 
 
2.2 The NetSim project 
In 2001 a project was initiated at the Department of Systems Modelling, FOI, with the 
goals to manage and facilitate some of the issues concerning simulation 
interoperability, availability and reusability. The project was called WebSim, and 
focused on the area of web-based M&S. It produced interesting result regarding 
adapting legacy simulations to the web, and also concerning implementing HLA 
federations for web-based composition and execution. Some of the work was reported 
in [7]. 
 
As a follow-up to WebSim the NetSim project was formed. NetSim is a shortening of 
the full name A Network Based Environment for Modelling and Simulation. The new 
project does not reject the ideas of web-based M&S, but instead extends the concept. 
The main directions are to investigate decentralized solutions for M&S in general, 

                                                 
2 The semantic web is a web of machine-readable information [8]. 
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both web-based solutions and other possibilities. For this cause a prototype 
environment is being developed. It is intended to provide functionality and tools for 
the complete M&S life cycle, all the way from design and simulation modelling, to 
execution and documentation. The NetSim environment shall also provide access to 
distributed resources such as simulation models, various data, or even CPU usage, as 
aid for M&S activities.  
 
NetSim is intended for use within several different defence systems. It will support 
computer-based collaborative work, such as shared work areas and means of 
communication. This means that NetSim will not only work as a common platform 
for M&S, but also as a place of meeting other (M&S) people. In the computer 
environment, software developers, Subject Matter Experts (SMEs), soldiers and 
VV&A people may meet, and use and share each others’ resources and expertise. In 
modern and future defence systems M&S is used as technical aid for decision making, 
Simulation Based Acquisition (SBA), logistics planning and military training etc. 
Hence, NetSim could constitute an excellent tool for those systems and activities, and 
for activities where M&S is not currently used, but would be beneficial if made 
possible. An example of this is the support for mobile clients such as PocketPCs. This 
allows people on the move to interact with the environment. Hence a soldier may 
receive direct access to data and information about supplies and routes, and may 
collaboratively plan or decide what forthcoming actions to take. This also means that 
dynamic and actual data can be transmitted back to the base, and more optimized and 
well-planned decisions can be made easily. The NetSim environment will allow 
people (nodes) within a network to collaborate through their computers, which makes 
it easier to create a common picture of the situation/problem to handle, and supplied 
direct contact between all actors concerned. It hereby allows immediate access to the 
competence and expertise needed. 
 
2.3 The NetSim environment prototype 
At present a NetSim prototype is implemented. The prototype is not yet complete, but 
it demonstrates useful functionality and what the environment can be used for if 
employed in defence systems. It is implemented as a lightweight Java application, in 
which a user retrieves access to M&S tools and distributed resources within a local 
network. In order to let various kinds of users access NetSim, who may be located in 
different computer environments, a set of requirements were identified and followed 
during the design phase. These declare that the implementation should be: 
 

• Flexible – Supporting different users with varying computer capacity and 
properties to utilize the system 

• Scalable – In critical situations the number of users must not affect the system 
capacity 

• Platform independent – As much as possible the implementation should be 
kept platform independent 

• Technology independent – The result of our work is primarily the concepts 
being designed, not the implementation. Hence the solution is kept as 
technology independent as possible 

• Extensible – The infrastructure must allow for further integration of new 
systems and functionality 
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All simulation modelling and execution is today performed according to the HLA for 
purposes of project directives. The system is based on a distributed infrastructure 
implemented with P2P technology, see 2.5 – 2.6, which provides means for resource 
sharing and distributed computing among others. It allows users to search for, locate 
and access distributed resources and users in the network. Resources may in this case 
be anything from simulation models to CPU usage. Within NetSim only a few simple 
tools are currently provided, such as a text chat, an application for managing 
resources, and a graphical modelling tool, in which a user may compose HLA 
federations out of HLA federates residing within the network. A snapshot of the 
graphical M&S tool is shown in figure 2.1. Users can also run and view the composed 
HLA federations from the environment. The execution is performed transparently to 
the user, within the P2P network, through efficient utilization of idle processing 
capacity in desktop computers. 
 
2.4 Areas of research 
When designing NetSim, we identified some areas of significance to networked 
environments and network based M&S in particular. We decided to focus on a few, 
which are: 
 

• Component-based M&S – Allowing reusable, easily distributed simulations 
• Standards and techniques for M&S – Distributed, reusable simulations set high 

requirements on interoperability 
• Thin clients – Involving not only PCs and web-based clients in the M&S 

system, but also PocketPCs and others 
• Collaborative environments – Environments that provide a common picture of 

the problem to solve. Involving problems of maintaining consistency and 
control within the collaboration group 

• Resource utilization – Efficient ways of utilizing distributed resources, 
through efficient resource description and allocation 

 
Of the issues listed above, the last two have been the key issues in previous and 
current work. The collaborative work is described in chapter 3, and the resource 
utilization in chapter 4. More technical descriptions of these have been presented in 
two papers [9, 10]. 
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Figure 2.1: Snapshot of graphical modelling tool in NetSim. Users may (collaboratively or not) 

compose HLA federations out of HLA components (federates) residing in the network. 
 
2.5 Peer-to-Peer based resource sharing 
Peer-to-Peer (P2P) as a concept for computer communication is nothing new. In the 
early sixties, the pioneers of ARPANET formulated their vision of a future computer 
network comprising host-to-host capabilities. In their vision all connected nodes were 
equal in terms of functionality and could access resources from any other computer on 
the network [11]. These early ideas have not greatly influenced how the Internet is 
used today. The dominating architecture is the client-server model, where resources of 
various kinds tend to accumulate at dedicated centers. Large parts of the Internet 
remain unused, as network traffic around certain spots shows increasing activity. 
However, in the past years ideas and technologies have been put forth that promote 
the idea of distributing resources through use of P2P technologies. The distribution of 
resources is advantageous from many aspects; it reduces the occurrence of 
bottlenecks, minimizes possible system downtime and increases system availability 
and robustness etc. 
 
P2P has definitely made a great impact on how ordinary desktop computers may 
communicate and exchange various resources. This is especially true for the so called 
file sharing applications, although they are heavily questioned in terms of legal 
property rights. However, some more academic projects have successfully confirmed 
the strength of P2P for distributed computing. The Intel Philanthropic P2P program 
has demonstrated utilization of idle processing capacity in desktop computers to solve 
problems within the medical domain [12], whereas the SETI@Home project 
represents a successful P2P model for distributed computing, used for processing of 
radio astronomic data [13]. 
 
2.6 JXTA 
JXTA is an open-source P2P project, initiated by Sun Microsystems in 2000, 
providing a standardized and platform independent P2P platform [14]. The system is 
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based on XML3 messaging through employment of six protocols. Any piece of 
Internet connected hardware implementing these protocols, or a subset of them, can 
participate in a JXTA network. Nodes on the JXTA network are called peers. Peers 
form peergroups, based on common interests and goals, within which the participants 
share resources [11]. The JXTA platform provides a rich set of P2P features, thus 
simplifying the development of distributed systems. 
 
3. Computer supported collaborative M&S 
 
3.1 Computer-based collaboration and M&S 
Since the science and hype of Virtual Reality (VR) broke through, huge interest and 
activities have been conducted within the field. Despite the interest and future-
thinking about the area, 3D virtual worlds have not yet reached into our offices and 
everyday lives. VR is instead a part of the larger field of using computers to support 
human-human collaboration, an area which has gained far more usage than VR in 
itself, due to its availability and range of technical possibilities. Groupware, 
videoconferencing and shared project areas are just a few of the kind of products used 
for these purposes. Computer-based collaboration can assist in joining people and 
organizations in the same environment, allowing people to share not only resources 
but also work areas, tools and environments. Though computer-realized collaboration 
may never represent a substitute for real human-human work, it can be used for 
bridging distances and increasing and facilitating cooperation. 
 
These advantages are applicable within other areas as well. If considering 
collaborative M&S, sometimes referred to as CMAS, it could help joining people like 
software engineers, VV&A expertise and others in a common computer environment. 
With CMAS a project team could cooperate on M&S problems, with immediate 
support from SMEs, and with the customer supervising the activities, no matter if they 
are located on the same place or not. This improves and assures quality of work and 
enhances work efficiency. Within the defence in general, computer-based 
collaboration is a very interesting issue, since often military personnel are spread over 
long distances.  A key feature here is the possibilities of increasing the availability of 
competence and expertise, an issue which could be of considerable importance within 
critical systems for C3I and other domains. 
 
3.2 Infrastructure for CMAS in NetSim 
One of the main goals of NetSim is to provide support for collaborative work. If 
complying with the definition of Collaborative Virtual Environments (CVEs) as 
described in [16], a CVE shall provide shared information, tools and communication 
access, and need not provide a 3D visual environment. The work of NetSim focus on 
constructing an every-day used defence environment, for practical collaborative 
M&S, which is why we dismissed the thoughts of flashy 3D worlds and emphasized 
on reducing complexity and enhancing availability instead. This increases the 
possibilities of integrating the infrastructure in already existing systems, such as for 
example C3I systems. Thus a flexible and lightweight infrastructure for CMAS was 
                                                 
3 The Extensible Mark-up Language (XML) is a mark-up language designed to describe and encapsulate data. It 
has become a major technique for exchanging data in heterogeneous environments, since it provides a platform 
and programming language neutral data format [15]. 
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designed. A first prototype has been implemented and integrated within the NetSim 
environment. It mainly constitutes a middle layer, between a Java GUI4 and the JXTA 
P2P network, and is based on two components. The first component is a core, the 
Collaboration Core (CC), containing functionality for collaborative work, 
implemented using P2P technology. The second is an HLA coupling that provides 
means of collaborative simulation, and is implemented on top of the CC. These are 
further described below, and were describes in detail in [9]. 
 
3.2.1 Collaboration Core 
The CC allows users to collaborate on M&S activities, or any kind of activities that 
the environment supports. Currently it provides, among others, functionality for 
creating, searching for and joining collaboration groups5. The collaboration groups are 
based on the concept of JXTA peer groups, and are used for grouping collaboration 
participants and for utilizing group functionality and mechanisms for managing 
collaboration (described in 3.3). A group provides group specific settings and 
information, and specific services and tools that may be used (collaboratively) within 
that specific group. The tools can be anything from communication means, such as 
text chats and web-cams, to advanced M&S or other tools. The infrastructure allows 
for further extension and integration of tools but, as mentioned before, it is currently 
just a prototype. The tool that is demonstrated and used today is a simple shared 
graphical tool, in which users may collaboratively compose HLA federations out of 
HLA federates. Users cooperate through using communication tools such as chats and 
web cams. In the current application, a chat is provided within the application and a 
web cam is used externally. The CC allows participants to share views, meaning that 
all see the same thing at the same time within a work area or tool. Hence, they see the 
same actions and changes at the same time, similar to sharing tools over a network, 
but in a decentralized way through P2P technology (JXTA). 
 
3.2.2 HLA coupling 
The second prototype component is the HLA coupling that supplies the user(s) with a 
graphical interface in which the result of the distributed simulation is visualized. All 
participants in a group see the simulation and the same states of the simulation at the 
same time. This feature is implemented using the HLA framework rather P2P 
technology, for reasons discussed below. Users may stop, play and step-forward the 
simulation, and all group participants receive the same new states if the simulation is 
changed or interacted with. This demonstrative collaborative simulation can be of 
considerable use for military planning, distance education, strategy demonstration, or 
when using M&S as basis for decision support etc. 
 
3.3 Challenging issues and implemented solutions 
During the work some challenging issues were identified that exist within 
collaborative systems, and which are naturally common for most distributed systems 
[17], such as mechanisms for maintaining information consistency and fault tolerance. 
It is challenging to synchronize and coordinate actions and interactions within a 
group, i.e. to guarantee that all participants have the same common picture at the same 
time, and that no changes or actions on the same object collide. Another issue was the 
                                                 
4 GUI – Graphical User Interface, the visual application in which the user interacts with the environment. 
5 A user can be a member of any number of groups. 



 51

(collaborative) simulation, since different platforms demand various solutions for the 
same visualization. This requires generic interfaces for simulation and tools, which 
comply with the computer capacity and properties in use, problems that are not fully 
addressed in current work. Moreover network properties may constitute a problem 
due to delays and overhead, another issue not covered yet. Challenging issues that are 
currently considered are presented in brief below. 
 
3.3.1 General infrastructure for collaboration 
Designing an infrastructure for collaborative work in an efficient way, which is 
extensible for integration of new functionality, is not an easy thing. A usual procedure 
is to employ a server-centric solution, where the server (or central computer) 
propagates screen-dumps6 of a shared work area (may be a tool) to all participants. 
This is used by products such as VNC7 and NetMeeting8 and can be easily applied but 
is inefficient due to overhead among other things. Our implementation (the CC) 
provides a more optimized solution that is principally distributed and that considers 
changes in objects’ states, and transmits the state changes only, to all participants. On 
the other hand our solution sets high requirements for integration of new tools into the 
infrastructure, which may have to be generalized in future work. 
 
The distributed infrastructure was implemented using built-in group functionality in 
the P2P framework JXTA [14]. A new kind of group was created, the 
CollaborationGroup, which is an implementation that extends the group concept and 
includes services for group functionality etc. When a new group for collaboration is 
created, a new such group is started, instead of an ordinary PeerGroup. When joining 
a collaboration group users receive a handle to a shared communication channel. 
Thus, all actions produced within a group are propagated and managed along this 
channel. 
 
3.3.2 Coordinating participant actions 
Collaborative modelling requires real-time interaction. The actions produced must be 
coordinated and synchronized among the participants. For this we applied a 
coordinator-based scheme, which is a widely used solution to the problem. A 
coordinator represents the node through which all actions are passed and coordinated. 
When a user wishes to perform an action on an object in the shared area, it requests 
the coordinator for permission. If no other user wants to act upon the same object, the 
request is processed immediately and all users receive the new shared state, without 
causality errors or action conflicts. This results in a temporary centralized solution, 
which is easily implemented but not optimal if a lot of information has to be 
coordinated. Coordination and synchronization would rather be managed in a 
distributed fashion (more complex). Our solution also brings that client 
synchronization is managed immediately, rather than when it is necessarily needed, 
i.e. when users need to have the same views. If all participants’ views are coordinated 
only when needed, a better and more scalable implementation would be achieved. 
Thus, these two issues are of concern for current and future work. 
 

                                                 
6 Screen-dump = a momentary image taken of the screen. 
7 VNC – Virtual Network Computing is a free product for sharing work areas [18]. 
8 NetMeeting is a product that allows projects to use shared work areas and tools [19]. 
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3.3.3 Synchronizing collaborative simulation 
Collaborative simulation does not require such frequent coordination of interactions 
as other M&S activities do, since the user interactions during simulation are most 
likely simple ones such as stopping or pausing the simulation. Thus coordination is 
not an issue here. In contrast, a high amount of simulation information needs to be 
transmitted to and synchronized between the users, in order to guarantee that all users 
see the same state of the simulation at all times. This means that it may not be 
possible for the information to be continuously synchronized due to the overhead and 
time delays it may cause. In current implementation, the clients’ views are 
synchronized continuously (synchronously), and would preferably be exchanged with 
more efficient solutions. The issue of effective synchronization was highlighted in 
previous work [9], and is an important part of current work (discussed below). 
 
3.4 Synchronizing collaboration participants using HLA 
When implementing functionality for collaborative simulation, the design choice was 
made to use HLA instead of JXTA for synchronizing participant visualization and 
user interaction in the simulation. One of the reasons was that HLA provides excellent 
functionality for time management and means for federation synchronization [20]. 
The HLA coupling was implemented as a layer on top of the CC, as mentioned above. 
Each user application comprises HLA functionality, which acts as an HLA federate, 
called the Visualizer federate. The Visualizer subscribes to the simulation objects and 
attributes necessary for visualizing the federation, in order to illustrate the accurate 
simulation result in the client’s window. The Visualizer federates, i.e. the clients’ 
views, are synchronized using HLA built-in mechanisms. User interactions with the 
simulation are handled through the Visualizer and are forwarded to the rest of the 
federation. An HLAManager9 reflects the interaction event, and makes sure the proper 
action is processed, as for example pausing the federation or stepping it forward. 
Federations used today are based on time-stepped federates and the synchronization is 
performed synchronously in fixed time intervals. This is neither efficient nor scalable, 
since it results in a great number of synchronization points, no matter if anything 
important has occurred or not. This may in turn cause time delays and unnecessary 
overhead. 
 
In order to investigate more efficient ways of synchronizing the federation for our 
purposes, current work emphasizes on facilitating the use of time management (TM) 
in HLA. A middle layer on top of the HLA/RTI is being designed and implementation 
of it has been initiated, which is somewhat similar to approaches made such as [21] 
and [22]. The layer is included and utilized in each federate, and comprises 
functionality for TM and various synchronization protocols10. A schematic view of 
this is presented in figure 3.1. Protocols that are intended are first of all simple 
solutions for synchronous and conservative simulation, but optimistic protocols are 
also considered. The layer is designed to relieve the simulation developer from some 
of the HLA specific logic. It will also provide various ways of synchronizing 
federations and estimating performance, which allows flexibility of synchronization 
                                                 
9 The HLAManager is used for facilitating some functionality within a federation, such as controlling 
synchronization and managing the federation. This is not crucial and everything may be carried out within each 
federate instead, but it facilitates federation development. 
10 The middle layer is nothing necessary, but it facilitates working procedures, user flexibility and provides extra 
functionality. 
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protocols. It is intended to support us in evaluating and implementing efficient 
synchronization for the collaborative infrastructure, but can be of use within other 
areas as well. 
 

 
Figure 3.1: Schematic picture of middle layer for RTI/HLA specific logic. 

 
3.5 Conclusions 
Applying JXTA P2P functionality for coordinating and supporting collaborative 
simulation modelling turned out to be a good solution. The concept of JXTA peer 
groups and functionality for groups such as membership, authentication, group 
services etc. was very beneficial within this context. The group concept was extended, 
and gave us the result desired. But JXTA was by the time of work not a fully 
complete technology11, and was not very easily managed. 
 
For the collaborative modelling a centralized coordinator-scheme was used. Since this 
solution is not scalable or efficient, it can be done more efficiently in a decentralized 
way. This issue is considered in current work. Also, the design to use optimized 
information flows (instead of screen-dumps) proved to be good. For synchronizing 
and visualizing the collaborative simulation the HLA framework was applied, 
something that proved useful but needs to be extended regarding flexibility and ease-
of-use. Synchronizing the federation synchronously showed non-efficient, and an 
alternative solution is currently designed which constitutes a flexible middle layer 
between HLA and the federates. During the work it was pointed out that CMAS can 
be of considerable use within the defence, such as distance education and military 
planning. This holds for activities that use M&S as basis for decision support and 
situations when presence of SME:s may not be physically possible, but highly 
desirable etc. 
 
4. Resource management 
 
4.1 Resource utilization for distributed simulations 
As part of the NetSim environment, a module for execution of HLA federations has 
been developed based on the JXTA P2P platform, described in section 2.6. The main 
idea of this module, the Distributed Resource Management System (DRMS), is to 
utilize idle processing capacity in a network of workstations for distributed 
                                                 
11 The latest version of JXTA is 2.0, a version which the authors of this paper have no practical experience of yet. 
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simulations. Furthermore, it should provide a distributed repository for storage of 
simulation components and associated documentation. Other projects have explored 
these possibilities, see for example [23], but then often based on the client server 
model for management of resources and storage of simulation components. 
 
The basic idea of the DRMS is that desktop owners within an organisation download 
and install a small client that under certain circumstances share resources with other 
connected nodes. There are currently three levels of involvements for connected 
nodes. First, a node may share computing capacity for execution of HLA federations, 
referred to as a computing resource in the following text. Second, a node can be part 
of the distributed repository for sharing of content (HLA federates, documentation 
etc.). Finally, a node may share both computing capacity and content. The desktop 
owner always has the option to withdraw its involvement by changing a switch in the 
user interface or by closing the client. Therefore, the availability of resources on the 
network is expected to change fast and unpredictably in an Ad-Hoc manner. To 
comply with this the system includes mechanisms for migration, or movement, of 
federates between available computing resources during a federation execution. 
Furthermore, the dynamic characteristics of the network calls for redundancy 
(replication) in storage of simulation components to gain access to the same set of 
federates at all times. However, this part of the problem has not yet been fully 
addressed in the current implementation. 
 
A major aspect to consider when implementing any type of P2P based system is 
discovery and matching of resources. The first problem relates to the basic strategy 
used to discover the presence of other nodes/resources on the network. Another 
problem to handle is how to identify those resources that match certain requirements. 
The JXTA platform, and thus the DRMS, supports three different mechanisms for 
identifying nodes/resources, these are [24]: 
 

• No discovery – using this approach, nodes rely on a cache of previously 
located advertisements that describe the features of resources. This is 
implemented by broadcasting advertisements from nodes at regular time 
intervals 

• Direct discovery – in this case the nodes do not publish any advertisements 
until they are asked to do so, i.e. until a consumer of resources broadcasts a 
resource request on the network. This strategy is often referred to as flooding 

• Indirect discovery – using this approach all nodes publish their advertisements 
to a centralized catalogue. The consumer node locates resources by requesting 
the catalogue. However, when a consumer has identified a producer, the 
communication is performed directly between involved parties 

 
We have not yet performed any measures of the performance of these three 
approaches, but this will be addressed in future work, where also the new JXTA 2.0 
release will be taken into consideration. When suitable resources have been identified 
by consumer peers, the requirements of the requests have to be matched against the 
features of available resources. At present, the implementation includes simple 
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mechanisms for this activity. First, the SOMs12 of selected federates are automatically 
matched to assure simulation interoperability. Then federates are mapped to available 
computing resources i.e. nodes among the list of available resources are selected and 
assigned jobs to execute the federates. The advertisements of computing resources 
contain node specific information, for instance running hardware, software etc. Using 
this information, nodes running the fastest processors are chosen to execute federates. 
For a more technical description of the DRMS see [10].  
 
The present approach of matching simulation components to form simulations and 
mapping individual components to computing resources is rather rudimentary. There 
is a need to enable matching of simulation components, not only at the architectural 
level (matching of SOMs), but also at a higher level. Furthermore, it is also important 
to describe a simulation component in terms of its requirements on the execution 
environment, and likewise describe the features that a computing resource provides 
for a simulation component. This calls for a better way of managing meta-descriptions 
of resources within the NetSim environment, to facilitate efficient searching, 
matching and execution. 
 
4.2 Describing resources 
This section gives an overview of ongoing and future research topics, aimed at 
extending the support for metadata in the NetSim environment. The employment of 
meta-descriptions of resources within the NetSim environment is especially 
pronounced during three activities; searching for simulation components, matching 
simulation components and during execution of simulations. The role of metadata also 
differs greatly between these activities, which will be explained below. However, 
there are no solid boundaries between the uses of metadata in these activities. Certain 
types of metadata may be applicable in all three cases. 
 
4.2.1 Searching for components 
In this activity the user/users of the NetSim environment searches for available 
simulation components or previously assembled simulations. The basic requirement 
on metadata supporting this process is a well defined class structure, identifying 
subclass/superclass relations. This enables simple queries like “all airplanes” or “all 
fixed-wing aircrafts”, which yields all components which are subclasses of airplane or 
fixed-wing aircraft respectively. However, note that this classification is not equal to 
the implementation related object class structure. Furthermore, the components should 
be described in terms of a system-of-systems view where, if applicable, a 
component’s relations with other components are defined. For instance describing that 
system A and system B may integrate to form the superior system C. Finally, the 
metadata infrastructure should support descriptions of roles or capabilities, which 
enable searches in the form of “air based transportation” or “underwater surveillance”.  
 
4.2.2 Matching components 
This activity represents the attempt to compose simulations out of a number of 
components, i.e. component based development. This area is sometimes labeled 

                                                 
12 SOM is the short term for ”Simulation Object Model”, and is the documentation and definition of a federate’s 
all characteristics and possible interactions etc. 
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composability and has been investigated extensively to promote model reuse and 
interoperability. According to [25] composability is: 
 
“the ability to combine and recombine components into different simulation systems 

for different purposes.” 
 
Irrespective of matching at the simulation architectural level, for instance matching of 
SOMs in the case of HLA, an environment supporting component based simulation 
development should include extensive metadata. This is to guarantee the composition 
of valid simulations at all levels. [26] outlines some of the fundamental requirements 
on metadata to support composability, namely; 
 
Information about the model as a software component: 
 

• Programming language 
• Communication protocol 
• Location of component 
 

Information about the model as a simulation component: 
 

• Spatial resolution 
• Aggregation 
• Temporal resolution 
• Fidelity 
• Required services 
 

4.2.3 Executing simulation 
This final activity involves mapping simulation components to computing resources 
prior to and during federation execution, i.e. assign jobs to various nodes in the 
network. Metadata that should support this process include running hardware and 
software on the computing resources and a set of requirements imposed by the 
simulation components. These requirements consist of information such as; what 
platform is needed to run the component? Is a specific runtime-environment needed to 
run the component? How computing intensive is the component? etc. Note that this 
process is not only required prior to the execution. Since the allocation of computing 
resources is not static, it is necessary to perform rescheduling from time to time. 
 
4.2.4 Metadata framework 
In order to create a foundation (or framework) for metadata, to support resource 
consuming systems (M&S and C3I systems) in various ways, a number of 
components are required: 
 

• Meta-language – formal semantics and syntax, expressing shared and common 
understanding of a domain 

• Metadata repository – supporting uploading/downloading of metadata through 
standardized protocols (http, SOAP etc.), consistency checking and version 
control 

• Query language – supporting complex queries on the metadata 
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Figure 4.1 outlines a conceptual view of a framework for metadata supporting 
efficient searching, matching and execution within the NetSim environment. The 
central component of this system is a repository where the descriptions of resources 
on the network, simulation components, data and computing resources are stored. The 
resources should be annotated according to a standard for data representation 
augmented with the shared knowledge of the domain. Activities within the NetSim 
environment are then supported by extraction of meta-descriptions from the 
repository, followed by semi-automated reasoning using the knowledge expressed by 
these descriptions 
 
There are a number of efforts that could provide a basis for our envisioned metadata 
framework, for instance the Resource Description Framework (RDF) [27], the Web 
Ontology Language (OWL) [28] promoted by the W3C [27] or the DAML-S 
initiative, supporting semantic mark-up of Web Services [29]. These approaches 
support the creation of specialized schemas, to represent the knowledge within a 
domain, which are used to describe various resources on the Web. There are also 
several efforts within the semantic web research community that build on these 
concepts to provide frameworks for meta-data driven solutions. Work has been 
carried out to support RDF based metadata in JXTA, including query, replication, 
mapping and annotation services [30]. Several other projects have constructed 
dedicated RDF databases with support for various RDF query languages, see for 
example [31] and [32]. The features of these approaches are diverse, ranging from 
stand-alone to distributed databases or P2P-style systems. 
 

 
Figure 4.1. Conceptual view of a proposed framework for metadata enabling efficient searching, 

matching and execution within the NetSim environment. 
 
4.3 Conclusions 
From our experiences developing the DRMS we consider the lack of supporting 
metadata within the NetSim environment of major concern. The support for meta-
description of resources within JXTA in general is relatively weak, mainly keyword 
based searches of resource advertisements. We envision a layer on-top of JXTA 
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supporting more complex descriptions of resources derived from a shared view. The 
meta-data layer should support the users of NetSim in simplifying identification and 
matching of resources as well as for optimization of the federation execution. We 
consider that the work carried out within the semantic web community is of great 
interest in this respect. Concepts from this area could be applied to model knowledge 
and provide extensive meta-descriptions of resources to enable 
automatic/semiautomatic localization, selection, composition and execution of various 
resources. 
 
5. Summary & conclusions 
At the Department of Systems Modelling, Swedish Defence Research Agency, 
ongoing research is targeting the role of network/web based technologies in M&S, to 
support defence communities in their work. During the first phase of this research, 
focus has been on efficient resource sharing and means of computer collaboration. A 
prototype, named NetSim, has been implemented to investigate and demonstrate these 
issues, based on the open-source Peer-to-Peer platform JXTA. The NetSim prototype 
allows people at disperse locations to collaborate in creating various HLA simulations 
in a component-based manner. Executions of assembled simulations utilize idle 
processing capacity of desktops currently connected to the system. As the NetSim is 
based on Peer-to-Peer concepts, and not dependant on a single server or desktop 
machine within the network, the system is to some extent more robust and fault-
tolerant than a client-server solution. However the synchronization of collaboration 
participants is partly based on centralized control, which proved non-efficient and 
non-scalable. JXTA was at the time of implementation not a fully mature technology, 
which affected the overall performance of NetSim to some extent. For example, it 
lacks support for extensive meta-descriptions of available resources on the network. 
However it should be pointed out that JXTA provides a rich set of P2P features, 
suitable for implementation of distributed systems such as NetSim. Future research 
will address distributed algorithms for synchronisation of collaborative work and a 
more flexible and extendable approach to resource management. 
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Abstract 
In recent years the concept of peer-to-peer computing has gained renewed interest for 
sharing of resources within and between organisations or individuals. By sharing resources, 
cost related to investments of hardware and development of software is reduced. Reusability 
and availability of simulation components have been a long-term goal of the Modelling and 
Simulation (M&S) community. Much has been done on the simulation architectural level to 
promote this, but still the simulation components are not widely shared on a regular basis. 
 
This paper describes a Decentralized Resource Management System, DRMS, which utilizes a 
network of workstations for execution and storage of HLA (High Level Architecture) 
federations/federates in a peer-to-peer environment. The implementation of DRMS is based 
on the open source project JXTA, which represents an attempt to standardize the peer-to-peer 
domain. DRMS is part of a web based simulation environment supporting collaborative 
design, development and execution of HLA federations.  The overall aim of this work is to 
evaluate the possibilities of using peer-to-peer technology for increasing the reuse and 
availability of simulation components within the defence M&S community. More specifically 
it addresses the necessary adjustments of simulation components (federates) in order to 
conform to the requirements of the DRMS.  
 
This study shows that JXTA could provide the foundation for a distributed system that 
increases the possibilities for reuse of simulation components. However, in order to achieve 
this, the individual simulation components accessible from the environment have to conform 
to requirements that the DRMS dictates. This includes methods for capturing the internal 
state of a federate and restoring from a previously saved state. These features are required to 
migrate federates between host environments as nodes disconnect. Furthermore, the 
experiences from using the JXTA platform revealed that it should be extended to include 
better support for describing resources at a meta-level, to facilitate better localisation, 
selection and matching of simulation components. Finally, none of the employed mechanisms 
for discovery of nodes on the DRMS network are considered satisfactory on its own. 
Preferably, a more complex mechanism is needed to assure scalability and robustness of the 
system. Fortunately, the JXTA project has evolved in this direction by the new release of the 
platform (JXTA 2.0) that extends the current indirect (rendezvous) discovery concept. 
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1. Introduction 
Peer-to-Peer (P2P) and Grid technologies provide means of sharing resources among 
users in a network. A mutual collection of resources constitutes a major benefit for 
organisations and inter-organisation cooperation, both economically as well as 
academically. By sharing hardware, software and data within a community, utilization 
of existing resources is improved, which could reduce costs related to hardware 
investments, software development, data preparation etc. The concept of sharing 
strongly facilitates the potential of reusing developed software components and 
gathered data by making these available to a larger group of people.  
 
The software development community in general and the modelling and simulation 
community in particular, have put considerable amounts of efforts into development 
of technologies to support reuse of software components at the inter-component 
communication level (interoperability). Within the domain of modelling and 
simulation, standards have evolved supporting reusability and distribution of 
simulation components, i.e. DIS (Distributed Interactive Simulation) and later HLA 
(High Level Architecture). The HLA standard provides methods to connect simulation 
systems built for separate purposes, implemented during different technological eras, 
produced by diverse vendors and developed for various platforms through services 
provided by a Run-Time Infrastructure (RTI) [1]. However, even though software 
components do conform to the HLA standard, it does not necessarily mean that they 
are being reused.  
 
The Swedish Defence is a strong supporter of HLA and has selected it as the major 
architecture for distributed simulations. HLA-based simulations (federations) and 
simulation components (federates) are developed in various contexts. However, the 
developed simulation software and experiences from using these are rarely shared 
within the defence community, at least not in an efficient and systematic fashion. 
 
Peer-to-Peer and Grid technologies represent interesting platforms for managing 
available resource more economically and efficiently within the defence. An 
infrastructure for sharing resources related to M&S activities would allow 
users/projects to share their own work, and the work of others, in an efficient way. 
Moreover, it could provide a pool of processing capacity enabling single users to 
execute computing intensive tasks from their own machines. 
 
Some approaches for managing resources related to distributed simulations have 
previously been reported. In [2] a Resource Sharing System (RSS) is presented that 
utilizes idle processing capacity in a network of workstation to execute HLA 
federations. The owners of workstations within a LAN can control the availability of 
their computers, through a client user interface, for execution of individual federates 
of a federation. Computers that are willing to share their resources are registered with 
the RSS manager that performs elementary load balancing. The RSS is built around a 
centralized manager that relies on an ftp-server for storage and migration of federates. 
Currently there is no extensive fault tolerance mechanisms included in the RSS 
implementation, but as this is an important feature of distributed simulations, and not 
well supported in the HLA, the RSS is planed to include functionality for check-
pointing and management of replicated federates and fault detection. In [3] an 
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alternative approach to dynamic utilization of resources for execution of HLA 
federations is presented. In this case the framework is based on Grid technologies, 
more specifically services of the Globus Grid toolkit [4]. Each federate in the 
proposed architecture is embedded in a job object that interacts with the RTI and a 
Load Management System (LMS). The LMS performs two major tasks through use of 
a job management system and a resource management system. These systems carry 
out load balancing whenever necessary and discovery of available resources on the 
Grid. In [5] an adaptive framework, Generic Adaptive Interaction Architecture 
(GAIA), is outlined which supports dynamic allocation of model entities to federates 
in an HLA-based simulation framework. The potential benefit of this framework is the 
reduction of messages being communicated among separate execution units. This is 
achieved by a heuristic migration policy that assigns model entities to executing 
federates as a trade-off between external communication and effective load-balancing. 
Load-balancing is required to avoid concentration of model entities over a small 
number of execution units, which would degrade the performance of the simulation. 
The proposed mechanisms proved beneficial in simulating a prototype mobile 
wireless system by reducing the percentage of external communication and by 
enhancing the performance of a worst-case scenario. 
 
The purpose of this work is to investigate how simulations based on HLA can be 
managed in a peer-to-peer environment. More specifically, how an infrastructure 
based on peer-to-peer technology may facilitate issues not currently supported by the 
HLA standard and the implemented RTIs, such as sharing of M&S related resources, 
fault-tolerance and load balancing. During the first stage of the work, efforts have 
been made to implement a system for efficient sharing of resources, such as sharing of 
simulation components (federates) and idle computing capacity. Currently, no 
advanced mechanisms for load balancing, such as those described in [3] and [5], have 
been considered. Moreover, techniques for increased fault-tolerance have not yet been 
implemented. However, as the current work addresses sharing of computing capacity 
in a dynamic network environment, the issue of federate migration has been of major 
concern. As pointed out in [6], [2] and [5] the HLA/RTI does not include support for 
migration of federates, which, among other things, is required to implement load 
balancing or increasing the fault-tolerance of a system. The problems relates to the 
fact that the HLA and its implementations does not support transferring of a federate’s 
internal state. The functionality developed in this context could serve as a foundation 
when considering load balancing and fault-tolerance in the next stage of development.  
 
An important aspect of our work was to investigate the constraints put on simulations 
and individual simulation components if managed and executed within a peer-to-peer 
framework. It was observed that federates of a federation require some additional 
functionality to enable migration imposed by the dynamic availability of individual 
execution hosts. The level of adjustment for federate developers, in order to conform 
to these requirements and to participate in an M&S-related community for resource 
sharing, is of particular interest. The issues were addressed by using a common 
platform for peer-to-peer computing, namely the JXTA peer-to-peer platform [7]. 
 
The rest of this paper is organized as follows. Section 2 introduces the technologies 
and tools employed in this study. In section 3 the architecture of the implementation, 
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the Distributed Resource Management System (DRMS), is outlined, whereas section 
4 describes some issues of the current implementation along with a presentation of an 
example of use. Section 5 discusses the feasibility of utilizing JXTA for managing 
HLA-based simulations and section 6 concludes our work. 
 
2. Technologies & Tools 
 
2.1 JXTA 
As the popularity in adopting peer-to-peer technologies increases, efforts to create 
viable infrastructures for peer-to-peer systems are continuously put forth, for example 
JINI [8] and Gnutella [9]. Among the promising proposals for a general and 
standardized peer-to-peer architecture, JXTA has emerged as a strong contender. 
JXTA is short for Juxtapose, as in “side by side”. JXTA is an open source project 
initiated by Sun Microsystems in 2000, aiming at providing system and community 
interoperability, platform independence and technology ubiquity for peer-to-peer 
solutions [7].  
 
At the core JXTA comprises a set of APIs and XML-based protocols, providing basic 
elements for peer-to-peer computing. JXTA employs traditional peer-to-peer 
concepts, but also introduces some new aspects. The following section briefly outlines 
the most important notions of a JXTA-based system, according to [10], [11] and [12]. 
 
Peer – A peer is a virtual communications point. In any peer-to-peer-based solution, a 
peer constitutes the fundamental processing unit. A peer does not represent a single 
user, since a user may be in possession of multiple peers, for instance on their phone, 
home/office computer or other device. 
 
Peergroup – A peergroup is used to group peers and give access to specific services 
that are only available to group members. Before a peer can start communicating with 
other peers, it must belong to a peergroup. However, a peer is not limited to join only 
one peergroup. Peergroups are meant to divide the peer-to-peer network into groups 
with common goals and interests. 
 
Endpoints and Pipes – The endpoint is the basic addressing method used to 
communicate between peers in a JXTA-based system. A simple example of this is an 
IP address and port, which can be used to open a communication stream to other 
peers. However, JXTA places a layer on top of streams called pipes. If the endpoint is 
the basic addressing method, then the pipe is the basic communication tool that JXTA 
peers use to communicate with each other. 
  
Messages – A message is a package that JXTA application developers use to send 
data through pipes. This can be done in two different ways, XML or binary. 
 
Advertisements – An advertisement is a special document that announces the 
presence of JXTA resources. A resource can in itself be anything used by a peer, for 
example other JXTA peers, peergroups, pipes and services provided by JXTA peers. 
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Services – A service provides the capability to perform “useful work” on remote 
peers. This might include transferring of a file, performing a calculation and so on.  
 
Identifiers – JXTA offers a number of different identifiers, for example large, unique 
identifiers, names or URLs. These are used to assure that each resource is uniquely 
identifiable within the JXTA-network. 
 
2.2 HLA 
The High Level Architecture (HLA) is a standardised architecture providing means of 
connecting independently developed components to form a simulation. In this context, 
components refer to simulation models, tools etc. that are reusable, i.e. they are not 
developed for a single simulation [13]. 
 
A HLA-based simulation is referred to as federation, while individual participating 
components are called federates. Federates can be of numerous types, ranging from 
manned simulators to federation support systems. A federation is formed by 
connecting individual federates to a Run-Time Infrastructure (RTI). The RTI 
resembles a distributed operating system for federations, by providing basic services 
that enables interaction between participating federates [1]. Figure 1 illustrates a 
simple federation, where three federates are connected to the RTI and interact through 
the services defined by the interface and supplied by the RTI. 
 
It is essential to provide a concise and rigorous description of an object model 
template in order to define the interface between federates and the RTI and the service 
that the RTI provides. In HLA a Simulation Object Model (SOM) documents 
characteristics of a federate to facilitate its reuse. However, this description is not of 
concern to the RTI, which instead relies on the Federation Object Model (FOM). The 
FOM describes the inter-federate communication by defining a federation’s object 
classes and interaction classes [14]. 
 

 
 

Figure 1. Federate interaction through services provided by the RTI. 
 
The HLA was originally developed by the Defence Modelling and Simulation Office 
(DMSO), to support reuse and interoperability across the large number of simulations 
developed and maintained by the U.S. Department of Defence (DoD). The HLA 
Baseline Definition was completed on August 21, 1996 and since September 2000 the 
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HLA is an approved open standard through the Institute of Electrical and Electronic 
Engineers (IEEE) - IEEE Standard 1516. 
 
2.3 JAVA 
Java was used as a common platform when implementing the DRMS. Thus, the Java 
binding of the JXTA protocols provided the fundamental peer-to-peer functionality, 
while a Java implementation of HLA, pRTI, was employed for federation execution 
[15]. Java was chosen to offer a platform independent solution, suitable for integration 
with web-based applications. 
 
3. DRMS Architecture 
 
3.1 The NetSim Environment 
The DRMS provides services for federation execution as part of a network based 
simulation environment, called NetSim, being developed at the Department of 
Systems Modelling, Swedish Defence Research Agency [16]. NetSim supports 
collaborative simulation development and execution through a web-based interface, 
accessible within an organization. Figure 2 outlines the major layers of the NetSim 
environment. The top layer comprises various NetSim tools dedicated to M&S related 
tasks. At present a simple composition tool (CT), for development of HLA 
federations, has been developed. The CT supports composition of a federation by a 
single user, or collaborative development of federations by a number of users. The 
NetSim tools derive their functionality from the NetSim services layer. This layer 
consists of a Collaboration Core (CC) providing services in support of collaborative 
work [17], a Content Management System (CMS) for sharing of content and the 
DRMS that provide services for sharing computing capacity. The DRMS manages the 
execution of simulations composed in the CT by utilizing idle processing capacity on 
the network. The NetSim services layer is based on fundamental services provided by 
the overlay network services layer. In this layer JXTA provides fundamental peer-to-
peer functionality, whereas the services provided by an RTI are used for execution of 
assembled federations. Beneath all this is a physical network, which in our case is a 
Local Area Network (LAN). The features provided through the NetSim environment 
are transparent to the users, who experience the NetSim tools as being locally 
installed applications. 
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Figure 2. Conceptual view of the NetSim architecture. 

 
3.2 System Overview 
The basic idea behind the DRMS is that users within an M&S community download 
and install a lightweight client. The concept mimics that of SETI@Home [18] where 
users download and install a small application that under certain circumstances shares 
the resources of the computer with others. A DRMS-client provides functionality for 
sharing of idle processing capacity of its host computer. The owner of the individual 
desktops determines under which circumstances the sharing of processing capacity 
should take place, by changing a switch in the user interface of the DRMS-client. 
Before implementing the DRMS-client some fundamental features of the system were 
defined. A DRMS-client should support: 
 

• Dynamic utilization of idle processing capacity of its host environment, for 
execution of simulations based on the HLA standard 

• Execution requests from the NetSim tools layer, at present execution requests 
from the CT 

• Control of a simulation (federation) from the NetSim tools layer, at present 
federation control by the CT 

 
Moreover, services for sharing of content have been added to the DRMS-client 
through incorporation of CMS services, thus enabling: 
 

• Storage of simulation components (federates) and documentation in a 
distributed fashion 

• Content requests from the NetSim tools layer, at present content requests from 
the CT 

• Federate migration 
 
A dynamic utilization of processing capacity on a network means that allocation of 
resources is not static. It is not possible to reserve a resource for a given amount of 
time, since individual nodes connect and disconnect in an Ad-Hoc manner. Because 
of this, the DRMS must include support for migration of federates between host 
environments during simulation execution. The management of resources is handled 



 68

by a Resource Manager (described in section 4.3), which keeps track of available 
resources prior to, and during a simulation, assigns federates to available nodes and 
coordinates the migration (transfer) of federates between nodes. The Resource 
Manager utilizes functionalities of an HLA Manager (described in section 4.2) in 
coordinating an executing federation. The functions of this component are also 
employed by the CT, giving control of the federation to the user/users of the system. 
This includes operations for pausing, stepping and stopping the federation execution. 
 
The storage of simulation components and documentation is managed by a distributed 
repository (described in section 4.1) through services provided by the CMS. This 
repository contains all simulation components available for users of the CT and 
provides means of sharing content among participating nodes. This is a vital feature 
since it supplies the mechanisms to transfer a component from its original location to 
a host environment for execution. 
  
4. DRMS Implementation 
 
4.1 Distributed Repository 
A core component of DRMS is the distributed repository. This repository contains all 
simulation components and their associated documentation that are accessible for 
users of the NetSim environment (the Composition Tool at present). All participating 
peers in the network are capable of sharing new files, which means that users have the 
option to distribute new federates as they are developed. An important feature of the 
repository becomes evident prior to and during simulation execution, namely the 
downloading and uploading of files. When a peer has been assigned the task of 
executing a federate, the files representing that federate are downloaded from the 
common file area, provided that the files does not already reside in the local directory 
of the peer. Further more, during migration of federates throughout simulation 
execution, the current status of a federate is uploaded to the common file area, from 
where it is retrieved by the peer expected to continue the federate execution. 
 
The file library of DRMS is based on the JXTA Content Management System, CMS, 
which provides a framework for sharing/exchanging content among JXTA peers. 
More specifically, the component supplies means of hosting, locating and retrieving 
of content [10]. However, the search and file transfer mechanisms of CMS are fairly 
simple. For example, the association of meta-data with shared federates and the 
capability to query this information is somewhat limited. The protocol for querying 
the repository is CMS specific and based on XML. 
 
4.2 HLA Manager 
The purpose of the HLA Manager is to allow the Resource Manager to control the 
federation and give control of a federation to the users of NetSim. This includes 
functionality to start simulation, control the simulation to wall clock time ratio (the 
upper limit depends on the individual capacity of participating workstations) and 
termination of a simulation. The HLA Manager is a federate that is part of an 
executing federation. 
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The HLA Manager currently supports conservative time management. This means 
that all federates are both time-constrained and time-regulating. Thus, the 
advancement of time in a simulation is carried out according to the following 
principle: All joined federates calculate their internal state for the current time-step. 
During this phase the HLA Manager does nothing but make a request for 
advancement of time to the RTI. After federates are done calculating their current 
state, they also make a request for advancement of time to the RTI. When all federates 
have made this request, RTI grants the advancement of time.  
 
The HLA Manager has the possibility to control the federation execution by not 
requesting a time advancement, which will temporarily freeze the federation. Further 
more, the HLA Manager has the option to control the simulation to wall clock time 
ratio (speed of execution) by waiting a variable amount of time between its requests 
for time advancement. The conservative time management strategy was mainly 
chosen to ease implementation of the DRMS during the first stage of its development. 
We also intend to consider optimistic time-warp in near future. 
 
4.3 Resource Manager 
For the purpose of utilizing workstations in the execution of federations, it is 
necessary to discover available resources on the network. DRMS defines two different 
types of resources; Manager Resource (MR) and Computing Resource (CR). All 
participating peers on the DRMS (JXTA) network share a common functionality, 
which means that all peers are capable of taking the role as MR and/or CR. As an 
execution request reaches the DRMS from the NetSim environment, an arbitrary peer 
is assigned the task of managing the simulation. Management in this context refers to 
resource discovery and allocation, as well as HLA related tasks. The task of the CRs 
is simply to execute those federates assigned to them by the Resource Manager.  
 
One of the great challenges in peer-to-peer computing is the discovery of resources, 
mainly because of the lack of a central point of control [19]. According to Wilson 
[12], JXTA provides three basic ways for a peer to discover an advertisement that 
describes the presence of a resource: 
 

1. No discovery – a peer can rely on a cache of previously discovered 
advertisements to supply information about resources, as an alternative to 
actively searching for advertisements on the network. To implement this, the 
resources (peers) broadcast advertisements in the peer-to-peer system about 
their presence and abilities at a regular time interval. The advertisements have 
a time-to-live value. If the peer doesn’t send a new updated advertisement by 
the time of expiration, it is no longer considered a participating resource. 

 
2. Direct discovery – the resource does not publish any advertisement until it is 

asked to do so, that is to say until a consumer broadcasts a request for 
resources over the peer-to-peer network. If a peer fulfils the requirements of a 
request, it responds by sending back the advertisement that represents the 
matching resource. This kind of resource discovery is often referred to as 
flooding and is used to some extent in the Gnutella protocol [9]. 
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3. Indirect discovery – the resource publishes its advertisement to a centralized 
catalogue, a rendezvous, which a consumer accesses to identify suitable 
resources. The rendezvous responds with a list of previously cached 
advertisements that fulfil the requirements of a request. As an extended option, 
it could further propagate a request to other rendezvous (that option is not 
investigated in this work). 

  
In all three approaches, once a resource is found the communication is performed 
directly, without intermediating resources between the consumer and the resource. 
After this point all approaches behave in a similar manner and all resources are 
considered to be one overlay network hops away. This characteristic constitutes the 
difference between a peer-to-peer solution and a client-server solution; once the 
resource discovery is done, the communication is performed directly between peers in 
the peer-to-peer approach and not with the server as an intermediate channel as in the 
client-server approach. In order to identify the most efficient discovery mechanism all 
three approaches described above were included in the DRMS. Some empirical 
studies were carried out to verify theoretical assumptions made concerning the 
effectiveness of the discovery mechanisms, as reported in [20]. 
 
4.4 Federate Requirements 
Due to the dynamic characteristics of the underlying JXTA network of the DRMS, it 
is necessary to adapt individual federates to certain requirements. Resources used for 
execution of federates are not statically allocated, since desktop owners always have 
the possibility to withdraw their capacity at any time. This means that it is required to 
include mechanisms for transfer of individual federates between hosts at simulation 
run-time. To implement this, federates are obligated to include functionality for 
capturing its current state before it is transferred to a new host environment. 
 
Two approaches for managing the transfer of federates were tested. Both methods 
require that federates include methods for saving the current state of the simulation to 
a file and restoring from a previously saved state. This functionality is internal to each 
federate, but the DRMS currently dictates that the current state is saved to an ASCII 
file. First of all the save/restore services provided by HLA were considered. The state 
of a single federate of a federation could in this approach be saved by using a user 
supplied tag of the requestFederationSave call as the name of the federate to be 
migrated. This is similar to the method used in [2]. The second approach introduces 
two new interaction classes to the FOM to help manage the transfer of federates. A 
transfer using this approach is accomplished through the following principle: 
 

• A resigning peer informs the Resource Manager of its intension to leave the 
DRMS network 

• The Resource Manager uses the HLA Manager to send a “sleep” interaction, 
supplying the name of the concerned federate, to the federation 

• The concerned federate saves its current state to a file and resigns from the 
federation 

• The federate is started in a new host environment (peer) and initiates using the 
saved state 
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• When initialisation of the federate is complete it sends an “awake” interaction 
to the HLA Manager, which continues the advancement of the simulation 

 
Using either of these approaches it is easy to commit a transfer of a federate between 
two nodes since the simulation time is always shared by all federates. When the HLA 
Manager is notified of an initiated transfer it simply stops advancing time, which will 
temporarily “freeze” the complete federation until the HLA Manager starts advancing 
the time once again. 
 

 
Figure 3. DRMS-client acting as an MR (Manager) during federation execution 

 
4.5 Federation Execution 
This section gives an in-depth description of the elements of a federation execution 
within the DRMS. The example is based on the special interaction classes introduced 
(sleep and awake) for managing federate migration, as described in section 4.4. The 
federation execution is explained in terms of two state charts depicting the successive 
states of a DRMS-client (JXTA peer) acting as an MR and CR respectively. The 
scenario presupposes the existence of a Composition Tool (CT), representing the 
graphical user interface in which a federation is composed by a user. Moreover, it is 
assumed that the CT has uploaded a valid FED-file for the federation that will be 
executed within the DRMS environment, to the distributed repository (CMS). The CT 
is in possession of a JXTA peer acting as a bridge between the DRMS environment 
and the CT. However, this peer is not assigned any tasks related to the execution of 
the composed federation, since the goal is to make the load of the CT client computer 
as small as possible. 
 
Figure 3 describes the states of a DRMS-client acting as an MR during a federation 
execution. When a DRMS-client is started on a computer it is by default in the Idle 
state. This means that it is inactive and does not share any resource of its host 
environment. If the owner of the computer chooses to share the resources of the 
machine, by changing a switch in the graphical user interface, a participate event is 
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triggered and the DRMS-client enters the Active state. While in this state, the DRMS-
client re-enters the Idle state if the owner of the computer triggers a doNotParticipate 
event.  
 
When the composition of a federation has been completed in the CT, its JXTA peer 
searches for available DRMS-clients and selects one of them to perform the MR task. 
A DRMS-client enters the MR Init state when it is reached by an mRRequest from the 
CT. The selected DRMS-client, referred to as MR, then enters the CMS Download 
state where the FED-file required to run the composed federation is downloaded from 
the CMS. When the download has been completed the MR enters the MR Search state 
where one of the discovery mechanisms, described in section 4.3, is used to locate 
other available DRMS-clients. After the completion of the search process the MR 
enters the MR Setup state. In this state, those federates that are part of the composed 
federation are assigned to the identified DRMS-clients. Moreover, the MR starts an 
HLA Manager and through its interface, creates and joins a federation using the 
downloaded FED-file. When all federates have been assigned to host-environments, 
the MR sends an execute request to the concerned CRs and then enters the MR Run 
state. In this state the federation is executed under supervision of the MR, through its 
HLA Manager.  
 
If one of the CRs makes a request for the release of its shared resources, the DRMS-
client is notified by the concerned CR through a resignFederation request. The MR 
then re-enters the MR Setup state and tries to assign the concerned federate to other 
available DRMS-client. If needed, the MR re-enters the MR Search state to search for 
newly connected DRMS-clients. The re-configuration of the federation also requires 
that the MR sends a sleep interaction to the concerned federate by using the HLA 
Manager. This interaction instructs the federate to save its state and then to resign 
from the federation execution. After resigning from the federation, the MR instructs 
the resigning CR to upload the produced status file to the CMS. When the federate has 
been initiated in a new host environment using the previously saved state, fetched 
from the CMS, it sends an awake interaction to the MR. This tells the MR that all 
federates are assigned a host environment and connected to the federation, which 
transfers the MR to the MR Run state once again. When the end of the simulation is 
reached the MR enters the MR Stop state. In this state the MR resigns from the 
federation execution and then destroys the federation. After successful destruction of 
the federation the MR enters the Active state and thus becomes an ordinary DRMS-
client, ready to serve the role of MR or CR.  
 
Figure 4 describes the states of a DRMS-client acting as CR during a federation 
execution. As mentioned above, the DRMS-client is by default in the Idle state when 
started and will upon request from the owner of the computer, where the client 
resides, share the resources of the machine and enter the Active state. When an MR 
has located available DRMS-clients as described above, it sends a cRRequest to the 
concerned DRMS-clients. If a DRMS-client accepts this request it will share the 
computing capacity of its host environment for execution of the federates, thus 
entering the CR Init state. The CR starts downloading files required to execute the 
federates that it has been assigned when reached by a downloadFederate request from 
the MR. When all CRs have completed downloading the required federates the MR 
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triggers an execute request which transfers a CR to the CR Execute state. Upon 
successful completion of the federation execution the CR is released from its duties by 
a makeAvailable request from the MR and thereby re-enters the Active state.  
 
However, if the owner of the computer where the CR resides chooses to withdraw its 
resources during the federation execution, the doNotParticipate event is triggered and 
the CR enters the CR Leave state. In this state the CR notifies the MR of its intention 
to stop sharing its resources by sending a resignFederation request to the MR. The 
MR responds by sending back an uploadStatusFile request thereby bringing the CR to 
the CMS Upload state. This request is triggered when the MR is informed by its HLA 
Manager that the concerned federate has resigned from the federation. During the 
CMS Upload state the CR uploads the status file produced by the federate upon 
receiving the sleep interaction and then notifies the MR when the operation is 
completed. Finally the CR enters the Idle state when the MR triggers a leaveP2PNet 
request.  
 

 
Figure 4. DRMS-client acting as a CR during federation execution. 

 
5. Results & Discussion 
There are two fundamental areas of use for peer-to-peer based M&S in respect to 
reusability and availability. First, the technology could be utilized for sharing of 
simulation components and composing simulations, thereby facilitating reuse and 
availability at the simplest level. Distributed storage of content, which the peer-to-
peer paradigm promotes, is advantageous from many aspects. The responsibility of 
managing the repository of simulation components does not fall on a particular part of 
an organisation, as would be the effect of a centralized repository. Those interested in 
participating and using the M&S related resources are collectively responsible for 
managing the repository, for instance by requiring that individual contributors manage 
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their own content (simulation models). Moreover, certain constraints related to 
storage and use of an individual simulation model could also be satisfied. This could 
be beneficial when required that a simulation model is stored and executed within a 
dedicated part of an organisation’s network or within the local network of an external 
organisation. In this case only the description of a simulation components and its 
interface is publicly available. If carefully designed, a distributed repository could 
also be more resilient to failures. Since the repository has no single point of failure, a 
basic level of service can always be upheld. However, a drawback of using this model 
for storage of simulation components is the difficulty of assuring the quality of 
models being uploaded. From a Verification, Validation & Accreditation (VV&A) 
perspective, a user may not have confident in the models developed by others. Also, 
the documentation of individual simulation models needs strict rules and regulations, 
for instances by constructing descriptions from templates derived from an M&S-
related ontology, as will be discussed in section 5.2.  
 
To increase the potential for reuse further and to make simulation models available to 
a larger audience within the defence M&S community, sharing of computing capacity 
is of great interest. The basic idea is to execute the simulation components, which are 
parts of a simulation, where computing capacity is available. This will provide users 
within an M&S community access to computer power otherwise not available for 
them, thereby enabling execution of computing intensive simulations initiated by 
simple lightweight clients. As stated in [3] there is no built in support for automatic 
setup of distributed simulations in the HLA standard and its implementations, which 
is required to implement dynamic utilization of computing capacity within a network. 
To provide the capability to initiate and configure a federate remotely an external 
infrastructure is needed, which the DRMS is an example of. In the first prototypical 
implementation of the DRMS only federates that are of the type “computable objects” 
are supported. This means that the federates have no graphical user interface and do 
not require any intervention by an operator at run-time. However, this is inevitable 
since a federate is executed at an arbitrary node within the network that is not known 
in advance. Moreover, a federate might be migrated between host environments 
during federation execution. The DRMS supports pre-run-time set-up of federates by 
providing configuration files that are downloaded together with the federates from the 
CMS. Future plans for further development of the DRMS includes additional types of 
federates, for instance federates that are bound to a specific machine. 
 
5.1 HLA 
The level of adjustment for federate developers in order to conform to the 
requirements of the DRMS is fairly light at present. The individual federates must 
include methods for capturing the current state of the simulation and also for restoring 
from a previously saved state. In the current implementation this means that a federate 
produces a simple ASCII file that can be used by all federates of that particular type 
when restoring. To enable the transfer of federates during federation execution, an 
HLA-based notification mechanism is needed. Using the save/restore services of the 
HLA proved sufficient, but caused too much overhead in terms of messages being 
generated. Due to the fact that all federates are time stepped (a limitation in itself) and 
thereby easily controlled by the manager, it is feasible to temporarily stop the 
federation execution and through the special interaction classes introduced, save and 



 75

restore a federate’s state. This is a fairly light requirement introducing a simple 
extension of the FOM and save/restore features of a federate’s internal state. 
However, this requirement is also coupled with a limitation of the current system, the 
lack of support for different time-management schemes 
 
At present the DRMS only supports federates that are time constrained and time 
regulating, which makes it easy to implement federate migration during federation 
execution. Using this approach for time management means that the simulation time is 
shared by all federates at all times, i.e the logical time of the individual federates are 
always synchronized. However, it is not satisfying to put the requirement of 
conservative time management on each federate that are accessible from the NetSim 
environment. Therefore, research is being conducted to include support for optimistic 
time management schemes within the DRMS. The desired functionality is similar to 
the approaches described in [21] and [22] where a middle layer is introduced to enable 
check-pointing and rollback management in HLA-based simulations. Using this kind 
of capability for federation managed within a DRMS context, would allow bringing 
optimistic federates to a shared simulation time before committing a transfer, thus 
relaxing the requirement for execution of only time constrained and time regulating 
federates within the DRMS. Check-pointing and rollback management are crucial for 
enabling migration of federates in a dynamic network environment if optimistic time 
synchronisation is used. Furthermore, these facilities could be utilized for introducing 
fault-tolerance mechanisms in the architecture.  
 
5.2 JXTA 
Using the services provided by the CMS for management of content, in our case 
simulation components and documentation, revealed some limitations. The possibility 
to provide rich descriptions of resources is limited, thereby inhibiting efficient search 
for simulation components and composition of simulations within the NetSim 
environment. In spite of these shortcomings, CMS provided the necessary functions to 
fulfil the requirements on DRMS at this stage, and above all, minimizes the coding 
efforts. Furthermore, the functionality of CMS is expected to improve with time and 
moreover, the source code is publicly available offering the possibility of further 
refinement. 
 
The current problem relates to the simple features of the CMS where tagging of 
content is limited to simple keyword-based mapping. In the future, the services related 
to the distributed model repository within JXTA, should maintain descriptions of 
resources that are based on shared concepts. Problems will certainly arise giving the 
individual developers the power to meta-describe their simulation components in any 
way possible. To fully exploit the potential in a system like NetSim, the tagging of 
resources must follow strict rules through shared semantics and syntax. The 
vocabulary used when describing resources should be formalized in an ontology, 
whose knowledge is accessible by all parts of the NetSim environment. Introducing 
ontology-based descriptions of simulation components would facilitate search for 
simulation components and matching of the components when composing a 
simulation. Furthermore, it could make the distribution of simulation components to 
available host environments more efficient. This could be accomplished by matching 
descriptions of the execution environment, required by each component, with 



 76

descriptions of the execution environment provided by each host. Work has been 
carried out to support ontology-based resource description within JXTA, see for 
example [23] where the Resource Description Framework (RDF) is integrated with 
JXTA or [24] where the Darpa Agent Mark-up Language (DAML) is used as a 
foundation for describing and reasoning about resources. We believe that an ontology-
based approach for describing resources, within an environment such as the DRMS, 
would make the processes of searching, selecting and matching simulation 
components as well as executing of the simulations more efficient.    
 
Our basic empirical work, regarding the three implemented basic discovery 
approaches in peer-to-peer systems, shows the most essential differences between 
them and guides the future developer to some extent in choosing one. Given the 
conclusions made in [20] and the general guidelines concerning centralized and 
decentralized systems reported in [25], the following features characterize the 
resource discovery mechanisms in JXTA. A centralized approach, such as the indirect 
discovery mechanism, has limited scale, but that limit is easy to understand and 
measure. In contrast to this the direct discovery and no discovery approaches offer the 
opportunity for massive scalability, a phenomenon that in practice can be hard to 
achieve. This due to the amount of traffic generated to keep the system up-to-date (no 
discovery) and the traffic needed to perform a search for resources (direct discovery). 
 
In the indirect discovery approach, which can be seen as a centralized way of finding 
resources, we have a theoretical weak point in relation to scalability. However, in 
practice it has been shown that even a somewhat modest computer running a Web 
server can easily handle hundreds of thousands of visitors a day. Computers are fast 
and, in practice, they often meet predefined requirements; but one cannot dismiss the 
fact that scale is clearly limited by the capacity of the centralized resource. Unlike 
other complex topologies, scalability is easy to measure in this case and more capacity 
can be added to the centralized resource as the system grows. When it comes to the 
direct discovery and no discovery approaches we consider a decentralized system. In 
these systems the scalability is much harder to evaluate. In theory, the system should 
become more capable as more peers are added. In reality, the addition of peers 
increases the amount of overhead communication needed to keep the system coherent 
at a fast rate [25]. When it comes to scalability in a decentralized system the answer is 
that a decentralized approach may be more scalable than a centralized one, depending 
on the routing algorithms used to keep the system up-to-date. 
 
We believe that one has to find a more advanced solution to the resource discovery 
problem if the system grows too much in number of connected resources. This 
problem has been addressed by the release of the new platform (JXTA 2.0), which 
extends the in-direct (rendezvous) discovery concept. 
 
6. Conclusions 
The Distributed Resource Management System (DRMS) utilize storage capacity and 
processing capability in a network of workstations to manage and execute simulations 
based on the High Level Architecture (HLA). The overall goal of this system is to 
promote reuse and availability of simulation components (federates) within the 
defence M&S community. The DRMS is based on the JXTA peer-to-peer platform, 



 77

which represent an attempt to standardize the peer-to-peer domain. The use of idle 
processing capacity in a network exposes some requirements on simulation 
components that are part of the environment. Due to the dynamic characteristics of the 
underlying peer-to-peer network, mechanisms for migrating simulation components 
between host environments during simulation execution are needed. In reality this 
calls for methods to capture the internal state of an individual simulation component 
before it is transferred to a new host environment. Further more, a simulation 
component should include support for restoring from a previously saved state 
following a completed transfer. Finally, simulation components are required to 
declare interest for two additional interactions, introduced to notify the simulation of 
an imminent or completed migration. The use of JXTA for managing resources, idle 
processing capacity and storage, proved advantageous in general. However, a 
limitation of the current JXTA platform is lack of support for extensive meta-
descriptions of content. This is required to enable efficient localisation, selection and 
composition of simulation components. Hence, this part of JXTA needs to be 
improved further to suit our particular needs. 
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Abstract 
The widespread use of simulation in future military systems depends, among others, on the 
degree of reuse and availability of simulation models. Simulation support in such systems 
must also cope with failure in software or hardware. Research in fault-tolerant distributed 
simulation, especially in the context of the High Level Architecture (HLA), has been quite 
sparse. Nor does the HLA standard itself cover fault-tolerance extensively. This paper 
describes a framework, named Distributed Resource Management System (DRMS), for robust 
execution of federations. The implementation of the framework is based on Web Services and 
Semantic Web technology, and provides fundamental services and a consistent mechanism for 
description of resources managed by the environment. To evaluate the proposed framework, a 
federation has been developed that utilizes time-warp mechanism for synchronization. In this 
paper, we describe our approach to fault tolerance and give an example to illustrate how 
DRMS  behaves when it faces faulty federates.  
 
1. Introduction 
Simulation models are increasingly being used as integral parts of modern military 
command and control and decision support systems. The nature of many of today’s 
simulation models, in terms of processing capacity required for execution or 
decomposition to promote reuse and/or connection of geographically dispersed units, 
shows the importance of methodology for distributed simulation. In this context the 
High Level Architecture (HLA) is a widely used standard for distributed simulations. 
In HLA, a simulation is referred to as federation, whereas an individual simulation 
component is referred to as a federate. The decomposition of a simulation system 
certainly has its merits, but will typically lead to a higher failure rate (Kiesling 2003). 
In the perspective of a military decision support system the failure of a critical 
simulation component is often unacceptable, especially when time is a constraining 
factor. Thus, support for fault-tolerant distributed simulation is crucial in such 
systems. Thus, we need some mechanisms for detecting errors in the simulation 
execution, as well as measures for restoring an erroneous federation execution. 
 
The HLA provides basic functionality for restoring an unsuccessful simulation 
execution, through the save and restore features of the federation management 
services. However, no means of detecting an error, or automatically restoring an 
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erroneous simulation execution, are defined by the HLA. Also, the save and restore 
facilities are used in the local scope of a federate, meaning that a saved state is not 
automatically distributed outside the node where the federate resides. To cope with an 
unreliable host environment of a federate, in terms of hardware crashes or lost 
network connections, it is necessary to enable state saving at a “global” level and 
resumption of a federate execution in a new host environment. These functions are the 
fundament for what is usually referred to as federate migration, i.e. the transfer of 
federates between different host environments. 
 
In our previous work we explored the possibilities for migration of federates using the 
peer-to-peer-based Distributed Resource Management System (Eklöf, Sparf, and 
Moradi 2004). However, in our previous work the decision to migrate a federate was 
based on the willingness of workstation owners to share their computing capacity for 
simulation execution. Thus, the system did not consider detection of a failure and 
migrations of federates were based upon user requests. 
 
In this paper we present a revised architecture of the DRMS and outline a partial 
implementation of the concept, based on Web Services. More specifically, this paper 
will address a mechanism for fault-tolerance in time-warp based federations. The 
fault-tolerance mechanism does not consider software errors, in terms of a simulation 
model producing erroneous result, but handles cases where the host environment of a 
federate crashes, the federate itself crashes for some reason or the federate’s link to 
the RTI is lost. Moreover, we assume that the federates executed within the scope of 
DRMS are transferable, meaning that they are not bound to a specific piece of 
hardware and can easily be migrated between different host environments. 
 
2. Background 
As computers in a distributed simulation do not share a common clock it is required 
that a virtual time, usually referred to as logical time, is introduced for each member 
of the simulation. A time synchronization protocol is used to maintain the logical time 
of members and ensures the causal ordering of events. 
 
2.1 Optimistic Synchronization in HLA 
The time-warp approach to synchronization, proposed by Jefferson (1985), is the most 
well known optimistic synchronization protocol. In the time-warp protocol, logical 
processes (LPs) are allowed to process events optimistically, which means that events 
may arrive that have a smaller timestamp than previously processed events. This 
implies that LPs are also permitted to send messages optimistically, which means that 
sent messages could later be cancelled. The cancellation is performed by sending anti-
messages to the receivers of the original events. An inevitable aspect of the time-warp 
protocol is the ability of an individual LP to restore to a previous state in its past. This 
process is referred to as rollback. Rollback is triggered if an LP receives a message in 
its past, or if a processed event is annihilated by an anti-message. 
 
The time-warp protocol has also been utilized in HLA-based distributed simulation. 
The bulk of research in this area addresses development of middleware that will shield 
the developer of a federation from the often complex task of implementing time-warp. 
In (Wang et al. 2004) the issue of time-warp is investigated in the context of 
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integrating COTS simulation packages and the HLA. A middleware for management 
of the rollback mechanism is presented and evaluated.  In (Yan, Sun, and Zhong 
2003) a time management meta-level is introduced between the RTI and individual 
federates. This layer uses a computational reflection technique to free the developer of 
an optimistic federate from the complex task of implementing the roll-back 
mechanism. Huang et al. (2003) describes the addition of a middle layer, referred to as 
the Smart Time Management (STM), which aims at unifying various time 
management schemes, such as time-stepped, event-driven and optimistic time 
advancement approaches in the HLA. In (Vardanega and Maziero 2001) a generic 
rollback manager for optimistic HLA simulations, based on computational reflection 
techniques, is presented. The manager implements state saving and manages rollback 
for optimistic federates. 
 
2.2 Fault-Tolerance in HLA 
A distributed simulation, or distributed system for that matter, has a higher failure rate 
than a simulation, or system, executed on a single machine. However, a failure in a 
distributed simulation is often partial, that is, one of the components of the system 
fails. The failure may, or may not, affect other components of the system. In the past, 
several techniques for fault-tolerance in distributed systems have been developed. 
These techniques can be classified into two main categories; replication-based and 
check-pointing-based (Damani and Garg 1998). In replication-based approaches one 
or more copies of an LP is maintained in addition to the main LP. In case of failure, 
one of these replicas will take the failed LP’s place. In check-pointing-based 
approaches, states of the individual LPs are saved on stable storage. In case of failure, 
an LP is restarted using the last stable state saved on stable storage. 
 
According to Kiesling (2003) research in fault-tolerant distributed simulation has been 
quite sparse. Work in application of fault-tolerance techniques in the context of HLA 
is even scarcer. However, there is some work that aims in this direction. Lüthi and 
Berchtold (2000) provide a structured view of fault-tolerance in parallel and 
distributed simulations and possible solutions are presented. In (Lüthi and Großmann 
2001) a Resource Sharing System (RSS) is presented that in a future extension could 
serve as the basis for fault-detection, check-pointing and replication of federates. In 
(Berchtold and Hezel 2001) a concept, named R-FED (Replica Federate), in support 
of fault-tolerant HLA federations is presented. As the name implies, the approach is 
based on replication of individual federates in a federation. Several papers address the 
issue of federate migration, which is an important cornerstone in designing an 
infrastructure for fault-tolerant distributed simulation, see for example (Eklöf, Sparf, 
and Moradi 2004; Tan, Persson, and Ayani 2004; Bononi, D’Angelo, and Donatiello 
2003; Cai, Turner, and Zhao 2002; Lüthi and Großmann 2001). However, these 
papers usually address federate migration in the context of load-balancing and do not 
explicitly address fault-tolerance. 
 
The present version of HLA is IEEE 1516-2000. Currently, work is carried out to 
define the next version of HLA, through the HLA Evolved (Möller, Karlsson, and 
Löfstrand 2005). By the end of 2005, or early 2006, this work is expected to be 
complete. An interesting aspect of HLA Evolved is that fault-tolerance has been given 
more focus than before. HLA Evolved will provide a common semantics for failure 



 84

and mechanisms for fault-detection. At the core, two additions have been made to the 
Management Object Model (MOM), namely federate lost and disconnected. These 
interactions provide the basic mechanisms for signaling a fault from the context of a 
federation, through federate lost, and from the perspective of a federate, through 
disconnected. Upon failure, the RTI has the responsibility to do resign on behalf of 
the lost federate using the Automatic Resign Directive. This line of development is 
important for future realization of fault-tolerant distributed simulations, based on the 
HLA. 
 
3. Distributed Resource Management System – DRMS 
In the following section the DRMS is presented in the context of network-based 
M&S. Next, the mechanism for fault-tolerance implemented in DRMS, to support 
robust execution of time-warp based federations, is described.  
 
3.1 Network-Based M&S 
The DRMS provides computing capacity for reliable execution of simulations and is 
an essential part of a network-based modeling and simulation environment, referred to 
as NetSim, being developed at the Swedish Defense Research Agency (Eklöf, 
Ulriksson, and Moradi 2003). NetSim supports collaborative simulation development 
and execution within and between organizations and will thus promote increased use 
and reuse of simulation models and also lead to increased quality of work in the M&S 
development process. Figure 1 presents an overview of the service-oriented 
architecture of NetSim. The uppermost layer comprises various NetSim tools, 
dedicated to M&S-related tasks, for instance tools for composition of federations by a 
single user, or collaborative development of federations by a number of users. The 
NetSim tools derive their functionality from NetSim specific services, denoted 
DRMS, CC and Repository in Figure 1. As stated above the DRMS provides 
computing capacity for reliable execution of simulations. The CC (Collaboration 
Core) provides services for collaborative work, whereas the Repository provides 
services for look-up of available resources on a network. The NetSim specific services 
are based on various overlay network service technologies, such as Web Services, 
Grid Services and the HLA RTI. These are just examples of network technologies that 
could be deployed to achieve the goals of the NetSim environment. Throughout all 
layers in Figure 1, a common syntax and semantics for description of resources is 
used to promote interoperability. Moreover, security is considered an integral part of 
all layers. 
 

 
Figure 1: Architecture of NetSim. 
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3.2 DRMS Concept 
DRMS comprises two basic service types, namely a worker service and a coordinator 
service. A worker is responsible for execution of one or more jobs, whereas a 
coordinator is responsible for the coordination of one or more workers in managing a 
batch of jobs. In addition to these basic services, the DRMS is dependant on a 
repository service. A repository is used by a worker to advertise its presence on the 
network and also its availability for execution of various jobs. Furthermore, the 
repository is used by a coordinator for localization of available workers. A repository 
also contains advertisements of other resources available on the network and is 
therefore used as entry point when worker services fetch resource files and executable 
code. 
 
3.3 Fault-Tolerance Approach 
The main idea of our approach to fault-tolerance in time-warp based federations is to 
use a check-pointing mechanism to enable restoration of a federation upon failure. 
The check-pointing is done by means of the RTI communication infrastructure, 
utilizing an extension to the Federation Object Model (FOM). In this context, a 
checkpoint (CP) represents the state of a federate at a specific point in time, for 
example through a vector of state variables. The check-points are saved in a stable 
storage component, which is also a member of the federation execution. An important 
feature of the check-pointing is to make sure that the individual state represents a 
federate at a point in time that could not suffer from rollback. This means that the 
federate must report checkpoints to stable storage, which represent the state of the 
federate at a point in time that is less than the smallest timestamp of a message that 
could ever be delivered to the federate.  In this way, it will always be safe to use the 
check-point for restoration. The state-saving is not synchronized throughout the 
federation, but federates report their states to stable storage individually. The 
mechanism for check-pointing is illustrated in Figure 2. 
 

 
Figure 2: Check-Pointing Mechanism in the DRMS. 

 
First, the concerned federate uses the queryLITS (Least Incoming Time-Stamp) 
method of its RTI ambassador to extract the timestamp of the next TSO (Time-Stamp 
Order) message that it may have to process. The federate uses this value to produce a 
checkpoint that could not be invalidated in the future. The checkpoint can not be can-
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celled since the federate can never be roll-backed prior to this time and thus, it 
represents a safe state of the federate. The LITS is used as timestamp when reporting 
the check-point to the stable storage. When the stable storage receives a checkpoint, it 
calculates the minimum timestamp of the checkpoints that have most recently been 
reported from each federate in the federation. This minimum time-stamp is then used 
by the stable storage for requesting advancement of time. Upon requesting flush of the 
RTI queues, the individual federates will receive time advancement grants based on 
the timestamps of the supplied checkpoints. The granted time represents the GVT 
(Global Virtual Time) of the federation. Note that this time does not represent the 
actual (local) time of a federate. GVT is the boundary up to which the simulation 
execution is regarded as complete by all participants and is used to perform garbage 
collection of saved states to free memory space. 
 
The purpose of allowing the stable storage to control advancement of GVT is crucial 
for migration purposes. During the migration of a federate the GVT must not be 
advanced beyond the time-stamp of the checkpoint that the migrating federate will 
rely upon for its restoration. The mechanism described above will make sure that this 
will not occur. 
 
3.4 Migration of Federates 
Below, the process of migrating a federate upon failure is described. When an 
individual federate is deployed in a new host environment, the startup scheme differs 
slightly from the normal case. This process is illustrated in Figure 3. 
 

 
Figure 3: Federate Migration Process. 

 
Initially, the federate requests the most up-to-date checkpoint of its state from stable 
storage. The federate restores its state based on this checkpoint. Then the federate 
makes a request to all participants to resend all messages whose timestamp is greater 
than GVT. Federates that have produced messages to the concerned federate, resend 
these messages. When the migrated federate requests flush of the RTI queues, it will 
receive the missing messages and can then resume the execution. 
 
The described mechanism requires additional customization of participating federates 
and introduction of four supplementary interactions to the FOM, namely reportCP, 
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requestCP, latestCP and requestResend. Extra interactions required by the fault-
tolerance mechanism are outlined in Table 1. 
 

Table 1: Interactions Added to the FOM to Support the Fault-Tolerance  
Mechanism (P = Publish, S = Subscribe). 

Interaction Description Federate Stable Storage 
reportCP Reports checkpoint to 

Stable Storage P S 

requestCP Requests latest 
checkpoint from stable 
storage 

P S 

latestCP Delivers latest 
checkpoint to migrated 
federate 

S P 

requestResend Requests resend of 
messages from GVT P, S - 

 
3.5 Services and Ontology 
The DRMS concept presented in section 3.2 has been partially implemented. The 
implementation is based on Web Services, the Axis platform (Saleem 2004), and 
Semantic Web technology, through use of the Jena toolkit (McBride 2002). In the 
following section the implementation is described briefly. The following components 
of the implementation are described: 
 

• DRMS ontology 
• RemoteJobService 
• ResourceRepositoryService 
• ExecutionService. 

 
To enable uniform and semantically rich descriptions of resources within the 
environment, a DRMS ontology is used. In near future, this ontology will be aligned 
with a general NetSim ontology that is currently under development. The DRMS 
ontology comprises constructs for description of simulation models and computing 
resources. The main purpose of the ontology is to promote a shared view of 
information throughout the environment and facilitate localization and matching of 
resources. The chosen language for its representation is the Web Ontology Language 
(OWL) (McGuniess and van Harmelen 2004). The expressiveness of OWL is 
sufficient for representation of information required by the DRMS. The language also 
enables inference over information, which is used to match resources in the 
implementation. 
 
The RemoteJobService implements a worker as described in section 3.2. When 
deployed on a workstation, this service announces its presence on the network by 
registering an announcement in a repository. The announcement is represented by a 
meta-model, defining the features of the RemoteJobService’s host environment. This 
includes aspects such as the workstation’s hardware configuration, OS type and 
version etc. The meta-model is an instance based on the DRMS ontology. Table 2 
outlines the service interface of the RemoteJobService. 
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The ResourceRepositoryService is a simple implementation of a repository as 
described in section 3.2. This service supports storage of meta-models, such as the 
meta-model describing the RemoteJobService’s host environment. The interface of 
the ResourceRepositoryService includes methods for registering, deletion and lookup 
of meta-models. The lookup can either respond with the entire content of the 
ResourceRepositoryService, or a subset of registered meta-models, defined by a 
search query. Table 2 outlines the service interface of the ResourceRepository-
Service. 
 

Table 2: Service Interfaces of the DRMS Implementation. 
Service Method 
RemoteJobService allocateJob(Meta-model) 
 startJob(Id) 
 stopJob(Id) 
 getJobStatus(Id) 
ResourceRepositoryService addModel(Meta-model) 
 deleteModel(Meta-model) 
 getModels() 
 getSubset(Query) 
ExecutionService requestExecution(Scenario) 
 finalizeExecution(Id) 
 getScenarioStatus(Id) 

 

 
Figure 4: Interrelation of DRMS Services. 

 
The ExecutionService is an implementation of a coordinator as described in section 
3.2. An ExecutionService is utilized by the NetSim environment when a single user, 
or group, requests execution of a scenario (federation). The main tasks of the 



 89

ExecutionService are to automatically setup a federation and to monitor the federation 
execution. Table 2 outlines the service interface of the ExecutionService. Figure 4 
gives a schematic view of the interrelation of DRMS services. 
 
When the NetSim environment requests execution of a federation, it feeds the 
ExecutionService with a scenario description. The scenario description comprises 
meta-models for all federates that are part of the federation. In order to distribute the 
federates in the federation, to suitable nodes in the network, the ExecutionService 
fetches meta-models, representing RemoteJobServices, from the 
ResourceRepositoryService. Next, the ExecutionService determines a suitable 
distribution of federates, by matching meta-models of the federates with meta-models 
of available RemoteJobServices. The matching procedure utilizes an inference engine 
and a set of pre-defined rules to find a suitable distribution of federates over available 
RemoteJobService nodes. If the allocation of one or more federates is accepted by a 
RemoteJobService, it starts downloading the required executable code and possible 
resource files. The URLs to these files are defined in the meta-models representing 
the federates in question. When the download process is completed, the 
ExecutionService signals start-up of the federation to concerned RemoteJobServices. 
 
To enable fault-tolerant execution of the federation the ExecutionService comprises a 
stable storage and a fault detector component. These components are members of 
concerned federation through a common federate. The stable storage stores 
checkpoints reported from federates in the federation, whereas the fault detector 
detects failed federates in the federation and initiates preventive measures to resolve 
these errors. The error detector detects the failure of a federate by means of the 
HLAfederate object of the MOM, which is deleted if the link to the RTI is broken. As 
an additional measure the error detector calculates the time passed from the last 
reported checkpoint and if this value exceeds a pre-defined time, the federate is not 
longer considered active. When a federate crashes, or its network connection is simply 
lost, the fault-detector initiates redistribution of the lost component in the inference 
engine. The inference engine finds a new host environment for the federate under 
consideration, given the requirements of the federate as defined by its meta-model, 
and allocates the job to the RemoteJobService node. 
 
3.6 An Example 
Below, we look at an example to illustrate how the DRMS handles the occurrence of 
faults in a federation. In order to test the proposed fault-tolerance approach, a simple 
time-warp federation has been developed. This federation consists of four federates, 
which form a fully connected net-work, i.e. each federate is able to send messages to 
all other federates. In the test federation, processing of a message simply means 
updating a statistics object that describes the message exchange during a federation 
execution. Each federate randomly schedules events. This means that at random 
points in time, a federate sends a message to a randomly selected joined federate. The 
federates are initiated using disparate random seeds, causing the event scheduling to 
be based on different random streams within each federate. The federates process and 
produce events optimistically, thus when a message is received in a federate’s past, a 
rollback is triggered. Similarly, when an anti-message is received that will annihilate 
an already processed message, a rollback is also triggered. The rollback mechanism 
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relies on a record of locally saved check-points. Advancement of GVT is used to 
garbage collect the record. 
 
Consider a federation comprising four federates, labeled A, B, C and D. Table 3 
describes the state of the federates, in terms of their message queues, as GVT equals 
10. Grey cells represent messages that have been processed by the federates, whereas 
the white cells represent unprocessed messages. 
 
The process of federate migration, in case of failure, resembles a rollback to GVT. 
However, in this case special attention is required since the action is not coordinated. 
In an ordinary rollback the concerned federates send anti-messages to annihilate 
invalid messages. In case of failure this is not possible and must be handled separately 
be each federate. For instance, consider the case when federate A in Table 3 crashes. 
When federate A is absent, federates B, C and D continue their execution. However, 
since no check-points are reported from federate A, the stable storage will not request 
time advancement greater than 10. When the fault detector has detected the lost 
federate, and a new host environment has been identified by the inference engine, the 
failed federate is deployed at a new node. Next, the migrated federate fetches the 
latest saved state in stable storage, as defined in section 3.4. When the federate has re-
stored using the state from stable storage, it requests resend of messages. This request 
also means that the non-migrated federates must annihilate messages received from 
federate A. In this case federate C must annihilate message A15 and federate D 
message A17. This will trigger retraction of message C21 in federate B, but no 
rollback will be initiated since the message has not been processed yet. 
 
When the potential message annihilation is finalized federate B, C and D resend 
messages destined for federate A, whose time-stamp is greater than GVT. In this case, 
given that the queue configurations do not change during migration, federate B 
resends message A12 and A14. Next, federate A reschedules the received events and 
the federation resumes normal execution. 
 

Table 3: Message Queues in Federates of Test Federation when GVT Equals 10. Grey Cells 
Represent Processed Messages, whereas White Cells Represent Unprocessed Messages. 

Federate IN OUT 
A B12 C15 
 B14 D17 
   
B D9 A12 
 C12 A14 
 C21 - 
   
C D11 B12 
 A15 B21 
   
D A8 C11 
 A17 - 
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 4. Discussion 
As modeling and simulation is integrated in various environments and used as a tool 
in the decision process, the requirements on the supporting infrastructure will be high. 
An important aspect in this is to enable fault-tolerant distributed simulation, since this 
ensures a robust execution environment that can respond to user needs in a timely 
fashion. The de facto standard for distributed simulation, the HLA, which is widely 
used throughout the military domain, does not treat fault-tolerance extensively. Nor 
has this topic been treated by the research community comprehensively. Given this, it 
is crucial to develop efficient and scalable methods for fault-tolerance in HLA-based 
distributed simulation. 
 
Our approach is based on implementing fault-tolerance mechanisms within the 
framework of the HLA, i.e. communication related to the fault-tolerance mechanism 
is sent over the RTI. This of course implies that individual federates conform to the 
requirements imposed by the fault-tolerance mechanism, in terms of publishing and 
subscribing to the interactions defined in Table 1. Currently, these aspects must be 
implemented by each federate individually. In the long run, it is desirable to 
implement these features in a generic fashion, through some kind of middleware 
system, to simplify the deployment of federates within the DRMS. 
 
Introducing fault-tolerance mechanisms in M&S infrastructures will impose a cost. 
Regardless of the approach taken, replication-based or check-pointing-based fault 
tolerance, the infrastructure must cope with increased network traffic and 
consumption of more hardware resources. Thus, it is important to evaluate the cost of 
having fault-tolerant simulations to determine when the approach is beneficial. 
Furthermore, aspects of fault-tolerance should be considered in the early phases of the 
FEDEP process. For instance, it is important to determine what levels of fault-
tolerance are required by different components of the simulation in the context of 
what degree of degradation is acceptable for a given target (Möller, Karlsson, and 
Löfstrand 2005). 
 
The proposition for a next version of the HLA standard, the HLA Evolved, will 
simplify the process of developing fault-tolerant federations. In this standard, a 
common semantics for failure and mechanisms for fault detection are provided. Still, 
there are others issues to resolve as well. Given the failure of a critical component in a 
federation, whose original host environment is not accessible for its restoration, a 
mechanism for deployment of the component in a new host environment is required. 
This can be solved through replication of the component, or through utilization of 
check-pointing, at a global level. Our work shows that it is feasible to use a check-
pointing-based scheme, employing the RTI communication infrastructure, to enable 
fault-tolerance in time-warp federations. However, it should be noted that this kind of 
check-pointing is tightly coupled with the time synchronization protocol of the 
federation. Other, or complementary, solutions have to be provided for other 
synchronizations protocols, or cases with mixed synchronization protocols. Also, the 
test federation used in this work comprises no complex issues of ownership of objects 
in the federation. In more complex federation types, the issue of transferring 
ownership of objects between federates, in case of failure, must be resolved as well.  
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5. Future work 
In estimating the cost of  fault-tolerant distributed simulation, based on our approach, 
it is of interest to look at the size of the check-points reported to stable storage and 
how this potentially will degrade the simulation execution. Also, the checkpoint 
interval used by each federate is of importance in this perspective.  
 
The overall time consumption and number of messages sent executing the federation, 
with and without fault-tolerance, will be measured and compared. This will be done to 
identify when the cost of having fault-tolerance will inhibit the simulation execution 
rather than make it more efficient, given a specific failure-rate of the federates. 
 
It should also be noted that the effectiveness of the fault-tolerance mechanism 
presented here is clearly coupled with the mutual relations existing between federates. 
During migration, federates that are joined to the federation can still progress their 
execution. When the migrated federate joins, after being deployed in a new host 
environment, chances are that is has lagged behind the others, and thus it may start to 
produce messages in their past. However, this depends on the nature of the migrated 
federate. A federate publishing data of concern to a large audience will of course 
affect the effectiveness of the execution more than a federate producing data of less 
interest. In our test federation the mutual relation between the federates is organized 
in a fully connected network, and messages send to and from federates are completely 
randomized. In the future it will be of interest to test other federation topologies to 
investigate how the relations between federates influence the performance of our 
fault-tolerant approach. 
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Abstract 
Successful integration of Modeling and Simulation (M&S) in the future Network-Based 
Defence (NBD) depends, among other things, on providing Fault-Tolerant (FT) distributed 
simulations. This paper describes a framework, named Distributed Resource Management 
System (DRMS), for robust execution of simulations based on the High Level Architecture. 
More specifically, a mechanism for FT in simulations synchronized according to the time-
warp protocol is presented and evaluated. The results show that utilization of the FT 
mechanism, in a worst-case scenario, increases the total number of generated messages by 
68% if one fault occurs. When the FT mechanism is not utilized, the same scenario shows an 
increase in total number of generated messages by 90%. Considering the worst-case scenario 
a plausible requirement on an M&S infrastructure of the NBD, the overhead caused by the FT 
mechanism is considered acceptable. 
 
1. Introduction 
Modeling and Simulation (M&S) have an important role in realizing the concept of a 
Network-Based Defence (NBD). In this context, simulations provide support for 
efficient training, and can also function as a decision support tool for the commander. 
When simulation tools are used in the decision process, these must meet certain 
requirements. Above all, simulations must be reliable and respond in a timely fashion. 
The latter is of particular importance in short decision cycles. An important aspect of 
these requirements is support for Fault-Tolerance (FT). Mechanisms for detection of 
failures in a simulation, as well as measures for failure recovery are needed. If these 
functions are properly designed and implemented the reliability of simulation results 
will be increased. Also, the effectiveness of simulation executions may be increased, 
i.e. reruns of erroneous simulations are avoided. 
 
Today, distributed simulation is often employed in the military domain since it 
efficiently decomposes a simulation system into logical units, better enabling reuse 
and availability of simulation models. Also, a distributed simulation system exhibits 
better tolerance against failures. Given that components of a simulation are distributed 
over several nodes, a failure will most often not affect the entire system. 
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The most well-known and used standard for distributed simulations within the 
military domain is the High Level Architecture (HLA). The HLA standard is 
implemented by a Run-Time Infrastructure (RTI), which can be seen as an operating 
system for distributed simulations. In HLA a simulation is referred to as a federation, 
whereas individual components of the federation are referred to as federates. Until 
now, FT has not been treated as a core component of the HLA standard, thus 
federations are typically developed disregarding this important aspect. Given that 
HLA is the main architecture for distributed simulations within the Swedish Defence, 
and simulations are crucial in the NBD, it is important to evaluate the possibilities for 
inclusion of FT mechanisms in HLA. 
 
In [6] and [5] an architecture and partial implementation of an execution environment 
for distributed simulations, referred to as the Distributed Resource Management 
System (DRMS), are described. Also, in [5] an FT mechanism within the framework 
of DRMS is presented. This mechanism specifically addresses FT in federations 
synchronized according to the time-warp protocol [9]. In this paper we investigate the 
feasibility of the proposed FT mechanism and present some performance results. The 
performance is evaluated in terms of the overhead, in number of messages, caused by 
the FT mechanism. The FT mechanism in DRMS does not consider software errors, in 
terms of federates producing erroneous result, but handles situations where the host 
environment of a federate crashes, the federate itself crashes for some reason, or a 
federate’s link to the RTI is lost. Moreover, we assume that federates executed within 
the scope of DRMS are portable, meaning that they are not bound to a specific piece 
of hardware and can easily be migrated between different host environments. In the 
present implementation of the FT mechanism, it is not possible to recover from 
multiple concurrent failures. However, the DRMS supports recovery from non-
transient errors, i.e. permanent failures. 
 
2. Handling fault-tolerance in distributed simulations 
DRMS is a component of a network-based M&S environment, referred to as NetSim, 
currently under development at the Swedish Defence Research Agency (FOI). NetSim 
provides services for distributed storage and look-up of resources, e.g. federates, 
federations and computing resources. Further, the NetSim environment aims at 
providing services for Computer Supported Collaborative Work (CSCW), which 
means that users of the environment can cooperate in developing a federation, 
regardless of their physical location. The purpose of the DRMS in this setting is to 
provide transparent access to computing resources, which are utilized for execution of 
federations composed by a user, or a group of users. DRMS comprises services for 
automatic deployment of distributed simulations and fault-tolerant execution of 
federations. The NetSim environment is described in greater detail in [7]. 
 
DRMS is based on a service-oriented architecture, which is realized using Web 
Services, more specifically the Axis Web Services platform [14]. DRMS comprises 
two basic service types, namely a worker service and a coordinator service. A worker 
is responsible for execution of one or more jobs, e.g. federates, whereas a coordinator 
is responsible for the coordination of one or more workers when managing a batch of 
jobs. In addition to these basic services, the DRMS relies on a repository service. A 
repository is used by a worker to advertise its presence on the network and thereby its 
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availability for execution of jobs. Furthermore, the repository is used by a coordinator 
for localization of available workers. A repository also contains advertisements of 
other resources available on the network, federates for instance, and is therefore used 
as entry point when worker services fetch resource files and executable code. The 
implementation of DRMS is described in greater detail in [5]. 
 
2.1 Fault-tolerance in HLA 
A distributed simulation, or distributed system for that matter, has a higher failure rate 
than a simulation or system executed on a single machine. However, a failure in a 
distributed system is often partial, that is, one of the components of the system fails. 
The failure may, or may not, affect other components of the system. In the past, 
several techniques for fault-tolerance in distributed systems have been developed. 
These techniques can be classified into two main categories; replication-based and 
check-pointing-based approaches [4]. In replication based approaches one or more 
copies of a Logical Process (LP) is maintained in addition to the main LP. In case of 
failure, one of these replicas will take the failed LP’s place. In check-pointing based 
approaches, states of the individual LPs are saved on stable storage. In case of failure, 
an LP is restarted using the last stable state saved on stable storage. 
 
According to [10] research in fault-tolerant distributed simulation has been quite 
sparse. Application of fault-tolerance techniques in the context of HLA is even 
scarcer. However, there is some work that aims in this direction. In [12] a structured 
view of fault-tolerance in parallel and distributed simulations is given and possible 
solutions are proposed. In [11] a Resource Sharing System (RSS) is presented that in a 
future extension could serve as the basis for fault-detection, check-pointing and 
replication of federates. In [1] a concept, named R-FED (Replica Federate), in support 
of fault-tolerant HLA federations is presented. As the name implies, the approach is 
based on replication of individual federates in a federation. Several papers address the 
issue of federate migration, which is an important cornerstone in designing an 
infrastructure for fault-tolerant distributed simulation; see for example [6], [15], [2], 
[3] and [11]. However, these papers usually address federate migration in the context 
of load-balancing and do not explicitly address fault-tolerance. 
 
The present version of HLA is IEEE 1516-2000. Currently, work is carried out to 
define the next version of HLA, through the HLA Evolved [13]. An interesting aspect 
of HLA Evolved is that fault-tolerance has been given more focus than before. HLA 
Evolved is aimed at providing a common semantics for failure and mechanisms for 
fault-detection. At the core, two additions have been made to the Management Object 
Model (MOM), namely federate lost and disconnected. These interactions provide the 
basic mechanisms for signaling a fault from the context of a federation, through 
federate lost, and from the perspective of a federate, through disconnected. Upon 
failure, the RTI has the responsibility to do resign on behalf of the lost federate using 
an Automatic Resign Directive. This line of development is important for future 
realization of fault-tolerant distributed simulations, based on the HLA. 
 
2.2 Fault-tolerance in DRMS 
At present, a mechanism for FT in federations synchronized according to the time-
warp protocol is implemented in DRMS. The recovery phase of this mechanism is 



 98

based on a rollback-recovery scheme, which is commonly used for FT in message-
passing systems; see for example the survey made by Elnozahy et al [8]. In this 
approach, states of individual federates are periodically saved on stable storage 
throughout the federation execution. In case of failure, recovery of the federation is 
accomplished by rolling back individual federates to a consistent system state. In 
DRMS, federate states are check-pointed using a remote stable storage component. 
This means that states are distributed outside of the local scope (host environment) of 
an executing federate. The communication required for distribution of checkpoints, to 
and from the stable storage, is implemented by means of the RTI communication 
infrastructure, utilizing an extension to the Federation Object Model (FOM). Thus, the 
stable storage component is also a member of the federation. Interactions imposed by 
the FT mechanism are outlined in table 1. 
 

Table 1. Interactions added to the FOM to support the  
fault-tolerance mechanism (P = Publish, S = Subscribe). 

Interaction Description Federate Stable 
Storage 

reportCP Reports state to 
Stable Storage P S 

requestCP Requests latest 
state from stable 
storage 

P S 

latestCP Delivers latest 
state to 
recovered 
federate 

S P 

requestResend Requests resend 
of messages with 
time stamp 
greater than  
GVT 

P, S - 

 
The check-pointing protocol must assure that states, reported to stable storage, are 
safe i.e. a state represents a federate at a point in time that can not be invalided due to 
rollback. This means that federates report checkpoints for a point in time that is less 
than the smallest timestamp of a message that could ever be delivered to the federate. 
The time-stamp of states reported to the stable storage are used by the stable storage 
component to control the advancement of GVT. This control is required to stop 
advancement of GVT in case of federate failure. The check-pointing is not 
synchronized through-out the federation, but federates report states individually. 
 
2.3 Federate restoration in DRMS 
Next, the fault-recovery scheme of the FT mechanism is explained in greater detail 
based on a simple example. In case of federate failure, the DRMS automatically 
restores the concerned federate in a new host environment. This is accomplished by 
using a previously saved state from the stable storage. The state used for restoration 
represents the federate at the current GVT. 
 
Consider the simple exchange of event-messages as illustrated in figure 1. Fed2 
processes event-message A at time Ta, which induces scheduling of event-message B 
at time Tb in Fed1. Fed1 processes event-message B at time Tb, which leads to 
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scheduling of event-message C in Fed2 at time Tc. Next, Fed2 processes event-
message C at time Tc, leading to scheduling of event-message D in Fed3 at time Td, 
and so on. 
 

 
Figure 1. Exchange of event-messages in a federation. 

 
Three types of time-stamps are associated with each event-message in figure 1, these 
are; Tsend, Tprocess and Tschedule. Looking at an event-message from the perspective of 
Fed2, for example event-message C, Tsend represents the processing time of event-
message B by Fed1, i.e. Tb. Tprocess represents the processing time of event-message C 
by Fed2, i.e. Tc and Tschedule represents the scheduled time of event-message D in 
Fed3, i.e. Td. Tprocess and Tschedule of each event-message are inherently known to each 
federate. Tsend is added to all interactions, or objects, as an additional parameter. 
 
Upon failure of a federate its execution is resumed in a new host environment. After 
rejoining the federation execution, the resumed federate requests its state from stable 
storage using the requestCP interaction. Next, the resumed federate issues the 
RequestResend interaction that instructs other federates to execute the recovery 
procedure. The recovery procedure, carried out by all federates besides the resumed 
federate, can be described in terms of the following pseudo-code: 
 

ID = name of failed federate 
 
For each event-message, E, sent from ID do 
 If Tsend of E is greater than GVT then 
  If E is not processed then 
   Delete E 
  Else If E is processed then 
   Retract E 
 
For each retracted E do 
 Rollback to Tprocess of E 
 
For each E destined for ID do 
 If Tschedule of E is greater than GVT 
  Resend E to ID 
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Given the procedure outlined above, if Fed1 fails the following sequence of events 
will be executed to restore the federation; Fed2 retracts event-message C, since in this 
case Tsend of C is greater than GVT. The retracted event-message induces rollback of 
Fed2 to Tprocess of event-message C, i.e. Fed2 will rollback to a state that does not 
record the processing of event-message C, but reflects the processing of event-
message F. The rollback will in turn induce retraction of event-message D from Fed3. 
This causes rollback of Fed3 to Tprocess of event-message D. The state used for the 
rollback does not record the processing of event-message D, but reflects the 
processing of event-message E. After completion of the rollback phase, event-
messages destined for Fed1 are resent. This means that Fed2 resends event-message 
B, since Tschedule of event-message A is greater than GVT. Also, Fed2 resends event-
message G, since Tschedule of event-message F is greater than GVT. After this the 
federation is restored and can resume normal execution. 
 
3. Test federation 
To evaluate the FT mechanism, as described above, a simple test federation was 
developed. This federation employs time-warp as synchronization protocol and 
comprises four federates. The federates form a fully connected network, i.e. each 
federate is capable of sending an event-message to an arbitrary neighbor federate. 
 
The processing of an event-message in the test federation simply means updating a 
statistics object, describing the message exchange during a simulation run, and 
scheduling of the event-message in a neighbor federate. The scheduled time is 
randomly calculated within each federate. 
 
The federates of the test federation process and produce events optimistically, thus 
when an event-message is received in a federate’s past, a rollback is triggered. 
Similarly, when an anti-message is received that will annihilate an already processed 
event-message a rollback is also triggered. The rollback relies on a record of locally 
saved checkpoints. The advancement of GVT triggers garbage collection of this 
record. The test federation utilizes the following interactions: 
 

• Event-message: this is the standard event of the federation. It is simply a 
message that when processed by a federate means scheduling its arrival in 
another federate. 

• Anti-message: this message is used for annihilating sent event-messages in 
case of rollback. In this case the standard way of retracting messages in HLA 
is employed, i.e. using requestRetraction of the FederateAmbassador and 
retract of the RTIAmbassador. 

• ReportCP: this message represents the state of a federate at a specific point in 
time. It is sent to the stable storage to enable restoration of a failed federate. 

• RequestCP: this message requests a state of a particular federate at the current 
GVT from stable storage. 

• LatestCP: this message is used to deliver a requested state from stable storage 
to the concerned federate. 

• RequestResend: this message triggers resend of messages to a federate that has 
been migrated due to failure. 
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Of the message types defined above, the ReportCP, RequestCP, LatestCP and 
RequestResend are specifically employed to enable use of the FT mechanism. Thus, 
when the federation is executed without the FT mechanism, these message types are 
not used. 
 
4. Experiments and results 
The following section describes the experiments used to evaluate the proposed FT 
mechanism and the results generated through these experiments. The purpose of the 
experiments was to get an estimate of the communication overhead generated when 
utilizing the FT mechanism. Thus, the difference in number of generated messages 
between the case when FT is employed and the case when FT is not used was 
measured. Also, the difference in total number of messages generated between the FT 
and non FT cases, when faults are introduced during the simulation run, was 
measured. When faults are introduced during the simulation execution, in the non FT 
case, the entire simulation has to be restarted completely. During the experiments the 
test federation was executed using a logical time interval from 0 to 500. Table 2 
outlines the characteristics of the simulation runs carried out to evaluate the proposed 
FT mechanism. 
 

Table 2. Characteristics of experimental simulation runs.  
The simulation was executed using a logical time interval from 0 to 500. 

Simulation Run Failures Time of 
failures Using FT 

1 0 - Yes 
2 0 - No 
3 1 50 Yes 
4 1 150 Yes 
5 1 250 Yes 
6 1 350 Yes 
7 1 450 Yes 
8 1 50 No 
9 1 150 No 

10 1 250 No 
11 1 350 No 
12 1 450 No 
13 3 125, 250, 375 Yes 
14 3 125, 250, 375 No 

 
Figure 2 shows the total number of event-messages and anti-messages for three 
simulation runs that does not utilize FT. In the first case, no failures were triggered 
during the simulation run. In the second case, a failure was triggered at local time 250 
in one of the federates. In the last case, three failures were introduced during the 
simulation execution. These occurred at local time 125, 250 and 375 of three different 
federates. When a failure occurs the federation must be restarted, since it is assumed 
that no checkpoints are available to allow for federate recovery. Thus, a failure at the 
early stages of the simulation execution will induce minimal extra communication, 
whereas in the extreme case, the total communication cost will increase by 100 %. 
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Figure 2. Total number of event-messages and anti-messages generated during simulation 

execution, not utilizing the FT mechanism, for three different cases; no faults, one fault and three 
faults. 

 
Figure 3 shows the total number of event-messages and anti-messages for three 
simulation runs when the FT mechanism is used. In the first case, no failures were 
triggered during the simulation run. In the second case, a failure was triggered at local 
time 250 in one of the federates. In the last case, three failures were introduced during 
the simulation execution. These occurred at local time 125, 250 and 375 of three 
different federates. The difference between the zero faults, one fault and three faults 
cases is small. The total number of messages generated for each message type 
increases slightly as the number of faults triggered increases.  
 
Figure 4 shows a comparison between the FT and non FT cases. The bars in this chart 
represent the total number of messages generated within the federation. In the one 
fault case the failure was triggered at local time 250 in one of the federates, whereas 
in the three faults case, the failures were triggered at local time 125, 250 and 375 in 
three different federates. As the chart illustrates, using the FT mechanism when no 
faults are present in the system will impose an extra cost. In this case the reportCP 
interactions to stable storage induce the cost. However, in the one fault case the 
applied approaches (FT and non FT) almost perform equally. As expected, the three 
faults case reflects a high number of messages for the non FT simulation execution. 
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Figure 3. Total number of event-messages and anti-messages generated during simulation 

execution, utilizing the FT mechanism, for three different cases; no faults, one fault and three 
faults. 
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Figure 4. Total number of messages generated for the no faults, one fault and three faults cases, 

with and without utilization of the FT mechanism. 
 
The failure of individual components of a simulation is probably best described in 
terms of a stochastic process. Making general conclusions based on mean estimates of 
failure times will not reflect the behavior of a real-world system. Thus, it is not 
entirely justified to make conclusions based on a mean value that expresses when a 
federate will fail during the simulation run. To provide an alternative view of the cost 
of having fault-tolerance, three different cases were tested. The purpose of these cases 
was to represent the mean failure time within five consecutive intervals of the 
federation execution. Thus, these cases represent a mean failure time within the first 
fifth, second fifth and so forth of the logical time interval used for the simulation 
execution. Table 3 summarizes the total number of messages generated, with and 
without FT, for these intervals. 
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Table 3. Total number of messages for the FT and non FT cases. 
Failure time FT NFT 

50 3841 2474 
150 3774 2856 
250 3714 3321 
350 3754 3747 
450 3740 4258 

 
Figure 5 depicts the difference between the FT and non FT cases, in terms of total 
number of generated messages, for the intervals described above. As indicated in the 
chart, the overhead for the FT cases is greater than the extra communication caused by 
the faults in the non FT cases for the first three intervals. In the fourth interval the 
total communication cost is almost equal, whereas in the fifth interval the FT case 
shows better performance over the non FT case. 
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Figure 5. Difference in total number of messages, assuming one fault, between the FT and non FT 

cases for mean failure time of five intervals of the federation’s logical time interval. 
 
5. Discussion 
When simulations are integrated in the decision process, to serve the commander in an 
NBD context, the requirements on the supporting infrastructure are high. An essential 
aspect of these requirements is enabling fault-tolerant distributed simulations, since 
this is the fundament for a robust execution environment that can respond to user 
needs in a timely fashion. The most widely adopted standard for distributed 
simulations within the military community, the HLA, does not in its present form treat 
fault-tolerance extensively. Thus, it is desirable to develop efficient and scalable 
methods for fault-tolerance in HLA in order to successfully deploy HLA simulations 
within the framework of the NBD. 
 
We have shown that it is feasible to develop FT mechanisms within the framework of 
HLA. However, in our case a supporting infrastructure is needed to enable automatic 
re-deployment of a federate upon failure. As the HLA develops, through the HLA 
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Evolved track, there will be stronger support for fault-tolerance within the standard, 
which will ease development of robust federations. 
 
Regardless of the approach taken for implementation of fault-tolerant federations, 
there will always be an extra cost associated to it. The fault-tolerance support will 
inherently lead to increased network traffic and/or heavier consumption of hardware 
resources. However, this extra cost must be evaluated in terms of the consequences 
that may result from not having a fault-tolerant federation. In the federation developed 
to evaluate the proposed FT mechanism, the cost, in terms of number of extra 
messages generated to handle failures, is relatively low, as indicated in figure 3. The 
total number of messages rises from 2013 to 2075, comparing the no faults case with 
the three faults case, not taking into account the reportCP interactions. The reason for 
this increase is the resending of event-messages and potential rollbacks caused by 
recovery of a failed federate. However, depending on the mutual relations existing 
between federates of a federation, the recovery phase may result in disparate numbers 
of resent event-messages and/or rollbacks. Different relations among a set of federates 
have not been treated in the present evaluation. Currently, the federates form a fully 
connected network and thus the message exchange is fairly homogeneous. 
 
As seen in figure 4, the total number of generated messages, for the non FT cases, 
rises sharply as the number of faults increases, whereas in the FT cases, the increase is 
almost negligible. Of course, the timing of the faults has a large impact on the end 
result in these cases. If a simulation is considered being a critical component of an 
NBD framework, the worst-case must be considered a plausible scenario, i.e. failure 
near the end of the simulation execution. Looking at the mean failure time of the last 
20% of the simulation execution in figure 5 the non FT case results in 4258 messages 
(given by table 3). In comparison with the total number of generated messages for the 
zero failures case without FT of 2221 messages, presented in figure 4, a failure in the 
last 20% of the simulation execution would increase the total number of messages by 
approximately 90% on average. Note that this estimate is for the one fault case. If 
additional faults are introduced in this interval the cost will grow immensely. In the 
one fault case, utilization of the FT approach will result in 3740 messages (given by 
table 3). This equals an increase in number of generated messages by approximately 
68%. However, note that this figure is tightly coupled with the total number of event-
messages of the federation. If a federation generates more event-messages than the 
test federation, the FT mechanism will perform even better (since the number of 
reportCP interactions will remain the same). Thus, the overhead, in number of 
generated messages, for having fault-tolerance is certainly justifiable, considering the 
worst-case scenario a likely requirement on an M&S infrastructure of the NBD. 
 
6. Conclusions 
We showed how to implement fault-tolerance in time-warp federations using a check-
pointing-based scheme within the HLA communication infrastructure. The overhead 
cost when utilizing the FT mechanism is justifiable, especially when considering 
worst-case scenarios for federate failure times i.e. failures near the end of the 
federation execution. In our example, when the FT mechanism is employed, a failure 
in the last 20% of the simulation execution would result in a total of 3740 generated 
messages, which should be compared with the 4258 messages generated when the FT 
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mechanism is not employed. If no failures occur, the simulation execution will 
generate 2221 messages on average, given that the fault-tolerance mechanism is not 
used. This means that for one failure in the last 20% of the simulation execution, 
utilization of the fault-tolerance mechanism will increase the total number of 
messages by 68%. This should be compared to the case when fault-tolerance is not 
present where the total number of generated messages is increased by 90%. Thus, the 
FT mechanism will in this case decrease the total number of messages by 
approximately 12%. If additional faults occur the reduction will be greater. 
 
7. Future work 
As a starting point we have evaluated the overhead in number of additional messages 
generated by the FT mechanism. As a next step it would be valuable to estimate the 
degradation in the effectiveness of a simulation execution when using the FT 
mechanism. In this context it would be of interest to look at various sizes of the 
checkpoints to see how different federate types may have an impact on the 
effectiveness, i.e. some federates will require more memory than others for 
representation of their states. Also, we will consider tests of the FT mechanism where 
the timing of the faults are not pre-defined, but randomly generated throughout the 
simulation execution by a probability function at each node. 
 
Moreover, the test federation used in this work comprises no complex issues of 
ownership of objects in the federation. In more complex federation types, the issue of 
transferring ownership of objects between federates, in case of failure, must be 
resolved as well. This issue is of great concern to enable use of the FT mechanism on 
a more general level and in more complex federation types. 
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