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Abstract

Speed dating is a relative new concept that allows researchers to study various theories
related to mate selection. A problem with current research is that it focuses on finding
general trends and relationships between the attributes.

This report explores the use of machine learning techniques to predict whether an
individual will want to meet his partner again after the 4-minute meeting based on their
attributes that were known before they met. We will examine whether Random Forest or
Extremely Randomized Trees perform better than Support Vector Machines for both limited
attributes (describe appearance only) and extended attributes (includes answers to some
questions about their preferences).

It is shown that Random Forests perform better than Support Vector Machines and
that extended attributes give better result for both classifiers. Furthermore, it is observed
that the more information is known about the individuals, the better a classifier per-
forms. Clubbing preferences of the partner stands out as an important attribute, followed
by the same preference for the individual.



iii

Sammanfattning

Speed dating är ett relativt nytt koncept som tillåter forskare att studera olika teorier re-
laterade till val av partner. Ett problem med nuvarande forskning är att den fokuserar på
att hitta generella trender och samband mellan attribut.

Den här rapporten utforskar användning av maskinlärningsteknik för att förutsäga
om en individ kommer vilja träffa sin partner igen efter ett 4-minuters möte baserat på
deras attribut som var tillgängliga innan de träffades. Vi kommer att undersöka om Ran-
dom Forest eller Extremely Randomized Trees fungerar bättre än Support Vector Machine för
både begränsade attribut (beskriver bara utseende) och utökade attribut (inkluderar svar på
några frågor om deras preferenser).

Det visas att Random Forest fungerar bättre än Support Vector Machines och att ut-
ökade attribut ger bättre resultat för båda klassificerarna. Dessutom är det observerat att
ju mer information som finns tillgänglig om individerna, desto bättre resultat ger en klas-
sificerare. Partners preferens för att besöka nattklubbar står ut som ett viktigt attribut,
följt av individers samma preferens för individen.
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Chapter 1

Introduction

1.1 Purpose

Speed dating is a relatively new concept where participants are encouraged to meet many
potential romantic partners for a short period of time and later state if they would like
to meet them again [1]. This gives researchers the ability to study and confirm various
theories related to mate selection. The problem with current research is that it focuses
on finding general correlation between a set of attributes and the decision to prefer a
partner. This is problematic because it does not consider the individual and his specific
preferences. Thus, we want to investigate if we can develop a model that can predict
whether a person will want to meet the partner again after their first 4-minute meeting
based on data from one speed-dating experiment. Our idea is to use machine learning
techniques and a priori knowledge about the candidates. We want to compare if Random
Forest or Extremely Randomized Trees perform better than Support Vector Machine and exam-
ine if we can increase performance by using hyperparameter optimisation and sequential
feature analysis.

1.2 Research Question

The goal of this report is to be able to examine the extend that machine learning tech-
niques can be used to predict if an individual wants to meet his partner again after a
4-minute meeting by comparing the performance of randomized tree methods (i.e. Ran-
dom Forest or Extremely Randomized Trees) and SVM, hence the question:

Do Random Forest or Extremely Randomized Trees perform better than SVM
with either linear, polynomial or radial basis function kernels when predicting
whether an individual will want to meet his partner again after a 4-minute
meeting using only information that is known in advance about each candi-
date.

1.3 Scope

We will only focus on examining whether Random Forest or Extremely Randomized
trees perform better than Support Vector Machines. Our classifier will only use informa-
tion that is known before the partners have met. The data will be taken from one speed
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2 CHAPTER 1. INTRODUCTION

dating experiment only. We will not attempt to explain how our model works nor seek
any general heuristics that constitute an individual’s decision making. Although we will
explore the importance of features, we will not connect it to psychology or explain it in
any way. The performance will be measured with c-statistic (area under the curve in a
ROC curve) and our only aim will be to maximize this value.
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Background

2.1 Dataset and Similar works

The dataset has 8378 records that contain information about an individual and his part-
ner as well as whether the individual would like to meet the partner again. Before the
speed dating event, everyone need to provide basic information about themselves and
rank several activities on a scale 1 to 10. After the 4-minutes meeting, they had to rank
their partner and assess if they would like to meet each other again.

This data set is already studied in an existing report [1] from a classical statistical per-
spective. It can be observed from the submission page [2]. Most of them explore the data
gathered after the speed dating event and attempt to draw conclusions of what partners
look for. Other studies [3] use the idea of average ratings of attributes based on the entire
population (similar to collaborative filtering). To sum up, current results are based on
knowledge a posteriori.

2.2 Speed Dating

The idea behind speed dating is to conduct a series of short meetings with a potential
romantic partner [4], typically 4-5 minutes [1][5], in order to determine whether or not
they would like to meet again [1]. If we have a bilateral match, which occurs if both par-
ticipants have liked one another, then their contact information is exchanged [1]. This en-
ables researchers to explore various fundamental attraction-related hypothesis [4], such as
the similarity principle [5] and selection principles used by representatives of each gender
[1].

2.3 Attributes Used During Selection

Extensive research has been undertaken in order to determine which attributes affect de-
cision making during partner selection. For example, studies have attempted to explore
gender differences in mate selection [1] as well as try to confirm the similarity and recip-
rocation principles [5].

There does exist a discrepancy in the importance of partner’s attributes. The study
[1], whose dataset is used in this report, suggests that there is a difference in the way
males and females choose their partner. For instance, female look for males that are intel-

3



4 CHAPTER 2. BACKGROUND

ligent whereas males focus more to physical attractiveness [1]. However, newer studies
emphasise that both genders may state one set of preferred attributes but make their de-
cisions based on something else, in this case, physical attractiveness (that is, both genders
value physical attractiveness equally) [5].

Although there is inconsistency in the literature on the way representatives of each
gender choose their partner, it is important to stress that selection of a partner may de-
pend on person’s intent, i.e. whether a long or short term relationship is sought, in which
case women value physical attractiveness also [1].

2.4 Support Vector Machines

Support vector machine (SVM) is a classifier that is based on the idea of separating a p-
dimensional feature space into two halves using a (p−1)-dimensional hyperplane [6]. For
any unseen point x∗, we will compute f(x∗) given that

f(x) = β0 + β1x1 + . . .+ βpxp (2.1)

which represents the hyperplane. If f(x∗) > 0, the point belongs to class 1 and if f(x∗) <
0, x∗ belongs to class −1.

Given that the data is separable, there exists an infinite number of hyperplanes. The
idea is to pick the hyperplane that is as far away from the test observations as possible
(i.e. the margin has to be maximized).

Since data may not be linearly separable, SVMs introduce the idea of a kernel: a way
to enlarge the feature space. Kernel is essentially a function that quantifies the similarity
of two data points. There are many types kernels, for instance: linear, polynomial and
radial.

Apart from changing the kernel, it is possible to use C as a tuning parameter to affect
the slack variables. It can be viewed as a cost function that specifies the degree of error
(i.e. how many points can be on the wrong side of the margin). The value εi specifies the
degree of error: if εi = 0, the ith point is on the correct side of the margin, if εi > 0, it is
on the wrong side of margin and if εi > 1, it is on the wrong side of the hyperplane.

n∑
i=1

εi ≤ C (2.2)

The parameter C controls the bias-variance trade off: if C is large, more violations are
allowed so bias is high but variance is low and a small C leads to low bias but high
variance.[6, p. 337-353]

The advantage of using classic SVMs in contrast to methods such as k-Nearest Neigh-
bour is that only the support vectors have to be stored in the model.

2.5 Ensemble Methods

The idea behind ensemble methods is to combine the result (using voting, for example)
of many high-variance and low-bias classifiers and thereby reduce the overall variance of
the ensemble classifier.
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2.5.1 Random Forest

Random Forest is an ensemble method that uses a random subset of features during each
split of the tree, which makes the trees more decorrelated. Since each split is not allowed
to consider the majority of the features, it ensures that all features get a chance to con-
tribute to the model. [6, p. 319-321]

2.5.2 Extremely Randomized Trees

Extremely randomized trees are similar to random forest but instead they randomize
both attribute and cut-point choice. An advantage of the algorithm is computational effi-
ciency. [7]

2.6 Feature Selection

Finding the most important features serves two purposes. First of all, it allows us to de-
termine the factors that affect the decision making when selecting a partner we would
like to meet again. However, it also reduces the risk of overfitting, by selecting the fea-
tures that are truly associated with the data and discarding any noise [6, pp. 242-243].

This can be achieved in two ways: by examining the importance of features using
forest of trees [8] or by performing sequential feature analysis, for instance, sequential
forward selection algorithm [9]. In first case, we obtain relative importance of all the fea-
tures whereas in the latter case, the aim is to find the set of features that optimizes a cer-
tain metric.

2.7 Hyperparameter Optimization

Many classifiers have parameters that are not directly learnt from the data, but instead
have to be provided a priori. [10]. In an SVM, the penalty term C can be varied in order
to optimize a certain metric. For specific kernels in an SVM, there are additional param-
eters such as the degree of the polynomial or the value gamma γ that can be optimized.
One way to find the optimal set of parameters is to picture them as an n-dimensional
space (n is the number of parameters). We can then perform a randomized search or ex-
haustive search, in order to find the tuple that is optimal.
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Method

In order to determine which classifier performs better, the correct data has to be extracted
and then split it into training and testing sets. Secondly, a metric that will assess perfor-
mance of a classifier has to be defined. By using a baseline classifier, it is possible to en-
sure that the new classifier performs better than a classifier with a simple learning rule.

Once the data is processed, the better performing classifier can be found. It is achieved
by first comparing the area in a receiver operating characteristic curve (ROC curve) and
the area in the precision-recall curve. The default settings will be used for all classifiers
except for one parameter, which is set to class_weight=’balanced’ (in order to com-
pensate for the unbalanced amount of samples from each class).

In order to ensure that each classifier performs at its best, feature importance will
be examined and sequential feature analysis will be performed. These methods find the
more relevant features, which gives interesting insights in humans’ decision making and
also helps to reduce the adverse effect of noisy features. The goal is to always maximize
the area under the curve (AUC) in a ROC curve. In addition, hyperparameter optimisa-
tion will be performed to the parameters that are not learnt from the data.

When the most important set of features is found and the optimal parameters are de-
termined, it will be used to make the classifier better (i.e. larger AUC in a ROC curve).
The goal is to explore if SVM are better than the tree-based methods (Random Forest
and Extremely Random Trees), so hyperparameter optimisation will use the kernel as a
parameter that is optimized, which means that the result will only use one kernel. Simi-
larly, only the better performing tree-based method will be used.

3.1 Data Extraction

There are four steps to format the data and divide it into two classes: positive (person
a wants to meet b, denoted as a → b) and negative (person a does not want to meet b,
given that persons have met):

1. Initialize the data – The data is initialized using the Pandas package with ISO-8859-1
encoding.

2. Separate the data into two classes – In order to split the data, we iterate through
every record and store the relevant features in a matrix. By default, it is assumed
that every entry has the class −1, i.e. the person has not met anyone. Once we find

6



CHAPTER 3. METHOD 7

a record that indicates that it has met with someone already in the matrix, we add
its data into the row of the partner. That is, the final matrix will have rows such at

(f1a , f
2
a , . . . , f

k
a , f

1
b , f

2
b . . . , f

k
b ,m) (3.1)

where f1a indicates feature 1 of person a, k is the number of features used per per-
son and m = {1, 0,−1} indicates whether it is a one-directional match (a → b), no
match or that person a has not met anyone.

We are examining two sets of attributes per partner:

• Limited Attributes – age, gender, race

• Extended Attributes – age, gender, race, field_cd, date, go_out, sports, exercise,
dining, museums, art, hiking, gaming, clubbing, reading, tv, tvsports, theater,
movies, concerts, music, shopping, yoga.

The definition of each attribute is found in Appendix A. All of the attributes being
used are either binary or nominal.

3. Bootstrapping – In order to increase the number of data points, we can duplicate
each entry in the matrix, i.e.

(f1a , f
2
a , . . . , f

k
a , f

1
b , f

2
b . . . , f

k
b ,m)→ (f1b , f

2
b . . . , f

k
b , f

1
a , f

2
a , . . . , f

k
a ,m) (3.2)

During duplication of the entries, we should always ensure that the duplicate record
has the correct match value. a→ b can be true whereas b→ a may not.

4. Remove null rows - Since the data set contains entries from multiple speed dating
experiments, field values are missing. In this step, we remove such entries from the
matrix as to ensure that the matrix contains only numerical values.

3.2 Data Splitting

The formatted data will be split using the hold-out method with a test set Ttest of size
0.3 of the total number of points. The seed value is 4711, which will not be changed
throughout the experiment as to ensure that all classifiers operate on the same data. The
data will be split using the stratify, which will preserve the ratio of positive and neg-
ative samples in both the training and testing sets.

3.3 Metrics

In order to assess the accuracy of a classifier, two measures will be used: Receiver operat-
ing curve (ROC curve) and Precision-Recall curve (PR curve). Both of these metrics require
understanding of precision and recall concepts, which are explained first.

3.3.1 Precision

Precision is the ability of a classifier to correctly label positive samples as positive [11]. It
is defined as

Tp
Tp + Fp

(3.3)
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where true positive Tp is the number of positive predictions given that the data point is
positive and false positive Fp is number of positive predictions given that the point is
negative. A positive prediction is when the classifier predicts a data point to be positive.

3.3.2 Recall

Recall is the ability of a classifier to find all the positive samples [12]. It is defined as

Tp
Tp + Fn

(3.4)

where false negative Fn is the number of negative predictions given that the data point is
negative.

3.3.3 Receiver Operating Characteristic Curve

An ROC curve provides a way to evaluate effectiveness of a classifier as an alternative to
classification accuracy. There are two metrics that can be considered: the ROC curve itself
and the Area Under the Curve (AUC). [13]

An ROC curve is a two dimensional graph which plots the true positive rate over the
false positive rate. A typical graph will have a straight line (in this report, a dashed line)
that indicates the result of a random classifier, i.e. 0.5 chance to classify a point as posi-
tive. Any curve that is below the dashed line should be regarded as a bad classifier. The

Figure 3.1: An example of a ROC curve with a classifier that classifies a point as positive
with 0.5 probability.

aim is to get a curve that is a above the dashed line and that approaches a triangular
shape (with the axes as the base and the dashed line as the hypotenuse). For example,
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Figure 3.2: ROC and PR curves for the Dummy Classifier with most-frequent learning rule.

if we have two classifiers such that one of them is a bit better than random (the curve is
above the dashed line) and the other classifier whose curve is above the first classifier,
then the classifier with the curve that is above the other superior to the one below.

The second metric is c-statistic (also known as AUC in a ROC curve). The values
range from [0, 1], however only [0.5, 1] are of interest since anything below 0.5 is regarded
as worse than random. Therefore, the AUC value should be maximized. For example, if
we have two classifiers with AUC values A1 < A2, then A2 is considered a better classi-
fier than A1.

3.3.4 Precision-Recall Curve

An alternative measure to ROC curves is Precision-Recall curve (PR curve) [14]. They are
similar to ROC curves in that that the area can be used to assess the classifier (high area
is desired). A high area implies high precision (gives accurate results) and high recall
(gives the majority of all the positive results). Since the dataset being used has dispro-
portional amount of positive samples in contrast to the negative samples, PR curves are
relevant in our assessment too.

3.4 Base Line Classifier

In order to assess how well a classifier performs, a base line classifier will be used. The
strategy is most-frequent, which will always predict the most common class (in our case, it
is negative). The ROC and PR curves are shown in Figure 3.2.
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3.5 Improving Performance of a Classifier

In order to improve performance of a classifier, two approaches will be used: dimension-
ality reduction to remove noisy features and hyperparameter optimisation to tune the pa-
rameters that are not being learnt. In the first case, the sequential forward algorithm will
be used. The most relevant features will also be extracted using an extremely random-
ized tree, although this will not be used directly to improve the classifier. In the latter
case, an exhaustive search will be performed over a logarithmic scale for most of the pa-
rameters (see Figure 3.5). The choice of logarithmic scale is to make this procedure faster.

Classifier Tuned Parameters
SVM Linear kernel C = {1, 10, 100, 1000}
SVM Polynomial kernel C = {1, 10, 100, 1000}, Degree = {2, 3}
SVM RBF kernel C = {1, 10, 100, 1000}, γ = {1, 10−1, 10−2, 10−3, 10−4}
Random Forest n_estimators = {1, 10, 100, 1000, 10000}
Extra Randomized Trees n_estimators = {1, 10, 100, 1000, 10000}

Figure 3.3: Summery of the parameters that are being tuned and their range. All parame-
ters except for the degree use a logarithmic scale.

3.6 Environment

The data collection and analysis are performed in Python 3.6 using Scientific Python Devel-
opment Environment (Spyder). Data extraction in section 3.1 is performed using the Pandas
package (for step 1) and Numpy (in step 2). The experiments are performed using scikit-
learn. The classification, the data splitting (into test and training sets) and the analysis
(ROC curves and Precision-Recall curves) are from this package. For sequential feature
selection, mlxtend is used.
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Results

4.1 Dataset

Not all data points will be used in the classifier due to null values. The sizes of these
sets are illustrated in Figure 4.1.

Train-set Size Test-set Size Total
Limited Attributes 5732 2457 8189
Extended Attributes 5659 2426 8085

Figure 4.1: The number of data points that will be used when training and validating a
classifier.

4.2 Classifier Performance

Performance of each classifier is examined with limited set of attributes and extended
set of attributes using the default settings. Only class_weight=’balanced’ is cus-
tomized. The metrics to assess the classifiers are the c-statistic (area under a ROC curve)
and the area under the precision-recall curve.

4.2.1 Limited Attributes

Classifier ROC area PR area
SVM Linear kernel 0.54 0.20
SVM Polynomial kernel (deg=2) 0.56 0.21
SVM Polynomial kernel (deg=3) 0.54 0.18
SVM RBF kernel 0.55 0.18
Random Forest 0.55 0.20
Extra Randomized Trees 0.54 0.19

Figure 4.2: Summary of ROC curve and PR curve areas for different classifier and attribute
sets (using limited set of attributes).
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4.2.2 Extended Attributes

Classifier ROC area PR area
SVM Linear kernel 0.48 0.15
SVM Polynomial kernel (deg=2) 0.65 0.28
SVM Polynomial kernel (deg=3) 0.65 0.27
SVM RBF kernel 0.64 0.26
Random Forest 0.62 0.26
Extra Randomized Trees 0.63 0.29

Figure 4.3: Summary of ROC curve and PR curve areas for different classifier and attribute
sets (using extended set of attributes).

4.3 Feature Selection

In order to select the most important features, two methods are used. First, these fea-
tures are extracted from an extremely randomized tree with n_estimators=1000 and
random_state=0, which is illustrated in Figure 4.4 for the limited attributes and Figure
4.7 for the extended attributes. Then, using sequential feature selection, the set of impor-
tant features that maximize ROC AUC is selected.

4.3.1 Limited Attributes

Figure 4.4: Feature importance using an extra randomized tree on the limited set of at-
tributes

Method Important Features Max AUC
SVM Linear Kernel 0, 1, 3, 5 0.534
SVM Polynomial Kernel (deg=2) 0, 1, 2, 3, 5 0.570
SVM Polynomial Kernel (deg=3) 0, 1, 2, 3, 5 0.570
SVM RBF Kernel 0, 1, 2, 3, 5 0.625
Random Forest 0, 2, 3, 4, 5 0.917
Extremely Randomized Trees 0, 1, 2, 3, 5 0.920

Figure 4.5: The combination of features that maximizes the area under the curve in a ROC
curve on the training set using different classifiers for the limited set of attributes.
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Figure 4.6: The ROC AUC value vs. the number of features for 6 classifiers. From top left
corner: SVM Linear Kernel, SVM Polynomial (degree=2) Kernel, SVM Polynomial (de-
gree=3) Kernel, SVM RBF Kernel, Random Forest, Extra Randomized Trees.

4.3.2 Extended Attributes

Figure 4.7: Feature importance using an extra randomized tree on the extended set of at-
tributes
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Method Important Features Max AUC
SVM Linear Kernel 0, 1, 2, 3, 4, 0.615

5, 6, 7, 8, 9,
10, 11, 12, 13,
14, 15, 16, 17,

18, 19, 21, 22, 23,
24, 25, 26, 27, 28,
29, 30, 31, 32, 33,
34, 35, 36, 37, 38,
39, 40, 41, 42, 44,

45
SVM Polynomial Kernel (degree=2) 0, 1, 2, 3, 4, 0.831

5, 6, 7, 8, 9,
10, 11, 12, 13,

14, 15, 16, 17, 18,
19, 20, 21, 22, 23,
25, 26, 27, 28, 29,
30, 31, 32, 33, 34,
35, 36, 37, 38, 39,
40, 41, 42, 43, 44,

45
SVM Polynomial Kernel (degree=3) 0, 2, 3, 4, 5, 6, 0.978

7, 8, 9, 10, 11,
12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 25, 26, 27,
28, 29, 30, 31, 32,
33, 34, 35, 36, 37,
38, 39, 40, 41, 42,

43, 44, 45
SVM RBF Kernel 0, 2, 3, 4, 5, 0.956

6, 7, 8, 10, 11,
12, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 25, 26, 27,
28, 29, 30, 31, 32,
33, 34, 35, 36, 37,
38, 39, 40, 41, 42,

43, 44, 45
Random Forest 0, 33, 45, 15, 16, 22, 23, 26 1.000
Extremely Randomized Trees 0, 33, 2, 45, 16, 22, 23, 26 1.000

Figure 4.8: The combination of features that maximizes the area under the curve in a ROC
curve on the training set using different classifiers for the extended set of attributes.
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Figure 4.9: The ROC AUC value vs. the number of features for 6 classifiers. From top left
corner: SVM Linear Kernel, SVM Polynomial (degree=2) Kernel, SVM Polynomial (de-
gree=3) Kernel, SVM RBF Kernel, Random Forest, Extra Randomized Trees.

4.4 Tuning Parameters

Since the extended attributes perform better for most of the classifiers, the limited at-
tributes will be omitted. Instead, the focus is on extended attributes. The optimal param-
eters for SVM are shown in Figure 4.10.

Parameter Optimal Value
kernel rbf
C 10
γ 10−2

Figure 4.10: Hyperparameter optimisation of SVM

The optimial paramters for the tree-based method are shown in Figure 4.11. Although
both random forest and extremely randomized trees had the same AUC value in a ROC
curve, the AUC value for random forest was bigger in a precision-recall curve, hence
random forest was selected.

Parameter Optimal Value
Method Random Forest

n_estimators 1000

Figure 4.11: Hyperparameter optimisation of the tree-based methods.

It was found that dimensionality reduction using sequential forward analysis did not
improve the performance in the case of SVM and reduced performance in the case of
tree-based methods (see Figure 4.4 and Figure 4.13).
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Classifier ROC area PR area
SVM RBF kernel 0.66 0.28
Random Forest 0.71 0.35

Figure 4.12: Summary of ROC curve and PR curve areas for different classifier and attribute
sets (using extended set of attributes).

Figure 4.13: The improved classifiers using hyperparamter optimisation and sequential
forward analysis. The graphs on top are related to SVM (with RBF kernel) and the ones at
the bottom to random forest.
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Discussion and Conclusion

5.1 Best Performing Classifier

The best performing classifier is Random Forest with n_estimators=1000 operating on
extended attributes as shown in Figure 4.13. On the second place, we have the SVM with
a radial basis function kernel.

When only six features (limited attributes) are known about each person, classifiers
perform worse than having 23 of them (extended attributes). As shown in Figure 4.2, the
classifiers are barely above the baseline for limited attributes. However, when more in-
formation is known, most of the classifiers perform better (see Figure 4.3). This claim is
supported by Figure 4.6 and Figure 4.9, where it can clearly be seen that an increase in
the number of features improves the ROC AUC value on the training set.

To sum up, Random Forest performs better than SVM at modelling the decision mak-
ing when selecting a partner. Generally, the more we know about each person, the better
we can predict their actions.

5.2 Important Features

If the only information we have are limited attributes, then age of both partners is an
important feature (see Figure 4.4). On the second place, we have the race and finally the
gender (which does is not important at all, possibly due to the bias that all people were
looking for heterosexual relationships).

If we use the extended attributes, most of the features are equally important (except
for gender) as seen in Figure 4.7. Only clubbing appears to be more important. If we
want to predict if a will like b, then the answer to whether person b likes clubbing plays
an important role, followed by a’s answer to the same question.

5.3 Limitations

The are several important limitations. First, the dataset is biased since most of the par-
ticipants are college students. Moreover, it is assumed that students are looking for het-
erosexual relationships (which is suggested by Figure 4.4 and Figure 4.7, where gender is
clearly not important). Thirdly, the experiment is performed in USA, which adds a cul-
tural bias.

17
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5.4 Future Research

In future studies, an option is to explore artificial neural networks (ANN). Although out-
of-scope for this report, we got good ROC AUC values (in the range of 0.6) when us-
ing Perceptron, without tuning the parameters. By tuning the parameters, ANN can be a
faster and better performing classifier for this task. Another option is to keep optimizing
Random Forest; this method has more parameters that can be tuned than those that we
used, which can potentially increase performance.
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Appendix A

Feature Representation

The list below contains the attribute definitions that are being used for each partner [2].
Figure A.1 contains the feature vector definitions that are used to train a classifier.

• age – the age

• gender – Female=0; Male=1

• race – Black/African American=1; European/Caucasian-American=2; Latino/His-
panic American=3; Asian/Pacific Islander/Asian-American=4; Native American=5;
Other=6

• field_cd – 1= Law; 2= Math; 3 = Social Science, Psychologist; 4= Medical Science,
Pharmaceuticals, and Bio Tech; 5= Engineering; 6= English/Creative Writing/ Jour-
nalism; 7= History/Religion/Philosophy; 8= Business/Econ/Finance; 9= Education,
Academia; 10= Biological Sciences/Chemistry/Physics; 11= Social Work; 12= Un-
dergrad/undecided; 13=Political Science/International Affairs; 14=Film; 15=Fine
Arts/Arts Administration; 16=Languages; 17=Architecture; 18=Other

• date – Answer to the question: In general, how frequently do you go on dates?: Sev-
eral times a week=1; Twice a week=2; Once a week=3; Twice a month=4; Once a
month=5; Several times a year=6; Almost never=7

• go_out – Answer to the question: How often do you go out (not necessarily on dates)?:
Several times a week=1; Twice a week=2; Once a week=3; Twice a month=4; Once a
month=5; Several times a year=6; Almost never=7

The questions below are answers to How interested are you in the following activities, on a
scale of 1-10?

• sports – Playing sports/ athletics

• exercise – Body building/exercising

• dining – Dining out

• museums – Museums/galleries

• art– Art

20
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• hiking – Hiking/camping

• gaming – Gaming

• clubbing – Dancing/clubbing

• reading – Reading

• tv – Watching TV

• tvsports – Watching sports

• theater – Theater

• movies – Movies

• concerts – Going to concerts

• music – Music

• shopping – Shopping

• yoga – Yoga/meditation
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Feature ID Short Name Person
0 age a
1 gender a
2 race a
3 age b
4 gender b
5 race b

Feature ID Short Name Person
0 age a
1 gender a
2 race a
3 field_cd a
4 date a
5 go_out a
6 sports a
7 exercise a
8 dining a
9 museums a
10 art a
11 hiking a
12 gaming a
13 clubbing a
14 reading a
15 tv a
16 tvsports a
17 theater a
18 movies a
19 concerts a
20 music a
21 shopping a
22 yoga a
23 age b
24 gender b
25 race b
26 field_cd b
27 date b
28 go_out b
29 sports b
30 exercise b
31 dining b
32 museums b
33 art b
34 hiking b
35 gaming b
36 clubbing b
37 reading b
38 tv b
39 tvsports b
40 theater b
41 movies b
42 concerts b
43 music b
44 shopping b
45 yoga b

Figure A.1: This table decodes feature id to the short name of the feature for limited set
of attributes (left table) and extended set of attributes (right table). The definition of short
names is found in Appendix A
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