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Abstract: This paper presents a novel framework combining abstraction refinement and plan
revision for control synthesis problems under temporal logic specifications. The control problem
is first solved on a simpler nominal model in order to obtain a satisfying plan to be followed by
the real system. A controller synthesis is then attempted for an abstraction of the real system to
follow this plan. Upon failure of this synthesis, cost functions are defined to guide towards either
refining the initially coarse partition to obtain a finer abstraction, or looking for an alternative
plan using the nominal model as above. This tentative synthesis is then repeated until a plan and
an abstraction of the real system able to follow this plan are found. The obtained controller also
ensures that the real system satisfies the initial specification. A numerical example is provided
to illustrate this framework.

Keywords: Reachability analysis, verification and abstraction of hybrid systems; Abstraction
refinement; Plan revision; Hybrid systems.

1. INTRODUCTION

In model checking and control synthesis problems under
temporal logic specifications, when the desired specifica-
tion is unsatisfiable by the considered system, classical
methods would stop and announce that the problem is not
feasible (Baier et al., 2008). To overcome this limitation,
we can try to create an automated framework which itera-
tively reformulates or relaxes the problem until satisfaction
is reached. Two main approaches can be considered.

The first option is to keep the desired specification while
considering a new model which should satisfy it and
remain as close as possible to the initial model (Ding
and Zhang, 2005). A subset of these methods is based on
the notion of abstraction refinement. When checking the
satisfaction of the specification on the original model is
too complicated, we can rely on creating an abstraction
of this model which over-approximates its behavior while
being simpler to deal with (Tabuada, 2009). As a result
of this over-approximation, a specification satisfied on the
abstraction will also be satisfied on the initial model,
but its unsatisfaction may be due to the choice of a too
coarse abstraction. Abstraction refinement thus aims at
iteratively improving the accuracy of the abstraction until
it satisfies the specification, see e.g. Clarke et al. (2003);
Esmaeil Zadeh Soudjani and Abate (2013); Lee et al.
(1997) for model checking and Henzinger et al. (2003);
Nilsson and Ozay (2014); Moor et al. (2006) for control
synthesis problems.
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The dual approach consists in keeping the initial model of
interest while tuning down the verification or control ob-
jective. This can be achieved by a (minimal) specification
revision problem, where one looks for a more permissive
specification (as close as possible to the initial one) which
is satisfied by the model, see e.g. Kim et al. (2015) where
specifications are described by Büchi automata, or Cizelj
and Belta (2013) considering Probabilistic Computational
Tree Logic. Another relevant work on specification revi-
sion is Finger and Wassermann (2008) where the unsatis-
fied specification is iteratively expended to allow counter-
examples provided by the model checker. Specification re-
laxation is an alternative method where one designs some
metric to measure the level of satisfaction of the initial
unsatisfied specification and thus looks for a path of the
model with maximal satisfaction (Guo and Dimarogonas,
2013) or equivalently, minimal violation (Tumova et al.,
2013) of the specification.

The purpose of this paper is to address control synthesis
under temporal logic specifications by combining both ab-
straction refinement and specification revision approaches
in a single framework composed of 3 main elements, as
described below and sketched in Figure 1. The first step
(in purple in Figure 1) considers a nominal system which is
simple enough to be abstracted (with respect to an initial
coarse partition P of the state space) into a deterministic
finite transition system Sn. This determinism then enables
the use of classical model checkers (Baier et al., 2008) to
find a plan ψ of Sn satisfying the main specification θ
expressed as a Linear Temporal Logic (LTL) formula. The
initial control problem of satisfying θ on the real system
can then be converted into finding a control strategy such
that the real system (which can be seen as a disturbed



version of the nominal one introduced above) follows this
satisfying plan ψ defined as a sequence in the partition
P . When we fail to synthesize a satisfying controller for
an abstraction of the real system (with respect to P ), we
adapt the problem with one of the following methods. The
abstraction refinement (in red in Figure 1) aims at creating
a more accurate abstraction by splitting elements of the
partition P into smaller elements. The plan revision (in
blue in Figure 1) reuses the nominal abstraction Sn to
synthesize an alternative plan ψ′ satisfying the formula θ.
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Fig. 1. General structure of the approach

To the knowledge of the authors, the proposed approach
combining abstraction refinement and plan revision has
not been explored yet. In addition, the plan revision ap-
proach introduced in this paper is significantly different
from the mentioned literature on specification revision and
relaxation in that we do not assume the main specification
to be unfeasible on the real system. On the contrary, we
aim at synthesizing a satisfying controller through a sec-
ondary control problem which can be iteratively revised. A
compositional approach of the abstraction refinement was
presented in Meyer and Dimarogonas (2017).

The structure of this paper follows the decomposition in
Figure 1: Section 2 formulates the problem and details the
specification conversion, Section 3 presents the abstraction
refinement and Section 4 introduces the plan revision. The
overall algorithm is given in Section 5. Section 6 provides
a numerical illustration of this approach.

2. PROBLEM FORMULATION

Let N, Z+, R and R+
0 be the sets of positive integers,

non-negative integers, reals and non-negative reals, respec-
tively. For a, b ∈ Rn, the interval [a, b] ⊆ Rn is defined
as [a, b] = {x ∈ Rn | a ≤ x ≤ b} using componentwise
inequalities. For a set S, |S| denotes its cardinality.

2.1 System description

We consider a nonlinear control system subject to distur-
bances described by

ẋ = f(x,w) + u, (1)

with state x ∈ X ⊆ Rn, bounded additive control input
u ∈ U ⊆ Rn and bounded disturbance input w ∈ W ⊆ Rq.
Φ(t, x, u,w) denotes the state (assumed to exist and be
unique) reached by (1) at time t ∈ R+

0 from initial state
x ∈ X , under the constant control input u ∈ U and the
piecewise continuous disturbance input w : R+

0 →W. The
reachable set of (1) at time t ∈ R+

0 , from a set of initial
states X ′ ⊆ X and for a subset of constant control inputs
U ′ ⊆ U is defined as

RS(t,X ′,U ′) =

{
Φ(t, x, u,w)

∣∣∣∣ x ∈ X ′, u ∈ U ′,w : [0, t]→W

}
. (2)

Throughout this paper, we assume that we are able to
compute over-approximations RS(t,X ′,U ′) of the reach-
able set defined in (2):

RS(t,X ′,U ′) ⊆ RS(t,X ′,U ′). (3)

Several methods exist for over-approximating reachable
sets for fairly large classes of linear (Kurzhanskiy and
Varaiya, 2007; Girard, 2005) and nonlinear systems (Reis-
sig et al., 2016; Coogan and Arcak, 2015).

For a sampling period τ ∈ R+
0 whose value is defined in

the next section, a sampled version of system (1) can be
described as a non-deterministic infinite transition system
Sτ = (Xτ , Uτ ,−→

τ
) where

• Xτ = X is the set of states,
• Uτ = U is the set of control inputs,

• x u−→
τ

x′ (equivalently written as x′ ∈ Postτ (x, u))

if there exists a disturbance w : [0, τ ] → W such
that x′ = Φ(τ, x, u,w), i.e. x′ can be reached from x
exactly in time τ by applying u on [0, τ ].

2.2 Specification conversion

In this section, we define the initial problem and detail
the specification conversion mentioned in Section 1 and
sketched in the purple rectangle of Figure 1. We first
assume that the state space X ⊆ Rn is an interval of Rn
and we consider a uniform partition P of X into smaller
identical intervals. To ensure that P is a partition, all
intervals (including X ) are assumed to be half-closed. In
what follows, the elements of P are called cells of the state
space. Next, we consider a control specification θ written
as a Linear Temporal Logic (LTL) formula over the set
of atomic propositions corresponding to the elements of
the partition P . The reader is referred to Baier et al.
(2008) for an introduction on the LTL framework. In
this paper, we focus on subclasses of LTL formulas which
can be satisfied by finite traces ψ = ψ(0)ψ(1) . . . ψ(r) ∈
P r+1 for some r ∈ N, e.g. if θ is a syntactically co-safe
formula (Kupferman and Vardi, 2001) or if it is defined
over finite traces (De Giacomo and Vardi, 2013). In what
follows, we denote as F(θ) the set of all finite plans in P
satisfying θ.

Problem 1. Find a controller C : X → U such that the
closed loop of the system Sτ (with xk+1 ∈ Postτ (xk, C(xk))
for all k ∈ Z+) satisfies the specification θ.

Although our initial objective is to synthesize a controller
such that the system Sτ satisfies the specification θ as in
Problem 1, we rely on solving this control problem on a
simplified model to define a secondary control problem for



Sτ consisting in following one of the satisfying finite plans
ψ ∈ F(θ) in P . We thus temporarily consider the single
integrator model in the same state space Rn:

ẋ = u, (4)

typically used for motion of fully-actuated kinematic
robotic agents (Mesbahi and Egerstedt, 2010) and such
that (1) can be seen as a disturbed version (by disturbance
w and state interactions) of the nominal system (4).

Let size(P, i) ∈ R+
0 be the width in the ith dimension of

Rn of any cell in the uniform partition P and denote as
ui ∈ R the ith component of u ∈ Rn. Then the time

τ = max
i∈{1,...,n}

min
u∈U,ui 6=0

size(P, i)

|ui|
(5)

corresponds to the minimal time such that steering any
continuous state of (4) between any two neighbor cells of
P (i.e. whose boundaries have a common facet) exactly in
time τ can be done with a constant control u satisfying
the constraints u ∈ U . Using τ as a sampling period,
we can then abstract the behavior of the nominal system
(4) by a deterministic transition system. Since throughout
this paper, the input used in a transition of this nominal
abstraction is irrelevant to the control synthesis on the
disturbed system (1), we rather consider the following non-
deterministic finite transition system Sn = (Xn,−→

n
, σ0)

defined without input:

• Xn = P is the set of states (cells of the partition P ),
• σ −→

n
σ′ ⇔ ∃u ∈ U | ∀x ∈ σ, x+ τu ∈ σ′,

• σ0 ∈ P is the initial cell.

A transition in Sn between two partition cells σ, σ′ ∈ P
thus exists when there exists a constant input u over the
time period [0, τ ] steering any continuous state x ∈ σ of
(4) to a state in cell σ′. The above definitions of τ and
Sn thus ensure that for any two neighbor cells σ and σ′ of
P , the transition σ −→

n
σ′ exists in Sn. Similarly to F(θ),

we define F(Sn) as the set of all finite runs that can be
generated by Sn, i.e. if ψ ∈ P r+1 ∩F(Sn), then ψ(0) = σ0

and ψ(k) −→
n

ψ(k + 1) for all k ∈ {0, . . . , r − 1}.

As described in Figure 1, this nominal abstraction Sn will
be used for both the initial problem conversion described
below and the plan revision method in Section 4. Both
these steps can be done using classical tools of model
checking (Baier et al., 2008) to find a finite plan ψ ∈ F(θ)∩
F(Sn) satisfying the specification θ on Sn. Problem 1 can
then be replaced by a new problem where the plan ψ is to
be followed by Sτ .

Problem 2. Find a plan ψ = ψ(0)ψ(1) . . . ψ(r) ∈ F(θ)
satisfying the specification θ and a controller C : X → U
such that the sampled system Sτ follows ψ, i.e. for any

trajectory x0 C(x0)−→
τ

x1 C(x1)−→
τ

. . .
C(xr−1)−→

τ
xr of the controlled

system, we have xk ∈ ψ(k) for all k ∈ {0, . . . , r}.

Since ψ is a satisfying plan for the nominal system (4),
Problem 2 can also be seen as the robustification of
the plan ψ with respect to the disturbances and state
interactions in (1).

Remark 3. Although Problem 2 is expressed on the
discrete-time system Sτ , considering the continuous-time

systems (1) and (4) is necessary to compute the minimal
sampling period τ in (5) such that a simple abstraction
Sn satisfying the initial specification θ can be created.
Arbitrarily larger sampling periods are also admissible.

Assumption 4. For any k, l ∈ {0, . . . , r} such that k 6= l,
we have ψ(k) 6= ψ(l).

For clarity of notation, we assume that no finite plan
ψ = ψ(0)ψ(1) . . . ψ(r) as considered in Problem 2 visits
the same cell twice, as provided by Assumption 4. This
is motivated by the fact that in the following Sections 4
and 5, we look for ψ among the shortest satisfying plans
in F(θ) ∩ F(Sn). The case when Assumption 4 is relaxed
can be covered by designing controllers depending on both
the current state of the system and the current position in
ψ in order to know which cell is to be targeted next.

3. ABSTRACTION REFINEMENT

This section details the principle of the abstraction refine-
ment component of Figure 1 (in the red rectangle). Firstly,
we discuss the necessity to introduce abstraction to solve
Problems 1 and 2. Then, two functions to be used in the
main algorithm in Section 5 are presented: ValidSet in
Algorithm 1 aims at computing a subset of a cell ψ(k) ∈ P
which can be driven towards the next cell ψ(k + 1) of a
plan ψ; Refine in Algorithm 2 details the procedure when
a cell ψ(j) ∈ P of the plan ψ is to be refined.

3.1 Abstraction

Since in most cases Problems 1 and 2 cannot be solved
directly on the infinite transition system Sτ , we rely on
creating an abstraction Sa of Sτ which can be described
as a finite transition system Sa = (Xa, Ua,−→

a
) where:

• Xa is a partition of the continuous state space X into
a finite set of intervals called symbols. In the abstrac-
tion refinement procedure, Xa is initially taken equal
to P and is then iteratively refined in Algorithm 2,
• Ua ⊆ U is a finite subset of the control set U ,

• a transition s
u−→
a
s′ exists if s′ ∩RS(τ, s, {u}) 6= ∅.

A transition s
u−→
a

s′ is equivalently written as s′ ∈
Posta(s, u). The set Posta(s, u) thus contains all symbols
in Xa which intersect the over-approximation of the reach-
able set of (1) at time τ from any initial state in the symbol
s ∈ Xa and with the constant control u ∈ Ua. The use
of these over-approximations (3) guarantees the existence
of a behavioral relationship between Sτ and Sa (defined
formally and proven in Section 5), which ensures that a
controller solving Problem 1 for Sa can be converted into
a controller solving Problem 1 for Sτ .

Instead of creating the whole abstraction Sa as defined
above followed by a controller synthesis (which may fail if
the chosen partition is too coarse), the abstraction refine-
ment proposed in this section is guided by the specification
and iteratively synthesizes a controller alongside the cre-
ation of the abstraction. If no satisfying controller is found,
an element of the initial coarse partition P is refined by
splitting it into smaller elements and the synthesis is tried
again. This approach thus aims at creating the abstraction



Sa from a refined partition Xa which is as coarse as
possible, but still fine enough to satisfy the specification.

3.2 Valid sets

We first introduce the function Pa : P → 2Xa such that

Pa(σ) = {s ∈ Xa | s ⊆ σ}
corresponds to the projection of a cell σ ∈ P onto a given
finer partition Xa. Next, we define the notion of valid sets.

Definition 5. Given a finite plan ψ = ψ(0) . . . ψ(r) as in
Problem 2, we define the function V : P → 2Xa such that
V (ψ(r)) = {ψ(r)} and for all k ∈ {0, . . . , r − 1}:
V (ψ(k)) = {s ∈ Pa(ψ(k)) | ∃u ∈ Ua such that

Posta(s, u) ⊆ V (ψ(k + 1))} .
The set V (ψ(k)) is called the valid set of cell ψ(k). A cell
σ ∈ P and a symbol s ∈ Xa such that s ∈ Pa(σ) are
said to be valid if V (σ) 6= ∅ and s ∈ V (σ), respectively.
Conversely, a symbol s ∈ Pa(σ) is invalid if s /∈ V (σ).

Since ψ(r) is the final cell of the plan ψ to be reached
in Problem 2, it is considered as valid and the function
V : P → 2Xa is initialized with V (ψ(r)) = {ψ(r)}. We
then proceed backwards on the plan ψ to iteratively define
the other valid sets V (ψ(k)) as the subset of symbols in
ψ(k) which can be driven towards the valid set V (ψ(k+1))
of the next cell for at least one control input in Ua.

The function ValidSet(ψ(k), V (ψ(k+ 1))) in Algorithm 1
first computes the valid set V (ψ(k)) with respect to a plan
ψ as in Definition 5. Then, the controller Ca : Xa → Ua
associates to each valid symbol s ∈ V (ψ(k)) the first
control value ensuring that s is valid, therefore reducing
the computational complexity by stopping the search
of such inputs as soon as one is found. An alternative
version of Algorithm 1 can be proposed by defining a
non-deterministic controller Ca : Xa → 2Ua containing all
satisfying inputs, thus allowing for a future optimization
on the choice of the control.

Data: P , Xa, Ua, Pa : P → 2Xa .
Input: Considered cell ψ(k) ∈ P .
Input: Targeted valid set V (ψ(k + 1)) ⊆ Pa(ψ(k + 1)).
V (ψ(k)) = {s ∈ Pa(ψ(k)) | ∃u ∈ Ua such that

Posta(s, u) ⊆ V (ψ(k + 1))}
forall s ∈ V (ψ(k)) do

Ca(s) taken in {u ∈ Ua | Posta(s, u) ⊆ V (ψ(k + 1))}
return {V (ψ(k)), Ca : Xa → Ua}
Algorithm 1: ValidSet(ψ(k), V (ψ(k + 1))). Computes
the valid set V (ψ(k)) and associated controller Ca at step
k ∈ {0, . . . , r − 1} of the plan ψ = ψ(0)ψ(1) . . . ψ(r).

3.3 Refinement

As stated in Section 3.1, the abstraction Sa is initialized
with respect to the initial coarse partition Xa = P .
We then iteratively compute the valid sets V (ψ(k)) from
k = r back to k = 0 as in Definition 5. If an empty
valid set V (ψ(k)) = ∅ is found for some step k (i.e. the
associated controller synthesis in Algorithm 1 fails), the
overall algorithm in Section 5 may choose to overcome
this problem through abstraction refinement by calling the

function Refine(ψ, j) in Algorithm 2 in order to refine one
of the previously visited cells ψ(j) with j ∈ {k, . . . , r− 1}.
The rule guiding the choice of j is detailed in Section 5.

This refinement is achieved in the following two steps.
Firstly, the cell ψ(j) is refined by splitting each of
its invalid symbols s into a set of subsymbols (∀s′ ∈
Split(s), s′ ⊆ s) and updating the partition Xa accord-
ingly. The definition of Split can be arbitrary, although
one should aim at obtaining subsymbols which remain
compatible with the over-approximation method chosen
in (3). Classical examples include: splitting the symbol s
along its longest dimension only; and uniformly splitting
s ⊆ Rn into 2n subsymbols (2 per dimension). The second
step consists in calling Algorithm 1 for all the cells of
ψ whose valid sets may be expanded as a result of this
refinement, i.e. from the refined cell ψ(j) back to the cell
ψ(k) (with k ≤ j) whose valid set was empty.

Data: P , Xa, Pa : P → 2Xa , V : P → 2Xa , V (ψ(k)) = ∅.
Input: Plan ψ = ψ(0) . . . ψ(r).
Input: Step j ∈ {k, . . . , r − 1} of the refinement.
forall s ∈ Pa(ψ(j))\V (ψ(j)) do

Xa = (Xa\{s}) ∪ Split(s)

for l from j to k do
{V (ψ(l)), Ca} = ValidSet (ψ(l), V (ψ(l + 1)))

return {Xa, V : P → 2Xa , Ca : Xa → Ua}
Algorithm 2: Refine(ψ, j). Refinement of the cell ψ(l)
and update of the affected valid sets.

Remark 6. From Definition 5, refining a cell ψ(j) has no
effect on the valid sets V (ψ(l)) for l > j and can only
expand the valid sets V (ψ(l)) for l ≤ j. We are thus
guaranteed that the previously obtained valid sets and
controllers are not lost after a call of Algorithm 2.

Note that Algorithm 2 only describes a single iteration
of refinement, to be called in the overall algorithm of
Section 5. A complete abstraction refinement algorithm
appears as a particular case of Algorithm 5 in Section 5.

4. PLAN REVISION

This section details the principle of the second adaptation
method featured in Figure 1 consisting in revising the
initial plan ψ considered in Problem 2. This plan revision is
achieved through an iterative deepening depth-first search
(function Revise in Algorithm 3) on the product automa-
ton capturing both the LTL formula θ from Problem 1 and
the nominal abstraction Sn from Section 2.2.

4.1 Büchi and product automata

We first define a Büchi automaton, where the considered
set of atomic propositions is the partition P .

Definition 7. A Büchi automaton A = (Q,P, δ, q0, F ) is
described by: a finite set of states Q, an input alphabet
P , a transition relation δ : Q × P → 2Q, an initial state
q0 ∈ Q and a set of accepting states F ⊆ Q. For an infinite
word σ0σ1σ2 . . . over P , the associated run q0q1q2 . . . of
A (such that qi+1 ∈ δ(qi, σi) for all i ∈ Z+) is said to be
accepting if it visits the accepting set F infinitely often.



Büchi automata are used as an alternative structure cap-
turing the set of words that satisfy an LTL formula (Baier
et al., 2008). Let Aθ denote the Büchi automaton asso-
ciated to the LTL formula θ in Problem 1. We can then
consider the product of the transition system Sn and Aθ.
Definition 8. The product of Sn = (P,−→

n
, σ0) and

Aθ = (Q,P, δ, q0, F ) is described by the automaton Π =
(QΠ, ∅, δΠ, q0

Π, FΠ) where: QΠ = P × Q; there is no input
set (as in Sn); δΠ : QΠ → 2QΠ and (σ′, q′) ∈ δΠ((σ, q)) if
σ −→

n
σ′ and q′ ∈ δ(q, σ); q0

Π = (σ0, q0); and FΠ = P × F .

Given a run ω = (σ0, q0)(σ1, q1) . . . of Π, we denote as
ω|Sn

= σ0σ1 . . . the projection of ω onto a run of Sn.
From Definition 8, an accepting run ω of Π can thus be
projected onto a run ω|Sn

of Sn satisfying the formula θ.
Due to our focus on LTL formulas defined over finite traces
or syntactically co-safe formulas as in Section 2.2, this run
is either finite or can be reduced to a finite prefix such
that any infinite run starting with this prefix also satisfies
θ (Kupferman and Vardi, 2001), i.e. ω|Sn ∈ F(θ) ∩ F(Sn)
with the notations introduced in Section 2.2.

4.2 Iterative Deepening Search

We are interested in a search of Π allowing to be repeatedly
called, each time returning a satisfying plan ψ ∈ F(θ) ∩
F(Sn) which was not previously returned. The first call of
this search corresponds to the initial specification conver-
sion as in the purple rectangle of Figure 1 and follow-up
calls are iterations of the plan revision (blue rectangle).

More precisely, a call of Revise(ψ, j) as in Algorithm 3
aims at finding an admissible revision of ψ up to ψ(j),
i.e. a new satisfying plan ψ′ ending with the sequence
ψ(j + 1) . . . ψ(r). Such a revision thus needs to satisfy the
following three conditions. Since the search is done on the
product automaton Π from its initial state q0

Π, the first
condition ψ′ ∈ F(θ) ∩ F(Sn) can be reduced to checking
whether the explored path in Π ends with an accepting
state. The second condition is ψ′ ∈ AdmRev(ψ, j) where

AdmRev(ψ, j) = {σ0 . . . σpψ(j + 1) . . . ψ(r) | σp 6= ψ(j)}
ensures that the end sequence ψ(j + 1) . . . ψ(r) is kept in
ψ′ while forcing the revision to start in ψ(j). Denoting as
UsedP lans ⊆ F(θ) ∩ F(Sn) the set of plans previously
considered and discarded in the main algorithm of Sec-
tion 5, the third condition preventing reusing these dis-
carded plans is combined with the above second condition
by considering ψ′ ∈ NewRev(ψ, j) where

NewRev(ψ, j) = AdmRev(ψ, j)\UsedP lans. (6)

Algorithm 3 implements the search algorithm on the prod-
uct automaton Π as an Iterative Deepening Depth-First
Search (Korf, 1985), consisting in calling a Limited-Depth
Depth-First Search (function LDDFS defined recursively in
Algorithm 4) with iteratively increasing depth limit until
a satisfying plan is found. Intuitively, the function Revise
initially searches for runs of Π of length 1 (search depth
limited to 0) generating admissible revisions as above. If no
such revision is found, this limited-depth search is repeated
with an allowed search depth increased by 1.

The Limited-Depth Depth-First Search is initialized in
Algorithm 3 to start from the initial state q0

Π of Π with

Data: Initial state q0
Π of Π.

Input: Current plan ψ = ψ(0) . . . ψ(r) ∈ F(θ) ∩ F(Sn).
Input: Revision step j ∈ {0, . . . , r}.
for depth from 0 to ∞ do

ψ′ = LDDFS(q0
Π, depth)

if ψ′ 6= ∅ then return {ψ′, depth− r + j};
Algorithm 3: Revise(ψ, j). Generates a possible revision
ψ′ of ψ keeping its end sequence from j + 1 up to r, and
provides the index of the cell in ψ′ replacing ψ(j).

a depth limit denoted as depth ∈ Z+. This search then
proceeds in Algorithm 4, where a successor q1

Π of q0
Π is

chosen and the function LDDFS is called again with the
new explored path q0

Πq
1
Π and an allowed depth reduced to

depth− 1. This recursive call is repeated until the allowed
depth reaches 0, where we check whether the explored path
in Π (thus containing depth + 1 elements) corresponds to
an admissible revision, i.e. if its last state is accepting in Π
and if its projection onto a plan of Sn (using the notation
·|Sn introduced in Section 4.1) belongs to NewRev(ψ, j) as
defined in (6). This plan is returned to Algorithm 3 if it is
an admissible revision. Otherwise, the search backtracks
and explores other paths of Π. Since this search has a
limited depth and is applied to the finite graph Π, it will
explore all paths of length depth+ 1 in Π in finite time if
no admissible revision is found. In such cases, an empty set
is returned to Algorithm 3 which will repeat the limited-
depth search with an increased depth limit.

Data: Π, Sn, ψ, j, NewRev(ψ, j) as in (6).
Input: Explored path q0

Π . . . q
l
Π in QΠ.

Input: Remaining allowed search depth: depth ∈ Z+.
if depth > 0 then

forall ql+1
Π ∈ δΠ(qlΠ) do

candidate = LDDFS(q0
Π . . . q

l
Πq

l+1
Π , depth− 1)

if candidate 6= ∅ then return candidate;

else if qlΠ ∈ FΠ and (q0
Π . . . q

l
Π)|Sn ∈ NewRev(ψ, j) then

return (q0
Π . . . q

l
Π)|Sn

return ∅
Algorithm 4: LDDFS(q0

Π . . . q
l
Π, depth). Recursive imple-

mentation of a limited-depth search.

Once Algorithm 3 receives a non-empty plan ψ′ from
Algorithm 4, it then returns this plan as well as the index
corresponding to the cell of ψ′ that replaces ψ(j). For
the specification conversion as in Figure 1, the initial
plan considered in Problem 2 is obtained from a first
call of Algorithm 3 denoted as Revise(∅, 0) (since no
previous plan is to be revised) and where the condition
ψ ∈ NewRev(∅, 0) in Algorithm 4 is always true.

5. OVERALL APPROACH

5.1 Algorithm

In this section we present an implementation of the whole
structure in Figure 1 that relies on the functions ValidSet,
Refine and Revise detailed in Algorithms 1 to 3. In
Algorithm 5, the refined partition Xa of the abstraction
Sa is initialized with the partition P , an initial plan
ψ = ψ(0) . . . ψ(r) is obtained from Algorithm 3 for the
specification conversion block of Figure 1, and the last



cell ψ(r) of the plan ψ is valid as in Definition 5. The
main loop then aims at computing the valid sets and
associated controllers as in Algorithm 1 for all cells ψ(k)
from k = r − 1 back to k = 0.

If a non-empty valid set V (ψ(k)) is obtained, the while
loop proceeds with step k−1. Otherwise (V (ψ(k)) = ∅ for
some k), Algorithm 5 needs to pick a method between the
abstraction refinement and the plan revision, as well as one
of the previously explored cells ψ(j) (with j ∈ {k, . . . , r})
where this method should be applied. This choice is made
by introducing two cost functions JAR, JPR : P → R+

associating the cost of applying either method to each cell
of the plan ψ respectively. These functions can be chosen
arbitrarily in order to prioritize one method over the other.
In Section 6, we provide an example where JAR and JPR
estimate the complexity of the future computations after
applying each of the respective methods.

We first compute the indices jAR and jPR corresponding
to the cells of ψ minimizing the costs JAR(ψ(jAR)) and
JPR(ψ(jPR)), respectively. If the abstraction refinement
offers the smallest cost (JAR(ψ(jAR)) < JPR(ψ(jPR))),
Algorithm 2 is called on cell ψ(jAR) and the next step
of the while loop proceeds without updating k, to check
if V (ψ(k)) is still empty. Otherwise, the plan revision is
applied on cell ψ(jPR), where we first reset the valid sets
for all cells that will be discarded by the revision, add
ψ to the set UsedP lans from Section 4.2 and then call
Algorithm 3 to obtain the new plan (overwriting ψ) and
the associated index k such that V (ψ(k)) is to be computed
next. The main loop is repeated until V (ψ(0)) 6= ∅ is found
for some plan ψ. Algorithm 5 then outputs the final plan
ψ, the refined partition Xa, the valid symbols (in Xa)
associated to each cell of ψ and the controller Ca.

Data: P , JAR : P → R+, JPR : P → R+.
Initialization: Xa = P , ψ(0) . . . ψ(r) = Revise(∅, 0)
Initialization: V (ψ(r)) = {ψ(r)}, k = r − 1
while k ≥ 0 do
{V (ψ(k)), Ca} = ValidSet (ψ(k), V (ψ(k + 1)))
if V (ψ(k)) 6= ∅ then k = k − 1;
else

jAR = arg min
j∈{k,...,r−1}

JAR(ψ(j))

jPR = arg min
j∈{k,...,r}

JPR(ψ(j))

if JAR(ψ(jAR)) < JPR(ψ(jPR)) then
{Xa, V, Ca} = Refine(ψ, jAR)

else
forall l ∈ {k, . . . , jPR} do V (ψ(l)) = ∅;
UsedP lans = UsedP lans ∪ {ψ}
{ψ, k} = Revise(ψ, jPR)

Output: {ψ, Xa, V : P → 2Xa , Ca : Xa → Ua}
Algorithm 5: Global algorithm.

Remark 9. The particular case where Algorithm 5 only
applies abstraction refinement (similarly to Meyer and
Dimarogonas (2017)) can be obtained by choosing JPR :
P → {+∞}. A case with only plan revision can similarly
be obtained, although it is unlikely to succeed in having
Sa (the abstraction of the disturbed system Sτ ) follow
the same plan as obtained on the nominal abstraction Sn
without relying on abstraction refinement.

5.2 Solution to Problem 1

To control the sampled system Sτ with the controller Ca
obtained in Algorithm 5, the systems Sτ = (Xτ , Uτ ,−→

τ
)

and Sa = (Xa, Ua,−→
a

), defined in Sections 2.1 and 3

respectively, must satisfy a feedback refinement relation
as defined below, adapted from Reissig et al. (2016).

Definition 10. A map H : Xτ → Xa is a feedback
refinement relation from Sτ to Sa if: ∀x ∈ Xτ , s = H(x),
∀u ∈ Ua ⊆ Uτ ,∀x′ ∈ Postτ (x, u), H(x′) ∈ Posta(s, u).

Such a relation implies that for any pair (x, s) of matching
state and symbol and any control u of the abstraction
Sa, the behaviors of the original system Sτ with the
same control u can be matched by behaviors of Sa. As
a consequence, if a controller is synthesized so that Sa
satisfies some specification, then this controller ensures
that Sτ satisfies the same specification. By proving that
such a relation can be found, we obtain the following
result.

Theorem 11. Let H : Xτ → Xa such that H(x) = s ⇔
x ∈ s. Then the controller C : Xτ → Uτ defined by
C(x) = Ca(H(x)) for all x ∈ Xτ solves Problem 1.

Proof. We first prove that the map H is a feedback
refinement relation from Sτ to Sa. Let x ∈ Xτ , s = H(x) ∈
Xa, u ∈ Ua ⊆ Uτ , x′ ∈ Postτ (x, u) and s′ = H(x′). By
definition of the reachable set of system (1) in (2) and its
over-approximation in (3), we have x′ ∈ RS(τ, s, {u}) ⊆
RS(τ, s, {u}). Since we also have x′ ∈ s′, then, s′ ∩
RS(τ, s, {u}) 6= ∅ which implies that s′ ∈ Posta(s, u) as in
the definition of Sa in Section 3. It is therefore sufficient to
prove that the controller Ca : Xa → Ua solves Problem 1
for the abstraction Sa.

Consider the outputs ψ = ψ(0) . . . ψ(r), Xa, V and Ca
from Algorithm 5. Let s0 ∈ V (ψ(0)) be an initial symbol
of Sa and consider any finite trajectory (s0, . . . , sr) of Sa
controlled by Ca (i.e. with sk+1 ∈ Posta(sk, Ca(sk))).
Then, by definition of Ca and V (ψ(k)) in Algorithm 1,
we have Posta(sk, Ca(sk)) ⊆ V (ψ(k+1)) and thus sk+1 ⊆
ψ(k+1) for all k ∈ {0, . . . , r−1}. Therefore, ψ and Ca from
Algorithm 5 solve Problem 2 for the abstraction Sa defined
on the refined partition Xa. Since the plan ψ ∈ F(θ)
obtained in Algorithm 3 is a satisfying trace of the LTL
formula θ, Ca thus also solves Problem 1 for Sa. From the
above feedback refinement, this implies that C = Ca(H(·))
solve Problem 1 for the sampled system Sτ with an initial
state x0 ∈ {x ∈ Xτ | H(x) ∈ V (ψ(0))}. 2

Therefore, if Algorithm 5 terminates in finite time, the
controller C in Theorem 11 ensures that the sampled
system Sτ follows a finite plan ψ satisfying the main
specification θ if it starts in the valid set V (ψ(0)). On
the other hand, guarantees for the converse implication
(if θ can be satisfied on Sτ , then Algorithm 5 will find in
finite time a controller C solving Problem 1) cannot be
provided in general due to the use of over-approximations
in the definition of the abstraction Sa.

6. NUMERICAL ILLUSTRATION

The use of intervals as the elements of the state partition
(required by the extraction of a plan ψ satisfying the main



specification θ in Section 2.2) particularly suits the com-
putation of over-approximations of the reachable set using
the monotonicity property. The reader is referred to Angeli
and Sontag (2003) for a description of monotone control
systems and to e.g. Meyer (2015) for their use to over-
approximate the reachable set and create abstractions. For
visualization purposes, we consider a 2D system described
by the nonlinear monotone dynamics:

ẋ =

(
−1 0.3
0.3 −1

)
x− 0.01x3 + u, (7)

with state x ∈ R2, bounded control input u ∈ [−5, 5]2 and
componentwise cubic power x3.

The considered state space X = [−9, 9]2 is partitioned
into 3 elements per dimension, thus resulting in a par-
tition P of 9 cells. The control interval U = [−5, 5]2 is
discretized uniformly into 5 values per dimension: Ua =
{−5,−2.5, 0, 2.5, 5}2. Following the guidelines in (5), we
take the sampling period τ = 6/5 = 1.2. Below, the cells
of the partition P are denoted as σx,y with x, y ∈ {1, 2, 3}
such that for example, σ1,3 represents the top-left cell
in Figure 2. The nominal abstraction Sn is created such
that each cell of P has a transition towards its immediate
neighbors (but not in diagonal), and the initial cell is σ1,1.

The main control specification is taken as the syntactically
co-safe LTL formula θ = 3σ1,3, meaning that we want to
eventually reach the top-left cell of P . The corresponding
Büchi automaton Aθ and the product Π of Sn and Aθ are
computed with the software P-MAS-TG described in Guo
and Dimarogonas (2015). The remaining implementation
of Algorithm 5 is done on Matlab.

The cost functions JAR, JPR : P → R+ are defined as an
estimate of the complexity of the future computations after
applying either abstraction refinement or plan revision on
a cell of P . This complexity is measured in the number of
symbols s ∈ Xa (elements of the refined partition) whose
set of successors Posta(s, u) needs to be computed for
some u ∈ Ua. Assuming that we are in Algorithm 5 with
V (ψ(k)) = ∅ for some plan ψ, then a call Refine(ψ, j) for
j ∈ {k, . . . , r − 1} is associated with the cost

JAR(ψ(j)) = 2n ∗ |Pa(ψ(j))\V (ψ(j))| (8)

+

j−1∑
l=k

|Pa(ψ(l))\V (ψ(l))|+ (k + 1) ∗ (2n)2,

where the first term is the number of subsymbols obtained
after splitting the invalid symbols of ψ(j) (assuming that
the function Split(s) returns 2n = 4 subsymbols of s), the
second term is all the invalid symbols of ψ(j − 1) back to
ψ(k) to be updated as in Algorithm 2 and the last term is
a forecast that all invalid cells ψ(0) to ψ(k) that remains
to be explored will be refined twice (assuming no plan
revision is called in the future). The cost associated to
calling Revise(ψ, j) is defined similarly to the third term
of (8):

JPR(ψ(j)) = (|Revise(ψ, j)|−|ψ|+j+1)∗(2n)2/0.6, (9)

where the number of cells that remains to be explored now
depends on the size difference between the current plan
ψ and the candidate revision obtained in Revise(ψ, j).
The weight 1/0.6 is added in (9) to prioritize the use of
abstraction refinement over plan revision.

Figure 2 provides 3 snapshots of the refined partition Xa

and the valid symbols (filled in red) during the execution of
Algorithm 5. The initialization with Revise(∅, 0) provides
a first plan ψ = σ1,1σ1,2σ1,3 and the whole cell σ1,3 (top-
left in Figure 2a) is a valid symbol since it has no successor
in ψ. Algorithm 5 then proceeds to compute the valid set of
ψ(1) = σ1,2 which is found to be empty until 3 successive
calls of Refine(ψ, 1), where V (σ1,2) contains 6 elements.
Then, ψ(0) = σ1,1 is considered and its valid set remains
empty despite 3 calls of Refine(ψ, 0). At this point,
displayed in Figure 2a, Algorithm 5 considers it less costly
to revise the plan ψ rather than refining a fourth time
σ1,1 or σ1,2. The function Revise(ψ, 0) is thus called to
change the beginning sequence of ψ while keeping the end
σ1,2σ1,3 (displayed in Figure 2b). This results in a revision
ψ′ = σ1,1σ2,1σ2,2σ1,2σ1,3. Algorithm 5 then proceeds on
ψ′(2) = σ2,2 whose valid set contains one symbol after
two calls of Refine(ψ′, 2), then on ψ′(1) = σ2,1 where
|V (ψ′(1))| = 5 after two calls of Refine(ψ′, 1) and finally
on ψ′(0) = σ1,1 where |V (ψ′(0))| = 1 after one call of
Refine(ψ′, 0). Since V (ψ′(0)) 6= ∅, the algorithm stops
(after 25.8 seconds on a laptop with a 2.6 GHz CPU and
8 GB of RAM) and the final partition and valid symbols
are displayed in Figure 2c.

7. CONCLUSION

In this paper, we presented a novel framework combining
abstraction refinement and plan revision for control syn-
thesis problems under temporal logic specifications. The
control problem is first solved on a simpler nominal model
in order to obtain a satisfying plan to be followed by the
real system. We then try to synthesize a controller for an
abstraction of the real system to follow this plan. When
this synthesis fails, some cost functions guide us towards
either refining the initially coarse partition to obtain a finer
abstraction, or looking for an alternative plan using the
nominal model as above. This tentative synthesis is then
repeated until we find a plan and an abstraction of the real
system able to follow this plan. The controller obtained on
this abstraction can then be used to define a controller for
the real system to satisfy the initial specification.

While this paper mainly focuses on providing the general
framework combining abstraction refinement with plan
revision, current efforts aim at optimizing the obtained
results based on the definition of the cost functions.
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