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Abstract—Wireless sensor networks (WSNs) consist of energy
limited sensor nodes, which limits the network lifetime. Such a
lifetime can be prolonged by employing the emerging technology
of wireless energy transfer (WET). In WET systems, the sensor
nodes can harvest wireless energy from wireless charger, which
can use energy beamforming to improve the efficiency. In
this paper, a scenario where dedicated wireless chargers with
multiple antennas use energy beamforming to charge sensor
nodes is considered. The energy beamforming is coupled with the
energy consumption of sensor nodes in terms of data routing,
which is one novelty of the paper. The energy beamforming
and the data routing are jointly optimized by a non-convex
optimization problem. This problem is transformed into a semi-
definite optimization problem, for which strong duality is proved,
and thus the optimal solution exists. It is shown that the optimal
solution of the semi-definite programming problem allows to
derive the optimal solution of the original problem. The analytical
and numerical results show that optimal energy beamforming
gives two times better monitoring performance than that of WET
without using energy beamforming.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been widely used to
monitor various fields of interest. In most of these applications,
such as structural health monitoring, pollution detection in
water grids, and smart agriculture [1], we desire that the
WSNs will function for a long time. However, the sensor nodes
are typically powered by batteries, which severely limits the
lifetime of WSNs.

Recently, energy harvesting paradigm has emerged as an
attractive framework to prolong lifetime of WSNs [2], [3].
The environmental energy such as vibrations, solar radiation,
and wind, can be harvested and stored at the rechargeable
batteries of the sensor nodes to continuously supply energy to
the nodes. Using this approach, it is possible to make a WSN
immortal if the average energy consumption of every node is
smaller or equal to its average harvested energy. However, the
major drawback of relying on such ambient energy sources is
that the power available is intermittent [4].

An attractive alternative is to use dedicated wireless
charging where wireless energy transmitter are capable to
transfer power to sensor nodes wirelessly. The result is that the
charging of the nodes can be controlled by the system designer.
In this paper, we consider such a system and investigate
the optimal wireless energy transfer strategies and routing
protocols when multiple energy transmitters equipped with
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Fig. 1: A wireless sensor network with dedicated wireless
energy chargers (base stations)

dedicated wireless energy transfer interfaces serve sensor
nodes [5], as shown in Fig. 1. This system can be used
in various applications such as pipeline monitoring, smart
agriculture, and smart warehouse. To efficiently supply energy
to the sensor nodes in longer distances, the transmitters use
energy beamforming [6] to provide efficient energy beams. On
the WSN side, the nodes make measurements and transmit the
data to the sink via multi-hop. The monitoring performance
is evaluated by the amount of measurements transmitted by
the sensor nodes. To improve the monitoring performance of
the whole WSN and to keep the WSN immortal, we jointly
determine the beamforming vectors, the sampling rate and also
the routing of the nodes, such that the sampled data can reach
the sink in the most energy efficient way. To summarize, the
contributions of this paper are as follows:
• We jointly consider the energy beamforming at the

wireless chargers side and the data routing in the
WSN side to maximize the monitoring performance and
guarantee the immortality of the WSN, which, to the best
of our knowledge, has not been studied before. This set-
up leads to a non-convex optimization formulation.

• We transform the original optimization problem above
into to a semi-definite programming (SDP) problem, and
show the strong duality of the SDP problem, which allows
us to find the optimal solution for the SDP problem.

• We propose an algorithm to convert the optimal solution
of the SDP problem to the solution of the original
problem, and prove the optimality of solutions obtained
with this procedure.

• We propose a low-complexity scheme where time-sharing
between predetermined beamforming vectors is adopted.

• We numerically illustrate that the monitoring performance



of a WSN with optimal energy beamforming is
significantly better than the performance of the WSN
without energy beamforming. These results also illustrate
the close-to-optimal performance of the time-sharing
predetermined beamforming scheme.

The rest of the paper is organized as follows. In Section II,
we summarize the prior work on wireless energy beamforming
and data routing. The joint energy beamforming and data
routing problem is formulated in Section III. We propose the
solution method for the optimization problem in Section IV,
followed by the simulations in Section V. We conclude the
paper and discuss the future works in Section VI.

Notation: For a vector x or a matrixX , (·)T is the transpose
of the vector or matrix, and (·)H is the conjugate transpose of
the vector or matrix. tr[X] is the trace of square matrix X .
For a Hermitian matrix X , the notation X � 0 means that X
is positive semi-definite, and Re(X), Im(X) is the real and
imaginary part of X . Given a vector x, the diagonalization
diag[x] constructs a matrix whose diagonal elements are
x1, . . . , xn.

II. RELATED WORK

Network utility maximization problems under energy
harvesting from ambient energy sources have been investigated
in a number of works [7], [8]. Reference [7] have considered
the problem of scheduling the sensing time of nodes to
optimize the total sensing utility of the WSN. Michelusi
et. al. [8] have considered maximizing the long term data
utility at the fusion center by scheduling the data transmission
and discarding process based on the information of energy
level and the energy harvesting process. Since the arrival of
energy is intermittent and opportunistic in the case of energy
harvesting from ambient sources [4], the performance of the
WSN may be compromised in these systems. On the other
hand, the WET framework allows us to have a better control
on the charging process [4], [9]. In a WET system, a sensor
node can store the energy received from electro-magnetic
waves using rectifying antenna circuitry. Compared to energy
harvesting from natural sources, such as solar radiation or
vibrations, in WET framework it is possible to control the
energy that will harvested by the sensor nodes by optimizing
the transmission strategies of energy transmitters.

In this context, a throughput maximization problem over the
energy allocation and WET time has been considered in [10].
The problem on joint design of energy beamforming vectors,
energy allocation and the scheduling on WET durations to
maximize the minimum throughput among different devices
has been considered in [6]. For sensor networks, Liu et.
al. [11] have considered maximizing the throughput of the
wireless powered sensor network by controlling the energy
transmission duration. They formulated a convex optimization
and provided a closed form solution. In [12], the authors
assumed that the base station forms a sharp energy beam to
charge a sensor node in a timeslot, and studied the scheduling
of the energy beams such that the WSN lifetime is maximized.
Besides, Xie et. al. [13], [14] have considered a path planning

problem for the charging vehicle to charge nodes, such that
the WSN is immortal.

We note that the major energy consumption in WSN is due
to data transmission. To maximize the network lifetime, one
approach is to find a proper routing [15] for the sensor nodes.
The energy consumption has been modelled as a function
of the traffic flow routing in the seminal work [15], which
provides us basic energy consumption model in this paper.
Such model can well couple with the sampling rate of the
sensor nodes, which is related to the monitoring performance
of the WSN, as considered in [16].

Although optimal routing in WSN networks is a
fundamental concern, only a limited number of works
considered the routing problem together with the energy
harvesting problem. When the sensor nodes can harvest energy
from ambient environment, Sunny et. al. [17] have considered
finding the routing and sensing for a WSN with energy
harvesting capability to maximize the quality of monitoring.
They formulated the problem as a resource allocation problem
and provided a near optimal solution algorithm. Different
from their work, we consider the case where dedicated
energy transmitters are charging the WSN. Thus, besides
the routing of the WSN, we also need to optimize over
the wireless energy transmission part, more specifically, we
need to design the energy beamforming vectors and their
time durations. Different from some works on WET where
energy is broadcasted [11], [18] with a fixed power, the energy
transmitter we consider form sharp beams to improve the
received energy at the sensor nodes, which however makes
the optimization problem more challenging. To the best of
our knowledge, this is the first paper that jointly considers the
energy beamforming and the data routing problem.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a routing and energy beamforming problem
for a wirelessly powered wireless sensor network. Specifically,
a wireless sensor network (WSN) that consists of multiple
sensor nodes is deployed to monitor a field of interest, and
multiple wireless chargers, which can be base stations, form
energy beams to charge to the nodes, as shown in Fig. 1.
Each node vi makes the measurement with sampling rate wi.
Then, it transmits the data to the sink in a multi-hop way. To
allow the entire WSN to be immortal, each node is powered
by a rechargeable battery, where the energy comes from the
energy beams from multiple wireless chargers. Such a network
structure can be applied to multiple applications, such as smart
agriculture, smart pipeline monitoring, smart warehouse.

We assume that there are N sensor nodes including the sink
in the WSN. We denote qij the data flow from vi to vj , and
eOij the energy cost of sending a data unit. Then, the energy
consumption of a node vi is given by

EU
i =

∑
k∈Sout

i

eOikqik , (1)



where Souti is the set of succeeding neighbor nodes of vi1. We
define S ini as the set of preceding neighbor nodes of vi.

We let nET be the number of wireless chargers. Each
charger has M � N antennas, such that energy beams can be
formed at each charger to improve the energy harvested at the
sensor nodes. Note that the energy beam of a charger can be
time-varying, i.e., a charger l can form energy beam vectors
ul,1,ul,2, . . . ,ul,j , . . ., and for any beam vector ul,j ∈ CM .
We assume here that the number of the beam vectors is larger
or equal to M . We denote tl,j the average time the charger
transmits beam ul,j . Let the channel from charger l to node
i be gl,i ∈ CM×1. Then, similar to [6], the average energy
received by node i is expressed as

ER
i =

nET∑
l=1

∑
j

ηtl,jEg[g
H
l,iul,ju

H
l,jgl,i] , (2)

where the expectation is over the channels gl,i, η is the energy
conversion efficiency, and the receiver noise is ignored, since
it is negligible for energy receivers [6].

We assume that the battery buffers of the sensor nodes are
large enough, such that the WSN is immortal if ER

i ≥ EU
i ,∀i.

Thus, the sampling rate and the routing of the nodes are
constrained by the total energy it receives. For the WSN, we
want to have the sampled data as much as possible, but not to
have some sensors sampling with very low rate (balancing
issue). Thus, we denote F (w) =

∑N
i=1 log(1 + wi) the

monitoring performance of the WSN2, which is assumed to
be a concave function of w = [w1, w2, . . . , wN ]T . We stack
qijs to become a column vector q ∈ RL, where L is the
number of candidate data routing links of the whole WSN.
Then, the considered problem can be formulated as:

max
w,q,u,t

F (w) (3a)

s.t. wi +
∑

j∈Sin
i

qji −
∑

k∈Sout
i

qik = 0, ∀i (3b)

EU
i ≤ ER

i , ∀i (3c)∑
j

tl,ju
H
l,jul,j ≤ Pl,∀l (3d)

nET∑
l=1

∑
j

tl,ju
H
l,jul,j ≤ P , (3e)∑

j

tl,j = 1, ∀l , (3f)

w, q, t ≥ 0 , (3g)

where w, q, t are all non-negative, Constraint (3b) represents
the conservation of the data flow, Constraint (3c) ensures
the immortality of the WSN, Constraint (3d) provides the
power constraint for each charger, Constraint (3e) is the

1Notice that here we omit the energy cost on sensing and receiving data,
since they are much smaller than the energy cost on transmitting data.
However, it can be shown that, when the sensing and receiving energy is
also considered, the proposed algorithm still applies.

2Alternatively, we can let the objective function be F (w) =
∑

i αiwi,
which means the weighted number of sampling rate of the nodes.

TABLE I: Major notations used in the paper
symbols meanings

Sin and Sout set of preceding and succeeding neighbor nodes of vi
A candidate routing tables of the sensor nodes
B energy consumption matrix of the nodes

EU
i and ER

i energy consumption and received energy of vi
F (w) monitoring performance function on w

Ii
a matrix with 1 only at the i-th element of
its diagonal and with 0 for the others

Kl,i Eg [gl,ig
H
l,i]

L number of candidate links
M number of antennas of each wireless charger
N number of sensor nodes

P and Pl
the constraint of the total transmitted power of
all the chargers and charger l

U l
∑

j tl,jul,ju
H
l,j

W diag(w + 1)

eOij energy cost of sending one data unit from vi to vj
gl,i channel from charger l to node i
nET number of wireless chargers
qij data flow from vi to vj
tl,j average time the charger l transmit beam ul,j

ul,j the j-th energy beam vector of charger l
vi sensor node i
wi sampling rate of vi
η energy conversion efficiency

total power constraint from the safety consideration, and
Constraint (3f) means that, for each charger l, the summation
of the percentage of time to form energy beam ul,j is 1. We
note that the problem is non-convex due to the non-convex
quadratic constraints (3c) even if tl,j were fixed. However,
we propose an algorithm to find the optimal solution for the
problem, as shown in the next section.

For a better readability, we provide the major notations of
the paper in Table I.

IV. SOLUTION APPROACH

In this section, we will propose a solution method for
Problem (3), and then analyze a special case of the problem.

A. Algorithm based on SDP

The idea of the solution algorithm is to first transform the
original problem to a convex optimization problem, whose
optimal solution can be found efficiently. Then, we will show
that the optimal solution of the convex problem is also the
optimal solution for the original problem.

For simplicity, we construct a matrix A = {aij} ∈ RN×L

that corresponds to the candidate routing table of the nodes,
where ai,j = 1 if there is a link from vj to vi; ai,j = −1 if
there is a link from vi to vj ; otherwise, ai,j = 0. Then, we
can re-write Constraint (3b) as w+Aq = 0, where q ∈ RL×1

is the vector of flow. Similarly, we use Bi = {bi,j} ∈ R1×L

to represent the energy consumption for each communication
pair that starts with node vi, i.e., bi,j = eOi,j if there is a
candidate link from vi to vj . Then, EU

i can be written as Biq.
By stacking up the row vectors Bi, we construct the energy



consumption matrix of the nodes, denoted by B ∈ RN×L.
Then, we can re-write Constraint (3c) as follows:

Biq ≤
nET∑
l=1

∑
j

ηtl,jEg[g
H
l,iul,ju

H
l,jgl,i]

=

nET∑
l=1

∑
j

ηtl,j tr[Kl,iul,ju
H
l,j ]

= η

nET∑
l=1

tr[Kl,i

∑
j

tl,jul,ju
H
l,j ] ,

where Kl,i = Eg[gl,ig
H
l,i] and it is a Hermitian positive semi-

definite matrix. Similarly, Constraint (3d) and Constraint (3e)
can be re-written similarly as tr

[∑
j tl,jul,ju

H
l,j

]
≤ P,∀l and∑nET

l=1 tr
[∑

j tl,jul,ju
H
l,j

]
≤ P .

Now, if we substitute
∑

j tl,jul,ju
H
l,j by a Hermitian

positive semi-definite matrix U l, the original Problem (3) can
be re-written as follows:

max
w,q,u,t

F (w) (4a)

s.t. w +Aq = 0, (4b)

Biq ≤ η
nET∑
l=1

tr[Kl,iU l], ∀i (4c)

tr[U l] ≤ Pl, ∀l (4d)
nET∑
l=1

tr[U l] ≤ P , (4e)

U l =
∑
j

tjul,ju
H
l,j , ∀l , (4f)∑

j

tj = 1 , (4g)

U l � 0, ∀l , (4h)
w ≥ 0, q ≥ 0, t ≥ 0, (4i)

Notice that if we relax Constraints (4f) - (4g), Problem (4)
turns to be the following one:

min
w,q,U l

−
∑
i

log(1 + wi) (5a)

s.t. (4b), (4c), (4d), (4e), (4h), (4i) ,

which is convex as described by the following proposition:
Proposition 1: Problem (5) is equivalent to a convex

semidefinite programming problem with a log determinant
term in objective function.

Proof: Let W = diag(w + 1), Q = diag(q). Since
w ≥ 0, we have that W � 0. Then, the objective function of
Problem (5) can be written as F (W ) = log det(W ).

Constraint (4b) is equivalent to tr[IiW ]+tr[diag(Ai)Q] =
1, where Ai is the i-th row of A, Ii is a matrix with 1 only
at the i-th element of its diagnose, and with 0 for the other

elements. Constraints (4c) are equivalent to tr[diag(Bi)Q]−∑nET

l=1 tr[Kl,iU l] ≤ 03.
To summarize, Problem (5) is equivalent to the following

form:

min
W ,Q,U l

− F (W ) = − log det(W ) (6a)

s.t. tr[IiW ] + tr[diag(Ai)Q] = 1 , ∀i (6b)

tr[diag(Bi)Q]− η
∑
l

tr[Kl,iU l] ≤ 0 , ∀i (6c)

tr[U l] ≤ Pl , ∀l (6d)
nET∑
l=1

tr[U l] ≤ P , (6e)

W � 0,Q � 0,U l � 0 (6f)

Since the objective function is convex (on SN++), and the
feasible region is convex, we have that Problem (5) is convex,
and we can consider it as a SDP problem whose objective
function has a log determinant term.

Since Problem (6) is a SDP problem, we can solve it
by efficient numerical methods, such as interior-point point
methods. Thus, the idea here is to first find the optimal solution
for Problem (5), denoted byw∗relax, q

∗
relax,U

∗
relax. Then, based

on U∗relax, we find u, t that satisfy Constraints (4f) - (4g)
in the second step. If there exists u∗relax, t

∗ that satisfies the
constraints, then w∗relax, q

∗
relax,u

∗
relax, t

∗ is also the optimal
solution for Problem (4).

Next, we need to show the strong duality of the problem,
such that the duality gap is 0 and we can achieve the
optimal solution for Problem (6) with any sufficiently small
error ε > 0 in time O((L + N + nETM)4.5 log(1/ε)) [19].
Note that the strong duality in linear programming and in
convex SDP problems are different, where for the latter both
primal problem and the dual problem must have a non-empty
interior [20]. We first write the dual problem of Problem (6)
as follows:

max
Z�0,y

bTy + log det(Z) (7a)

s.t.
∑
i

y1iIi +Z = 0 , (7b)∑
i

y1iaij +
∑
i

y2ibij ≤ 0 , ∀j (7c)

η

N∑
i=1

y2iKl,i − (y3l + y4)I � 0 , ∀l (7d)

y2i ≤ 0, y3l ≤ 0, y4 ≤ 0,∀i, l (7e)

where y1i corresponds to Constraint (6b), y2i corresponds
to Constraint (6c), y3l corresponds to Constraint (6d), y4
corresponds to Constraint (6e).

3Here, for any complex positive semi-definite matrix X , we can convert it
to a real positive semi-definite matrix by

X′ =

[
Re(X) −Im(X)
Im(X) Re(X)

]
.



Then, we have the following proposition:
Proposition 2: Consider Problem (6) and its dual (7), where

A,B are constructed according to the topology of a connected
WSN4, P > 0, Pl > 0. Strong duality holds, i.e., for both of
the problems there exist strictly feasible solutions.5

Proof: The proof consists of checking the existence of the
strictly feasible solutions for each problem. Since the WSN is
connected, the elements in Bi are bounded and positive.

For Problem (6), we can set U l = (min{1, P/
∑
Pl} −

ε)PlI . As Kl,i is positive semi-definite, and Kl,i 6= 0,
we have tr[Kl,i] > 0. Thus, it is straightforward that
we can find a small enough routing decision Q, such that
0 < tr[diag(Bi)Q] < η

∑
l(min{1, P/

∑
Pl} − ε) tr[Kl,i].

It means that there exists strictly feasible solutions for
Problem (6).

For Problem (7), Constraints (7b) requires that y1i < 0,∀i.
We can set y1i = −ε1 < 0,∀i, where ε1 > 0. Since
A corresponds to the candidate routing table, each column
of which has at most one 1 and one −1, Then, we have
that

∑
i y1iaij ≤ ε1. Since B corresponds to the energy

consumption for each candidate link, we have that bij ≥ 0, and∑
i bij > 0. Thus, we can set y2i = −ε1/minj

∑
k bkj−ε2,∀i,

where ε2 > 0, such that
∑

i y2ibij ≤ −ε1 and Constraint (7c)
strictly holds. For Constraint (7d), it is also possible to
find small enough y3l, y4, such that y3l + y4 is smaller
than the smallest eigenvalue of η

∑N
i=1 y2iKl,i,∀l, which

makes Constraints (7d) strictly hold. Thus, there exists strictly
feasible solution for Problem (7).

Thus, we have that for Problem (6) and its dual Problem (7),
there exists strictly feasible solution, which completes the
proof.

From this proposition, we can achieve a solution with
a sufficient small error ε > 0 to the optimal solution
of Problem (6) in time log(1/ε) [19]. We consider this
approximate solution to be global optimal since the error can
be sufficient small. Next, we are going to find the optimal
solution of Problem (4) based on the optimal solution of
Problem (6), which are denoted by (w∗relax, q

∗
relax,U

∗
relax).

Recalling that U l,∀l is positive semi-definite, we have
that all the eigenvalues of U∗l,relax are non-negative. Thus,
we can let tl,j = λl,j/

∑
i λl,i and ul,j =

√∑
i λl,idl,j

to be the solution, where λl,j , dl,j are the eigen value
and corresponding eigen vector of U∗l,relax. Therefore, we
have that the time-splitting beamforming problem can be
solved by turning the problem into a convex optimization
problem, then making the spectrum decomposition, and re-
scaling the results. The algorithm to find the optimal solution
for Problem (3) is summarized in Algorithm 1. We have the
following proposition of Algorithm 1:

Proposition 3: Consider a feasible optimization
Problem (4), where Kl,i is positive semi-definite. We

4It means that, for each column of A, there exists at most one 1 and one
−1, whereas the other elements are 0. For B, all its elements are non-negative.

5It is also sufficient to show that the proposition holds for the case where
F (w) =

∑
αiwi.

have that Algorithm 1 achieves a global optimal solution for
Problem (4).

Proof: Denote wrelax, qrelax, urelax, trelax the output of
Algorithm (1). First we prove that wrelax, qrelax, urelax, trelax
is feasible for Problem (4) as follows.

According to Proposition 1, Problem (5) is a convex
problem. Thus, the optimal solution for Problem (5),
(w∗relax, q

∗
relaxU

∗
relax), is achievable. Thus, we have that

Biq
∗
relax ≤ η

∑
l tr[Kl,iU

∗
l,relax], tr[U∗l,relax] ≤ Pl, and∑

l tr[U
∗
l,relax] ≤ P . As ul,j,relax =

√∑
i λl,idl,j , tl,j,relax =

λl,j/
∑

i λl,i, where λl,i and dl,i are the eigenvalue and
corresponding eigen vector of U∗l,relax, we have that

Pl ≥ tr[U∗l,relax] =
∑
i

λl,id
H
l,idl,i

=
∑
i

tl,i,relaxu
H
l,i,relaxul,i,relax ,

where the first equality holds due to that U∗relax is
positive semi-definite, which is diagonalizable. Therefore,
tl,i,relax,ul,i,relax satisfies Constraints (4d), (4f) and (4g).
Similarly, we have that

P ≥
nET∑
l=1

tr[U∗l,relax] =

nET∑
l=1

∑
i

tl,i,relaxu
H
l,i,relaxul,i,relax ,

(8)

and

Bix
∗
relax ≤ η tr[Kl,iU

∗
l,relax]

= η tr[Kl,i

∑
i

tl,i,relaxul,j,relaxu
H
l,i,relax] ,

which means that (w∗relax, q
∗
relaxtrelax,urelax) satisfies

Constraints (4c) and (4e).
Furthermore, since U∗l,relax is positive semi-definite,

its eigenvalue λl,i is nonnegative and real for all i,
which means that tl,i is nonnegative and real for all
i. Thus, trelax satisfies Constraint (4g) and t ≥ 0.
Therefore, (wrelax, qrelax, trelax,urelax) is a feasible solution
of Problem (4).

For the optimality, it is easy to show that, suppose
there exists a feasible solution (wo, qo, to,uo), such that
F (w0) > F (wrelax), then we can construct U l,o =∑

i tl,iul,iou
H
l,io, such that xo,U l,o is feasible for Problem (5).

Then, F (w0) > F (wrelax) = F (w∗relax) is contradicted
to that (w∗relax, q

∗
relax,U relax) is the optimal solution for

Problem (5). Thus, (wrelax, qrelax, trelax,urelax) is an optimal
solution for Problem (4), and completes the proof.

Recall that Problem (4) is equivalent to Problem (3).
Algorithm 1 achieves a global optimal solution for
Problem (3).

B. Special Case: Predetermined beamforming vectors

In this subsection, we are going to discuss a special case of
Problem (3) where the beamforming vectors of the chargers
are pre-determined, whereas the power and the time duration
for each beam is to be optimized. In this case, we suppose



that, for charger l, it has M pre-determined beams, which are
denoted by ul,j , 1 ≤ j ≤M , and ‖ul,j‖2= 1. We denote the
power and average time of beam ul,j by pl,j and tl,j . Then,
the optimization problem is

max
w,q,p,t

F (w) (9a)

s.t. w +Aq = 0 (9b)

Biq ≤
nET∑
l=1

M∑
j=1

ηpl,jtl,j tr[Kl,iul,ju
H
l,j ], ∀i (9c)

nET∑
l=1

M∑
j=1

pl,jtl,j ≤ P (9d)

M∑
j=1

tl,j = 1, ∀l (9e)

M∑
j=1

pl,jtl,j ≤ Pl, ∀l (9f)

w ≥ 0, q ≥ 0,p ≥ 0, t ≥ 0. (9g)

Problem (9) is non-convex, due to the multiplication of
the variables in the constraints. However, if we introduce a
new variable yl,j to represent pl,jtl,j . Then, we can find the
optimal solution of Problem (9). The approach consists of two
steps. First, we temporally relax Constraints (9e), and solve the
following problem:

max
w,q,y

F (w) (10a)

s.t. w +Aq = 0 (10b)

Biq≤
nET∑
l=1

M∑
j=1

ηyl,j tr[Kl,iul,ju
H
l,j ], ∀i (10c)

nET∑
l=1

M∑
j=1

yl,j ≤ P (10d)

M∑
i=1

yil ≤ Pl, ∀l (10e)

w ≥ 0, q ≥ 0,y ≥ 0 , (10f)

which is convex. Suppose the optimal solution for
Problem (10a) is (w∗, q∗,y∗). Then, in the second step, we
need to find the feasible tl,j and pl,j , ∀l, j, such that the
following equations are satisfied:

pl,jtl,j = y∗l,j , ∀l, j∑M
i=1 tl,j = 1, ∀l

0 ≤ pl,j , 0 ≤ tl,j , ∀i, l.
(11)

One possible solution that satisfies Equations (11) is given
by pl,j = My∗l,j , tl,j = 1/M,∀l, j. Then, we have the
following proposition:

Proposition 4: Consider feasible optimization Problem (9).
If (w∗, q∗,y∗) is the optimal solutions for Problem (10a),

Algorithm 1 Time-splitting beamforming algorithm
Require: A, B, Kil, P , P l

Ensure: u∗,w∗, q∗, t∗
1: Find the optimal solution (w∗relax, q

∗
relax,U

∗
relax) for

Problem (5).
2: for l = 1 to nET do
3: Find the eigen values λl = {λl,i} and the corresponding

eigen vectors dl={dl,i} of U∗l,relax.
4: Construct ul,j=

√∑
i λl,idl,j , and tl,j=λl,j/

∑
i λl,i.

5: end for
6: return u∗={ul,j}, w∗=w∗relax, q∗=q∗relax, t∗={tl,j}.

then (w∗, q∗,p =My∗, t = (1/M)1T ) is one of the optimal
solution for Problem (9).

Proof: The proof consists in checking the feasibility and
the optimality.

Regarding the feasibility, Constraints (9b) - (9d), and
(9f) can be easily achieves due to that (w∗, q∗,y∗) is the
feasible solution for Problem (10a), and that pl,jtl,j = y∗l,j .
Constraints (9e) holds due to tl,j = 1/M, ∀i, l. Thus,
(w∗, q∗,p = My∗, t = (1/M)1T ) is a feasible solution of
Problem (9).

Regarding the optimality, suppose there is another feasible
solution (w′, q′,p′, t′) such that F (w′) > F (w∗). Then,
we can construct y′ = {y′l,j} where y′l,j = p′l,jt

′
l,j ,

such that (w′, q′,y′) is feasible for Problem (10a). Then,
F (w′) > F (w∗) is contradicted to that (w∗, q∗,y∗) is the
optimal solution for Problem (10a). Therefore, there exists no
(w′, q′,p′, t′) such that F (w′) > F (w∗).

To sum up, (w∗, q∗,p = My∗, t = (1/M)1T ) is one of
the global optimal solution for Problem (9).

One way to set ul,i is to let ul,i = ĝl,i/‖ĝl,i‖, where
ĝli is the estimation of channel gl,i or one can let it
be the eigenvector corresponding to the largest eigenvalue
of the matrix Eg[gl,ig

H
l,i]. This can be considered as the

charger l is serving node i by beamforming vector ul,i.We use
such beamforming vectors as the predetermined beamforming
vectors in the simulations.

V. NUMERICAL SIMULATIONS

In this section, we evaluate the monitoring performance
of the WSN with the optimal energy beamforming (by
Algorithm 1), the optimal predetermined energy beamforming
(see Section IV.B), and the case not using beamforming (omni-
directional WET). The simulation is done based on Matlab.

In the WSN, we assume that N sensor nodes are randomly
deployed in a region of size 30 meters by 30 meters, and a
sink is deployed at the center to collect data. The transmission
power eOij for vi to transmit data to vj with distance d is
10−7d2 Watts, with data rate 250kbps. The energy conversion
efficiency η is 0.01. For the charger, its transmission power
in WET is 1 Watts, and it has M antennas. The wavelength
is 0.01 meter. The channel model of energy transmission is
considered as Rician fading model as [21], and is described
as gl,i =

√
βK/(K + 1)gdl,i+

√
β/(K + 1)gsl,i, where gdl,i is



TABLE II: Parameters in the simulations
symbols value
area size 30m × 30m
data rate 250kbps
eOij 10−7d2Watts
Pl 1Watts

wavelength of energy beams 0.01m
η 1%
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Fig. 2: Comparison of the monitoring performance (
∑

i ln(1+
wi)) with different numbers of antenna achieved by optimal
energy beamforming, predetermined energy beamforming, and
no beamforming

a deterministic vector representing the line-of-sight path from
charger l to node i, gsl,i ∼ CN (0, I) is the scatter component,
β denotes the path loss, K is the Rician factor, which is set
to be 100 in the simulation. Then, Kl,i = βKgdl,ig

dH
l,i /(K +

1) + βI/(K + 1). The monitoring performance is defined as
F (w) =

∑
i ln(1 + wi). The parameters are summarized in

Table II.
To begin with, we consider the case with only one charger

that transmits energy, and the charger is also the sink that
collects data. We fix the number of sensor nodes to be 15
and vary the number of antenna that the charger has from
50 to 100. The result is as shown in Fig. 2. The blue
line with circles represents the case of the optimal energy
beamforming achieved by Algorithm 1. The green line with
squares, and the red line with crosses represents the case of
the predetermined energy beamforming, and the case of non
beamforming, respectively. It shows that, when the number
of antenna increases, the monitoring performances of all
schemes increase. The reason is that, with more antennas,
the charger can form a sharper beam. Thus, more energy
can be received by the sensor nodes. It also shows that,
the performances of using beamforming are much better
than that of the case without beamforming. It shows the
benefits of using beamforming instead of broadcasting the
energy. Besides, the performance of the optimal beamforming
achieved by Algorithm 1 is slightly better than that of
the pre-determined beamforming by solving Problem (9),
where the pre-determined beamforming vectors are ul,i =
ĝl,i/‖ĝl,i‖. Recall that Problem (9) can be turned into a
convex optimization problem where all the constraints are
linear, where the optimal beamforming requires solving an
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Fig. 3: Comparison of the monitoring performance (
∑

i ln(1+
wi)) with different numbers of sensor nodes achieved
by optimal energy beamforming, predetermined energy
beamforming, and no beamforming

SDP, the time complexity for the pre-determined beamforming
is much lower than that of the optimal beamforming. Thus,
pre-determined beamforming is a good approximation for the
optimal beamforming problem.

Then, we fix the number of antennas of the charger to
be 100, and change the number of sensor nodes from 15 to
25. The simulation results are shown in Fig. 3. In general,
it shows that, the monitoring performance of using energy
beamforming is still much better than the case of WET by
broadcasting. Predetermined energy beamfroming is slightly
worse than the optimal energy beamforming, which is similar
to the case where we vary the number of antenna of the
charger. Besides, the monitoring performances of all three
schemes increase with the number of sensor nodes. The reason
is that, if we deploy a node just act as a pure relay (its
sampling rate wi is 0), it helps to reduce energy consumptions
in data transmission whereas not degenerate the monitoring
performance. If we check the average monitoring performance
per node (F (w)/N ), we can see that the trend is decreasing
with the number of sensor nodes but may go up a little
sometimes, as shown in Fig. 4. The reason is that, with more
sensor nodes, the energy received by each node in average
decreases, whilst the energy consumption of a node may also
reduce due to that the decrease in the average data transmission
distance.

We also test the case with multiple chargers. The setting
is similar to the case with single charger. The difference is
that we have four chargers at (30, 0), (0, 30), (−30, 0), and
(0,−30). Each charger has power limit Pl = 1.2 Watts, where
the total power limit P = 4 Watts. The result, as shown in
Fig. 5, is similar to the case with a single charger.

To summarize, the monitoring performance improves
significantly by using optimal energy beamforming compare
to without using energy beamforming. Also, the performance
of the predetermined energy beamforming is slightly worse
than the optimal energy beamforming.
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Fig. 4: Comparison of the monitoring performance per node
(
∑

i ln(1 + wi)/N ) with different numbers of sensor nodes
achieved by optimal energy beamforming, predetermined
energy beamforming, and no beamforming
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Fig. 5: Comparison of the monitoring performance (
∑

i ln(1+
wi)) with different numbers of antenna achieved by optimal
energy beamforming, predetermined energy beamforming, and
no beamforming from four chargers

VI. CONCLUSIONS AND FUTURE WORK

We have investigated the problem of maximizing the
monitoring performance of wireless sensor networks by jointly
considering routing and wireless energy transmission. This
set-up has led to a non-convex problem formulation. We
have transformed the original problem to a semi-definite
programming problem, which is solvable, and proved that
the optimal solution of the new problem is also the optimal
solution of the original problem. Thus, we have proposed
an efficient algorithm to solve the original problem. We
have also proposed a low-complexity scheme where time
sharing between predetermined beam vectors are adopted. The
simulation results showed that significant performance gains
can be obtained by using optimized energy beamforming over
non-optimized energy broadcasting. Besides, the performance
of the predetermined energy beamforming scheme is observed
to be only slightly worse than the optimal case, which
suggests that it could be a good substitute for the optimal
beamforming. An interesting future research direction is to
consider the scenario where the energy beam vectors have
further restrictions, such as the number of different beam
vectors that can be employed.
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