

Attitude Navigation using a Sigma-Point Kalman Filter in an Error State
Formulation
Periklis-Konstantinos Diamantidis
c© 2017 Periklis-Konstantinos Diamantidis

TRITA 2017:107
ISSN 1653-5146

Department of Space and Plasma Physics
School of Electrical Engineering
KTH Royal Institute of Technology
SE–100 44 Stockholm
Sweden

i

Abstract

Kalman filtering is a well-established method for fusing sensor data in order to accurately
estimate unknown variables. Recently, the unscented Kalman filter (UKF) has been
used due to its ability to propagate the first and second moments of the probability
distribution of an estimated state through a non-linear transformation. The design of a
generic algorithm which implements this filter occupies the first part of this thesis. The
generality and functionality of the filter were tested on a toy example and the results are
within machine accuracy when compared to those of an equivalent C++ implementation.

Application of this filter to the attitude navigation problem becomes non-trivial when
coupled to quaternions. Challenges present include the non-commutation of rotations
and the dimensionality difference between quaternions and the degrees of freedom of the
motion. The second part of this thesis deals with the formulation of the UKF in the
quaternion space. This was achieved by implementing an error-state formulation of the
process model, bounding estimation in the infinitesimal space and thus de-coupling rota-
tions from non-commutation and bridging the dimensionality discrepancy of quaternions
and their respective covariances.

The attitude navigation algorithm was then tested using an IMU and a magne-
tometer. Results show a bounded estimation error which settles to around 1 degree. A
detailed look of the filter mechanization process was also presented showing expected be-
havior for estimation of the initial attitude with error tolerance of 1 mdeg. The structure
and design of the proposed formulation allows for trivially incorporating other sensors in
the estimation process and more intricate modelling of the stochastic processes present,
potentially leading to greater estimation accuracy.

Keywords: unscented Kalman filtering, information filtering, quaternions, attitude
navigation, gyroscope modelling, error state formulation, sensor fusion

ii

Sammanfattning

Kalmanfiltering är en väletablerad metod för att sammanväga sensordata för att erh̊alla
noggranna estimat av okända variabler. Nyligen har den typ av kalmanfilter som
kallas unscented Kalman filter (UKF) ökat i popularitet p̊a grund av dess förm̊aga att
propagera de första och andra momenten för sannolikhetsfördelningen för ett estimerat
tillst̊and genom en ickelinjär transformation. Designen av en generisk algoritm som
implementerar denna typ av filter upptar den första delen av denna avhandling. Gener-
aliteten och funktionaliteten för detta filter testades p̊a ett minimalt exempel och resul-
taten var identiska med de för en ekvivalent C++-implementation till den noggrannhet
som till̊ats av den finita maskinprecisionen.

Användandet av detta filter för attitydnavigering blir icke-trivialt när det används för
kvaternioner. De utmaningar som uppst̊ar inkluderar att rotationer inte kommuterar och
att de finns en skillnad i dimensionalitet mellan kvaternioner och antalet frihetsgrader i
rörelsen. Den andra delen av denna avhandling behandlar formuleringen av ett UKF för
ett tillst̊and som inkluderar en kvaternion. Detta gjordes genom att implementera en
s̊a kallad error state-formulering av processmodellen, vilken begränsar estimeringen till
ett infinitesimalt tillst̊and och därigenom undviker problemen med att kvaternionmulti-
plikation inte kommuterar och överbryggar skillnaden i dimensionalitet hos kvaternioner
och deras motsvarande vinkelosäkerheter.

Attitydnavigeringen testades sedan med hjälp av en IMU och en magnetometer.
Resultaten visade ett begränsat estimeringsfel som ställer in sig kring 1 grad. Strukturen
och designen av den föreslagna formuleringen möjliggör p̊a ett rättframt sätt tillägg av
andra sensorer i estimeringsprocessen och mer detaljerad modellering av de stokastiska
processerna, vilket potentiellt leder till högre estimeringnoggrannhet.

iii

To my parents, Menelaos and Eleni

iv

Acknowledgement

I want to thank Prof. Mykola Nickolay Ivchenko for his support as KTH supervisor
during the duration of my thesis. I am also grateful to Dr. Anders Ericsson for arranging
the project and welcoming me at Acreo, making sure my stay there was smooth and
fruitful. I would like to thank other colleagues at Acreo namely Kaies Daoud and Dimitar
Kolev who provided crucial support in the software and hardware front respectively of
the experimental setup. Special thank goes to Dr. Pontus Johannisson for his daily
commitment to guiding and teaching me which has proven to be instrumental both in
the evolution of this project and of myself as an engineer.

v

Contents

Abstract ii

Sammanfattning iii

Acknowledgement v

Acronyms viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Related Work . 2
1.3 Thesis Outline . 2

2 MATLAB Implementation of an Unscented Kalman Filter 3
2.1 Linear Kalman Filter . 3
2.2 Unscented Kalman Filter . 5
2.3 MATLAB Implementation . 7

2.3.1 Standard to Square-Root Equivalence 9
2.3.2 MATLAB Implementation Considerations 11
2.3.3 MATLAB Implementation Design Principles 11
2.3.4 Application on a 3DOF Robot . 12

2.4 Results . 13
2.5 Unscented Information Filter . 18

2.5.1 Formulation . 18
2.5.2 Results . 21

3 Quaternion-Based Attitude Navigation Algorithm 25
3.1 Orientation Basics . 25

3.1.1 Position Determination . 25
3.1.2 Orientation Determination . 26

3.2 Gyroscope Modelling . 28
3.2.1 Bias Model . 30
3.2.2 Allan Variance Analysis . 31
3.2.3 Gyroscope Model Validation . 33

vi

3.3 Magnetometer Modelling . 35
3.3.1 Magnetometer Model Validation 35

3.4 Quaternion-Based Unscented Kalman Filtering 37
3.4.1 Process Model . 37
3.4.2 Challenges Posed by the Presence of Quaternions in UKF 41
3.4.3 Error State UKF . 44

4 Results 48
4.1 Effect of Gyroscope Errors in Attitude Determination 49
4.2 Attitude Determination with Bias Compensation 53
4.3 Filter Structural Characteristics . 57

5 Conclusion 59
5.1 Future Work . 60

Bibliography 61

vii

Acronyms

EKF extended Kalman filter
IMU inertial measurement unit
LKF linear Kalman filter
SRUIF square-root unscented information filter
SRUKF square-root uncented Kalman filter
UIF unscented information filter
UKF unscented Kalman filter
UT unscented transformation

viii

Chapter 1

Introduction

1.1 Background and Motivation

Attitude and position determination systems are an integral part of launch systems
and sounding rockets, as they provide crucial information regarding their operations.
Accurate position estimation results in prior knowledge of the impact area which in turn
contributes to enhanced safety and efficient recovery process [1]. Position and attitude
information is also provided to scientific payloads and can be the basis for triggering
flight events while enhancing overall performance [1]. Sophisticated instrumentation
for measuring acceleration and angular rates has been developed and a dead reckoning
approach on integrating the obtained data could be a solution; albeit no matter how
accurate the measurement instruments are, an inherent noise is always present and its
cumulative effect over time results in a divergence between estimation and reality. An
optimal approach to attitude determination is desired and the design of a system that
implements it is of prime focus in the current thesis.

Design of such systems for space vehicles can be traced back to Wahba’s problem [2], a
proposed cost function of an optimization problem which determines spacecraft attitude.
A general approach to optimal estimation was proposed by Kalman [3] and is known
today as the Kalman filter (KF). The latter has evolved from a technique to be used in
linearly modelled systems to efficiently incorporating non-linear dynamics in the form of
Extended KF (EKF) and Unscented KF (UKF) [4]. UKF especially is of great interest
since non-linear dynamics can be directly used via the Unscented Transformation (UT).
At the same time, for attitude determination, a plethora of different mathematical tools
is present to describe rotations, namely Euler angles, quaternions, axis-angle vectors and
rotation matrices. Out of all those, quaternions is determined to be the most powerful
tool for the numerical robustness and low computational cost it offers.

The aim of this thesis is to combine the non-linear modelling of the UKF with the
mathematical soundness of the quaternions in the design of a filtering system which
determines attitude with a very low error of less than 1 degree. Work on this topic,
however, proves to be non trivial as mathematically sound concepts on their own, collide
in logic when put together due to a host of reasons. While they will be presented in

1

great detail below, the zest of the challenge comes down to the following facts. The
concept of the barycentric mean, a core concept of the UT, does not have a physical
meaning in the quaternion space and covariances cannot be derived directly from a
state vector containing quaternions. Sensors available for the project include an Inertial
Measurement Unit (IMU) and a magnetometer.

1.2 Related Work

Previous work directly related to UKF is that of van der Merwe & Wan [5] where the
basics of the UT are presented along with the algorithmic structure of the filter and its
square-root variant. Van der Merwe [6] reiterates this work by applying the proposed
filter in, among else, attitude determination of an Unmanned Air Vehicle (UAV), a sensor
fusion of a Global Positioning System (GPS) and Inertial Navigation System (INS). This
implementation, despite using quaternions, does not take into account the theoretical
challenges stated above. To solve this issue, Kraft [7] proposes a modification of the
algorithm presented by van der Merwe, while similar formulations to Kraft which contain
ad-hoc quaternion normalizations are that of Cheon & Kim [8] and Challa et al. [9].
Crassidis [10] proposes a reformulation of the state vector by using Rodrigues parameters
instead of quaternions, formulating an error-state approach. Crassidis’ approach is based
on the multiplicative error quaternion formulation from Shuster et al. [11]. This filter,
originally an EKF is known as the multiplicative EKF (MEKF). Sola [12] presents in
great detail the theoretical foundations of the error quaternion formulation and despite,
like Shuster, not applying it to UKF but rather to EKF, he has greatly influenced the
outcome of this thesis.

1.3 Thesis Outline

This thesis is organised as follows:

Chapter 2. MATLAB Implementation of an Unscented Kalman Filter
This chapter describes the design of a generic UKF and the results obtained when it
is applied in a toy example. Further investigation into the numerical robustness is also
presented.
Chapter 3. Quaternion Based Attitude Navigation Algorithm
This chapter contains a theoretical overview of the quaternions, the gyroscope and mag-
netometer modelling used and the error-state formulation of the attitude navigation
problem.
Chapter 4. Results
This chapter contains results of the main filtering algorithm when used in the specific
case researched in the present thesis.
Chapter 5. Conclusion
This chapter contains the conclusion of the current thesis along with further discussion
on the evolution of the proposed method.

2

Chapter 2

MATLAB Implementation of an
Unscented Kalman Filter

In systems design it is generally favorable to determine the object of interest as a state
vector {xk}nk=1. In the case of a 3DOF robot, for example, the state vector may contain
its position in a two dimensional plane and its orientation angle. In general, by observing
how the state vector evolves, one is able to determine its trajectory. The evolution of
states can be approached in two ways. One can:

• Use the dynamic system that describes the physical process taking place, coupled
with some initial conditions and user defined control signal input, to forward in-
duct/predict state trajectory. One should note that imperfections like, e.g., in
actuator operation cause deviations from the predicted path that the dynamic
model cannot account for.

• Use sensors and get actual measurements either directly on the states or other
quantities from which the states can be deduced. Noise present in sensors does not
allow for perfect measurements.

The challenge posed is, therefore, to combine in an efficient and optimal manner dynamic
model and measurements in order to determine with a great degree of certainty the true
evolution of states.

2.1 Linear Kalman Filter

The filtering problem can be tackled by implementing a linear KF (LKF) [3], whose
iterative process is shown in Fig. 2.1.

– xk = Axk−1 +Buk−1 is the linear system dynamics.

– zk = Hxk is the output(measurement) linear relation to the state vector.

– Pk, Q and R are the system, process noise and measurement noise covariance
matrices, respectively.

3

– Kk is the Kalman gain.

Figure 2.1: The Kalman filtering procedure (figure taken from [13]).

What one can deduce is that initial estimates on state (xk−1) and covariance (Pk−1)
can both be propagated, as shown in the Time Update part of Fig. 2.1. This produces
predictions or a priori estimates on both quantities (x−k , P−k). These predictions are
then corrected by incorporating measurements in a process shown in the Measurement
Update part of Fig. 2.1. The result is that one obtains a mean value and a covariance
matrix (x̂k, P

−
k), called the a posteriori estimates for the state vector at each time-step,

obtaining thus with a fair degree of certainty a bounded region where the state resides.
Fig. 2.2 shows how the mean value/ covariance update takes place in the state space. The
validity of formulas derived for use in the Kalman filter has been reaffirmed through least
squares [14] and bayesian [15] approaches. A core concept in deriving them is that of
the expected value. The expected value of a random variable x, E[x], is the first moment
of its distribution f(x) or its mean. KF is an optimal estimator on condition that the
expected value of the estimation error, i.e., difference between true and estimated state,
is zero. This condition is known as unbiasedness and when it is met, LKF is the Best
Linear Unbiased Estimator (BLUE) [16].

4

Figure 2.2: Covariance (oval) and mean value (dot) propagation/correction for a two
dimensional state. The green dot and oval represent a region where the state vector will
be present based on the estimation technique (figure taken from [15]).

2.2 Unscented Kalman Filter

While systems of linear dynamics can be approached efficiently by the LKF such is not
the case for non-linear ones. The need arises, therefore, to modify the filtering procedure
to account for non-linearities. One way to approach this, is to extend the LKF by
using first order linearisations of non-linear system dynamics, around the estimated state
vector, at each time-step in a process implemented in the EKF. Another option is to use
directly the non-linear model, something made possible by the UKF. Instead of relying
on first order linearisation for the construction and propagation of the covariance matrix,
a minimal set of carefully selected sample points (known as sigma points) is used which
undergo the Unscented Transformation. This process allows for calculating the mean
value and covariance of these sample points through a true non-linear transformation.
Assume a state vector x (of dimension L) has a mean x̄ and a covariance matrix Px. A

5

matrix X of 2L+ 1 sigma points {χi}2Li=0 can be obtained via the following.

χ0 = x̄, (2.1)

χi = x̄+
(√

(L+ λ)Px

)
i

where i = 1, . . . , L, (2.2)

χi = x̄−
(√

(L+ λ)Px

)
i

where i = L+ 1, . . . , 2L, (2.3)

where λ = α2(L+κ)−L is a scaling parameter. The constant α determining the spread
of the sigma points around x̄ is usually set to a small positive value (10−4 ≤ α ≤ 1). The

constant κ is a secondary scaling parameter usually set to 0 or 3−L [17].
(√

(L+ λ)Px

)
i

is the ith column of the matrix square root.
The sigma points are subsequently propagated via a non-linear function

Yi = f (χi) i = 0, ..., 2L, (2.4)

to obtain the a posterior sigma points {Yi}2Li=0, which in turn can be used to find a new
mean

ȳ =
2L∑
i=0

W(m)
i Yi (2.5)

and covariance

Py =
2L∑
i=0

W(c)
i (Yi − ȳ)(Yi − ȳ)T, (2.6)

with weights given by

W(m)
0 = λ/(L+ λ), (2.7)

W(c)
0 = λ/(L+ λ) + (1− α2 + β), (2.8)

W(c)
i =W(m)

i = 1/2(L+ λ), (2.9)

where β is used to denote prior knowledge of the distribution of x (β = 2 is optimal
for Gausian distribution). Fig. 2.3 shows this process as a flowchart with values being
colour defined.

6

Figure 2.3: Block diagram of the UT (figure taken from [4]). Using the original mean
(blue) and covariance (black), a vector of sigma points is generated (blue/yellow/green).
This is transformed, through the UT, into the new mean (gray) and covariance (purple).

2.3 MATLAB Implementation

An algorithmic structure of the UKF is presented below (as laid out in Algorithm 2.1
of [5]) which is the base for the MATLAB implementation. Note that in (2.12) the
matrix square root of the covariance is needed,

√
Pk−1, which is equivalent to the lower

triangular matrix obtained through a Cholesky factorization. Parallel to the standard
UKF, a variation on it exists in the form of square-root UKF (SRUKF). Instead of
refactorizing the covariance at every time-step, a set of linear algebra tools are used to
update the Cholesky factor instead. This allows for better numerical properties, namely
ensuring the positive definiteness of the covariance matrix. The sequential steps need
be taken to implement the UKF algorithm are as follows. It all starts with initialising
the mean and covariance,

x̂0 = E[x0], (2.10)

P0 = E[(x0 − x̂0)(x0 − x̂0)T]. (2.11)

(2.12) – (2.15) show in sequence the generation of sigma points followed by the forward
induction of them to get a new mean and covariance. This constitutes the Prediction

7

step of the UKF algorithm.

X k−1 =
[
x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1

]
, (2.12)

X ∗k|k−1 = F[X k−1,uk−1], (2.13)

x̂−k =
2L∑
i=0

W
(m)
i X ∗i,k|k−1, (2.14)

P−k =

2L∑
i=0

W
(c)
i [X ∗i,k|k−1 − x̂−k][X ∗i,k|k−1 − x̂−k]T + Rv. (2.15)

Measurement sigma points, their mean and covariance are computed mirroring the pre-
vious procedure in (2.16) – (2.19). Cross-covariance is then computed, Pxkyk , followed
by the Kalman gain, Kk, to get to the corrected estimate on mean and covariance as
shown in (2.20) – (2.23). This constitutes the Correction step of the UKF algorithm.

X k|k−1 =

[
x̂−k , x̂

−
k + γ

√
P−k , x̂

−
k − γ

√
P−k

]
, (2.16)

Yk|k−1 = H[X k|k−1], (2.17)

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1, (2.18)

Pỹkỹk =
2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ−k][Yi,k|k−1 − ŷ−k]T + Rn, (2.19)

Pxkyk =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Yi,k|k−1 − ŷ−k]T, (2.20)

Kk = Pxkyk(Pỹkỹk)−1, (2.21)

x̂k = x̂−k +Kk(yk − ŷ−k), (2.22)

Pk = P−k −KkPỹkỹkK
T
k . (2.23)

The SRUKF algorithm is presented in the same manner. The first difference is that in
this case, the Cholesky factor is initialised instead of the covariance,

x̂0 = E[x0], (2.24)

S0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
. (2.25)

8

The Prediction step is similar to the one described in the UKF algorithm. The weighted
sampled covariance computation shown in (2.15), is substituted by (2.29) - (2.30).

X k−1 = [x̂k−1, x̂k−1 + γSk−1, x̂k−1 − γSk−1] , (2.26)

X ∗k|k−1 = F[X k−1,uk−1], (2.27)

x̂−k =

2L∑
i=0

W
(m)
i X ∗i,k|k−1, (2.28)

S−k = qr

{[√
W

(c)
1 (X ∗1:2L,k|k−1 − x̂−k),

√
Rv

]}
, (2.29)

S−k = cholupdate
{

S−k ,X
∗
0,k|k−1 − x̂−k ,W

(c)
0

}
. (2.30)

The Correction step of the SRUKF algorithm follows. The main differences from the
UKF algorithm are the substitution of the measurement covariance computation, (2.19),
by (2.34) - (2.35), and that of the corrected covariance, (2.23), by (2.39) - (2.40).

X k|k−1 =
[
x̂−k , x̂

−
k + γS−k , x̂

−
k − γS−k

]
, (2.31)

Yk|k−1 = H[X k|k−1], (2.32)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1, (2.33)

Sỹk = qr

{[√
W

(c)
1 (Y1:2L,k − ŷk),

√
Rn

]}
, (2.34)

Sỹk = cholupdate
{

Sỹk ,Y0,k − ŷk,W
(c)
0

}
, (2.35)

Pxkyk =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Yi,k|k−1 − ŷ−k]T, (2.36)

Kk = Pxkyk(ST
ỹk

)−1(Sỹk)−1, (2.37)

x̂k = x̂−k +Kk(yk − ŷ−k), (2.38)

U = KkSỹk , (2.39)

Sk = cholupdate{S−k ,U,−1}. (2.40)

2.3.1 Standard to Square-Root Equivalence

At this point, it is helpful to directly derive the SRUKF out of the UKF. This not only
helps to gain deeper insight in the underlying process but also to faithfully implement it
in MATLAB, taking into account the special attributes that MATLAB functions possess.
What should be kept in mind at all times is that for any positive definite matrix A, a
Cholesky factor L (in lower triangular form) can be produced so that A = LL∗, where L∗

is the conjugate transpose. If A is changed to Ã = A+ xx∗, where x is a column vector,
then instead of computing a new factor for Ã, one can update the existing Cholesky
factor, L, to the new one, L̃, in a process called Cholesky update.

9

Looking back at both formulations, when updating the sigma points as shown in
(2.12) and (2.26), a lower triangular Cholesky factor of the full covariance matrix should
be input in both cases. Furthermore, the two processes are interchangeable up to (2.14)
and (2.28) respectively. The first major difference comes when updating the a priori
estimate of the covariance matrix, P−k , and its Cholesky factor, S−k . More specifically,

P−k =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Xi,k|k−1 − x̂−k]

T
+Rv =

=
2L∑
i=1

√
W

(c)
i (Xi,k|k−1 − x̂−k)

√
W

(c)
i (Xi,k|k−1 − x̂−k)

T
+
√
Rv
√
Rv

T
+

+W
(c)
0 (X0,k|k−1 − x̂−k)(X0,k|k−1 − x̂−k)

T
(2.41)

for

Ji =

√
W

(c)
i (Xi,k|k−1 − x̂−k) (2.42)

becomes

P−k =
[
J1,J2 · · · J2L,

√
Rv
]

J1

T

J2
T

...

J2L
T

√
Rv

T

+W
(c)
0 (X0,k|k−1 − x̂−k)(X0,k|k−1 − x̂−k)

T
. (2.43)

By substituting
S =

[
J1,J2 · · · J2L,

√
Rv
]

(2.44)

and

q =

√
W

(c)
0 (X0,k|k−1 − x̂−k) (2.45)

(2.41) becomes
P−k = SST + qqT . (2.46)

It would make sense to propagate the Cholesky factor of the form of S, as defined in
(2.44), using a Cholesky update due to the addition of q, as defined in (2.45). However,
S is a non square, non triangular matrix and therefore cannot be validly considered a
Cholesky factor. By using a QR decomposition on S, an orthogonal Q and a triangular
R matrix are obtained such that

ST = QR (2.47)

and with the help of (2.47), (2.46) becomes

P−k = SST + qqT = RTQTQR+ qqT = RTR+ qqT (2.48)

It is evident now, as (2.48) indicates, that the update of the covariance matrix P−k
can be converted into a Cholesky update of a triangular matrix R which is “posing”

10

as a Cholesky factor after decomposing S. By sustaining this process throughout the
algorithm it is possible to alter the “update covariance → find Cholesky factor” of the
UKF to “update directly the Cholesky factor” of the SRUKF.

2.3.2 MATLAB Implementation Considerations

Sk, S
−
k and Sỹk are lower triangular matrices which come in contrast to the way qr and

cholupdate functions operate in MATLAB.

• qr function accepts as input a square matrix or rectangular matrix where there
are more rows than columns and returns an upper triangular matrix.

• cholupdate function accepts as input an upper triangular matrix and a vector
of appropriate length and returns an upper triangular matrix.

In order to adhere to the conventions followed by the MATLAB functions and the
expected result demanded by the algorithm, the following modifications to the UKF-
SRUKF formulations take place.

• In step (20) the input to the QR decomposition is the transpose of the one shown,
to fulfill the ”more rows than columns” requirement.

• In step (20) the output is an upper triangular matrix and is kept as such in steps
(21) and (29) in order for cholupdate to operate as stated above.

• A step is added after step (29), where the output of cholupdate is transposed
before being input in step (17) as part of the iterative process. This is to fufill the
requirement brought forth by the algorithm that the Cholesky factor must be a
lower triangular matrix.

• The input and outputs of steps (24) and (25) are treated in the same fashion. By
doing this, Sỹk becomes upper triangular.

• To conform to the algorithm requirements, the output of step (25) is transposed
before entering steps (27) and (28).

2.3.3 MATLAB Implementation Design Principles

The main concept behind the design of the model is case independence. Since the
filtering procedure is developed with the purpose of being used in different application
cases, two distinct ecosystems are defined, as shown by the vertical line in Fig. 2.4. One,
the filter ecosystem, can be used without modification, for every application case and
contains (i) a generic UKF, (ii) a generic SRUKF and (iii) the main “hub” function
where all the other functions are called. The other can be viewed as the identity of each
application case, comprising of (i) a file which initialises properties and values specific to
the application, (ii) the model of the physical process/system examined, (iii) the model

11

of the control system present and (iv) the model of the measurement system(s) used.
The two ecosystems, in spite of coming in contact during simulation, maintain their
respective independence in the sense that changes in the underlying functions/scripts of
one ecosystem pertain to its connections in the other and vice versa.

Initialisation
Measurement
System Model

Process Model
Control

System Model

Main UKF

SRUKF
fi

lter
eco

sy
stem

ap
p

li
ca

ti
on

ca
se

ec
o
sy

st
em

Figure 2.4: High-level MATLAB model design.

2.3.4 Application on a 3DOF Robot

After the filter ecosystem was implemented, an application case was used to test it in
the form of a 3DOF robot. Its dynamic model is using a three dimensional state vector
x ≡ (x, y, φ)T, which contains the position in x-axis, y-axis and the orientation angle.
The robot is controlled through a two dimensional control vector u ≡ (v, ψ)T, which
contains the velocity and the orientation angle. Given that the system is iteration-based
(no time-step given), one could assume that the velocity is the distance covered per unit
iteration than per unit time. With this is mind, at iteration k, the following model is
used

φk = φk−1 + ψk, (2.49)

xk = xk−1 + cos(φk) · vk, (2.50)

yk = yk−1 + sin(φk) · vk. (2.51)

Control signal generation is arbitrarily chosen to be

vk = 1 + sin

(
2π

N

)
, (2.52)

ψk = sin

(
2π

N

)⌊
k − 2

(N/2) + 1

⌋
(2.53)

12

where ⌊
k − 2

(N/2) + 1

⌋
(2.54)

is the integer part of [
k − 2

(N/2) + 1

]
(2.55)

and N is the total number of iterations.
As far as measurement modelling, a three dimensional vector is used y ≡ (z, w, θ)T

where (z, w) are not the position in x and y-axis like the system vector above, but the
distance from two landmarks {li}2i=1, while the third element is the orientation angle.
For pk ≡ (xk, yk) the position at any given iteration k, the distance is given by

d1 = (pk − l1), (2.56)

d2 = (pk − l2) (2.57)

and therefore the measurement vector becomes

zk =
√
d1 · d1, (2.58)

wk =
√
d2 · d2, (2.59)

θk = φk. (2.60)

The system and measurement models must be augmented with the addition of the ac-
tuator and measurement noise in order to complete the formulation.

2.3.4.1 Comparison to an Equivalent C++ Implementation

The MATLAB implementation was compared to an equivalent C++ one [18]. As the
direct comparison of the obtained results between the two implementations is of great
interest, a link between the two is established. As of now, any input data necessary for
the replication of a test case along with the output data of the C++ code are saved in
a .csv file and subsequently loaded in the MATLAB environment. Possible changes to
the way the link operates might need to be made if the volume of data need be saved
exceeds the functional limits of the current setup.

2.4 Results

As shown in the following figures, by implementing the model in the way analyzed
above, almost identical results between the C++ and the MATLAB models are ob-
tained (Fig. 2.5 - 2.7); the difference between the two is of the order of 10−5. Process
and noise covariance matrices are for unknown reasons set to identity for the C++ im-
plementation. By constructing them as diagonal, with the elements being the squared
standard deviations of the noise (variances), one can get a better response as can be
clearly seen in Fig. 2.8 and Fig. 2.9.

13

Almost identical are the results between UKF and SRUKF, validating their inter-
changeability but for better numerical properties for the latter (Fig. 2.10 and Fig. 2.11).
Note that the difference is on the order of 10−14. Computationally they are not so differ-
ent either. After 2000 iterations of the code in MATLAB, the mean difference between
them was 1.04 ms or almost 5% of the total time one iteration of the code takes to
complete.

0 10 20 30 40 50 60

x axis (m)

0

10

20

30

40

50

60

y
ax

is
 (

m
)

Figure 2.5: The real trajectory of the robot (green curve) and how it is estimated by the
MATLAB implemented UKF (blue curve) and its C++ equivalent (red curve).

14

0 20 40 60 80 100

number of iteraitons

0

0.2

0.4

0.6

0.8

1

1.2

E
uc

lid
ea

n
di

st
an

ce
 (

m
)

Figure 2.6: Estimation error (Euclidean distance) of the MATLAB UKF (blue curve)
and the C++ UKF (red curve).

0 10 20 30 40 50 60 70 80 90 100

number of iterations

0

0.5

1

1.5

2

2.5

di
ffe

re
nc

e
in

 e
st

im
at

io
n

er
ro

r
(m

)

×10-14

Figure 2.7: Estimation error difference between MATLAB UKF and C++ UKF.

15

0 10 20 30 40 50 60

x axis (m)

0

10

20

30

40

50

60

y
ax

is
 (

m
)

Figure 2.8: The real trajectory of the robot (green curve) and how it is estimated by
UKF with calibrated (blue curve) and uncalibrated (red curve) covariances.

0 10 20 30 40 50 60 70 80 90 100

number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

E
uc

lid
ea

n
di

st
an

ce
 (

m
)

Figure 2.9: Estimation error (Euclidean distance) between UKF with calibrated (blue
curve) and uncalibrated (red curve) covariances.

16

-50 -40 -30 -20 -10 0 10 20

x axis (m)

-10

0

10

20

30

40

50

y
ax

is
 (

m
)

Figure 2.10: The real trajectory of the robot (green curve) and how it is estimated by
UKF (blue curve) and SRUKF (red curve).

0 10 20 30 40 50 60 70 80 90 100

number of iterations

0

0.5

1

1.5

2

2.5

di
ffe

re
nc

e
in

 e
st

im
at

io
n

er
ro

r
(m

)

×10-14

Figure 2.11: Estimation error difference between UKF and SRUKF.

17

2.5 Unscented Information Filter

Work has been done thus far in implementing a UKF and an SRUKF according to the
algorithms proposed by van der Merwe. However, robustness of the numerical methods
has always been an issue.

• Updating the covariance matrix in the UKF does not guarantee its positive def-
initeness. This is of utmost importance since it is a necessary condition for the
Cholesky factor to exist.

• For a positive definite matrix A and a column vector x, Cholesky update, as
described in chapter 2.2.1, can be performed as long as A is changed to Ã = A+xx∗

(rank 1 update). If Ã = A − xx∗(downdate), as is the case in (2.40) for A ≡ S−k
and x ≡ U, then Ã ≡ Sk may not be positive definite and the process will fail.

A solution to both issues may be the formulation of the dual problems to UKF and
SRUKF known as Unscented Information filter (UIF) and square-root UIF(SRUIF).

2.5.1 Formulation

In this case, instead of the covariance matrix and the state vector, what is being updated
through the prediction/correction process is what is known as the information matrix

Zk = P−1
k (2.61)

and information vector
zk = P−1

k xk = Zkxk. (2.62)

Basically, there is a duality in the relationship, since the information matrix is the direct
inverse. What makes this method interesting are a couple of beneficial properties.

• It can be proven [19] that the square root formulation consists only of rank 1
Cholesky updates thus eliminating the danger of a possible downdating leading to
negative eigenvalues.

• What must be done to achieve great accuracy in the Kalman procedure is to pursue
a modular design, where each time before the input of a sensor reading the sigma
points and observation points must be recalculated, based on the previous best
estimate. In information filtering, a very good approximation of it can be achieved
by only calculating the sigma points and observation points in the beginning, and
augmenting them with a linear combination of the local sensor contribution (see
below), potentially lowering the computational cost.

The algorithms in use are the following, as proposed in [19]. The Φk and φk defined
below, are information contribution terms [19]. At first the UIF algorithm is presented
in its sequential steps, starting from initialisation,

x̂0 = E[x0], (2.63)

P0 = E[(x0 − x̂0)(x0 − x̂0)T]. (2.64)

18

The Prediction steps follows with the insertion of the information matrix and vector.

X k−1 =
[
x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1

]
, (2.65)

X ∗k|k−1 = F[X k−1,uk−1], (2.66)

x̂−k =
2L∑
i=0

W
(m)
i X ∗i,k|k−1, (2.67)

P−k =

2L∑
i=0

W
(c)
i [X ∗i,k|k−1 − x̂−k][X ∗i,k|k−1 − x̂−k]T + Rv, (2.68)

Z−k = (P−k)−1, (2.69)

z−k = Z−k x̂−k . (2.70)

Finally the Correction step is shown with the update procedures of the quantities that
are now being tracked.

X k|k−1 =

[
x̂−k , x̂

−
k + γ

√
P−k , x̂

−
k − γ

√
P−k

]
, (2.71)

Yk|k−1 = H[X k|k−1,] (2.72)

ŷ−k =
2L∑
i=0

W
(m)
i Yi,k|k−1, (2.73)

Pxkyk =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Yi,k|k−1 − ŷ−k]T, (2.74)

φk = Z−k Pxkyk(Rn)−1[(yk − ŷ−k) + PT
xkyk

(Z−k)Tx̂−k], (2.75)

Φk = Z−k Pxkyk(Rn)−1PT
xkyk

(Z−k)T, (2.76)

zk = z−k + φk, (2.77)

Zk = Z−k + Φk. (2.78)

The SRUIF algorithm follows in the same manner. Initialisation begins with the mean
and the Cholesky factor,

x̂0 = E[x0], (2.79)

S0 = chol
{
E[(x0 − x̂0)(x0 − x̂0)T]

}
. (2.80)

19

The Prediction1 step follows, with all the introduced changes.

X k−1 = [x̂k−1, x̂k−1 + γSk−1, x̂k−1 − γSk−1] , (2.81)

X ∗k|k−1 = F[X k−1,uk−1], (2.82)

x̂−k =

2L∑
i=0

W
(m)
i X ∗i,k|k−1, (2.83)

S−k = qr

{[√
W

(c)
1 (X ∗1:2L,k|k−1 − x̂−k),

√
Rv

]}
, (2.84)

S−k = cholupdate
{

S−k ,X
∗
0,k|k−1 − x̂−k ,W

(c)
0

}
, (2.85)

z−k = (S−k)T \ (S−k \ x̂−k), (2.86)

S−zk = qr{S−k \ I}. (2.87)

Finally, the Correction step takes place providing the corrected estimates for the infor-
mation vector and the Cholesky factor of the information matrix.

X k|k−1 =
[
x̂−k , x̂

−
k + γS−k , x̂

−
k − γS−k

]
, (2.88)

Yk|k−1 = H[X k|k−1], (2.89)

ŷ−k =

2L∑
i=0

W
(m)
i Yi,k|k−1, (2.90)

Sỹk = qr

{[√
W

(c)
1 (Y1:2L,k − ŷk),

√
Rn

]}
, (2.91)

Pxkyk =

2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Yi,k|k−1 − ŷ−k]T, (2.92)

U = (S−k)T \ (S−k \Pxkyk)/Sn, (2.93)

zk = z−k + U/ST
n [yk − ŷ−k + PT

xkyk
((S−k)T \ (S−k \ x̂−k))], (2.94)

Szk = cholupdate{S−zk ,U,+1}. (2.95)

Proof of the UIF can be found in [21] and the SRUIF can be derived directly in a straight-
forward way. For multiple sensors instead of calculating the state and covariance at each
subsequent observation, one can calculate only the local information matrix/vector con-
tribution of each sensor and at the end of the time-step add them all together. For the
UIF it means computing only the {φk,Φk} pair, for each sensor and at the end of the

1‘\’ backlash is MATLAB notation referring to efficient least squares [20].

20

time step, do the final update

zk = z−k +

N∑
k=1

φk,

Zk = Z−k +
N∑
k=1

Φk,

Pk = Zk
−1,

xk = Pkzk.

For the SRUIF it means computing only the {φk,Si,Φk} pair, where Si,Φk = U of ith

sensor and at the end of the time-step, do the final update

zk = z−k +

N∑
k=1

φk,

Szk = cholupdate{S−zk , [S1,Φk
· · ·SN,Φk

],+1},
Sk = qr{(Szk)T \ I},
xk = (Sk)

TSkzk.

This has the potential to speed up the process without losing in accuracy as it will be
shown later.

2.5.2 Results

The results obtained by the UIF using sensor fusion as performed in the C++ equivalent
case are presented in Figs. 2.12 – 2.14. On the other hand, Figs. 2.15 – 2.17 represent
the response for the same test case but by performing the sequential update as proposed
by [19] and described above. One can see that there is comparable accuracy. Initial
runs show a speed up of the procedure by almost 5% but with room for improvement
for further algorithmic refinement.

21

0 10 20 30 40 50 60

x axis (m)

0

10

20

30

40

50

60

y
 a

x
is

 (
m

)

Figure 2.12: The real trajectory of the robot (green curve) and how it is estimated by
UIF (blue curve) and SRUIF (red curve) and the C++ UKF (yellow dotted curve).

0 20 40 60 80 100

number of iterations

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

d
if
fe

re
n

c
e

 i
n

 e
s
ti
m

a
ti
o

n
 e

rr
o

r
(m

)

×10
-13

Figure 2.13: Estimation error difference between UIF and SRUIF.

22

0 20 40 60 80 100

number of iterations

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

d
if
fe

re
n

c
e

 i
n

 e
s
ti
m

a
ti
o

n
 e

rr
o

r
(m

)

Figure 2.14: Estimation error difference between UIF and C++ UKF.

0 10 20 30 40 50 60

x axis (m)

0

10

20

30

40

50

60

y
 a

x
is

 (
m

)

Figure 2.15: The real trajectory of the robot (green curve) and how it is estimated by
UIF (blue curve) and SRUIF (red curve) and the C++ UKF (yellow dotted curve).

23

0 20 40 60 80 100

number of iterations

0

0.5

1

1.5

2

2.5

3

d
if
fe

re
n

c
e

 i
n

 e
s
ti
m

a
ti
o

n
 e

rr
o

r
(m

)

×10
-13

Figure 2.16: Estimation error difference between UIF and SRUIF.

0 20 40 60 80 100

number of iterations

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

d
if
fe

re
n

c
e

 i
n

 e
s
ti
m

a
ti
o

n
 e

rr
o

r
(m

)

Figure 2.17: Estimation error difference between UIF and C++ UKF.

24

Chapter 3

Quaternion-Based Attitude
Navigation Algorithm

3.1 Orientation Basics

The goal of an INS is to determine the position and orientation of an object. While the
scope of the current study only revolves around the second one, a comparison between
the two is deemed useful. This is because orientation is a non-trivial subject to grasp and
looking at it in parallel to position provides intuition and insight into its inner workings.

3.1.1 Position Determination

In order to determine position in a three dimensional space, a coordinate system is
established. It consists of orthonormal axes which enable one to specify uniquely each
point through the use of a vector (a, b, c). This is especially true in the type of motions
examined below where, as far as position is concerned, the object can be considered
to be perfectly stiff, leading it to the possibility to treat it as a point object. This
representation of position in space, while fundamental, has some properties which often
go unmentioned.

• Every point/vector in space can be analyzed in three elemental vectors, each one
parallel to a respective constituent axis of the coordinate system. These vectors
are thus linearly independent to each other and directly correspond to the degrees
of freedom of the motion.

• Updating position with an (a, b, c) vector is commutative in and of itself. The order
of addition of each elemental vector is irrespective to the resulting point/vector in
space, the result being the same.

• An UKF involves the averaging of sigma points, which for position can be ade-
quately described by their barycentric mean.

25

3.1.2 Orientation Determination

3.1.2.1 Euler Angles

The second quantity of interest in an INS, the orientation of an object, obviously cannot
be described using a Cartesian representation. In this case, one’s goal is to determine
the attitude/angular position at any given time with respect to a global fixed coordinate
system. Mimicking position determination, any rotation can be composed out of three
elemental rotations, which in turn define three angles (φ, θ, ψ), known as Euler angles;
the difference being that these rotations do not commute, i.e., changing the order of the
same set of elemental rotations, gives a different resulting orientation. It is evident that
commutation is non-applicable to rotations and a three dimensional vector of angles
does not fully describe what is taking place. Fig. 3.1 shows the non-commutation stated
above. In order to get to (A,B,C), one has to first rotate around the z axis, then around
the y axis of the perturbed coordinate system (x

′
, y
′
, z
′
), and finally around the z axis

of the (x
′′
, y
′′
, z
′′
) system. The z − y − z or 3− 2− 3 sequence is one of the many that

can possibly be used when describing rotations via Euler angles [22].

Figure 3.1: The change in orientation from (x, y, z) to (A,B,C) using elemental rotations
(figure taken from [23]).

Given a selection of axes and a rotation order, Euler angles can be used to express
orientation. This is done through the construction of a rotation matrix R which can be
used to update the orientation of an arbitrary vector, r, through r

′
= Rr. A detailed

presentation of the possible rotation matrices is given in [22]. The insight that is gained
through this process can lead to the following observations.

• Converting from rotation matrices back to Euler angles can result in singularities
for certain values of the angles (φ, θ, ψ)

• It is computationally expensive to construct a 3×3 matrix every time an orientation
update is being done.

26

• There might be cases where the rotations are not well defined, i.e., two different
sets of elemental rotations giving the same resulting rotation [24].

The reasons stated above put forth the need of expressing orientation in a more pow-
erful way. A way that can ensure a compact form of expressing rotations that avoids
singularity issues is to use quaternions.

3.1.2.2 Quaternions

Quaternions, from a mathematical perspective, can be viewed as an extension to the
complex numbers by adding two more dimensions to the imaginary part, of the form

q = α+ βi+ γj + δk where [α, β, γ, δ] ∈ IR,

i2 = j2 = k2 = ijk = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.

The special case quaternion where |q| =
√
α2 + β2 + γ2 + δ2 = 1 is called unit quater-

nion. To examine how the unit quaternion can be used to represent attitude, it is useful
to consider the following.

• Given an arbitrary vector r and a unit quaternion q, r
′

= qr presents a linear
transformation of r where |r′ | = |q||r| = |r|.

• Given a unit quaternion q, two arbitrary vectors r1 and r2, and their linear trans-
formations r

′
1 = qr1, r

′
2 = qr2, it can be proven that the dot product is preserved,

i.e., r1 · r2 = r
′
1 · r

′
2.

Multiplying vectors by a unit quaternion causes, thus, for them to transform while
retaining their length and the vector space between them, or in other words, rotate.
According to Euler’s rotation theorem, any change in orientation of a rigid body can be
expressed as a rotation around a fixed axis n̂, for some angle θ. Therefore, a systematic
way must exist, to express this rotation using quaternion representation. The (n̂, θ)
axis-angle representation can be composed into a rotation vector of the form

u =
θ

2
n̂ (3.1)

whose exponential can be analyzed using a Taylor series expansion [12] as

q = eu = e
θ
2
n̂ =

[
cos(θ2)

sin(θ2)n̂

]
=

[
qw
qv

]
. (3.2)

It is evident that q is a unit quaternion since the following are valid.

• It is a four dimensional quantity with a real part qw and an (expanded by two
dimensions) imaginary part qv.

27

• |q| =
√

sin (θ2)
2

+ cos(θ2)
2

is always equal to 1.

If it is furthermore multiplied to an arbitrary vector, r, as shown in (3.3), it performs
the rotation that the (n̂, θ) axis-angle representation necessitates. The result is that the
rotated vector r

′
is obtained. It should be noted that in quaternion space, quaternion

multiplication is defined by the ⊗ sign.

r
′

= q ⊗ r ⊗ q∗ (3.3)

The conjugate of a quaternion is

q∗ =

[
qw
−qv

]
. (3.4)

There are two other important properties. The product of two unit quaternions is
always a unit quaternion as shown in (3.5) and a quaternion can be constructed out of
any rotation vector, as defined in (3.1), using (3.6).

q3 = q1 ⊗ q2 ⇒ |q3| = 1 (3.5)

q =

 cos
(
|u|
2

)
sin
(
|u|
2

)
u
|u|

 . (3.6)

Quaternions, therefore, can indeed express relative attitude, avoiding the singularity
issues that Euler angles suffer from and having a more compact form (no need for the
construction of a rotation matrix to perform an update). However, despite the fact that a
quaternion can describe a rotation fully by itself, combining rotations(quaternions) still
carries the non-commutative property. Compared to position determination, attitude
determination through quaternions suffers from the following.

• Quaternions, a four dimensional entity, is used to describe a three degree of freedom
motion.

• Averaging quaternions, through their barycentric mean, lacks physical foundation
and can violate the unit norm constraint on them.

The challenge posed is, therefore, to design an algorithm which implicitly retains the
unit norm while efficiently tackles the difference in dimensionality.

3.2 Gyroscope Modelling

The current report studies attitude navigation in an IMU driven system where instru-
mentation includes a STIM300 IMU provided by Sensonor AS. While process models in
general can be constructed through the combination of system dynamics and kinematics,
when systems are IMU driven, system dynamics is replaced by gyroscope data which are
being used directly in the kinematics equation to retrieve attitude. This dead reckoning
process accumulates error over time, due to instrument noise and systematic error such

28

as bias drift, giving rise to the need of sensor fusion via KF. Gyroscope modelling is a
useful tool, while developing said filters since it (i) enables to get simulated measure-
ments along experimental ones and (ii) It gives the ability for large contributing errors
to be estimated and removed, improving performance.

Two main types of errors are present in gyroscopes, namely (i) deterministic that
are constant in value, any time the gyroscope operates and (ii) stochastic that change
constantly, which can be accounted for by incorporating their estimation in the filter. A
general flow chart of the gyroscope process is found in Fig.3.2.

Figure 3.2: Gyro process (figure taken from [30]).

The equivalent mathematical model is

ω̃g︸︷︷︸
measured rate

=

scale factor+misalignment︷ ︸︸ ︷
(I3×3 +Mg) ωg︸︷︷︸

true rate

+

bias︷︸︸︷
bg + wg︸︷︷︸

random error

. (3.7)

Scale factor(sg) and misalignment (mg) errors are deterministic and can be combined
into a single matrix

Mg =

 sgx mgxy mgxz

mgyx sgy mgyz

mgzx mgzy sgz

 . (3.8)

A way to estimate the scale factor error is presented in [25]. The gyroscope is mounted on
a rotation table which is spun for a known rate ~ω and a set of two different measurements
is taken, sequentially for each axis of rotation. The two measurements differ in the way
the gyroscope is mounted; its axes of rotation aligned to positive and negative gravity.
The errors can then be determined bysgx 0 0

0 sgy 0
0 0 sgz

 =

ω̃g+
x − ω̃g

−
x 0 0

0 ω̃g
+
y − ω̃g

−
y 0

0 0 ω̃g
+
z − ω̃g

−
z

 1

2~ω
− I3×3. (3.9)

The misalignment error follows a similar path, only in this case the recorded data during
a test are not the angular rates on the principal axis of rotation, but on the other two
axes. The error is determined to be 0 mgxy mgxz

mgyx 0 mgyz

mgzx mgzy 0

 =

 0 ω̃g
+
y − ω̃g

−
y ω̃g

+
z − ω̃g

−
z

ω̃g
+
x − ω̃g

−
x 0 ω̃g

+
z − ω̃g

−
z

ω̃g
+
x − ω̃g

−
x ω̃g

+
y − ω̃g

−
y 0

 1

2~ω
. (3.10)

29

The random error can be treated as a zero-mean Gaussian white noise with standard
deviation

σwg =
ARW√

∆T
(3.11)

where Angular Random Walk, ARW, is specified in the gyroscope datasheet. All the
values must be converted to rad/s.

3.2.1 Bias Model

Bias error can be analysed into three components, fixed bias, run-run bias and in-run
bias.

• Fixed bias is a deterministic error due to external factors like temperature. Fig. 3.3
[26] shows such a bias, which is compensated for in the calibrated gyroscope used
[27] and thus is neglected.

• Run-run bias is a constant in-run value which changes from run ro run. It is
essentially the mean value of a no-rate measurement scenario.

• In-run bias is a stochastic error which can be modelled either as a random walk [28].
a Gauss-Markov correlated noise ([29], [30]) or neglected [31] if it has negligible
effect on the total instrument noise.

(a) Uncalibrated gyroscope (b) Calibrated gyroscope

Figure 3.3: Effect of temperature on bias (figure taken from [26]). (a) The offset drift
with temperature without compensation. (b) The improved offset stability as obtained
using temperature compensation.

3.2.1.1 Random Walk Model

The discrete-time random walk model is

bgk = bgk−1
+ wbg (3.12)

where bg0 is the run-run bias as described above and wbg is a zero-mean Gaussian white
noise. The standard deviation of this noise is presented below with σBI being obtained
from the datasheet and τc being the correlation time.

σwbg = σBI

√
∆T

τc
(3.13)

30

3.2.1.2 Gauss-Markov Model

The continuous-time model of a first-order Gauss-Markov process is presented in (3.14)
[29], along with its equivalent discrete-time form

τcḃg + bg = wbg ⇒ bgk = αdbgk−1
+ gdwbg (3.14)

where αd = e−
1
τc

∆T , gd =
∫ ∆T

0 e−
1
τc
tdt, bg0 is the run-run bias as described above and

wbg is a zero-mean Gaussian white noise. The standard deviation of this noise is as
follows

σwbg =

√
1−

α2
dσBI

0.664bd
. (3.15)

3.2.2 Allan Variance Analysis

Gyroscope Model Determination
A tool to determine what are the dominant disturbances in a gyroscope is the Allan

Variance plot. A typical plot has the form of Fig.3.4. This plot follows the slope of a
curve, which in this case has three distinct parts. A part where the slope is −1/2, a part
where it is 0 and a part where it is 1/2. What this means is that the stochastic errors
will be modelled, reflecting the three distinct parts in the following way. A zero-mean
Gaussian white noise accounting for the random error, a random walk or Gauss-Markov
model accounting for in-run bias, and a random walk model accounting for random error
in angular acceleration.

Figure 3.4: Generic Allan Variance plot (figure taken from [29]).

As shown in [31] and [26] in tactical grade IMUs, Allan Variance plot is dominated
by the −1/2 slope curve, indicating that all stochastic models, other than that of a white

31

noise can be neglected. By removing all the negligible stochastic processes, keeping only
the random error and the run-run bias, (3.7) can be written as

ω̃g = (I3×3 +Mg)ωg + bg0 + wg ⇒ ωg = (I3×3 +Mg)
−1(ω̃g − bg0 − wg). (3.16)

Alternatively by taking bias into account, (3.16) is written as

ωg = (I3×3 +Mg)
−1(ω̃g − bg − wg) (3.17)

where bg is found using (3.12).

Correlation Time Determination
The correlation time, τc, physically refers to how quickly the stochastic process “es-

tablishes” the bounds in uncertainty as characterized by the standard deviation. Fig.
3.5 [26] shows a Gauss-Markov process with a correlation time τc = 200 s.

Figure 3.5: Standard Deviation in a Gauss-Markov process (figure taken from [26]). The
red curve is the (1-σ) bound and the blue curve is the random process itself.

An approximation on it can be given from the Allan Variance plot as cited by [30]
and [28]. According to [30] it is the average time where the flat-line asymptote of Fig.
3.4 is present, while [28] takes it as the time where the Allan Variance curve goes to its
lowest point. More systematic ways of calculating include the autocorrelation function
and autoregressive processes, details on both can be found in [30].

32

3.2.3 Gyroscope Model Validation

A 30 min static measurement of the gyroscope was made, and its Allan Variance plot is
presented using the NaveGo Algorithm [32]. Instead of consulting the datasheet for pa-
rameter values, the algorithm made it feasible to obtain them through the experimental
data. These parameters were subsequently plugged in the two different gyroscope mod-
els (3.16), (3.17). The 30 min static measurement was emulated using the two models
and their Allan Variance plots were recomputed. It can be seen (Figs. 3.6 – 3.8) that
both of them provide a fairly good approximation of the true plot. For the rest of the
analysis the simpler model as presented in (3.16) will be used. Validation of this model
will be further verified when emulated and experimental data will be used to obtain
attitude through dead reckoning; their respective accumulated attitude errors must be
really close.

10-3 10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2
GYROS ALLAN VARIANCES

GYRO X
GYRO Y
GYRO Z

Figure 3.6: Allan Variance of the STIM300 IMU. The x-axis is in s and the y-axis in
rad/s.

33

10-3 10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2
GYROS ALLAN VARIANCES

GYRO X
GYRO Y
GYRO Z

Figure 3.7: Allan Variance of the emulated data using the model indicated in (3.16).
The x-axis is in s and the y-axis in rad/s.

10-3 10-2 10-1 100 101 102
10-6

10-5

10-4

10-3

10-2
GYROS ALLAN VARIANCES

GYRO X
GYRO Y
GYRO Z

Figure 3.8: Allan Variance of the emulated data using the model indicated in (3.17).
The x-axis is in s and the y-axis in rad/s.

34

3.3 Magnetometer Modelling

In a similar fashion to what was described above, magnetometer modelling is also imple-
mented to follow the LEMI-020A magnetometer provided by Lviv Centre of Institute for
Space Research. Since, for the purposes of the current report, the attitude navigation
algorithm is developed to be used in sounding rockets, using coordinates of a launch site
and consulting [33], one can see that for altitude between 0 and 10 km the magnetic
field reduces by some 0.5% with a constant direction. The background field, thus, can
to sufficient accuracy be assumed constant. For a magnetic field, Bn, in the navigation
frame

Bb = RnbBn (3.18)

is how it evolves in the local/body coordinate frame. The model is augmented with bias
and random processes as discussed above taking the form of

Bb = RnbBn + bm + wm (3.19)

where Rnb is the rotation matrix from the navigation frame to the body frame, bm is
the bias of the magnetometer and wm a zero-mean Gaussian white noise with standard
deviation provided by the magnetometer datasheet.

3.3.1 Magnetometer Model Validation

Measurements with the magnetometer mounted on a rate table for different angular rates
around one axis were carried out. Based on the model described in (3.19), one would
expect for the magnetometer data to remain constant around the axis of rotation and
follow a sinusoidal form on the other two axes. This was not the case and what became
visible instead is that the presence of various electronic devices caused for the magnetic
field to lose uniformity. The magnetometer readings, thus, despite being periodic were
not sinusoidal (Fig. 3.9).

To counter this effect the magnetometer was moved so that one of its axis was as close
as possible to matching the axis of rotation. Since the precision of the positioning of the
magnetometer was not ideal some form of periodicity albeit greatly reduced remained
present (Fig. 3.10). The bias in (3.19) was treated as a constant value being measured
for an obtained set of measurements and subsequently removed. Fig. 3.11 shows how
simulated and experimental data compare to each other following the analysis stated
above.

35

0 5 10 15 20 25 30

time(s)

0

5

B
x

(µ
T

)

0 5 10 15 20 25 30

time(s)

-20

0

20

B
y

(µ
T

)

0 5 10 15 20 25 30

time(s)

-20

0

20

B
z

(µ
T

)

Figure 3.9: Magnetometer readings in x, y and z axes.

0 5 10 15 20 25 30

time(s)

-5

-4.5

-4

B
x

(µ
T

)

0 5 10 15 20 25 30

time(s)

-10

0

10

B
y

(µ
T

)

0 5 10 15 20 25 30

time(s)

-10

0

10

B
z

(µ
T

)

Figure 3.10: Magnetometer readings in x, y and z axes for differently positioned mag-
netometer.

36

0 5 10 15 20 25 30

time(s)

-10

0

10

B
x

(µ
T

)

0 5 10 15 20 25 30

time(s)

-10

0

10

B
y

(µ
T

)

0 5 10 15 20 25 30

time(s)

-10

0

10

B
z

(µ
T

)

Figure 3.11: Magnetometer readings in x, y and z axes. Emulated (blue curve) and
experimental (red curve) data comparison.

3.4 Quaternion-Based Unscented Kalman Filtering

3.4.1 Process Model

Given that, in this case, an IMU-driven system is studied, it is important to note that
the gyroscope-measured angular rate is

ωg = ωbnb. (3.20)

Following the notation in (3.20), the angular rate given by the IMU is that of the body (b
of the subscript) with respect to the navigation frame (n of the subscript) in local(body-
frame) coordinates (b of the superscript). It is deemed, thus, convenient to maintain this
locality in forming the process model in order to use directly the measured gyroscope
data without reverting them to their global value

ωG = ωnnb = Rnb ω
b
nb = Rnb ωg. (3.21)

The process model is formed by treating the change in orientation at each timestep as
infinitesimal, in essence a perturbation ∆q, an assumption which holds ground given the
high sampling rate of the gyroscope. The locality of this perturbation is maintained by
placing the quaternions in the following order

q̃ = q ⊗∆q. (3.22)

It is evident, as (3.22) shows, that at every timestep, the previous local coordinate frame,
q, is retrieved before being perturbed by ∆q. Following (3.2) a generic perturbation

37

quaternion is formed [7].

∆q =

[
cos
(
δθ
2

)
sin
(
δθ
2

)
n̂

]
=

[
∆qw
∆qv

]
(3.23)

δθ = |ωg|∆T (3.24)

n̂ =
ωg
|ωg|

(3.25)

The operation of (3.22) can be performed as a normal matrix product

q̃ = [∆q]q (3.26)

where

[∆q] =

[
∆qw −∆qv

ᵀ

∆qv ∆qwI3×3 − [∆qv]×

]
. (3.27)

[a]× is the skew-symmetric matrix of a vector, generally computed as

[a]× =

 0 −az ay
az 0 −ax
−ay ax 0

 . (3.28)

Replacing q̃ → qk, q → qk−1, ∆q → ∆qk, δθ → δθk gives the discrete-time process
model based on the quaternion kinematics. A 5 min measurement test was performed
on a rotation table with angular rate of 100 deg/s around the x-axis. The same test was
also emulated via the gyroscope model. Using the process model described above the
dead reckoning approach to obtaining attitude was used, and the attitude error in both
cases is presented in Fig.(3.12) and Fig.(3.13).

38

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

at
tit

ud
e

er
ro

r
(d

eg
)

Figure 3.12: Attitude error using IMU-obtained data.

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

at
tit

ud
e

er
ro

r
(d

eg
)

Figure 3.13: Attitude error using emulated data.

39

It is clear that the filtering procedure is necessary to keep the attitude error under
the desired threshold and that the gyroscope model is closely approximating the real
process. Using (3.26) to propagate attitude quaternion, in theory should maintain the
unity norm. However numerical errors accumulate over time, as evident in Fig.(3.14)
and can corrupt the result for longer flight times. A formulation of (3.26), as proposed
by [6] where correction factors η, λ are present is

λ = 1− ||q||2, (3.29)

η =
0.5

∆T
, (3.30)

q̃ = (I4×4(η · λ ·∆T) + [∆q])q (3.31)

which allows for the norm to stay close to unity at all times, as shown in Fig.(3.15)

0 50 100 150 200 250 300

time (s)

0

0.5

1

1.5

2

2.5

di
st

an
ce

 fr
om

 u
ni

ty
 n

or
m

×10-12

Figure 3.14: Absolute value of (||q|| − 1).

40

0 50 100 150 200 250 300

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

di
st

an
ce

 fr
om

 u
ni

ty
 n

or
m

×10-14

Figure 3.15: Absolute value of (||q|| − 1).

3.4.2 Challenges Posed by the Presence of Quaternions in UKF

The trivial way to tackle the problem is to formulate it with a state vector of the form

x = q =

[
qw
qv

]
. (3.32)

At this point it is useful to stress the physical importance of maintaining unity in the
norm. A quaternion rotates and scales a vector. The magnitude of scaling depends
on the quadrance of the quaternion |q|2. To maintain the size of the vector as it is,
keeping the rotation process faithful to reality, the quaternion must keep its quadrance
and implicitly its norm equal to 1.

Sigma-Point Generation
Generation of sigma points cannot follow the normal route as described in [6] which

is
X k−1 =

[
qk−1, qk−1 + γ

√
Pk−1, qk−1 − γ

√
Pk−1

]
. (3.33)

There are two main reasons for this.

• The covariance matrix dimensions correspond to the degrees of freedom of the
motion, in this case being a 3 × 3 matrix. It cannot be added to a 4-dimensional
state vector.

• The additive property, even if it was possible, causes violation of the unit norm
constraint of the quaternion.

41

The difference in dimensionality is resolved following a procedure described in [7]. Unit
quaternions, qW , are constructed using (3.2), off the columns of

W i,i+n = columns
(
±γ
√

(Pk−1 + Rv)
)
. (3.34)

Sigma points are then formulated via multiplication

X k−1 = [qk−1, qk−1 ⊗ qW] . (3.35)

The additive property as stated in (3.33) can be used, on condition that it is followed
by normalization [8]. However this is an ad-hoc solution which is not desirable, since it
is “nesting” in the scalar part of the quaternion, information originally present in the
vector part and vice-versa. Using the process model as described above the sigma points
can be propagated to obtain

X ∗k|k−1 = F (X k−1). (3.36)

Averaging Quaternions
The process of averaging or weighted averaging is crucial for the implementation

of the UKF. As far as quaternions are concerned, however, non-commutation poses a
challenge. Sigma-point generation provides a set of rotations that reflect the uncertainty
bounds as laid forth in the covariance matrices. This set is not a sequence of rotations
and no order in it exists, therefore, averaging lacks physical sense. In [34] it is claimed
that averaging rotations can be approximated by the barycentric mean of the quaternions
followed by renormalization,

q
k

=

∑2L
i=0W

(m)
i X ∗i,k|k−1

|
∑2L

i=0W
(m)
i X ∗i,k|k−1|

. (3.37)

An issue with this approach is that possible quaternions q and −q as obtained from
the sigma-point generation cancel each other out, despite the fact that they describe
the exact same rotation. The problem can be treated as one of averaging the squared
Frobenius norm of the attitude matrix differences as stated in [35],

q
k

= argmin
q
k
∈S3

2L∑
i=0

W
(m)
i ||A(q)−A(X ∗i,k|k−1)||2F . (3.38)

where S3 denotes the unit 3-sphere. (3.38) is further shown in [35] to transform into a
maximization problem of the form,

q
k

= argmax
q
k
∈S3

qTMq, (3.39)

for

M =

2L∑
i=0

W
(m)
i X ∗i,k|k−1X

∗
i,k|k−1

T. (3.40)

42

The solution to (3.39) is the eigenvector of M which corresponds to its maximum eigen-
value. For positive eigenvalues the power iteration can be used to provide a solution.

Reconstructing the Covariance Matrix
A dominant process in the UKF algorithm is the construction of a covariance matrix

after obtaining the mean and sigma-points. It is calculated as follows,

P−k =
2L∑
i=0

W
(c)
i [X ∗i,k|k−1 − x̂k][X ∗i,k|k−1 − x̂k]

T + Rv. (3.41)

In the case of quaternion-based UKF, the dimensionality difference between the co-
variance matrix and quaternions, as well as the physical properties of the quaternions,
prohibit the use of the normal procedure described above. In rotation space, the dif-
ference between two rotations q1 and q2 cannot be found via subtraction, instead it is
found as,

e12 = d(q1, q2) = q1 ⊗ q−1
2 . (3.42)

A set of rotation quaternions {ei}2Li=0 is calculated between the newly computed mean
q
k

and the sigma points X ∗i,k|k−1,

e∗i,k|k−1 = d(X ∗i,k|k−1, qk) = X ∗i,k|k−1 ⊗ q
−1
k
. (3.43)

This is then transformed into a set of rotation vectors {ẽ∗i,k|k−1}
2L
i=0, using (3.6), to tackle

the dimensionality problem [7]. The covariance is now computed as

Pk =

2L∑
i=0

W
(c)
i ẽ∗i,k|k−1ẽ

∗T
i,k|k−1. (3.44)

Measurement Update
On obtaining a new mean q

k
and covariance, sigma points X k|k−1 can be computed

using (3.35). They are subsequently transformed to sigma measurement points via

Yk|k−1 = H[X k|k−1]. (3.45)

For measurement instruments such as magnetometers or sunsensors which measure vec-
tors the rest of the UKF algorithm can follow the procedure as stated in [6] with the
distinction that the cross-covariance is calculated as

Pxkyk =
2L∑
i=0

W
(c)
i ẽi,k|k−1[Yi,k|k−1 − ŷ−k]T (3.46)

where ẽi,k|k−1 is calculated similarly to (3.43). This concludes the direct method. It
is evident that many steps of the generic Unscented Formulation need to be altered to
account for the unique characteristics of the quaternions. In order for the algorithm to
maintain its structure a marginalised approach is presented below.

43

3.4.3 Error State UKF

The two basic properties of the quaternions that dictate the changes in the UKF formu-
lation presented above are the following.

• non-commutation

• dimensionality difference with the unity norm constraint that comes with it.

Both of them can be disregarded in infinitesimal rotation space, without loss of generality.
This leads to an alternative large signal-small signal approach as shown in Fig. 3.16.

• in the first phase (large signal dominant), nominal state kinematics are used to
provide an estimate of the attitude. This phase lasts as long as the high frequency
IMU data are gathered without being interrupted by other types of data (such as
the magnetometer ones). During this phase the error-state is continuously predicted
via the error state kinematics of (3.48).

• in the second phase (small signal dominant), upon gathering data from other sen-
sors, the error state prediction is corrected and the error state estimate is used to
correct the attitude estimate.

• after the correction of the attitude estimate, the error state is reset and the process
is repeated in a cyclic fashion.

Figure 3.16: Error State Filtering Procedure.

44

The error state kinematics as will be presented below, due to their infinitesimal nature
can be decoupled of commutation; furthermore, using the quaternion exponential ap-
proach the error quaternion can be faithfully recreated from a 3-dimensional error angle
vector. The result is that by incorporating the error angle vector in the state vector
one is able to follow the generic UKF approach without any custom changes to it. The
distinction between nominal and error states is clearly presented in Table 3.1. A more
detailed look on the error state approach as well as the theoretical derivations behind it
can be seen in [12].

Table 3.1: True, Nominal & Error States.

Magnitude True Nominal Error Composition

Full State xt x δx x⊕ δx
Quaternion qt q δq q⊗ δq
Rotation Matrix Rt R δR RδR

Angles Vector δθ δq = e
δθ
2

Angular Rate ωg ω δω ω ⊕ δω

The nominal and error state kinematics are also derived in [12] and are as follows,

q ← q ⊗ q{(I3×3 +Mg)
−1(ω̃g − bg0)∆T}, (3.47)

δθ ← RT((I3×3 +Mg)
−1(ω̃g − bg0)∆T)δθ + θi, (3.48)

with θi a random impulse equal to

θi = (I3×3 +Mg)
−1wg∆T. (3.49)

Prediction Step
While (3.47) is used in the large signal dominant phase to provide updates on the

attitude quaternions, in the background a UKF prediction step takes place where

x̂ = δθ = RT((I3×3 +Mg)
−1(ω̃g − bg0)∆T)δθ = F (δθ), (3.50)

Rv = θiθ
T
i = (I3×3 +Mg)

−1σ2
wg∆T

2(I3×3 +Mg)
−T (3.51)

are plugged in the known algorithm,

X k−1 =
[
x̂k−1, x̂k−1 + γ

√
Pk−1, x̂k−1 − γ

√
Pk−1

]
, (3.52)

X ∗k|k−1 = F[X k−1,uk−1], (3.53)

x̂−k =
2L∑
i=0

W
(m)
i X ∗i,k|k−1, (3.54)

P−k =
2L∑
i=0

W
(c)
i [X ∗i,k|k−1 − x̂−k][X ∗i,k|k−1 − x̂−k]T + Rv. (3.55)

45

What one expects from (3.50)-(3.51) is for the a priori estimate of the error state,

x̂−k = δθ̂
−
k , during this prediction step to remain zero and the a priori estimate of the

state covariance, P−k , to grow over time.

Correction Step
It is important, for the sake of keeping the integrity of the UKF Algorithm, to

formulate the measurement sigma points in a way that it keeps the error-state vector,
δθ, in the UT loop. In [12], for example, this is not the case; the measurement vector
is dependent on normal quaternions which means that the sigma measurement points
would have to be formulated via quaternion multiplication as stated in (3.35). Instead,

for calculated P−k , x̂−k = δθ̂
−
k and nominal attitude, q−k , the sigma measurement points

are expected to have a weighted average equal to the measurement vector calculated
using the nominal attitude,

ŷ−k = H(q−k). (3.56)

The sigma measurement points are scattered around this mean in distances that are
calculated by

X k|k−1 =

[
x̂−k , x̂

−
k + γ

√
P−k , x̂

−
k − γ

√
P−k

]
, (3.57)

Y∗k|k−1 = H[X k|k−1] (3.58)

so that the sigma measurement points can be found via element-wise addition,

Yk|k−1 = ŷ−k ⊕Y∗k|k−1. (3.59)

Using the measurement instrument datasheet a measurement noise covariance can be
determined, Rn, and the rest of the process is as follows.

Pỹkỹk =

2L∑
i=0

W
(c)
i [Yi,k|k−1 − ŷ−k][Yi,k|k−1 − ŷ−k]T + Rn, (3.60)

Pxkyk =
2L∑
i=0

W
(c)
i [Xi,k|k−1 − x̂−k][Yi,k|k−1 − ŷ−k]T, (3.61)

Kk = Pxkyk(Pỹkỹk)−1, (3.62)

x̂k = x̂−k +Kk(yk − ŷ−k), (3.63)

Pk = P−k −KkPỹkỹkK
T
k . (3.64)

For x̂k = δθk, the attitude correction can be made as,

q+
k = q−k ⊗ e

δθk
2 . (3.65)

46

Error State Reset
The error-state δθ after the correction step must be reset to zero, which also carries

some modification onto the covariance. According to [12] this can be done as

δθ = 0, (3.66)

P+
k ← GP+

k G
T, (3.67)

G = I3×3 − [
1

2
δθ]×. (3.68)

In most cases G ≈ I3×3 and the reset is trivial. If this is the case in the attitude
navigation implementation it will further diminish the customization of the algorithm.

47

Chapter 4

Results

The attitude navigation algorithm was tested in the following simulation setups.

(A) A gyroscope model in MATLAB with similar characteristics to the one present in the
STIM300 IMU was implemented, as described in chapter 3.2. Data were emulated
for a user-defined angular rate and combined with similarly acquired magnetometer
ones to estimate the attitude.

(B) The STIM300 IMU was mounted in a rate table and spun for a user-defined an-
gular rate. Data from the gyroscope were collected and inserted in the MATLAB
implementation of the attitude navigation algorithm. They were combined with
emulated magnetometer data for the same angular rate to estimate the attitude.

(C) Experimental data from both the gyroscope of the STIM300 IMU and the LEMI-020A
magnetometer were combined to provide attitude estimation.

The rate table was considered to be highly accurate and to be spinning with the user-
defined angular rate, i.e. its errors being negligible. By inputting this angular rate in
place of ωg in (3.22) – (3.25) the true evolution of attitude, qt was obtained. This was,
subsequently, compared to the one estimated by the algorithm, qe, the results being
plotted below.

In quaternion space, the correction of the estimated attitude due to the presence of
the filter is not trivially visible. It most prominently manifests in the evolution of the
attitude error angle which is obtained as follows. For every time-step, the qt and the qe
differ by some

δq =

[
δqw
δqv

]
(4.1)

which can be computed as shown in (3.42). The δq practically describes the rotation
needed to go from the estimated attitude to the true one. Given this δq, the attitude
error angle is

θ = 2 arccos(δqw). (4.2)

The three mathematical tools described above namely (i) the cumulative quaternions qt
and qe (ii) the attitude error quaternion δq and (iii) angle θ are used to gain insight in

48

the filter mechanization process and how the deterministic and stochastic errors affect
the performance of the UKF.

4.1 Effect of Gyroscope Errors in Attitude Determination

The effect of gyroscope errors is shown below using the first simulation setup as presented
above. However, for a complete review of how everything operates, the analysis begins
with the dead reckoning approach (3.22)-(3.25) both for the true angular rate and the one
measured by the gyroscopes. In quaternion space the attitude evolution is presented in
Fig. 4.1. Deterministic and stochastic errors on the gyroscope cause for the estimation to
diverge or drift from the true attitude. This drift is clearly seen (Fig. 4.2) by magnifying
the top plot of Fig. 4.1.

0 50 100 150 200 250 300
-1

0

1

0 50 100 150 200 250 300
-1

0

1

0 50 100 150 200 250 300
-2

0

2
×10-3

0 50 100 150 200 250 300

time (s)

-2

0

2
×10-3

Figure 4.1: Evolution of qt (blue curve) and qe (red curve) over a period of 300 s at a rate
of 100 deg/s. The top plot is the scalar part of the quaternions qw while the rest three
the vector part qv. The presence of errors is especially visible in the state evolution on
the two latter plots.

49

295 296 297 298 299 300

time (s)

-1

-0.5

0

0.5

1

Figure 4.2: Evolution of the scalar part (qw) of qt (blue curve) and qe (red curve) over
a period of 300 s at a rate of 100 deg/s, limiting the timespan between 295 and 300 s.
The blue curve is drifting away from the red curve as time goes thereby increasing the
discrepancy between the true and estimated attitude.

After the dead reckoning approach was presented, the main filtering algorithm was
tested without prefiltering or accounting for the bias the results being shown in Figs. 4.3 –
4.4.

0 50 100 150 200 250 300
-1

0

1

0 50 100 150 200 250 300
-1

0

1

0 50 100 150 200 250 300
-0.1

0

0.1

0 50 100 150 200 250 300

time (s)

-0.1

0

0.1

Figure 4.3: Evolution of qt (blue curve), qe with no filter enabled (red curve) and qe with
the error-state UKF enabled (yellow curve) over a period of 300 s at a rate of 100 deg/s.
The top plot is the scalar part of the quaternions qw while the rest three the vector part
qv.

50

295 296 297 298 299 300

time (s)

-1

-0.5

0

0.5

1

Figure 4.4: Evolution of the scalar part (qw) of qt (blue curve), qe with no filter enabled
(red curve) and qe with the error-state UKF enabled (yellow curve), over a period of 300
s at a rate of 100 deg/s, limiting the timespan between 295 and 300 s. The yellow curve
closely follows the red curve indicating that the filter is partly working.

By using the error-state UKF as described in chapter 3.4 the behavior of the esti-
mated quaternion changes as shown in Fig. 4.3. Despite the drift in the top plot being
largely corrected, something visible also in Fig. 4.4, errors intensify in the two latter
plots which is a physical manifestation of the suboptimality of the UKF in the presence
of unfiltered or unaccounted for in the model, deterministic bias. This is a direct con-
sequence of the violation of the unbiased assumption which is a necessary condition for
the UKF to be optimal as described in chapter 2.1.

This becomes clear in Figs. 4.5 – 4.6, where the correction is visible in the scalar part
of the error quaternion and consequently the error angle. While the filter is managing
to attenuate the discrepancy between estimation and reality, it is not able to provide a
bounded response.

51

0 50 100 150 200 250 300
0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Figure 4.5: Evolution of the scalar part (δqw) of the attitude error quaternion, δq, with
no filter enabled (blue curve) and with the error-state UKF enabled (red curve), over a
period of 300 s at a rate of 100 deg/s. A bounded curve close to 1 would be the desirable
behavior as evident in (4.2)

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

at
tit

ud
e

er
ro

r
(d

eg
)

Figure 4.6: Attitude error angle at a rate of 100 deg/s, with UKF disabled (blue curve)
and enabled (red curve)

52

4.2 Attitude Determination with Bias Compensation

In the current implementation of the algorithm, (3.16) is used to model the gyroscope,
out of which ωg which enters the filter is computed, with bias being taken as a constant
value bg = bg0. The reason for this is the ease of implementation and the fact that in-
run bias drift was found to only be present in a small scale. The value of this constant
bias term, usually referred to as turn on bias was computed by finding the mean on
data collected from the true gyroscope after a 30 min static measurement test. By
compensating for it in this manner in the attitude navigation algorithm, results were
obtained regarding the performance of the estimator, in a 5 min simulation run, using
the first simulation setup (Fig. 4.7 and Fig. 4.8), the second simulation setup (Fig. 4.9
and Fig. 4.10) and the third simulation setup (Fig. 4.9 and Fig. 4.10).

Results for the two latter cases where experimental data are being used (Figs. 4.9 –
4.12) show that the error although being higher has a bounded character close to a limit
of 1 degree. Not accounting for bias instability, incorporating a rudimentary modelling
instead may be the cause of the higher error, the response although has the properties
that one seeks through the sensor fusion implementation.

53

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

at
tit

ud
e

er
ro

r
(d

eg
)

Figure 4.7: The attitude error angle, θ, using the error-state UKF (red curve) stays
bounded unlike that of the dead reckoning approach (blue curve), determining the va-
lidity of the procedure.

0 50 100 150 200 250 300

time (s)

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Figure 4.8: The scalar part, δqw, of the attitude error quaternion, δq, also shows little
deviation from 1 in the presence of the filter (red curve) which is not the case without
it (blue curve).

54

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

a
tt
it
u
d
e
 e

rr
o
r

(d
e
g
)

Figure 4.9: The attitude error angle, θ, is presented in a similar fashion to Fig. 4.7 but
for the second simulation setup.

0 50 100 150 200 250 300

time (s)

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Figure 4.10: The scalar part, δqw, of the attitude error quaternion, δq, is presented in a
similar fashion to Fig. 4.8 but for the second simulation setup.

55

0 50 100 150 200 250 300

time (s)

0

2

4

6

8

10

12

14

a
tt

it
u

d
e

 e
rr

o
r

(d
e

g
)

Figure 4.11: The attitude error angle, θ, is presented in a similar fashion to Fig. 4.7 but
for the third simulation setup.

0 50 100 150 200 250 300

time (s)

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

Figure 4.12: The scalar part, δqw, of the attitude error quaternion, δq, is presented in a
similar fashion to Fig. 4.8 but for the third simulation setup.

56

4.3 Filter Structural Characteristics

At this point it is beneficial to look at the structure of the filter in order to gain deeper
understanding of how it works and what is the error tolerance in the initial estimation.
Usually in the presence of filters correction of the state trajectory takes place every time
the correction step of the filtering algorithm is completed. This becomes visible in the
results in the form of the estimated state trajectory following the true one. In the current
case, where the magnetometer operates at 1/4th of the frequency of the gyroscope, the
correction step takes place every 4th timestep. This behavior, though, is not visible
in the evolution of the angle θ as it is not present in the state vector. The filter, as
described in chapter 3.4, contains infinitesimal (error) quaternions and it is there where
the filter can be seen acting. Fig. 4.13 shows clearly this process.

0.412 0.414 0.416 0.418 0.42 0.422 0.424

time(s)

0.999999962

0.999999964

0.999999966

0.999999968

0.99999997

0.999999972

0.999999974

unfiltered

filtered with bias compensation

Figure 4.13: The y-axis is the scalar part, δqw, of the attitude error quaternion, δq. As it
is seen the estimated state trajectory using the error-state UKF (red curve) is corrected
every 4 timesteps (actions denoted by the black arrows). This is not present in the dead
reckoning approach (blue curve).

A way to investigate if the filter is indeed working as expected is to look at the
evolution of the variances (Fig. 4.14) of the state vector elements. These should converge
denoting that the confidence of the estimation grows over time since the region around
the estimated state (where the true state resides) becomes smaller.

Apart from the evolution of the variances, their initial value is also of great impor-
tance. This value shows how close the estimated initial orientation is to the real one and
was chosen to be 10−6deg2 . What this practically means is that one can derive the tol-
erance between true and estimated initial attitude by computing the standard deviation
taken from the initial variance, i.e., its square root. In this case this is

√
10−6 = 10−3

deg or 1 mdeg. This is on the same order of magnitude of the tolerance taken by [36].

57

0 1 2 3 4 5 6 7 8 9 10

time (s)

0

0.2

0.4

0.6

0.8

1

1.2

co
va

ria
nc

e

×10-6

Figure 4.14: Variance evolution over time for the error angle denoting the rotation
around the x-axis (blue curve), the y-axis (red curve) and the z-axis (yellow curve).

58

Chapter 5

Conclusion

Through the duration of this thesis a number of objectives were met. At first a generic
UKF algorithm was implemented in MATLAB and tested on a 3DOF robot with perfor-
mance being compared to an equivalent C++ implementation. The results showed a near
identical response for the two, validating the MATLAB design as an accurate one. The
SRUKF variant was implemented as well to provide numerical robustness to the filter,
with results showing the desirable behavior. The research extended and eventually en-
compassed other formulations (the UIF and the SRUIF) as well whose implementations
were also validated on the same 3DOF robot application.

The gyroscope used in the experiments was modeled in order for the user to be
able to generate emulated data. An Allan Variance analysis was done to compare the
instrument to its model counterpart to determine important quantities in the stochastic
processes used. These quantities were later used in the model whose performance was
determined to closely resemble that of the actual gyroscope. The magnetometer was
also modelled using datasheet for determining quantities in the stochastic processes
present and the comparison between the data obtained by model and the measurement
instrument showed equivalent performance.

The object of quaternion-based UKF was thoroughly researched, resulting in the
proposal of an extension of the error-state approach previously seen in EKF to the UKF
one. In this way no need for special alterations to the filtering ecosystem are required The
concept of this quaternion-based error-state UKF was validated using real and emulated
gyroscope data and magnetometer data.

The results concerning the attitude navigation algorithm show that the filter is
achieving sound operation given a faithful initialisation procedure with error tolerance
of about 1 mdeg. The attitude error angle gives a bounded response staying below 1
degree for the 5 min of the expected flight time of a sounding rocket in the emulated
data setup. Experimental results showed it to settle below 1 deg after 2.5 min of flight
time.

The error-state formulation maintains the genericness of the filtering algorithm, an
attribute that should be noted as most quaternion-based UKF demand special modifi-
cations to run efficiently. The structure of the algorithm gives the ability for the state

59

vector to be trivially augmented in order to estimate other interesting quantities, e.g.,
the position, the velocity etc.

5.1 Future Work

The attitude navigation algorithm can be further refined in the following ways

• The state vector can be augmented with bias, scale factor or other error terms and
use a more intricate stochastic process, e.g., a random walk or a Gauss-Markov
process for a more robust modelling

• The same should be done for the magnetometer and possible fusion with other
sensors, like sun-sensors.

• A C++ equivalent application should be developed and test the algorithm in real
time. Considerations that come with it like data acquisition and scheduling should
be taken into account.

• The initialization phase should be determined and put into the model. More
specifically, how the initial attitude and bias terms will be obtained.

• The numerically robust SRUIF should be thoroughly examined based on the pre-
liminary results shown here.

60

Bibliography

[1] B. Tong Minh, “Real-time Position and Attitude Determination of the Stratos II
Sounding Rocket.” https://repository.tudelft.nl/islandora/object/uuid%

3A9ea7cdf8-ae8b-4131-8647-c07794fe4a20, 2012.

[2] M. D. Shuster, “The generalized Wahba problem,” Journal of the Astronautical
Sciences, vol. 54, no. 2, p. 245, 2006.

[3] R. E. Kalman et al., “A new approach to linear filtering and prediction problems,”
Journal of basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.

[4] E. Wan and R. Van Der Merwe, “Chapter 7: The unscented kalman filter,” Kalman
Filtering and Neural Networks, pp. 221–280, 2001.

[5] R. Van Der Merwe and E. A. Wan, “The square-root unscented Kalman filter
for state and parameter-estimation,” in Acoustics, Speech, and Signal Processing,
2001. Proceedings.(ICASSP’01). 2001 IEEE International Conference on, vol. 6,
pp. 3461–3464, IEEE, 2001.

[6] R. Van Der Merwe, E. A. Wan, S. Julier, et al., “Sigma-point Kalman filters for
nonlinear estimation and sensor-fusion: Applications to integrated navigation,” in
Proceedings of the AIAA Guidance, Navigation & Control Conference, pp. 16–19,
2004.

[7] E. Kraft, “A quaternion-based Unscented Kalman Filter for Orientation Tracking,”
in Sixth International Conference of Information Fusion, 2003. Proceedings of the,
vol. 1, pp. 47–54, July 2003.

[8] Y.-J. Cheon and J.-H. Kim, “Unscented filtering in a unit quaternion space for
spacecraft attitude estimation,” in Industrial Electronics, 2007. ISIE 2007. IEEE
International Symposium on, pp. 66–71, IEEE, 2007.

[9] M. S. Challa, J. G. Moore, and D. J. Rogers, “A simple attitude unscented kalman
filter: Theory and evaluation in a magnetometer-only spacecraft scenario,” IEEE
Access, vol. 4, pp. 1845–1858, 2016.

[10] J. L. Crassidis, “Sigma-point Kalman filtering for integrated GPS and inertial nav-
igation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 2,
pp. 750–756, 2006.

61

https://repository.tudelft.nl/islandora/object/uuid%3A9ea7cdf8-ae8b-4131-8647-c07794fe4a20
https://repository.tudelft.nl/islandora/object/uuid%3A9ea7cdf8-ae8b-4131-8647-c07794fe4a20

[11] M. Shuster, E. Lefferts, and F. Markley, “Kalman filtering for spacecraft attitude
estimation,” in AIAA 20th Aerospace Sciences Meeting, Orlando, Florida, vol. 232,
1982.

[12] J. Sola, “Quaternion kinematics for the error-state KF.” http://www.iri.upc.

edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf, 2017.

[13] G. Bishop and G. Welch, “An introduction to the kalman filter,” Proc of SIG-
GRAPH, Course, vol. 8, no. 27599-23175, p. 41, 2001.

[14] H. W. Sorenson, “Least-squares estimation: from Gauss to Kalman,” IEEE spec-
trum, vol. 7, no. 7, pp. 63–68, 1970.

[15] C. S. Adam, “Kalman Filtering: A Bayesian Approach,” 2010. Princeton University.

[16] H. Durrant-Whyte et al., “Introduction to estimation and the Kalman filter,” Aus-
tralian Centre for Field Robotics, vol. 28, no. 3, pp. 65–94, 2001.

[17] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach for filtering
nonlinear systems,” in American Control Conference, Proceedings of the 1995, vol. 3,
pp. 1628–1632, IEEE, 1995.

[18] M. Herb, “kalman.” https://github.com/mherb/kalman, 2015.

[19] G. Liu, F. Wörgötter, and I. Markelic, “The Square-root Unscented Information
Filter for State Estimation and Sensor Fusion.,” in SENSORNETS, pp. 169–173,
2012.

[20] L. DO Q, “Numerically efficient methods for solving least squares problems.” http:

//math.uchicago.edu/~may/REU2012/REUPapers/Lee.pdf, 2012.

[21] D.-J. Lee, “Nonlinear estimation and multiple sensor fusion using unscented infor-
mation filtering,” IEEE Signal Processing Letters, vol. 15, pp. 861–864, 2008.

[22] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation
vectors,” Matrix, vol. 58, no. 15-16, pp. 1–35, 2006.

[23] http://easyspin.org/documentation/eulerangles.html.

[24] J. Chai, “Computer graphics rotation representation and interpolation.” http://

slideplayer.com/slide/5157731/. Texas A&M University.

[25] J. Ferguson, “Calibration of Deterministic IMU Errors.” http://commons.erau.

edu/pr-honors-coe/2, 2015.

[26] D. Gebre-Egziabher, “Design and performance analysis of a low-cost aided dead
reckoning navigator,” PhD Thsis, Standford University, 2004.

[27] “STIM300 IMU specifications.” http://www.sensonor.com/media/91313/

ts1524.r8%20datasheet%20stim300.pdf.

62

http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
http://www.iri.upc.edu/people/jsola/JoanSola/objectes/notes/kinematics.pdf
https://github.com/mherb/kalman
http://math.uchicago.edu/~may/REU2012/REUPapers/Lee.pdf
http://math.uchicago.edu/~may/REU2012/REUPapers/Lee.pdf
http://easyspin.org/documentation/eulerangles.html
http://slideplayer.com/slide/5157731/
http://slideplayer.com/slide/5157731/
http://commons.erau.edu/pr-honors-coe/2
http://commons.erau.edu/pr-honors-coe/2
http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf
http://www.sensonor.com/media/91313/ts1524.r8%20datasheet%20stim300.pdf

[28] O. J. Woodman, “An introduction to inertial navigation,” tech. rep., University of
Cambridge, Computer Laboratory, 2007.

[29] P. Petkov and T. Slavov, “Stochastic modeling of MEMS inertial sensors,” Cyber-
netics and information technologies, vol. 10, no. 2, pp. 31–40, 2010.

[30] A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A comparison be-
tween different error modeling of MEMS applied to GPS/INS integrated systems,”
Sensors, vol. 13, no. 8, pp. 9549–9588, 2013.

[31] W. Flenniken, J. Wall, and D. Bevly, “Characterization of various IMU error sources
and the effect on navigation performance,” in Ion Gnss, pp. 967–978, 2005.

[32] R. Gonzalez, J. I. Giribet, and H. D. Patiño, “NaveGo: a simulation framework
for low-cost integrated navigation systems,” Journal of Control Engineering and
Applied Informatics, vol. 17, no. 2, pp. 110–120, 2015.

[33] “Magnetometer calculator.” https://www.ngdc.noaa.gov/geomag-web/.

[34] C. Gramkow, “On averaging rotations,” Journal of Mathematical Imaging and Vi-
sion, vol. 15, no. 1, pp. 7–16, 2001.

[35] F. L. Markley, Y. Cheng, J. L. Crassidis, and Y. Oshman, “Averaging quaternions,”
Journal of Guidance Control and Dynamics, vol. 30, no. 4, p. 1193, 2007.

[36] J. K. Bekkeng, “Prototype Development of a Low-Cost Sounding Rocket Attitude
Determination System and an Electric field Instrument,” Article, UiO, vol. 5, 2007.

63

https://www.ngdc.noaa.gov/geomag-web/

	Abstract
	Sammanfattning
	Acknowledgement
	Acronyms
	Introduction
	Background and Motivation
	Related Work
	Thesis Outline

	MATLAB Implementation of an Unscented Kalman Filter
	Linear Kalman Filter
	Unscented Kalman Filter
	MATLAB Implementation
	Standard to Square-Root Equivalence
	MATLAB Implementation Considerations
	MATLAB Implementation Design Principles
	Application on a 3DOF Robot

	Results
	Unscented Information Filter
	Formulation
	Results

	Quaternion-Based Attitude Navigation Algorithm
	Orientation Basics
	Position Determination
	Orientation Determination

	Gyroscope Modelling
	Bias Model
	Allan Variance Analysis
	Gyroscope Model Validation

	Magnetometer Modelling
	Magnetometer Model Validation

	Quaternion-Based Unscented Kalman Filtering
	Process Model
	Challenges Posed by the Presence of Quaternions in UKF
	Error State UKF

	Results
	Effect of Gyroscope Errors in Attitude Determination
	Attitude Determination with Bias Compensation
	Filter Structural Characteristics

	Conclusion
	Future Work

	Bibliography

