
Trusted Execution Environments 
for Open vSwitch 
A security enabler for the 5G mobile 
network 

KHALID ELBASHIR 
 

KTH ROYAL INSTITUTE OF TECHNOLOGY  
I N F O R M A T I O N  A N D  C O M M U N I C A T I O N  T E C H N O L O G Y  

DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND CYCLE 
STOCKHOLM, SWEDEN 2017 



 

 
 

Trusted Execution Environments 
for Open vSwitch 
A security enabler for the 5G 
mobile network 

Khalid Elbashir 

2017-11-17 

Master’s Thesis 

Examiner 
Gerald Q. Maguire Jr. 
 
Academic adviser 
Anders Västberg 
 
Industrial adviser 
Nicolae Paladi, RISE SICS 

 KTH Royal Institute of Technology 
School of Information and Communication Technology (ICT) 
Department of Communication Systems 
SE-100 44 Stockholm, Sweden 



Abstract
The advent of virtualization introduced the need for virtual switches to interconnect
virtual machines deployed in a cloud infrastructure. With Software Defined
Networking (SDN), a central controller can configure these virtual switches. Virtual
switches execute on commodity operating systems. Open vSwitch is an open source
project that is widely used in production cloud environments. If an adversary gains
access with full privileges to the operating system hosting the virtual switch, then
Open vSwitch becomes vulnerable to a variety of different attacks that could
compromise the whole network.

The purpose of this thesis project is to improve the security of Open
vSwitch implementations in order to ensure that only authenticated switches and
controllers can communicate with each other, while maintaining code integrity
and confidentiality of keys and certificates. The thesis project proposes a design
and shows an implementation that leverages Intel® Safe Guard Extensions (SGX)
technology. A new library, TLSonSGX, is implemented. This library replaces
the use of the OpenSSL library in Open vSwitch. In addition to implementing
standard Transport Level Security (TLS) connectivity, TLSonSGX confines TLS
communication in the protected memory enclave and hence protects TLS sensitive
components necessary to provide confidentiality and integrity, such as private
keys and negotiated symmetric keys. Moreover, TLSonSGX introduces new,
secure, and automatic means to generate keys and obtain signed certificates from
a central Certificate Authority that validates using Linux Integrity Measurements
Architecture (IMA) that the Open vSwitch binaries have not been tampered with
before issuing a signed certificate. The generated keys and obtained certificates
are stored in the memory enclave and hence never exposed as plaintext outside
the enclave. This new mechanism is a replacement for the existing manual and
unsecure procedures (as described in Open vSwitch project).

A security analysis of the system is provided as well as an examination of
performance impact of the use of a trusted execution environment. Results show
that generating keys and certificates using TLSonSGX takes less than 0.5 seconds
while adding 30% latency overhead for the first packet in a flow compared to using
OpenSSL when both are executed on Intel® CoreTM i7-6600U processor clocked at
2.6 GHz. These results show that TLSonSGX can enhance Open vSwitch security
and reduce its TLS configuration overhead.

Keywords Open vSwitch, SDN, Trusted Execution Environment, SGX, Cloud
Computing
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Sammanfattning
Framkomsten av virtualisering införde behovet av virtuella växlar för att
koppla tillsammans virtuella maskiner placerade i molninfrastruktur. Med
mjukvarubaserad nätverksteknik (SDN), kan ett centralt styrenhet konfigurera dessa
virtuella växlar. Virtuella växlar kör på standardoperativsystem. Open vSwitch är
ett open-source projekt som ofta används i molntjänster. Om en motståndare får
tillgång med fullständiga privilegier till operativsystemet där Open vSwitch körs,
blir Open vSwitch utsatt för olika attacker som kan kompromettera hela nätverket.
Syftet med detta examensarbete är att förbättra säkerheten hos Open vSwitch för
att garantera att endast autentiserade växlar och styrenheter kan kommunicera
med varandra, samtidigt som att upprätthålla kod integritet och konfidentialitet av
nycklar och certifikat.

Detta examensarbete föreslår en design och visar en implementation som
andvändar Intel®s Safe Guard Extensions (SGX) teknologi. Ett nytt bibliotek,
TLSonSGX, är implementerat. Detta bibliotek ersätter biblioteket OpenSSL i Open
vSwitch. Utöver att det implementerar ett standard “Transport Layer Security”
(TLS) anslutning, TLSonSGX begränsar TLS kommunikation i den skyddade min-
nes enklaven och skyddar därför TLS känsliga komponenter som är nödvändiga för
att ge sekretess och integritet, såsom privata nycklar och förhandlade symmetriska
nycklar. Dessutom introducerar TLSonSGX nya, säkra och automatiska medel för
att generera nycklar och få signerade certifikat från en central certifikatmyndighet
som validerar, med hjälp av Linux Integrity Measurements Architecture (IMA),
att Open vSwitch-binärerna inte har manipulerats innan de utfärdade ett signerat
certifikat. De genererade nycklarna och erhållna certifikat lagras i minnes enklaven
och är därför aldrig utsatta utanför enklaven. Denna nya mekanism ersätter de
manuella och osäkra procedurerna som beskrivs i Open vSwitch projektet.

En säkerhetsanalys av systemet ges såväl som en granskning av
prestandaffekten av användningen av en pålitlig exekveringsmiljö. Resultaten
visar att använda TLSonSGX för att generera nycklar och certifikat tar mindre än
0,5 sekunder medan det lägger 30% latens overhead för det första paketet i ett flöde
jämfört med att använda OpenSSL när båda exekveras på Intel ® Core TM processor
i7-6600U klockad vid 2,6 GHz. Dessa resultat visar att TLSonSGX kan förbättra
Open vSwitch säkerhet och minska TLS konfigurationskostnaden.

Nyckelord Open vSwitch, SDN, mjukvarudefinierade nätverk, SGX,
molntjänster

iii





Acknowledgements
First of all, I would like to express my gratitude to my examiner Professor Gerald
Q. Maguire Jr. for his invaluable feedback and guidance throughout the course of
this thesis project.

I would like to thank my supervisor from RI.SE SICS Security Lab, Dr.
Nicolae Paladi for giving me the opportunity to work on this thesis project and his
continuous support.

Special thanks to my wife, Marwa, for her support and understanding, my
parents, and to all my friends and in particular Mina Tawfik for the useful
discussions and suggestions.

Stockholm, November 2017
Khalid Elbashir

v





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.7 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Software Defined Networking . . . . . . . . . . . . . . . . . . . 5
2.2 Virtual Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Open vSwitch . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Trusted Execution Environment (TEE) . . . . . . . . . . . . . . . 11

2.3.1 Intel® SGX . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Linux Integrity Measurement Architecture . . . . . . . . . . . . . 14
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Security Model 19
3.1 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology 23
4.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2.1 Testbed Design . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Hardware and Software used . . . . . . . . . . . . . . . . 24

4.3 Planned Measurements . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 SDN Controller Program . . . . . . . . . . . . . . . . . . 27
4.3.2 Performance Measurements . . . . . . . . . . . . . . . . 27

4.4 Assessing reliability and validity of the data collected . . . . . . . 29
4.4.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Planned Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 30
4.5.1 Data Analysis Technique . . . . . . . . . . . . . . . . . . 30
4.5.2 Software Tools . . . . . . . . . . . . . . . . . . . . . . . 30

vii



5 Design and Implementation 31
5.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 31
5.2 System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 Design Iterations . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 Trusted TLS Library . . . . . . . . . . . . . . . . . . . . 33
5.2.3 TLSonSGX Library Design . . . . . . . . . . . . . . . . 33
5.2.4 Key and Certificate Generation . . . . . . . . . . . . . . . 38
5.2.5 Labelling Binaries and Performing Runtime Measurements 39
5.2.6 Switch to Controller TLS Connection Establishment . . . 40
5.2.7 Open vSwitch Modifications . . . . . . . . . . . . . . . . 41

6 Results and Analysis 43
6.1 Functional Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Performance Measurements Results . . . . . . . . . . . . . . . . 43

6.2.1 Keys and Certificate Generation Time . . . . . . . . . . . 44
6.2.2 Packet Round Trip Latency . . . . . . . . . . . . . . . . . 45

6.3 Compliance with Functional Requirements . . . . . . . . . . . . . 51
6.4 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 Conclusion and Future Work 53
7.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Required Reflections . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.1 Environmental and Sustainability Aspects . . . . . . . . . 55
7.3.2 Ethical Aspects . . . . . . . . . . . . . . . . . . . . . . . 55
7.3.3 Economic Aspects . . . . . . . . . . . . . . . . . . . . . 55

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



List of Figures
2.1 SDN in a cloud infrastructure . . . . . . . . . . . . . . . . . . . . 6
2.2 Open vSwitch Components and External Interfaces . . . . . . . . 9
2.3 Packets flow in in Open vSwitch [13] . . . . . . . . . . . . . . . 9
2.4 Inter Platform Attestation in SGX [23] . . . . . . . . . . . . . . 13
4.1 Planned Testbed (In this figure vNIC denotes a virtual NIC) . . . . 24
4.2 UDP Packet Path . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 Keys and Certificates Generation . . . . . . . . . . . . . . . . . . 39
5.2 Open vSwitch - SDN Controller TLS Connection Setup . . . . . . 41
6.1 UDP Packet Round Trip Latency vs. Packet Size . . . . . . . . . 48

ix





List of Tables
3.1 STRIDE threat analysis for Open vSwitch (Gray cells are threats

the thesis project defends against) . . . . . . . . . . . . . . . . . 21
4.1 Hardware Specifications . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Virtual Machine Specifications . . . . . . . . . . . . . . . . . . . 25
5.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 31
5.2 TLSonSGX: Library Initialization Methods . . . . . . . . . . . . 34
5.3 TLSonSGX: SSL_CTX Operation Methods - Part 1 . . . . . . . . 35
5.4 TLSonSGX: SSL_CTX Operation Methods - Part 2 . . . . . . . . 36
5.5 TLSonSGX: TLS Connection Setup and Shutdown Methods . . . 36
5.6 TLSonSGX: TLS Read and Write Operations Methods . . . . . . 37
5.7 TLSonSGX: Error Codes . . . . . . . . . . . . . . . . . . . . . . 38
6.1 Keys and Certificate Generation Time . . . . . . . . . . . . . . . 44
6.2 Packet Rate vs. Average CPU Utilization . . . . . . . . . . . . . . 47
6.3 Analysis of packet latency (all measurements are in milliseconds**) 50
6.4 Compliance with Functional Requirements . . . . . . . . . . . . . 51

xi





List of Acronyms and Abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
ARM Advanced RISC Machine

BIOS Basic Input/Output System

CA Certificate Authority
CBC Cipher Block Chaining
CPU Central Processing Unit
CRC Cyclic Redundancy Check

DPDK Data Plane Development Kit
DRAM Dynamic Random Access Memory

ECALL Call from Application to the Enclave
ECDHE Elliptic Curve Ephemeral Diffie Hellman
EPC Enclave Page Cache
EPID Enhanced Privacy ID

GRE Generic Routing Encapsulation

IAS Intel® Attestation Service
IMA Linux Integrity Measurement Architecture
IP Internet Protocol
IQR Interquartile Range

KVM Kernel-based Virtual Machine

L2 Layer 2
L3 Layer 3
L4 Layer 4
LSM Linux Security Modules

xiii



MAC Message Authentication Code
MTU Maximum Transmission Unit

NIC Network Interface Controller

OCALL Call from Enclave to the Application
OVS Open vSwitch
OVSDB Open vSwitch Database Management Protocol

PCR Platform Configuration Register
pps Packets Per Second
PTP Precision Time Protocol

RAM Random Access Memory
REE Rich Execution Environment
RSA Rivest–Shamir–Adleman

SDK Software Development Kit
SDN Software Defined Networking
SGX Safe Guard Extensions
SHA-1 Secure Hash Algorithm 1
SMACK Simplified Mandatory Access Control Kernel
SSL Secure Sockets Layer

TCB Trusted Computing Base
TCG Trusted Computing Group
TCP Transmission Control Protocol
TEE Trusted Execution Environment
TLS Transport Layer Security
TPM Trusted Platform Module
TXT Trusted Execution Technology

UDP User Datagram Protocol

VLAN Virtual Local Area Network
VMX Virtual Machine Extensions
vNIC Virtual NIC
VXLAN Virtual Extensible Local Area Network

xiv



1 Introduction
This chapter gives a brief background, description of the problem, and the goals of
this thesis project. The chapter concludes with the structure of the thesis.

1.1 Background
Software Defined Networking (SDN) is a network architecture that separates the
data and control planes. Through the use of a central controller, it is possible for
network operators to have a global view of the network and configure any of the
SDN switches in it.

The advent of virtualization introduced the need for virtual switches to
interconnect the virtual machines deployed in the cloud. Nowadays, virtual
switches are well integrated with cloud infrastructures supporting scaling of virtual
machines, isolation between cloud tenants, and rich packet forwarding capabilities.

1.2 Problem Definition
In a cloud infrastructure, virtual switches are fundamental elements as they
interconnect virtual machines. Both the virtual switches and virtual machines
execute on commodity operating systems which make them vulnerable to different
types of attacks that could compromise the whole network. Avoiding and
preventing these attacks is the core of the problem this thesis project addresses.
More specifically, this thesis investigates how to strengthen the security of virtual
switches in an SDN based cloud infrastructure.

1.3 Purpose
The purpose of this thesis is to improve the security of an Open vSwitch
implementation by identifying security sensitive components and confining them to
a trusted execution environment as well as enabling both the SDN controller
and verified virtual switches to establish and maintain authenticated secure
communication channels.

This improvement increases the security of the control plane, thus indirectly
increasing trust in the dataplane’s reliability and as a result helping cloud
infrastructure providers meet their service level agreements.

1



1.4 Goals
The goal of this thesis project is to strengthen the security and isolation of networks
in cloud infrastructures. This goal is divided into the following four sub-goals:

1. Perform a background study of a Trusted Execution Environment (TEE)
suitable for this thesis project.

2. Perform an analysis of Open vSwitch’s architecture in order to identify
security sensitive components that can be confined to a TEE.

3. Find out how to establish secure connections between SDN controllers and
virtual switches, such that connections can only be established from verified
virtual switches† towards authenticated SDN controllers.

4. Design and implement a prototype and evaluate it from both security and
performance perspectives.

1.5 Research Methodology
The thesis project utilizes a mix of applied and experimental research methods to
achieve the goals stated in Section 1.4. More details about the choice of research
methodology are given in Chapter 4.

1.6 Delimitations
The focus of this thesis project is virtual switches deployed on top of
x86 architecture commodity hardware; therefore, physical switches and other
architectures are out of the scope of this project. Although there are many virtual
switch implementations, this thesis project will consider only one open source
project: Open vSwitch.

The system model is limited to have only one SDN controller in the network.
The adversary’s capabilities are limited to those described in Section 3.1. Finally,
the implementation focusses on addressing the functional requirements described
in Section 5.1.

†This is explained further in Section 5.1
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1.7 Structure of the thesis
Chapter 2 introduces the necessary technical and theoretical background underlying
this thesis along with related work. Chapter 3 discusses the adversary model and
threat analysis. Chapter 4 discusses the method used to carry out this thesis,
while Chapter 5 presents in detail the functional requirements, the design of the
framework, and the implementation of the prototype.

Chapter 6 presents the results of the evaluation of the framework with regard
to its adherence to the requirements, performance measurements, and security
analysis of the framework. Finally, Chapter 7 states the limitations of this thesis
project, suggests future work, offers some reflections, and states some conclusions.
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2 Background
This chapter introduces the necessary theoretical and technical background for this
thesis. Section 2.1 gives background information about SDN. Then Section 2.2
introduces virtual switches with a specific focus on Open vSwitch and discusses its
different components. Section 2.3 describes different TEEs and then focuses on
Intel® Safe Guard Extensions (SGX). Linux Integrity Measurement Architecture
(IMA) is described in Section 2.4. Finally, Section 2.5 discusses related work.

2.1 Software Defined Networking
SDN is a networking architecture where control and data planes are separated. This
makes it possible to have a centralized controller where forwarding and routing
decisions are made and then these decisions are conveyed to the elements that
realize the data plane. Having a centralized controller enables easy configuration
of the whole network, despite the fact that this network could be composed of
equipment from multiple vendors. SDN provides an easy way to continuously
improve, update, and deploy new networking software and services on top of the
controller [1].

OpenFlow [2] has emerged as a widely used protocol between SDN controllers
and dataplane switches. A switch that supports OpenFlow has a flow table.
OpenFlow provides a standardized protocol to add or remove flows from this
table. Each rule in the flow table consists of a flow and an associated action. Flows
are identified by matching all or particular fields of Layer 2 (L2), Layer 3 (L3), and
Layer 4 (L4) headers along with the input port of the switch. Moreover, flows can
be either an exact match or wildcard match.

OpenFlow supports different actions, such as forward to a port, send packet to
controller, drop packets, or set certain values in the headers [3]. The flow table also
maintains priority and statistics (number of packets and bytes) per flow in the table
as well as the time the flow was last active (i.e. the time since the last packet in this
flow).

The adoption of OpenFlow has led to the introduction of many controller
platforms. Some of the most widely used open source controllers are POX, Ryu,
FloodLight, and OpenDayLight as per the survey in [4].
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2.2 Virtual Switches
Virtualization of computers introduced the need for a dataplane layer to interconnect
the different virtual machines. Virtual switches are implemented in software and
deployed in servers providing both inter and intra server connectivity for virtual
machines. Moreover, virtual switches enable network virtualization, by providing
a network abstraction decoupled from the underlying physical network that can
meet requirements, such as scaling the network to interconnect hundreds of virtual
machines and to provide isolation between different tenants [5]. Virtual switches
can also interoperate with hypervisors and provide rich forwarding and routing
capabilities based on information inferred from virtual machines’ properties .

In a cloud infrastructure, as depicted in Figure 2.1 and discussed in [6], the
cloud orchestrater invokes the SDN controller to connect virtual machines to virtual
switches. The SDN controller then configures the virtual switches (This occurs
via the communication shown as dashed lines. It is this communication that is
the focus of this thesis project). This configuration includes port settings, L2/L3
addresses of corresponding virtual machines, and the flows necessary to connect
virtual machines and external networks. Virtual machines that belong to different
tenants are isolated by placing them in different logical networks.

Physical Server

Physical Switch

NIC NIC

Virtual 
machine

Virtual 
machine

Virtual Switch

vNIC vNIC

Physical Server

NIC NIC

Virtual 
machine

Virtual 
machine

Virtual Switch

vNIC vNIC

Physical Server

NIC NIC

SDN 
Controller

Cloud 
Orchestrator

Virtual Switch

Figure 2.1: SDN in a cloud infrastructure

There are many virtual switches implementations. Linux bridge [7] is an
Ethernet switch implemented in the kernel that supports traffic filtering and
shaping. KVM [8] utilizes Linux bridge to provide connectivity between virtual
machines residing in the same server as well as connectivity to external networks.
Open vSwitch (OVS) [5] operates as both an Ethernet switch and an OpenFlow
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switch. We will discuss OVS in Section 2.2.1.

2.2.1 Open vSwitch
Open vSwitch (OVS) is an open source software switch that is widely used in
production environments and it is supported by many different Linux distributions.
In addition, it has been ported to Microsoft’s Windows operating systems [9].

Typically, OVS is deployed in the host and works with hypervisors (for example,
KVM) and container systems (such as Docker) and it interconnects the virtual
machines/containers and can utilize the physical network interfaces of the server
host.

In addition to operating as a standard Ethernet switch, OVS acts as an
OpenFlow switch by exporting an external interface that uses the OpenFlow
protocol. Through OpenFlow, OVS can send packets to the SDN controller
and receive flow table updates at runtime from the controller [5]. OVS exports
another external interface using the OVSDB management protocol. This enables
reading a switch’s configuration, creating or deleting switches, and changing switch
configurations (for example adding or deleting ports and configuring the quality of
service). Both OpenFlow and OVSDB support secure communication using the
Transport Layer Security (TLS) protocol.

Open vSwitch supports several different protocols (such as Virtual Local
Area Network (VLAN), Generic Routing Encapsulation (GRE), and Virtual
Extensible Local Area Network (VXLAN)) to isolate different tenants within
cloud environments.

An Open vSwitch implementation consists of three components [10] as shown
in Figure 2.2:

• Slow Path (ovs-vswitchd)
The slow path is implemented in user space by the ovs-vswitchd process.
It comprises the forwarding logic and has an OpenFlow interface. It also
maintains the flow table. The flow table can be manipulated manually by
using the ovs-ofctl command or by the external SDN controller using
OpenFlow. Using OpenFlow, the SDN controller can monitor flows, get
statistics for flows, and send packets to the switch.

7



• Fast Path (Data Path)
The fast path, also known as the data path, was initially implemented as
a kernel module. The fast path is where packet forwarding happens. The
data path maintains a cache of the flow table, while ovs-vswitchd uses
Netlink sockets to update this cache table with flows and associated actions.

Packets arriving from a physical or virtual Network Interface Cards (NICs)†

are received by the data path. The data path searches its cached flow table
for a matching flow, otherwise it forwards the packet over the Netlink socket
to ovs-vswitchd for it to decide how the packet will be handled. Upon
receiving the packet the ovs-vswitchd process will send the needed
update for the cache table along with the original packet that will now be
forwarded based upon the new entry in the cached flow table. As a result,
subsequent packets in the same flow will be handled completely by the data
path. When ovs-vswitch does not find a match in its flow table, it sends the
packet to the SDN controller which decides how the packet is to be processed
and then sends an update to the flow table along with the original packet and
an action to forward it according to the newly installed flow table entry [11].
The packet flow in fast path and slow path are shown in Figure 2.3. The
cached flow table can also be accessed using the ovs-dpctl command.

Initially, the cached flow table was designed to support microflow caching, i.e.
exact matches on all packet header fields. However, this caused performance
degradation when deployed with a large number of short lived connections
[10]. As a result, megaflow caching was introduced in which flows can be
aggregated leading to a two-level cache.

The introduction of the Data Plane Development Kit (DPDK)‡ enabled the
data path to be implemented in user space, thus providing high performance
packet processing. This results in higher network throughput and lower
latency [12]. The inter process communication between the two user
space processes (ovs-vswitchd and data path) is done using a ring data
structure in shared memory.

• Configuration Database (ovsdb-server)
The ovsdb-server maintains a persistent database where all switch

†The term NIC is used to refer to a network interface even where there is not actually
a circuit card involved.

‡DPDK was initially introduced by Intel®, but it is now a Linux Foundation Project.
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configurations are stored. It exposes an external interface using the OVSDB
management protocol. Additionally, the ovs-vsctl command can be
used to configure the database. Examples of such configurations include
setting the SDN controller’s IP Address, creating or deleting switches,
adding or removing ports, and configuring the quality of service†. The
ovs-vswitchd process can query the database for switch configurations
using OVSDB [11].

Figure 2.2: Open vSwitch Components and External Interfaces

ovs-vswitchd

Data Path

User Space

Kernel Space 
(or User Space)

Netlink

Open vSwitch

First packet in 
the flow

Subsequent 
packets in the 
flow

Figure 2.3: Packets flow in in Open vSwitch [13]

†Assigning pre-configured quality of service to a given flow is done in the flow table using
OpenFlow.
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2.2.1.1 Open vSwitch TLS Support OVS can be configured to use
TLS to connect to the SDN controller. The OVS documentation [14] distinguishes
between two Certificate Authorities (CA): the switch’s CA and the controller’s CA.
Every OVS instance manually generates its own private/public key pair, but there
are two ways for an OVS instance to get its certificates signed:

Self signed certificates Each OVS signs its certificate using its own
private key. This avoids the need for a central
authority.

Switch CA A central authority (such as the switch’s
CA) signs the switch’s certificate. The
certificate should be presented manually to
the CA, and then the signed certificate needs
to be manually provisioned to the OVS. The
controller can validate the switch’s certificate
by using the switch CA’s root certificate.

Both switches and controller need to have the other’s CA root certificate. The
switches could obtain the controller’s CA root certificate either manually or using
the "bootstrap" mode [14] (where the first time that the switch connects to the
controller it accepts the controller’s CA root certificate).

This thesis proposes and implements a new, automatic, and secure way for OVS
to generate key pairs and get both a signed certificate from a single central CA
(that serves both switches and controllers) as well as the central CA’s certificate.

2.2.1.2 Blocking and Non-Blocking Sockets By default, TCP
sockets are set to be blocking. For a read operation, a blocking socket will cause
the program to wait for the data to be available at the input buffer to read it before
returning to the program that called that read operation. While for a write operation,
a blocking socket will cause the calling program to wait for the output buffer to
be available to write to it before returning to the program that called the write
operation.

A socket can be set to be non-blocking, and in this case the calling program
will not wait for the data, if there is data available at the input buffer, the read
operation immediately returns with the data, otherwise it immediately returns with
an error. For the write operation, if the output buffer is available it will write to it
and immediately return, otherwise it immediately returns with an error [15]. By

10



using a non-blocking socket, the calling program does not need to spawn threads to
handle the socket. In addition, in case of a connection failure, the calling program
does not have to wait until the socket timeout. When studying ovs-vswitchd
code it was clear that non-blocking sockets are used.

2.3 Trusted Execution Environment (TEE)
A Trusted Execution Environment (TEE) is an architecture that provides an isolated
environment where applications can run with guarantees of code integrity and data
confidentiality. TEEs operate together with a Rich Execution Environment (REE)
which comprises the operating systems (such as Linux and Windows) and other
applications. TEEs can offer services to applications running in REE [16]. The
need for TEE stems from the increasing amount of sensitive private information
software applications handle [17].

An important security feature that is offered by some TEEs is Software
Attestation, which is a cryptographic signature that includes a measurement that
identifies the TEE content. The signature is provided by the hardware and a verifier
can verify the measurement against an expected value [18].

As discussed in detail in [18], different TEE implementations differ in the
amount of software and hardware that needs to be trusted in contrast with the
rest of the system. This trusted subset of the software and hardware is called the
Trusted Computing Base (TCB). For hardware, the TCB includes at a minimum
of the CPU chip, but could extend up to the whole motherboard including DRAM
and other chips. While for software the TCB could range from small containers
containing only the application to the whole virtual machine and the whole set of
software running on the computer including all of the firmware.

There are a number of different TEEs. ARM TrustZone [19] is a hardware
based framework that enables partitioning the system software and hardware into a
“secure world" (a TEE) and a non-secure “normal world" (the REE). The hardware
logic ensures that secure world resources can not be accessed from the normal
world. ARM processor cores with TrustZone security extensions can safely switch
between the two worlds as they are execute code. However, the normal world
can only invoke the secure world via a secure monitor call. This allows for high
performance and removes the need to dedicate cores to the secure world [20].

The Trusted Computing Group’s Trusted Platform Module (TPM) was initially
a tamper resistant computer chip that securely stores passwords, keys, and
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certificates needed to authenticate the hardware platform. TPM also provides
software attestation as it can be used to store measurements of the software and
hardware configurations to ensure that software is not tampered with and hence
is trustworthy. In TPM, the TCB can cover all of the software running on the
hardware including the kernel and device drivers. The TPM specification is actively
being developed by Trusted Computing Group (TCG). The evolved definition of
the TPM defines four different types of TPMs to cover different implementation
requirements [21]:

Discrete TPM A dedicated tamper resistant chip is used.

Integrated TPM TPM functionality is integrated in a chip that
provides other functionality.

Firmware TPM A software implementation of the TPM running in
a TEE.

Software TPM A TPM emulator. Such an emulator is useful for
prototyping and testing purposes.

Intel® Trusted Execution Technology (TXT) [22] is based on TPM, but it
reduces the TCB to cover only software running inside the virtual machine, i.e.,
the guest operating system and applications. TXT extends Intel’s Virtual Machine
Extensions (VMX) environments to enable secure deployment and use of virtual
machines. TXT provides a verified launch of a virtual machine by comparing
measurements of the launch components to a known good source and blocks the
launching of code that deviates from the known good source. TXT also provides
attestation to remote users using platform based measurements .

Intel® Safe Guard Extensions (SGX) is a new set of CPU instructions that enable
application developers to confine selected code and data in protected enclaves in
memory. In addition, SGX deploys hardware based mechanisms to enable remote
software attestation. Section 2.3.1 gives details of SGX.

2.3.1 Intel® SGX

Intel® SGX is an extension to the Intel® x86 Architecture providing a new set
of CPU instructions and memory access primitives. SGX allows developers to
dedicate a private area in memory (called an enclave) such that this area can only
be accessed by code running inside this enclave. Access from outside the enclave
is prevented - even from privileged software such as the operating system and
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BIOS. SGX limits the TCB to the processor’s firmware and hardware along with
the software inside the enclave. This significantly reduces the effort required
for attestation evaluation. As a result, SGX guarantees both the integrity and
confidentiality of the code and data stored in the enclave, while providing a means
to:

• Create a hardware based attestation of the enclave’s content.

• Seal the enclave’s content in order to store this content outside the enclave.
Thereafter, only the code in the enclave can unseal this content. The sealing
mechanism also supports enclave software upgrades.

SGX enables remote software attestation so that a service provider can provision
its secrets remotely in the enclave [23]. SGX supports sealing and attestation for
multiple enclaves running in the same platform. Both intra-platform and inter-
platform attestation are supported. In the case of intra-platform attestation, enclaves
create and exchange a signed structure called a report which can be verified and the
report’s content can used to create a secure communication channel between the
enclaves. A Quoting Enclave is introduced for inter-platform attestation. The
Quoting Enclave verifies the report from the application enclave using intra-
platform attestation and signs it with a device specific key before presenting it to
the service provider [23] (as shown in Figure 2.4). The service provider contacts an
external attestation service to verify the quote’s signature. The Intel® Attestation
Service (IAS) provides an Application Programming Interface (API) that service
providers can use to verify enclaves’ quotes [24].

Figure 2.4: Inter Platform Attestation in SGX [23]
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The Intel® SGX programming model differentiates between untrusted and
trusted parts of the application. The trusted part executes inside the enclave, while
the untrusted part, which has no access to the enclave, is responsible for creation
and destruction of the enclave using SGX instructions.

SGX was introduced with the 6th Generation Intel Core processor platforms
[25]. There is support for both Linux [26] and Windows [25] as well as a Software
Development Kit (SDK).

2.4 Linux Integrity Measurement Architecture
The Linux Integrity Measurement Architecture (IMA) is an open source component
of the Integrity Architecture based on TCG’s open standards. IMA provides a
means to detect if files have been changed (either deliberately or not) and it can
run on platforms without a hardware TPM, but the presence of TPM provides a
means to store and protect measurements in hardware. IMA provides the following
functionalities [27]:

Collect provides measurements of a file before accessing the file.

Store stores the measurements in a kernel resident list. If a
TPM is available, then the Store function extends the
IMA Platform Configuration Register (PCR) with the
measurement.

Attest if a TPM is available, the TPM will be used to sign the
IMA PCR value in order to enable remote verification of
the measurement.

Appraise validates the measurement against a known good value
stored in the extended attribute of the file.

Protect protects the file’s extended attributes against off-line
attacks.

IMA keeps a runtime measurement list that can be further anchored in hardware
to prevent the measurements from being compromised. The default IMA policy
measures all files needed to meet the requirements of TCB including libraries,
executables, and files opened by root for reading. The policy can be modified in
order to measure files other than those included in TCB. Linux Security Modules
(LSM) can be deployed to label those files and those labels can be incorporated in
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the IMA policy [27].

Different LSMs can be used, such as SELinux [28] and Simplified Mandatory
Access Control Kernel (SMACK). SMACK is a kernel module that can be used to
define custom mandatory access control rules in a simple way [29].

The IMA appraisal functionality makes it possible to validate a measurement
of a file against a known good value stored in the ’security.ima’ extended attribute
of that file. The validation of this attribute could be either to provide integrity using
a hash based method or both integrity and authenticity using a digital signature
based method [27].

2.5 Related Work
In this section we present related work on SDN security, SDN vulnerability analysis,
analysis of TEEs and SGX, the use of SGX to create trustworthy applications, and
different implementations of trusted TLS libraries in SGX.

S. Scott-Hayward, S. Natarajan, and S. Sezer carried out a survey of security
in SDN in [30] from both research and industry perspectives, starting with SDN
characteristics and then going through different security analyses and potential
attack categories and solutions applicable to some of those categories. The survey
extends to security enhancements, standardization, and open source efforts to
address SDN security and future research directions. The survey also lists some
open challenges when it comes to data leakage and data modification. Our work
can be viewed as a solution to the data leakage security issue, as we focus on
securing the keys and certificates of virtual switches.

In [31], N. Paladi and C. Gehrmann presented a security analysis for multi-
tenant cloud infrastructure where network virtualization is SDN based. They
introduced an adversary model and described the relevant attack vectors and then
proposed a security requirements list for cloud infrastructures. In our work we
address the requirement to ensure a secure enrollment of virtual switches with the
SDN controller.

In [32], K. Thimmaraju, et al. demonstrated the importance of considering the
dataplane in the threat model. An attacker with access to only one virtual machine
can send a well crafted packet from the virtual machine to the virtual switch which
can then compromise all the virtual switches, host operating system, and the SDN
controller. In doing so, they pointed out a vulnerability in a vital part of Open
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vSwitch.

In [18], V. Costan and S. Devadas provide comprehensive background
information about the Intel® Architecture, cryptographic primitives and constructs,
software attestation, and physical and software attacks that are needed to
understand SGX. They also described different TEEs before explaining in detail the
SGX’s programming model using information from Intel® manuals and inferring
information from patents while pointing out some security gaps when it comes to
side channel attacks.

In [33] JP Aumasson and Luis Merino presented undocumented aspects of
SGX and explored possible implementation details. They also discussed possible
areas in the implementation or operation that can be exploited.

Three examples of trustworthy applications created using SGX were presented
in [34]. In this paper, M. Hoekstra, et al. described the design, implementation,
and how trustworthiness is achieved by SGX for a one-time password generator,
a secure video chat application, and Enterprise Rights Management protected
applications. In [35], VC3 was introduced as an SGX based system for
distributed MapReduce computations in an untrusted cloud in order to guarantee
confidentiality, integrity, and correctness of code, data, and computations’ results.
In VC3, the TCB excludes Hadoop, operating system, and the hypervisor. VC3
demonstrated good performance with minimal overhead despite providing these
security guarantees. Our work can be viewed as another example of an SGX
application.

In [36], N. Paladi and C. Gehrmann presented TruSDN, a framework for
bootstrapping trust in an SDN infrastructure implemented using SGX. This
framework supports secure provisioning of switches in SGX enclaves, a secure
communication channel between switches and SDN controller, and secure
communication between endpoints in the network using session keys that are
generated per flow and used only during the lifetime of the flow. The framework
was implemented using OpenSGX [37], an emulator for SGX, due to unavailability
of software and hardware supporting SGX. In contrast, our work is implemented
and tested in actual hardware that supports SGX. Additionally, in our work we
reduce the size of TCB by only confining the TLSonSGX library, generated keys
and certificates, and TLS session information to the enclave, while Paladi and
Gehrmann implement the whole virtual switch inside the enclave.

SecureCloud [38] is a project that targets big data applications in the smart grid
domain. It provides a framework that orchestrates and schedules microservice-
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based applications while guaranteeing both their security and availability in
untrusted cloud infrastructures by leveraging Intel SGX. The SecureCloud project
assumes an adversary that can have physical access or super user privileges.
Furthermore, SecureCloud enhances Intel SGX Remote Attestation by introducing
a Local Attestation Service in the cloud platform. The Local Attestation Service
introduces a software root of trust enclave that generates quotes which can be
verified directly by the verifier without contacting IAS. Moreover, SecureCloud
introduces the LibSEAL auditing library [39]. LibSEAL logs containers’
communication and examines those logs. In addition, LibSEAL includes a
part that was released later separately as an open source library under the name
TaLoS. TaLoS [40] terminates TLS communication inside the container enclave
by providing a port of LibreSSL library into SGX and thus maintaining OpenSSL
API, including APIs to set private keys and certificates from outside the enclave. In
this thesis projects, keys and certificates are maintained inside the enclave and no
APIs are exposed to manipulate them. TaLoS was released in March 2017 and thus
it was not available as an option when this thesis project started in February 2017.

At the time when the development for this thesis project started, mbed TLS [41]
provided the only available port of a TLS library into SGX in Linux. Intel® [42]
and wolfSSL [43] provided a port to Linux in May 2017 and June 2017 respectively.
However, none of these three provided an unmodified OpenSSL API that is exposed
outside the enclave. Moreover, Intel® SGX SSL library supports only a subset of
OpenSSL APIs (to be used only within the enclave and not exposed outside the
enclave). This subset does not cover the functionality needed by this thesis project.
As a result this thesis project implements a wrapper around mbed TLS Trusted
SGX library that exposes the OpenSSL APIs (that are needed for Open vSwitch
TLS operations) outside the enclave as explained further in Section 5.2.3.
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3 Security Model
In this chapter, we describe the adversary model together with the assumptions that
have been made about the trusted elements, followed by a threat analysis for Open
vSwitch, specifically identifying some attack vectors against Open vSwitch in a
cloud infrastructure.

The security model excludes the security of the traffic between virtual machines
or containers deployed in the cloud infrastructure - as this type of security is
assumed to be handled at the application level rather than being handled at the
infrastructure level.

3.1 Adversary Model
In a cloud infrastructure, virtual switches are deployed along with an SDN
controller. A virtual switch is deployed in every physical compute server [44].
The adversary model assumes physical integrity and security of the hardware,
including servers, storage, and networking equipment (such as hardware routers
and switches). This implies that the adversary has no physical access to the
hardware. We extend our assumptions to trust the TEE implementation, the cloud
orchestrator, and the certificate authority.

If an adversary can gain remote access to the host operating system with full
privileges, this places the attacker in a position to execute superuser privileged
commands as well as accessing and changing code and stored data, including
certificates and key pairs stored as plaintext on the disk. In addition, the adversary
can intercept existing connections or attempt to establish new connections with
the cloud SDN controller and virtual switches. We limit our adversary model by
excluding the adversary’s ability to execute Denial of Service attacks and side-
channel attacks [45].

3.2 Threat Analysis
We apply Microsoft’s Spoofing, Tampering, Repudiation, Information
Disclosure, Denial of Service, and Elevation of Privilege (STRIDE) threat
model [46] to analyze threats to the Open vSwitch components described in Section
2.2.1. Table 3.1 summarizes the analysis, while below we describe the threats under

19



each STRIDE category with respect to the adversary’s capabilities as described in
Section 3.1:

A Spoofing and Elevation of Privilege
The adversary can impersonate the controller (i.e. to carry out spoofing) and
connect to the virtual switch using OpenFlow or OVSDB. The adversary
can also directly execute commands that require superuser privileges (i.e.
performing an Elevation of Privilege) on the host where the virtual switch
is deployed. These commands interact with ovs-switchd, ovsdb-server, or
the datapath processes. As a result the adversary can execute the following
attacks (among others):

• Create or delete virtual switches in order to cause disruption of traffic.

• Add or remove ports from existing switches, thus making it possible to
create ports that mirror traffic to ports other than those that belong to a
certain tenant’s instances.

• Adjust quality of service for flows in favor of or against a certain tenant.

• Insert, change, or delete flow rules in the flow table or cached flow
table leading to interception, disruption, or traffic outage.

B Tampering
Given access to the host operating system, the adversary can tamper with
binaries and inject malicious code that could potentially intercept or disrupt
traffic. The adversary can also tamper with stored data in the flow table, OVS
database, or datapath cached flow table resulting in interception or disruption
of traffic.

C Repudiation
The adversary can connect to the virtual switches using OpenFlow or OVSDB
impersonating the controller and carry out attacks including adjusting the
quality of service of flows in favour of one of the tenants without making
this tenant accountable for the attack.

D Information Disclosure
The adversary can obtain keys and certificates stored in the host where
the virtual switch is deployed. Possession of this information makes it
possible for the adversary to impersonate the virtual switch and intercept
its communication with the controller. This could result in the adversary
communicating incorrect information to the controller in order to negatively
affect the controller’s global view of the network and consequently causing
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the controller to make incorrect routing decisions.

E Denial of Service
The adversary model that we have selected explicitly excludes the attacker’s
ability to perform Denial of Service attacks on various Open vSwitch
components. Hence, we will not consider this type of attack further.

Table 3.1: STRIDE threat analysis for Open vSwitch (Gray cells are threats the
thesis project defends against)

Component
Asset

/Threat
Spoofing Tampering Repudiation

Information

Disclosure*

Denial

of Service**

Elevation

of Privilege

ovs-

vswitchd

Process X X X

Flow

Table
X X

ovsdb-

server

Process X X X

Database X X

Datapath
Process X X X

Cache

Table
X X

Protocols

OpenFlow X X X

OVSDB X X X

Netlink X X X

Keys and

certificates
X X

* Side-channel attacks can be categorized under Information Disclosure but we
exclude them from our adversary model.
** The adversary model that we selected excludes Denial of Service attacks.

While the threat analysis above discussed many possible vulnerabilities, we
believe that ensuring code integrity, protection of keys & certificates, and the use
of secure connections between the virtual switch and controller are the first line
of defense against a wide range of those attacks discussed above. As a result, the
remainder of this thesis will focus on implementing defensive mechanisms for
Open vSwitch against those threats highlighted in gray in Table 3.1. The same
mechanisms can be also implemented in the SDN controller. While we do not
implement them, we assume that these mechanisms are implemented by the SDN
controller for the remainder of this thesis.
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4 Methodology
This chapter provides an overview of the research method utilized in this thesis
project. Section 4.1 describes the research process. Section 4.2 details the
experimental design. Section 4.3 explains the planned measurements. Section
4.4 discusses the reliability and validity of data collected. Finally, Section 4.5
describes the methods used for data analysis.

4.1 Research Process
The research process started with a security analysis (described in Chapter 3) and
then based upon its outcomes a set of functional requirements are defined (see
Section 5.1).

The applied research method is used to implement the prototype of the new
library that meets those requirements and then experimental research method
is applied to investigate the performance of the system and establish a relation
between packet round trip latency and packet size [47].

At the start of the thesis project, the design science method was considered,
where a prototype is iteratively designed, implemented and evaluated. However,
as initial design iterations (that are discussed in 5.2.1) did not qualify to the
implementation level, the applied and experimental research methods deemed to
be the most suitable for this thesis project.

4.2 Experimental design
This section explains the elements of the experimental design. Section 4.2.1
shows the testbed used to implement the prototype, while Section 4.2.2 lists the
specifications of the software and the hardware that were deployed.

4.2.1 Testbed Design
The testbed consists of two virtual machines running on top of one physical host as
shown in Figure 4.1.
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Figure 4.1: Planned Testbed (In this figure vNIC denotes a virtual NIC)

4.2.2 Hardware and Software used
The hardware and software used to construct the testbed described in Section 4.2.1
are:

• Hardware
The hardware chosen is a Lenovo Thinkpad T460s laptop (the detailed
specification is given in Table 4.1). This system’s processor supports the
Intel® SGX extensions required for this project.

Table 4.1: Hardware Specifications

Subsystem Description

Processor Intel® CoreTM i7-6600U CPU @ 2.60GHz (Dual Core)

RAM 20 GB DDR4

Network Adapter Intel Ethernet Connection I219-LM

Hard Disk 512GB SSD
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The two virtual machines are created using QEMU and KVM with the
specifications given in Table 4.2. For the second virtual machine, patched
versions of QEMU and KVM provided by the SGX project are used [48].
These patched versions support the use of SGX inside the virtual machine.
SGX was not used in the first virtual machine as this thesis project’s focus is
Open vSwitch.

Table 4.2: Virtual Machine Specifications

Subsystem Description

Processor VM1:1 Virtual CPU, VM2: 2 Virtual CPUs

RAM 4 GB

Hard Disk 30 GB

vNIC Driver virtio

When configuring each virtual machine’s networking, we have followed best
practices stated by IBM in [49]. The laptop had hyper-threading enabled,
which resulted in 4 logical CPUs. We pinned the first virtual machine to
CPU 2 while we pinned the second virtual machine to CPUs 1 and 3 (same
core). Within the second virtual machine, we pinned the virtual switch to one
virtual CPU while we pinned the traffic generator/sink and echo server to the
other virtual CPU in order to reduce inter-core communication overhead as
discussed in [50]. However, due to the limited number of cores in the laptop
(2 cores) we were not able to implement strict CPU isolation. (i.e. dedicate
entire cores). In Section 6.2.2, we discuss the potential impact of that.

• Operating System
For the host and virtual machines, we chose Ubuntu 16.04.1 as both Open
vSwitch and SGX drivers and SDKs are supported in this specific linux
distribution.

• Open vSwitch
We chose the latest (as of 2016-12-30) Open vSwitch release 2.6.0 (commit
4b27db644a8c8e8d2640f2913cbdfa7e4b78e788).

Inside the second virtual machine, we deployed Open vSwitch binaries
that are compiled and linked with our library (as explained in Section 5.2).
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Two network namespaces were created, each with a port connected to the
Open vSwitch instance. This was done via executing the following linux
commands:

# Create a new port "port1" and add it to Open
vSwitch "ovs_switch1"

ovs-vsctl add-port ovs_switch1 port1
ovs-vsctl set Interface port1 type=internal
# Create network namespace "namespace1" and connect

"port1" to it
ip netns add namespace1
ip link set port1 netns namespace1
# Set MAC and IP Address for "port1"
ip netns exec namespace1 ip link set port1 address

02:00:00:00:00:01
ip netns exec namespace1 ip address add

192.168.1.1/24 dev port1

The same steps were executed for the second network namespace.

• Certificate Authority
The CA implemented (in C++) acts as a server. The CA code utilizes
OpenSSL 1.1.0d for TLS communication with the virtual switch and to sign
the virtual switch’s and the SDN controller’s certificates. We used OpenSSL
instead of our new library for the CA implementation for two reasons:

1. Our adversary model (Section 3.1) trusts the CA implementation.

2. Ensure the interoperability between our library (deployed in the client
side) and OpenSSL (deployed in the server side).

• SDN Controller
Ryu was chosen as the SDN controller as it supports TLS communication
with OpenFlow switches [51]. Additionally, this controller is easy to install
and it is easy to deploy controller programs on top of it. Ryu is open source,
python based, and widely used by the academic community [52] as well as
in some commercial products (such as the SmartSDN controller by NTT
Comware [53]).

• Intel SGX Linux Drivers and SDK
Intel SGX Linux 1.8 release (release date 17th March 2017) is used. This
release includes:
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• Linux SGX driver,

• the SDK includes trusted libraries and development tools, and

• the platform software provides a runtime system library.

4.3 Planned Measurements
Besides meeting the functional requirements stated in Section 5.1, it is important to
measure the performance impact of using SGX to realize TLS due to the overhead
of the implementation’s proposed security improvements.

4.3.1 SDN Controller Program
In practice, only the first packet in a new flow is forwarded by the virtual switch
to the SDN controller and then the controller sends to the virtual switch a flow
table update and the action needed to be executed by the switch to handle that
first packet together with the packet itself. Subsequent packets in the flow will be
handled by the virtual switch as specified using the newly installed rule in the flow
table (as was explained in detail in Section 2.2.1).

In order to exercise the communications between the SDN controller and the
virtual switch and to capture latency measurements, the SDN controller program in
this experiment is designed to resemble a learning L2 switch, with a MAC Address
to port number mapping table. However, no flow table updates are sent from the
SDN Controller to the virtual switch in order to measure the extra latency induced
by the controller multiple times (as otherwise we would only get one measurement
of this latency for each new destination). As a result the virtual switch will keep
sending all the packets in the flow to the SDN controller and the controller simply
sends these packets back to the virtual switch along with the action to send the
packet through the corresponding port.

4.3.2 Performance Measurements
The main performance metrics we are interested in are latency and the time required
to generate key pairs and to obtain a signed certificate from the CA.

When it comes to latency, the choice of traffic generators were limited to those
that can provide latency measurements. In addition, such measurements require
that clocks of both traffic source and sink to be synchronized (or co exist in the
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same host). In this thesis, the following traffic generators were investigated: qperf,
pktgen, moongen, and a Click based one. Qperf [54] is a linux based tool that can
be used to measure latency between two servers over both TCP and UDP. However,
it provides latency measurements per the whole TCP message or UDP fragment,
while we are interested in latency measurement per individual packet.

Pktgen is a traffic generator that was originally developed to run in the
linux kernel near the hardware to generate packets at high speed [55]. Several
improvements were later introduced in [56]. One improvement of interest is a
receiver module that can measure several parameters including the latency between
sender and receiver. However, in [56] it states that two CPUs at a minimum are
recommended (one for sender and one for receiver) since pktgen exhausts all the
CPU resources as it sends packets. As the testbed has limited number of CPUs,
pktgen can not efficiently be used.

Moongen is a DPDK based packet generator with the ability to provide accurate
timestamps for latency measurements by utilizing hardware support on NICs for
Precision Time Protocol (PTP) [57]. However, the vNICs used inside the network
namespaces in the testbed do not support PTP.

The Click Modular Router [58] is a packet processing framework that is widely
used in academia. Click can be used to implement networking elements in software,
such as switches, routers, and firewalls. Click provides a modular set of elements
that can be integrated to realize a specific networking application. Each element
executes a simple packet processing operation, for example stripping headers or
classify packets. We implemented a traffic generator and sink using the Click
Modular Router that allows us to measure round trip latency for a UDP packet with
different packet sizes at a rate of 500 Packets Per Second (pps) using the Click
element StoreUDPTimeSeqRecord. By increasing the rate beyond that, much
higher variance in latency results is obtained. Section 6.2.2 discusses the reasons
for this behavior.

We deployed the traffic generator/sink in one network namespace and we
deployed a python based, simple UDP echo server in the second network
namespace. The echo server simply echoes the received UDP packet back to the
traffic generator/sink. The communication between the two network namespaces is
through the Open vSwitch as illustrated in Figure 4.2.
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Figure 4.2: UDP Packet Path

In order to benchmark the performance, we repeated the same measurements
in another virtual machine (with identical specification to virtual machine 2) using
a non-patched QEMU and KVM and deploying a standard Open vSwitch that uses
OpenSSL (as in a default Open vSwitch implementation).

4.4 Assessing reliability and validity of the data
collected

This section discusses the reliability and validity of data collected through the
measurements described in Section 4.3

4.4.1 Reliability
The reliability of the measurements comes from the fact that we have collected
large numbers of samples as we discuss in Section 6.2.

4.4.2 Validity
The test cases, the traffic generator/sink together with a UDP echo server were
used to collect the measurement data described in Section 4.3. The collected data
were are stored in the project’s repository and hence can be accessible to others.
Additionally, the programs are also available and could be run by others on different
or the same hardware. This ensures the validity of the results in terms of integrity
and credibility.
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4.5 Planned Data Analysis
This section describes the data analysis technique and software tools used.

4.5.1 Data Analysis Technique
The measurements collected are used to derive statistical measure and to plot
boxplots to visualize the latency overhead introduced by the security improvements
made to Open vSwitch.

4.5.2 Software Tools
R [59] is a programming language and a tool for statistical computing. We used
it to compute mean, median, and first and third quartile values of the data we
collected as well as to carry out linear regression analysis and to plot graphs.
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5 Design and Implementation
In this chapter, we start in Section 5.1 by stating the functional requirements that
the project aims to deliver. In Section 5.2, we explain in detail the design of the
system.

5.1 Functional Requirements
This project aims to deliver four functional requirements (stated in Table 5.1).
These requirements define what the system should do.

Table 5.1: Functional Requirements

Functional Requirement Description

1 The system should ensure
that only verified virtual
switches can access and
use their private keys.

A virtual switch instance is verified if the current
measurements of its binaries match known good
measurements. As the adversary can have access to
the host operating system, the keys should never be
stored in plaintext on the hard disk. Instead, the keys
are confined to a memory enclave, and they should be
inaccessible from outside the enclave.

2 The SDN controller should
be able to establish a
secure channel to the
virtual switches to
exchange certificates.

Mutual authentication is required. Both the controller
and virtual switch need to ensure the authenticity of
each other to prevent an attacker from impersonating
either side.

3 The system should ensure
the integrity of each virtual
switch and the controller’s
certificates.

These assurance are necessary to prevent the attacker
from tampering with the certificate or impersonating
the virtual switches or the controller.

4 The system should detect
any modifications to virtual
switch’s binary.

Malicious switches (i.e. instances whose current
measurements of their binaries do not match known
good measurements) should be unable to enroll in the
network and once detected they should be evicted from
the network.
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5.2 System Design
In a cloud infrastructure, virtual switch instances are created when setting up
the infrastructure. During operation, when virtual machines are created or
removed, ports are added or deleted from the virtual switch instance running
on the underlying computing resource so that the virtual machine can communicate.
Therefore, in order to meet the functional requirements described in Section 5.1
we must ensure both a secure installation of software/hardware and the initial
configuration of the Open vSwitch instances in the cloud infrastructure. Securing
the initial configuration centers on secure creation of keys and provisioning
of certificates. Furthermore, it is important to ensure that running Open
vSwitch instances are secure by ensuring the integrity of their binaries and their
configurations.

The system design is based upon introducing a new library, TLSonSGX, to
Open vSwitch to replace the existing OpenSSL library. We implemented this
new library around an SGX enclave in order to ensure both code integrity and
data confidentiality by leveraging features provided by Intel SGX architecture and
Linux IMA.

In this design, TLS sessions originate and terminate within the enclave and the
generated keys and certificates are confined within the SGX enclave, thus we can
ensure their confidentiality and integrity within the memory enclave.

On an infrastructure level, we implement a central CA to sign both the virtual
switch and the SDN controller certificates. The CA’s certificate is securely and
automatically provisioned to each virtual switch and the SDN controller and will be
subsequently used by each of them to validate each other’s certificate. In addition,
the central CA validates the virtual switches before signing their certificates.

5.2.1 Design Iterations
The design and implementation have gone through several iterations focused on
the following points until we reached the design described in detail in the rest of
this chapter.

• Enclave Design
Initially we looked into having three enclaves, an enclave to store information,
an enclave to handle TLS connections, and an enclave to interact with Linux
IMA and provide verdicts locally to the other enclaves. However, with such a
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design there is a huge overhead imposed as the enclaves would be required to
attest to each other before being able to establish secure channels to exchange
information between each other. Since, the size of code and data we store
inside those enclaves is much less than the Enclave Page Cache (EPC) (which
is configured to the default value of 32 Megabytes), we decided to use only
one enclave.

• Interaction with IMA
We looked into how to get and store the known good IMA measurements.
The initial design proposed stored the known good measurements inside the
enclave and then exchanged the enclave quote with the CA. However, we
found that it was infeasible to pre-obtain such measurements since the code
we want to measure depends on the measurement’s value itself and thus we
decided to store the known good measurements in the CA.

5.2.2 Trusted TLS Library
SGX enclaves have limited memory and strong constraints on which instructions
can be executed inside the enclave. ‘Trusted libraries’ are static libraries
designed to be linked in an SGX enclave. As the code has to be measured
when loaded into the enclave, dynamic libraries are not allowed to be linked
in an enclave [60]. As discussed in Section 2.5, this thesis project uses the
mbed TLS Trusted SGX library. Within this project, we used the commit
(0ff0f8217f10a34754638a328fe02bd08c16e878) [41].

5.2.3 TLSonSGX Library Design
Following the SGX programming model, the untrusted code portion of the library
is basically a wrapper that maps OpenSSL external methods (that are used by Open
vSwitch) internally into enclave calls (ECALLs). The trusted portion of the code,
that is contained within the SGX enclave, implements the ECALLs by utilizing the
SGX trusted TLS library, specifically mbed TLS.

Since keys and certificates are confined within the enclave, Open vSwitch
was modified to use only a limited set of OpenSSL external methods. These
external methods are implemented in the TLSonSGX library as explained in Tables
5.2, 5.3, 5.5, and 5.6. The OpenSSL library implements three data structures:
SSL_METHOD, SSL_CTX, and SSL. These structures are used as follows in order
to establish a TLS connection:
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• An SSL_METHOD object is created. In this object the protocol major/minor
version and whether the endpoint is client or server are set.

• Then, an SSL_CTX object is created containing the keys, certificates, and
SSL_METHOD.

• Finally, an SSL object is created to associate an SSL_CTX with a network
connection using a socket descriptor.

Since these objects contain information that is vital for the TLS connection
security, we create and confine them within the enclave. This means that although
these structures are passed by Open vSwitch via the external methods we implement
(so as to maintain the same interface from Open vSwitch’s perspective), they are
basically discarded and not passed to ECALLs but rather created, confined, and
handled inside the enclave during the operation of Open vSwitch.

There is not a one-to-one mapping in mbed TLS for these three structures,
hence these structures are redefined using mbed TLS primitives (specifically the
mbedtls_ssl_config and mbedtls_ssl_context data structures).

Table 5.2: TLSonSGX: Library Initialization Methods

External Method ECALL Description

int
SSL_library_
init()

public void
ecall_ssl_library_
init([in,
size=buf_len]
char* buf, size_t
buf_len)

This method is called once when
ovs-vswitch is started. Once it
is called, it passes the current IMA
measurement to the ECALL as input. The
ecall generates key pairs inside the enclave,
sends the IMA measurement and certificate
request to the CA, and if successful
receives back a signed certificate. This
method also initializes a random number
generator that is required by mbed TLS.

void
SSL_load_
error_
strings()

public void
ecall_ssl_load_
error_strings()

This method is called once when
ovs-vswitchd is started. Currently
this method is not implemented but rather
reserved for future implementation to
enable better error handling.
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Table 5.3: TLSonSGX: SSL_CTX Operation Methods - Part 1

External Method ECALL Description

SSL_CTX

*SSL_CTX_new
(SSL_METHOD*
ssl_method)

public void
ecall_ssl_
ctx_new()

This method creates an SSL_CTX object inside
the enclave setting the SSL_METHOD endpoint
to client and then assigning the generated keys
pair, the signed certificate, and the CA certificate
to the newly created SSL_CTX object.

long
SSL_CTX_set_mode
(SSL_CTX *ctx,
long mode)

Open vSwitch sets SSL_MODE_ENABLE_
PARTIAL_WRITE and SSL_MODE_ACCEPT_
MOVING_WRITE_BUFFER. However, mbed
TLS supports partial writes by default and thus
this method does nothing (it simply returns the
mode passed into it).

void SSL_CTX_
set_verify(SSL_CTX

*ctx, int mode,
void* reserved)

public
void ecall_
ssl_ctx_
set_verify()

This method sets the authentication mode (i.e.
indicating whether verifying the peer is required
or optional).

long SSL_CTX_set_
session_cache_mode
(SSL_CTX *ctx,
long mode)

Open vSwitch uses this method to disable session
caching. In mbed TLS, by default there is no
session resumption, thus this method does nothing
and simply returns the passed mode.

int SSL_CTX_set_
cipher_list
(SSL_CTX *ctx,
const char *str)

Open vSwitch uses this method to set cipher suite
negotiation in order to start from strongest and
prevents uses of null encryption and MD5 for
integrity checking. NULL-MD5 and RC4-MD5
are the only cipher suites supported by mbed TLS
with null encryption and MD5 [61] and both are
disabled by default. In addition, mbed TLS by
default starts from the strongest cipher suite [62].
Therefore, this method does nothing and simply
returns 1.

long SSL_CTX_set_
options(SSL_CTX

*ctx, long
options)

Open vSwitch uses this method to disable SSLv2
and SSLv3. In contrast, mbed TLS never
implemented SSLv2, while SSLv3 is disabled
by default. Therefore, this method does nothing
and basically returns the passed options.

void SSL_CTX_free
(SSL_CTX *ctx)

public void
ecall_ssl_ctx_
free()

This method frees the SSL_CTX object inside the
enclave
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Table 5.4: TLSonSGX: SSL_CTX Operation Methods - Part 2

External Method ECALL Description

int SSL_CTX_
check_private_
key(const
SSL_CTX *ctx)

Since the private key is confined within the
enclave, this method does nothing and always
returns 1.

Table 5.5: TLSonSGX: TLS Connection Setup and Shutdown Methods

External Method ECALL Description

SSL *SSL_new
(SSL_CTX *ctx)

public void
ecall_ssl_new()

This method initializes a new SSL object
inside the enclave, and associates it with the
previously created SSL_CTX object.

int SSL_set_fd
(SSL *ssl, int
fd)

public int
ecall_ssl_set_
fd(int fd)

This method associates a socket descriptor
with the SSL object by setting the callbacks
for network write and read without setting
timeouts. Note that timeouts are unnecessary
since Open vSwitch uses a non-blocking
socket. This method returns 1 upon success.

int SSL_connect
(SSL *ssl)

public
int ecall_
ssl_connect()

This method establishes the TLS handshake.
Upon success the mbed TLS handshake
method returns 0 but the ecall returns 1 instead
as expected by Open vSwitch.

int SSL_accept
(SSL *ssl)

public
int ecall_
ssl_accept()

Since Open vSwitch always operates as a TLS
client, this method does the same things as
SSL_connect.

int
SSL_get_verify_
mode(SSL *ssl)

Since Open vSwitch always verifies the SDN
controller’s certificate, this method simply
returns 1.

int
SSL_shutdown
(SSL *ssl)

public
int ecall_
ssl_shutdown()

This method ends the connection by sending a
’close notify’ to the peer.

void SSL_free
(SSL *ssl)

public void
ecall_ssl_free()

This method frees the SSL object inside the
enclave.
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Table 5.6: TLSonSGX: TLS Read and Write Operations Methods

External Method ECALL Description

int SSL_read
(SSL *ssl,
void *buf,
int num)

public int
ecall_ssl_read
([out,
size=buf_len]
char* buf,
size_t buf_len)

This method allocates a buffer inside the enclave,
reads data from the socket and then decrypts data
inside the enclave into the buffer. Later then the
content of this buffer will be copied to the buffer
outside the enclave. If successful, the method
returns a positive value indicating the number of
bytes read, otherwise it returns a negative value
that represent an error code. Open vSwitch only
checks whether the value is negative and calls
SSL_get_error to get the exact error code.

int
SSL_write
(SSL *ssl,
const void

*buf, int
num)

public int
ecall_ssl_write
([in,
size=buf_len]
char* buf,
size_t buf_len)

This method copies the buffer outside the
enclave to a buffer inside the enclave, encrypts
the data, and then writes it to the socket.
If successful, the method returns a positive
value indicating the number of bytes written,
otherwise it returns a negative value that
represent an error code. Open vSwitch only
checks if the value is negative and calls
SSL_get_error to get the exact error code.

extern int
SSL_get_state
(SSL *ssl)

public int
ecall_ssl_
get_state()

Due to the different representation of the SSL
state machine between Open vSwitch and mbed
TLS, we base the implementation of this method
on the fact the Open vSwitch only examines the
difference in states rather than their exact values,
thus we do not provide a one to one mapping of
states.

int
SSL_get_error
(const SSL

*ssl, int
ret)

public int
ecall_ssl_
get_error
(int ret)

While mbed TLS read or write methods return
negative values as error codes, OpenSSL uses
SSL_get_error to get the error code. We
store the error codes from read and write
methods in the SSL object so that this method
can return the latest error code.

int SSL_want
(const SSL

*ssl)

This method maps errors returned from
ecall_ssl_get_error to either
SSL_READING or SSL_WRITING indicating
the non-blocking socket’s state.
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Finally, OpenSSL and mbed TLS implement different error code numbers, so
we had implemented a one-to-one mapping of error codes so that Open vSwitch
receives the same error code values from either library (OpenSSL or TLSonSGX)
as shown in Table 5.7.

Table 5.7: TLSonSGX: Error Codes

OpenSSL Error Code mbed TLS Error
Code

Description

SSL_ERROR_WANT_READ MBEDTLS_ERR_
SSL_WANT_READ

For a non-blocking socket, a
read retry is needed

SSL_ERROR_WANT_WRITE MBEDTLS_ERR_
SSL_WANT_WRITE

For a non-blocking socket, a
write retry is needed

SSL_AD_CLOSE_NOTIFY MBEDTLS_ERR_
SSL_PEER_CLOSE_
NOTIFY

Indicates that the peer
has notified that the
connection is going to
be closed.

5.2.4 Key and Certificate Generation
In order to create the private/public key pairs and obtain switch and CA certificates,
the workflow illustrated in Figure 5.1 is executed:

1. When ovs-vswitchd is started, it calls the SSL_library_init
method from the statically linked TLSonSGX library.

2. SSL_library_init gets the current IMA measurement of
/usr/sbin/ovs-vswitchd and passes it in the ECALL to the SGX
enclave.

3. Inside the enclave, the private key, public key, and certificate request are
generated.

4. The SGX enclave establishes a TLS connection with the CA.

5. Once the connection is established, the SGX enclave will receive the CA’s
certificate & store it and then send the IMA measurement to the CA.

6. The CA will validate the IMA measurement against a known-good
measurement that it already has and sends a verdict to the enclave.
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7. If the verdict is OK, then the CA will maintain the TLS session and wait for
a certificate request, otherwise it aborts the connection.

8. The SGX enclave sends the certificate request over TLS to the CA.

9. The CA signs the certificate and returns it over TLS to the SGX enclave.

10. The SGX enclave stores the private key, signed switch certificate, and CA’s
public certificate.

It is assumed that the controller employs similar security mechanisms to create the
controller’s public-private key pairs and to obtain from the CA both the CA’s and
the controller’s certificates.

TLSonSGX

SSL 
Wrapper

Certificate 
Authority

ovs-
vswitchd

Certificate Authority has 
a good known measurement 
of ovs-vswitchd binary

1. SSL_library_init

4. ecall_
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(IMA_
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7. Send IMA measurement
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10.Send Signed Switch Certificate

Host X
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Get 
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with 
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Figure 5.1: Keys and Certificates Generation

5.2.5 Labelling Binaries and Performing Runtime Measure-
ments

In order to provide the static library with runtime measurements, the Open vSwitch
installation needs to be augmented with the following extra steps:

1. Add SMACK and IMA as kernel parameters.
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2. Use SMACK to label files that need to be protected from tampering (specifi-
cally /usr/sbin/ovs-vswitchd and /usr/sbin/ovsdb-server).

3. Define an IMA policy to measure those files when they are to be executed.

Once the computer hosting Open vSwitch starts, IMA measures these files
and remeasures them if they are re-executed at runtime and stores the new
measurements in the default file:
/sys/kernel/security/ima/ascii_runtime_measurements.
This file is a kernel resident list and it is read-only.

5.2.6 Switch to Controller TLS Connection Establishment
Once the key and certificates are securely provisioned in the enclave, in order
for Open vSwitch to establish a TLS connection with the SDN controller to send
packets and receive flow updates, the system functions as follows (as illustrated in
Figure 5.2):

1. ovs-vswitchd is configured manually with the SDN controller’s
IP Address, using the command:
ovs-vsctl set-controller <switch_name> \
ssl:<SDN_Controller_IP>:6633†

2. ovs-vswitchd invokes the SSL_connectmethod from the TLSonSGX
library which in turns invokes the ECALL to the SGX enclave.

3. The SGX enclave establishes a TLS connection with the SDN controller.

4. The SDN controller sends its certificate over the TLS connection.

5. The SGX enclave validates the controller’s certificate using the CA’s
certificate stored in the enclave.

6. The SGX enclave sends the switch’s certificate and the SDN controller
validates the switch’s certificate using the CA’s certificate.

A similar flow can also be applied for the ovsdb-server’s communica-
tion with the SDN controller and for its communication with an instance of
ovs-vswitchd.

†6633 is a well known port used for OpenFlow
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Figure 5.2: Open vSwitch - SDN Controller TLS Connection Setup

5.2.7 Open vSwitch Modifications
The only file in the Open vSwitch source code repository that utilizes OpenSSL
library is stream-ssl.c. All other files (such ovs-vswitch and
ovsdb-server) simply use stream-ssl.

We augmented the Open vSwitch configuration script and stream-ssl.c
with a new compilation flag SGX. When Open vSwitch is compiled with this flag
set, our static library, TLSonSGX, will be used instead of the OpenSSL library in
stream-ssl.c. Moreover, the sections of stream-ssl.c that load keys and
certificates from the file system are omitted as they are unnecessary.
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6 Results and Analysis
This chapter presents and analyzes the results from both functional tests (Section
6.1) and performance tests (Section 6.2). Section 6.3 discusses our compliance
with the functional requirements, while Section 6.4 concludes this chapter with a
presentation of a security analysis for our implementation.

6.1 Functional Test
We tested that our implementation delivers the following Open vSwitch
functionalities:

• Connects to SDN controller using TLS.

• Exchanges OpenFlow messages (as described in [63]) with an SDN controller
that implements a learning switch’s functionality. This includes the
following:

– Controller to Switch Messages:

Send Features Request: Open vSwitch replies with the switch’s
features.

Modify Flow Entry: add a new flow, modify an existing flow, or
delete a flow.

Packet Out: The controller instructs the switch to send a packet either
by flooding it or forwarding it through a specific port.

– Switch to Controller Messages:

Packet In: The switch forwards the received packet to the controller.
Flow removed: sent by the switch when a flow is deleted or timed-out.
Port Status: sent by the switch when a port is added, deleted, or

modified.

6.2 Performance Measurements Results
We carried out the measurements described in Section 4.3.2. In Section 6.2.1 we
discuss the measurements of the time needed to generate keys and certificates,
while in Section 6.2.2 we present round trip latency measurements for a UDP
packet between a client and an echo server.
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6.2.1 Keys and Certificate Generation Time
This timing concerns the time from when the Open vSwitch invokes the
SSL_library_init method to execute the steps described in Section 5.2.4 and
ends when the key pairs and signed certificate are loaded into the enclave’s memory.

As it is easy to automate the measurement, 1000 readings were deemed to be
enough to get a statistical power of 0.99 with a 95% significance level assuming a
normal distribution of measurements and a small effect size (0.2) as per the power
analysis below using R. Results of the measurements are shown in Table 6.1.

>library(pwr)
>pwr.t.test(n=1000,d=0.2,sig.level=0.05,power=NULL,
+type="one.sample")

One-sample t test power calculation

n = 1000
d = 0.2

sig.level = 0.05
power = 0.9999935

alternative = two.sided

Table 6.1: Keys and Certificate Generation Time

Number of measurements 1000 readings

Mean 0.344 seconds

Variance 0.0488

1st Quartile 0.186 seconds

Median 0.276 seconds

3rd Quartile 0.434 seconds

In a standard Open vSwitch, there is no corresponding measurement as keys
and certificates are handled manually as described in Section 2.2.1.1. However,
as this operation is only executed once when the ovs-vswitchd process starts,
these measurements indicate that there is a little overheard (in practice) introduced
by this implementation.
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6.2.2 Packet Round Trip Latency
This section discusses the packet round trip latency measurements for the setup
described in Section 4.3.2 and analyzes different aspects related to these results.
The measured time does neither include the time needed to generate keys (already
measured in Section 6.2.1) nor the TLS session establishment time as the TLS
session is already established before packets can flow. The TLS session remains up
unless one of the two ends (the Open vSwitch or the SDN controller) terminates
the session.

6.2.2.1 Packet Size The largest IP packet size received by the Open
vSwitch from the traffic generator is bounded by the Maximum Transmission
Unit (MTU) of the network namespace port connected to the Open vSwitch (in this
case the MTU was 1500 bytes). Open vSwitch encapsulates the whole received
packet (including the Ethernet header) in an OpenFlow Packet In message, adding
an 18 bytes header [3], which in return is encapsulated in a TLS record that is
sent from the Open vSwitch to the SDN controller. If the packet sent by the traffic
generator is larger than the MTU, then it will be fragmented and Open vSwitch
will handle it as two separate Packet In messages to the SDN controller.

The TLS record basically adds a 5 byte header. Depending on the cipher
suite negotiated between server and client, a padding field (up to 15 bytes) is
added if a block cipher is used and the TLS record is appended with a Message
Authentication Code (MAC) field that is computed over the data. As discussed in
Table 5.3 Open vSwitch is configured to negotiate the strongest cipher suite while
it prevents null encryption. When looking into handshake messages exchanged
between Open vSwitch and the SDN controller during testing, the negotiated cipher
suite is ECDHE-RSA-AES256-SHA. This means that:

• For key exchange, Elliptic Curve Ephemeral Diffie Hellman (ECDHE) is
used to compute the ephemeral TLS premaster secret (that is used later
to generate the TLS master secret) and Rivest–Shamir–Adleman (RSA)
signatures are used to authenticate the secret [64].

• Advanced Encryption Standard (AES) with 256 bits key length is used for
bulk encryption in Cipher Block Chaining (CBC) mode with Secure Hash
Algorithm 1 (SHA-1) for MAC construction [65]. SHA-1 creates a 20 bytes
MAC that is appended to the end of the TLS record.

We measure the latency for increasing packet sizes (adding 64 bytes in every
step) ranging from 64 bytes up to 1408 bytes, including the Ethernet and IP headers
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(minus the Cyclic Redundancy Check (CRC)) to avoid subsequent fragmentation
between the Open vSwitch and the SDN controller.

We repeated the measurement 10,000 times for every packet size. With such a
large sample size, a normal distribution can be assumed and a statistical power of 1
can be reached with a significance level of 95% and a small effect size (0.2) as per
the power analysis below done using R.

>library(pwr)
>pwr.t.test(n=10000,d=0.2,sig.level=0.05,power=NULL,
+type="one.sample")

One-sample t test power calculation

n = 10000
d = 0.2

sig.level = 0.05
power = 1

alternative = two.sided

6.2.2.2 Packet Rate Selection and CPU Utilization From the
data we captured, we excluded outliers whose round trip latency exceeds 2.5
milliseconds, since they make the boxplot less readable. When testing OpenSSL
there were 5237 outliers, while for TLSonSGX there were 11622 outliers out of
220000 samples for each implementation. When analyzing the reason for these
outliers and why the number differs between the two implementations, the CPU
utilization was investigated. In both implementations, inside the virtual machine,
the first vCPU reaches 100% utilization due to the Click packet generation process
that is pinned to it, even with lower rates than 500 pps (i.e., 50 , 100 , 200 pps).
However, the second vCPU, where ovs-vswitchd process is pinned, has a
higher average CPU utilization when TLSonSGX is used compared to OpenSSL
(as stated in Table 6.2). When increasing the rate beyond 500 pps, then the second
vCPU’s utilization increases along with the average latency.
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Table 6.2: Packet Rate vs. Average CPU Utilization

Packet Rate OpenSSL TLSonSGX

500 pps 25% 61%

1000 pps 40% 78%

2000 pps 49% 96%

Therefore, 500 pps was picked as a suitable and optimal maximum rate and
further measurements and analysis was based on this rate. The increased CPU
utilization is expected when SGX is used due to overhead of memory transition to
and from the memory enclave.

6.2.2.3 Latency and Packet Size The packet round trip latency
measurements results are plotted using a boxplot to compare our
implementation using TLSonSGX with the standard Open vSwitch with OpenSSL
when forwarding UDP packets of a range of sizes. Outliers were excluded as
explained in the previous section. Figure 6.1 shows a plot of latency versus packet
size.

Each box represents the data between first and third quartile, with the thick line
in the box representing the median. The upper whisker is equal to the minimum
value between the largest value in the data and 3rd Quartile + 1.5*IQR, where IQR
is the interquartile range. The lower whisker is the maximum value between the
smallest value in the data and 1st Quartile - 1.5*IQR [66].
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Figure 6.1: UDP Packet Round Trip Latency vs. Packet Size

In addition, a linear regression analysis for the mean values was carried out.
From this analysis, it can be observed that at zero byte TLSonSGX has an extra cost
of 0.33 milliseconds compared to OpenSSL. Then for both implementations the
latency increases almost linearly as packet size increases, this increase is estimated
to be:

OpenSSL: 28 nanoseconds per byte.

TLSonSGX: 182 nanoseconds per byte.

The linear increase is expected as more time is needed to process larger packets.
However, the increase per byte is higher in TLSonSGX compared to OpenSSL
(154 nanoseconds per byte). This, along with the extra cost of 0.33 milliseconds
at zero byte, are also expected due to the overhead of transitions to and from the
memory enclave. In order to analyze and break down the time difference between
OpenSSL and TLSonSGX, we traced how many ECALLs are indirectly called by
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ovs-vswitchd during a packet’s round trip. Their numbers are as follows:

• Once a packet is received at an Open vSwitch port from the network
name space, ovs-vswitchd triggers ecall_ssl_write to encrypt
and send the packet to the SDN controller, while checking the SSL state
(ecall_ssl_get_state) before and after the write ECALL.

• Since, as discussed in Section 2.2.1.2, ovs-vswitchd uses non-blocking
sockets, ovs-vswitchd keeps reading and returning from the socket
(ecall_ssl_read), while comparing the SSL state before and after the
read (ecall_ssl_get_state).

• If a negative value is returned (WANT_READ) from ecall_ssl_read
then it triggers (ecall_ssl_get_error) to retrieve the error code which
indicates that the read call must be repeated and accordingly continue the
loop.

• If a positive value is returned, this means that there is a response from the
controller. The controller will respond with two packets, the original packet
itself and the action needed by the switch to forward the packet to the second
network name space.

• The exact same flow will happen during the packet’s return trip from the
second network name space to the first one.

We measured the time consumed for each ECALL and we repeated the
measurement 10000 times per packet size. With such a large sample size, a
normal distribution can be assumed and a statistical power of 1 can be reached as
per the power analysis done in Section 6.2.2.1. Table 6.3 lists the mean values for
each ECALL. The last column in the table is the sum of all ECALLs times per
packet round trip as explained above.

We noticed also that ecall_ssl_write takes longer (and increases with
packet size) than the other ECALLs. This is because ecall_ssl_write is
the only ECALL that writes from a buffer with a pointer outside the enclave
(unprotected memory) to the enclave memory. All the other ECALLs do the
opposite. According to [67], ECALLs that passes an external pointer into the
enclave are slow since a buffer is allocated inside the enclave memory and the
content and the size of the buffer referenced by the external pointer are verified for
every call to prevent overwriting enclave code or data before copying the contents
of the external buffer into the enclave memory.
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As a result, in a typical deployment where only the first packet in the flow is
sent to the SDN controller, if this packet can be crafted to be small enough (64
bytes), then the latency can be optimized and hence the time needed to add the
flow rule in the Open vSwitch flow table (that subsequent packets in the flow will
match).

Table 6.3: Analysis of packet latency (all measurements are in milliseconds**)

Packet
Size
(Bytes)

TLS
on
SGX

OpenSSL Difference ecall_
ssl_
read

ecall_
ssl_
write

ecall_
ssl_
get_
state*

ecall_
ssl_
get_
error*

Total
enclave
access
time

64 1.6500 1.2682 0.3817 0.0047 0.0646 0.0047 0.0043 0.2966

128 1.6667 1.2722 0.3944 0.0048 0.0676 0.0047 0.0043 0.3040

256 1.6820 1.2844 0.3976 0.0049 0.0725 0.0047 0.0043 0.3146

512 1.6852 1.2955 0.3897 0.0049 0.0828 0.0047 0.0043 0.3350

1024 1.6963 1.3145 0.3818 0.0049 0.1022 0.0047 0.0043 0.3740
* ecall_ssl_get_state and ecall_ssl_get_error are independent of
packet size
. ** Those measurements were captured in a different iteration than the one depicted in
Figure 6.1.
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6.3 Compliance with Functional Requirements
In this section, we discuss our implementation’s compliance with the functional
requirements stated in Section 5.1. Table 6.4 presents each requirement and
examines how the implementation is compliant with respect to it.

Table 6.4: Compliance with Functional Requirements

Functional Requirement Compliance

1 The system should ensure that
only verified virtual switches can
access and use their private keys.

The CA verifies the IMA measurement of
ovs-vswitchd before signing the certificate
that in turn is stored in the enclave. Unless
the CA verifies the IMA measurement the
TLS connection to the controller can not be
established. Moreover, the keys are generated
and used only within the enclave.

2 The SDN controller should
be able to establish a secure
channel to the virtual switches to
exchange certificates.

With a central CA, both the controller and
virtual switch can mutually validate each other’s
certificate using the same CA’s certificate.

3 The system should ensure the
integrity of each virtual switch
and the controller’s certificates.

Keys and certificates are stored and used only
within the enclave.

4 The system should detect any
modifications to virtual switch’s
binary.

Malicious switches will never receive a signed
certificate, as the CA will detect their invalid
IMA measurements. As a result, malicious
switches can not establish a connection with the
SDN Controller.

6.4 Security Analysis
In this section, we explain how our implementation mitigates the threats we
analyzed in Section 3.2.

1. Spoofing and Repudiation
By using TLS for the TCP connection between the SDN controller and
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the virtual switch together with the introduction of a centralized CA,
the implementation protects against such threats as the attacker can not
impersonate the virtual switch without getting hold of the virtual switch
private key which never leaves the enclave. Furthermore, both the SDN
controller and the virtual switch can mutually authenticate and validate each
other’s certificates using the CA certificate.

2. Tampering
As binaries are measured using IMA and measurements are verified by the
CA, our implementation protects against an adversary tampering with the
binaries (specifically ovs-vswitchd and ovsdb-server). Tampering
with the flow table (stored in unprotected memory) or OVS database content
(stored as a file in the disk) are not addressed by our implementation.

3. Information Disclosure
The implementation prevents from the disclosure of keys, certificates and
TLS session information as they are securely stored in the enclave, hence they
are not available in plain text outside of the CA. Furthermore, TLS1.2 has
addressed flaws that previously enabled known and chosen plaintext attacks
[68]. On top of that, as discussed in Table 5.3, Open vSwitch implementation
ensures that the strongest cipher suite is negotiated.

4. Elevation of Privilege and Denial of Service
The implementation did not address Elevation of Privilege, but such a
threat can be mitigated by disabling command line interfaces that can be
used to manipulate the flow table or the Open vSwitch database, such as
ovs-vsctl and ovs-ofctl. Denial of Service attacks were excluded
from our adversary model.
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7 Conclusion and Future Work
This chapter concludes this Master’s thesis. Section 7.1 explains the limitations
of this project. Section 7.2 discusses potential future work within the field of this
project. While Section 7.3 presents our reflections on different aspects of this
project. Finally, Section 7.4 presents conclusions from the analysis of the results in
Chapter 6.

7.1 Limitations
We implemented a prototype and tested it using one laptop (with only two cores)
and used virtual machines with SGX support to host the virtual switches, the
SDN controller, and network namespaces as described in Section 4.2.1. While it
was possible to demonstrate the feasiblity of TLSonSGX and provide a relative
comparison to OpenSSL, using a laptop deemed to be a bottleneck when it comes
to dedicating CPU cores for processes and thus introduced limitations on traffic
generator selection and the packet rate that can be used.

At the time the hardware procurement for this thesis started (November 2016),
there was no available servers with SGX support. Intel® released its server system
with SGX support in March 2017 [69]. Another option would have been public
clouds. Google Cloud Platform announced that it supports Skylake architecture
[70], but there is no mention of SGX support. Google Cloud Platform uses KVM
[71]. There is no official KVM support for SGX. This thesis project uses a patched
version that is not recommended to be used for production [72]. On September 14th
2017, Microsoft Azure introduced support for SGX [73] as part of an Early Access
Program (limited access), this can be explored as part of future work to setup
multiple machines for testing in order to assemble a more realistic deployment in a
cloud environment such as the one depicted in Figure 2.1.

The Open vSwitch data path (fast path) can be deployed in either kernel space
or user space. In this thesis project, only a kernel space implementation was used
as we were interested in examining the connection between the controller and the
virtual switch, which exercises the Open vSwitch slow path, rather than examining
the virtual switch’s throughput which exercises the fast path (fast and slow path are
explained in Section 2.2.1).

We have not implemented a complete mapping of all OpenSSL methods in
the TLSonSGX library. Instead, we mapped only the methods needed for Open
vSwitch to operate while it is integrated with the SGX enclave as described in the
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design of TLSonSGX library in Section 5.2.3 .

7.2 Future Work
Throughout the thesis project, many improvements and potentials for future work
are identified. These include:

• As briefly suggested in Section 3.2, TLSonSGX can be linked, with minor
adaptations, with the SDN controller in order to generate keys and obtain
controller’s certificate securely and automatically as well as terminating TLS
sessions with the virtual switch in the SGX enclave.

• The current implementation supports only one virtual switch connecting
multiple virtual machines per physical host as only one SSL context is
created and kept inside the enclave. An improvement would be to introduce
support for multiple switches per host by extending the library to support
multiple SSL contexts inside the enclave while keeping track of the correct
mapping between the switch and its corresponding SSL context.

• TLSonSGX can be extended to protect the flow table (stored in unprotected
memory) or OVS database content (stored as a file in the disk) from
tampering by storing them in the SGX enclave.

• IMA measurements can be stored in the TPM. Instead of fetching the
measurements from the file system, the SGX enclave could read the value
directly from TPM. This adds an additional security guarantee of the
measurements integrity by the hardware. However, a TPM chip might
not necessarily be available in all platforms.

• Side channels attacks require a long time to analyze memory access patterns.
In order to mitigate such attacks targeting the virtual switch’s private key,
Open vSwitch can periodically generate new keys pairs and request a new
certificate from the CA.

• In order for keys and certificates to survive host reboots, the enclave could
deploy sealing mechanisms to ’seal’ the enclave, i.e. encrypt it, export it
from the enclave, and store it on the local hard disk. We did not prioritize
implementing this feature within the thesis project’s timeframe, as we did not
see it as an essential feature but rather a good feature to have. Moreover, the
time to generate new keys and get a new certificate (as described in Section
6.2.1) is only roughly 1/3 of a second.
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• The current CA verification mechanism can be extended with a SGX Remote
Attestation flow, thus providing a way for the CA to ensure that Open vSwitch
is running on a genuine SGX platform. The CA would need to contact the
IAS either directly (which requires internet connectivity) or through a proxy.

7.3 Required Reflections
This section presents reflections regarding the environmental, ethical, and economic
aspects of this project.

7.3.1 Environmental and Sustainability Aspects
Virualization technology promotes resource sharing and hence less consumption of
energy. On the other hand, many vulnerabilities can result from resource sharing,
hence an improvement in security while still allowing resource sharing will ensure
both a more robust virtualized infrastructure and enable sharing that otherwise
could not be done.

7.3.2 Ethical Aspects
Ensuring the security and isolation of tenants residing on cloud infrastructure is
crucial to guarantee the privacy of those tenants.

7.3.3 Economic Aspects
The proposed improvements in security should help to reduce potential attacks and
thus the cost incurred by cyber crime which is projected to increase every year
[74]. In addition, The thesis introduces an automated way to generate keys and
obtain certificates that replaces the manual procedure, this results in reduction in
man-hours needed to setup cloud infrastructure.

7.4 Conclusion
Open vSwitch is a key component in a cloud infrastructure and data plane security
is crucial to enable isolation between tenants. We introduce and implement the
TLSonSGX library by the leveraging Intel® SGX architecture. The library provides
a new, secure, and automatic mechanism for Open vSwitch to generate keys and
obtain signed certificates while keep them secured within a memory enclave.
This new mechanism is a replacement for the existing manual and unsecure
procedures (as described in Open vSwitch project). TLSonSGX also confines
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all the TLS connections to the SDN controller within the enclave to ensure that
keys, certificates, and session data are inaccessible outside the enclave.

We tested the functionality and performance of our implementation and we
provided performance metrics in a comparison with a standard Open vSwitch
that uses OpenSSL. Our results show that generating keys and certificates using
TLSonSGX takes less than 0.5 seconds while using TLSonSGX adds 30% latency
overhead for the first packet in each flow compared to using OpenSSL. This
additional latency is due to enclave access time. These results show that TLSonSGX
can contribute to reduce Open vSwitch TLS configuration overhead and also to
enhance Open vSwitch security.
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