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Abstract

In this paper we introduce a novel method for linear system identification with quantized output data. We model the
impulse response as a zero-mean Gaussian process whose covariance (kernel) is given by the recently proposed stable spline
kernel, which encodes information on regularity and exponential stability. This serves as a starting point to cast our system
identification problem into a Bayesian framework. We employ Markov Chain Monte Carlo methods to provide an estimate of
the system. In particular, we design two methods based on the so-called Gibbs sampler that allow also to estimate the kernel
hyperparameters by marginal likelihood maximization via the expectation-maximization method. Numerical simulations show
the effectiveness of the proposed scheme, as compared to the state-of-the-art kernel-based methods when these are employed
in system identification with quantized data.
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1 Introduction

Many applications in communications, control systems,
bioinformatics, require modeling and prediction of dy-
namic systems with quantized output data (see e.g. [2],
[6] and [41]). In particular, in this paper we assume that
an unknown input-output map is defined by the com-
position of a linear time-invariant dynamic system and
a quantizer, as depicted in Figure 1. Estimation of this
type of structure is a challenging task. Standard sys-
tem identification techniques, such as least-squares or
the Prediction Error Method (PEM) [27], [38], may give
poor performances, because the presence of the quan-
tizer can determine a significant loss of information on
the system dynamics. Recently, there has been an in-
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Figure 1. Block scheme of a system with quantized output
data.

creasing interest on developing new methods to solve
this problem. Particular attention has been devoted to
the case of binary measurements [42], [40], also studying
on-line recursive identification [25], [23]. In other works,
e.g. [13], the knowledge of a dithering signal is exploited
to improve the identification performance. The problem
of experiment design is analyzed in [8], [9] and [21]. More
recently, system identification with non-binary quantiz-
ers has been also addressed in [28], [31], [22], [39]. In [20],
[19], [12], the system identification problem is posed as
a maximum likelihood/a-posteriori problem. In partic-
ular, the framework proposed in [12] uses the nonpara-
metric kernel-based identification approach proposed in
[34], see also [35] for a survey.

Similarly to [12], in this paper we cast the problem
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of identifying a linear dynamic systems with quantized
data in a Bayesian framework. To this end, we model the
impulse response of the unknown system as a realization
of a zero-mean Gaussian random process. The covariance
matrix (in this context also called a kernel) corresponds
to the recently introduced stable spline kernel (see [34],
[33], [4]). The structure of this type of kernel depends
on two hyperparameters, that need to be estimated from
data. Following an empirical Bayes approach [29], the
hyperparameters, together with the noise variance, are
estimated via marginal likelihood maximization. These
quantities are then used to compute the minimum mean-
square estimate (MMSE) estimate of the impulse re-
sponse.

The whole procedure, which has been proven effective
and relatively simple in the standard (non-quantized)
setting, becomes more involved in the scenario under
study. The MMSE system estimate requires the compu-
tation of an analytically intractable integral. To accom-
plish this task, in this paper we propose sampling meth-
ods based on Markov Chain Monte Carlo (MCMC) tech-
niques. In particular, we design two different sampling
techniques using the so called Gibbs sampler [16], which
often enjoys faster convergence properties compared to
standard Metropolis-Hastings sampling techniques [17].

Another contribution of the paper is to show that the
task of estimating the kernel hyperparameters (and
the noise variance) can be accomplished using the
proposed sampling techniques. Using the Expectation-
Maximization (EM) method [14], we design an iterative
scheme for marginal likelihood maximization, where the
E-step characterizing the EM method makes use of the
Gibbs sampler (see also [7]), and the M-step results in
a sequence of straightforward optimization problems.
Interestingly, the resulting estimation scheme can be
seen as a generalization of the method proposed in [19]
to the Bayesian nonparametric framework and, differ-
ently from [5] and [12], it allows tuning all the kernel
hyperparameters.

The paper is organized as follows. In the next section, we
introduce the problem of identifying dynamic systems
from quantized data. In Section 3, we formulate the pro-
posed Bayesian model and discuss its inference. In Sec-
tion 4, we describe the proposed identification method.
Section 5 shows the results of several numerical experi-
ments to assess the performance of the proposed method.
Some conclusions end the paper.

2 Problem formulation

We consider a linear time-invariant discrete-time dy-
namic system of the form

zt =

+∞∑
i=1

giut−i + et , (1)

where {gt}+∞t=1 is a bounded-input-bounded-output
(BIBO) stable impulse response representing the dy-
namics of the system. We approximate the impulse re-
sponse by considering the first m samples only, namely
{gt}mt=1, where m is assumed large enough to capture
the system dynamics 1 . The input ut is a measurable
signal; for the sake of simplicity, we assume that the
system is at rest until t = 0, meaning ut = 0, t < 0.
We shall not make any specific requirement on the in-
put sequence (i.e., we do not assume any condition on
persistent excitation in the input [27]), requiring only
ut 6= 0 for some t. Notice, however, that even though the
algorithm do not require any specifics of the input, the
resulting estimate is of course highly dependent on the
properties of the input [27]. The output zt is corrupted
by the additive zero-mean Gaussian white noise et with
variance σ2, assumed unknown. Introducing the vectors

g :=


g1
...

gm

 , ϕTt := [ut−1 . . . ut−m] ,

an approximation of (1) can be written in linear regres-
sion form, namely

zt = ϕTt g + et . (2)

The output zt is not directly measurable, only a quan-
tized version being available, namely

yt = Q[zt] , (3)

where Q is a known map of the type

Q[x] = sk if x ∈ (qk−1, qk] , (4)

with sk ∈ {s1, . . . , sQ} and qk ∈ {q0, . . . , qQ} (and
typically q0 = −∞ and qQ = +∞).

Remark 1 A particular and well-studied case is the bi-
nary quantizer, defined as

Q[x] =

{
−1 if x < C

1 if x ≥ C
. (5)

It is well-known that a condition on the threshold to guar-
antee identifiability of the system is C 6= 0. In fact, when
C = 0, the system can be determined up to a scaling fac-
tor [20].

1 All the results obtained in this paper can be also extended
to the case m = ∞ but we prefer to consider a finite value
for m to simplify exposition. In addition, the assumption
m < N , with N the data set size, is typical of the system
identification scenario.
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We assume thatN input-output data samples y1, . . . , yN ,
u0, . . . , uN−1 are collected during an experiment. The
problem under study is to estimate {gt}mt=1 using the
collected measurements.

It is also useful to write the dynamics in the following
vector notation

z = Ug + e , (6)

where z and e are N -dimensional vectors collecting the
samples of zt and et, respectively, and U ∈ RN×m is a
matrix whose t-th row corresponds to ϕTt . Similarly, we
denote by y := [y1 . . . yN ]T the vector collecting the
available quantized measurements.

3 Bayesian modeling and inference

3.1 Impulse response prior

In this paper we cast the system identification problem
into a Bayesian framework, setting an appropriate prior
on g. Following a Gaussian regression approach [36], we
model the impulse response as a zero-mean Gaussian
random vector, i.e. we assume the following prior distri-
bution

p(g; λ, β) ∼ N (0, λKβ) . (7)

Here,Kβ is a covariance matrix whose structure depends
on the shaping hyperparameter β, and λ ≥ 0 is a scal-
ing factor. In this context, Kβ is usually called a ker-
nel and determines properties of the realizations of g. In
particular, we choose Kβ from the family of stable spline
kernels [34], [33]. Such kernels are specifically designed
for system identification purposes and give clear advan-
tages compared to other standard kernels [4], [34] (e.g.
the Gaussian kernel or the Laplacian kernel, see [37]).
Motivated by its maximum entropy properties [10], in
this paper we make use of the first-order stable spline
kernel (or TC kernel in [11]). It is defined as

{Kβ}i,j := βmax(i,j) , 0 ≤ β < 1 , (8)

with β regulating the impulse response decay rate.

3.2 Bayesian inference of systems with quantized out-
put data

In this section we describe the complete Bayesian model
that stems from the prior adopted for the impulse re-
sponse. Our main aim is to devise an MCMC-based sam-
pling mechanism for inferring the model. We introduce
the vector of parameters η = [λ β σ2], seen as a deter-
ministic quantity. Figure 2 depicts the Bayesian network
describing the system identification problem with quan-
tized data. The kernel hyperparameters λ and β deter-
mine the stochastic model of g, which, together with σ2,

λ β

σ2

g

z1 zN−1 zN

yNyN−1y1

· · ·

· · ·

Figure 2. Bayesian network describing the system model.
Non-dashed nodes denote deterministic or given quantities;
dashed nodes denote random variables.

in turn determines the distribution of the zt. The output
measurements yt are determined directly by the non-
quantized outputs. Any kind of inference on this net-
work crucially depends on the capability of performing
Bayesian inference on the hidden nodes g, {zt}Nt=1, by
computing functionals of the posterior density

p(g, z|y; η) (9)

of the form ∫
f(g, z)p(g, z|y; η)dg dz , (10)

where f(g, z) is a general function of g and z. Special
cases of (10) that will be used later comprise the MMSE
of g given y and the computation of the marginal likeli-
hood of η.

In the remainder of the section, we assume that η is fixed.

3.3 Method 1: sampling from the joint posterior

Quite unfortunately, analytical computation of (10) is
intractable, due to the involved structure of the posterior
density. Instead, we can resort to Markov Chain Monte
Carlo methods, i.e. use the approximation

∫
f(g, z)p(g, z|y; η)dg dz ' 1

M

M∑
k=1

f(g(k), z(k)) ,

(11)
where g(k), z(k) are random samples drawn from (9) and
M is a large integer. The problem is how to design an ef-
fective technique to sample from the distribution (9). If
all the conditional probability densities of such a distri-
bution are available in closed-form, the problem of sam-
pling can be solved efficiently using a special case of the
Metropolis-Hastings method, namely the Gibbs sampler
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(see e.g. [17]). The basic idea is that each conditional
random variable is the state of a Markov chain; then, by
drawing samples from the conditional probability den-
sities iteratively, we converge to the stationary state of
this Markov chain and generate samples of the desired
distribution. The conditionals of (9) are as follows.

(1) p(zi|g, {zj}j 6=i, y; η), i = 1, . . . , N . First note that
from (6), given g, zi is independent of {zj}j 6=i and
{yj}j 6=i. Therefore we have

p(zi|g, {zj}j 6=i, y; η) = p(zi|g, yi; η) . (12)

Now, using again (6) we observe that, if yi were not
given, then

p(zi|g; η) ∼ N (ϕTi g, σ
2) . (13)

Knowing the quantized output yi permits to narrow
the range of possible values of zi. In particular, if
yi = sk, for ant k = 1, . . . , Q, we have

p(zi|g, yi = sk; η) ∼ N qk
qk−1

(ϕTi g, σ
2) , (14)

where N b
a(µ, σ2) denotes a Gaussian distribution

truncated below a and above b, whose original mean
and variance are µ and σ2 respectively.

(2) p(g|z, y; η). Given z, information carried by y be-
comes redundant and can be discarded. Due to the
assumption on the distribution of the noise e, the
vectors g and z are jointly Gaussian, so that the
posterior density of g given z is also Gaussian. Com-
bining the linear model (6) with the prior (7) it is
straightforward to obtain (see e.g. [1])

p(g|z; η) ∼ N (mg, Pg) , (15)

with

Pg =

(
1

σ2
UTU + (λgKβ)

−1
)−1

(16)

mg =
1

σ2
PgU

T z = Hz , (17)

with obvious definition of H.

Algorithm 1 summarizes the computation of (10) using
the sampling mechanism described in this subsection.

In Algorithm 1, the parameter M0 is introduced. It rep-
resents the number of initial samples to be discarded
and is also known as burn-in [30]. In fact, the condi-
tional densities from which those samples are drawn are
to be considered as non-stationary, because the associ-
ated Markov Chain takes a certain number of iterations
to converge to a stationary distribution.

Algorithm 1: Method 1 for inference

Input: {yt}Nt=1, {ut}N−1t=0 , η

Output: E [f(g, z)|y]
Initialization: Compute initial value g(0)

For k = 1 to M +M0:

(1) Sequentially draw the samples z
(k)
i , i = 1, . . . , N ,

from p(zi|g(k−1), yi; η)
(2) Draw the sample g(k) from p(g|z(k); η)

Compute 1
M

∑M+M0

k=M0
f(g(k), z(k))

3.4 Method 2: sampling from the marginalized posterior
of z

Method 1 for sampling allows for computing expected
values (with respect to the posterior p(g, z|y; η)) of any
kind of function f(g, z). For the problem under study
however, we are particularly interested in computing the
expected value (conditional on y) of g, and of quadratic
functions in g and z, i.e.

f(g, z) = [gT zT ]

[
A BT

B C

][
g

z

]
, (18)

for given A ∈ RN×N , B ∈ Rm×N , C ∈ Rm×m. These
type of functions will play a central role in estimating
the vector of parameters η (see Section 4).

The sampling method proposed in this subsection relies
on the following result.

Lemma 2 Let f(g, z) be a quadratic function of the type
(18). Then

E [f(g, z)|y] = tr{APg} (19)

+

∫
zT (HTAH + 2BH + C)z p(z|y; η)dz ,

where Pg and H are defined in (16) and (17).

Proof: We have∫
f(g, z)p(g, z|y; η) dg dz =∫
f(g, z)p(g|z; η)p(z|y; η) dg dz =∫ (∫

f(g, z)p(g|z; η) dg

)
p(z|y; η) dz . (20)

We now focus on the internal integral in the above ex-
pression. Developing f(g, z) and recalling the first and
second moments of p(g|z; η), given in (15), we obtain
the following terms:∫

gTAg p(g|z; η)dg = tr{APg}+mT
g Amg
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= tr{APg}+ zTHTAHz ,∫
zTBg p(g|z; η)dg = zTBmg = zTBHz ,∫
zTCz p(g|z; η)dg = zTCz .

Combining the three terms yields (19). �

A analogous result holds for the computation of E [g|y].

Lemma 3 It holds that

E [g|y] = H

∫
z p(z|y; η) dz , (21)

where H is defined in (17).

Lemmas (2) and (3) state that the posterior expectations
of g and of quadratic functions in g and z, are equivalent
to the expectation of specific functions with respect to
the marginalized posterior of z given y. This distribution
corresponds to a multivariate truncated Gaussian; so,
analytical computation of the relative integrals is quite
challenging. Computing the integrals by sampling from
p(z|y; η) is instead a viable approach.

An effective technique for sampling from p(z|y; η) is
again based on the Gibbs sampler. The idea is to it-
eratively draw samples from the conditional densities
p(zi|{zj}j 6=i, yi; η). Generating samples from these dis-
tributions is relatively simple, because they are scalar
truncated normal distributions. To see this, first con-
sider the marginal distribution p(z; η), which is a mul-
tivariate normal random vector with zero-mean and
covariance matrix Σz = λUKβU

T + σ2I. Then

p(zi|{zj}j 6=i; η) ∼ N(mzi , Pzi) , (22)

where

mzi = Cov [zi, {zj}j 6=i]Var [{zj}j 6=i]−1 (23)

× [z1 . . . zi−1 zi+1 . . . zN ]T ,

Pzi = var[zi]− Cov [zi, {zj}j 6=i]Var [{zj}j 6=i]−1 (24)

× Cov [zi, {zj}j 6=i]T .

Therefore, p(zi|{zj}j 6=i, yi; η) ∼ Nqk
qk−1

(mzi , Pzi).

Algorithm 2 summarizes the sampling procedure de-
scribed in this subsection, for quadratic functions. The
same algorithm can be used for computing the posterior
expectation of g.

Remark 4 The quantities required to compute (23) and
(24) can be retrieved from Σ−1z . Assume we are interested
in generating a sample of z1. To this end, partition Σ−1z

Algorithm 2: Method 2 for inference

Input: {yt}Nt=1, {ut}N−1t=0 , η

Output: E [f(g, z)|y]
Initialization: Compute initial value g(0)

For k = 1 to M +M0:

(1) Sequentially draw the samples z
(k)
i , i = 1, . . . , N ,

from p(zi|{zj}j 6=i, yi; η)

Compute tr{APg}+ 1
M

∑M+M0

k=M0
z(k)T (HTAH+2BH+

C)z(k)

as follows

Σ−1z =

[
s1 sTj1

sj1 Sj

]
,

where s1 ∈ R, sj1 ∈ RN−1, Sj ∈ RN−1×N−1. Then

Pz1 = 1/s1 and mz1 = − s
T
j1

s1
[z2 . . . zN ]T (see e.g. [32]).

This procedure turns out computationally convenient,
because it is required to invert Σz only one time, in-
stead of computing the inversion of N matrices of size
N − 1×N − 1 (which would be necessary for computing
Var [{zj}j 6=i]−1 for any i = 1, . . . , N).

4 System identification from quantized output
data

In the previous section we have defined an adequate
Bayesian framework to describe the problem of identifi-
cation of systems from quantized output data. We have
also presented two methods for inference of functions of
z and g. In this section, we describe the proposed system
identification procedure. It relies on the so called em-
pirical Bayes approach [29] and consists of the following
two steps:

(1) Estimate the parameter vector η via marginal like-
lihood maximization;

(2) Compute the MMSE estimate of the impulse re-
sponse, using the estimated parameter vector η̂.

In the following we analyze in detail the two steps com-
posing the proposed system identification scheme.

4.1 Marginal likelihood estimation of the parameter vec-
tor η

In the empirical Bayes approach, the estimation of η
is tackled via marginal likelihood maximization, i.e., by
computing

η̂ = arg max
η

p(y; η) (25)

= arg max
η

∫
p(y, g, z; η) dg dz .

In the standard (non-quantized) scenario, solving (25) is
straightforward because the marginal likelihood admits
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a closed-form expression [35]. This does not hold in the
problem under study. Therefore, to solve (25) we propose
an iterative solution scheme based on the EM method,
where we treat g and z as latent variables that are iter-
atively estimated together with the parameter vector η.
Let η(n) be the parameter estimate obtained at the n-th
iteration of the EM method. Then, n + 1-th update is
obtained with the following steps:

(E-step) Compute

Q(η, η̂(n)) := E [log p(y, g, z; η)] , (26)

where the expectation is taken with respect to the
posterior density p(g, z|y; η̂(n)), with η fixed at the
value η(n);

(M-step) Compute

η̂(n+1) = arg max
η

Q(η, η̂(n)) . (27)

We first focus on performing the E-step. It requires the
computation of (26), which corresponds to the integral∫

log p(y, g, z; η)p(g, z|y; η̂(n)) dg dz . (28)

Proposition 5 The complete likelihood admits the de-
composition

−2 log p(y, g, z; η) =
1

σ2
f1(g, z) +

1

λ
f2(g, z, β) (29)

+N log σ2 + log detλKβ + log p(y|z, g; η) ,

where f1(g, z) is a quadratic function of the type (18),
with A = UTU, B = U, C = I, and f2(g, z, β) is also
a quadratic function in g and z, with A = K−1β , B =
0, C = 0.

Proof Using Bayes’ rule we can decompose the com-
plete likelihood as follows

log p(y, g, z; η) = log p(y|z, g; η) (30)

+ log p(z|g; η) + log p(g; η) .

The term p(z|g; η) is a vectorized version of (13), so that

log p(z|g; η) = −N
2

log σ2 − 1

2σ2
‖z − Ug‖22 . (31)

The last term on the right hand side gives f1(z, g). Sim-
ilarly,

log p(g; η) = log detλKβ + gT (λKβ)−1g , (32)

where the last term corresponds to f2(z, g, β). �

The proposition reveals the nature of the complete like-
lihood, which is the summation of terms that are ei-
ther constant or quadratic functions of z and g, plus
the term log p(y|z, g; η). As for this term, we note that
p(y|z, g; η) factorizes, each factor being of the type

p(yi|z, g; η)=

{
1 if yi=sk and zi∈(qk−1, qk]

0 otherwise
. (33)

When computing the integral of this term using the sam-
pling mechanisms introduced in Section 3, it is ensured

that all the generated samples z
(k)
i belong to the inter-

val corresponding to the observed quantized value yi.
Hence, when we compute the expectation of p(y|g, z; η)
techniques of Section 3, it is ensured that each factor
(33) is always equal to 1 and thus log p(y|g, z; η) = 0.
Therefore, computing (28) reduces to computing the ex-
pectation of two quadratic functions, and this can be
done using both the sampling mechanisms introduced in

Section 3. We denote by f̂
(n)
1 and f̂

(n)
2 (β), respectively,

the expected value of f1(g, z) and f2(g, z, β) at the n-
th iteration of the EM method (i.e., when the η(n) of
the parameter vector is available). Neglecting constant
terms, we have

−2Q(η, η̂(n)) =
1

σ2
f̂
(n)
1 +

1

λ
f̂
(n)
2 (β) (34)

+N log σ2 + log detλKβ .

Proposition 6 Let

h(β) := m log f̂
(n)
2 (β) + log detKβ . (35)

Then the EM update η(n+1) = [λ(n+1) β(n+1) σ2(n+1)] is
obtained as follows:

β(n+1) = arg min
β∈(0, 1]

h(β) , (36)

λ(n+1) = m−1f̂
(n)
2 (β(n+1)) , (37)

σ2(n+1) = N−1f̂
(n)
1 . (38)

Proof Differentiating −2Q(η, η(n)) with respect to λ,
one obtains that the minimum, as a function of β, is

achieved at λ∗ = m−1f̂
(n)
2 (β). Inserting this value into

−2Q(η, η(n)) yields h(β), so that (36) and (37) follow.
Finally, it is straightforward to see that (38) is the min-
imizer of −2Q(η, η(n)). �

The M-step results in a series of computationally at-
tractive operations. The kernel scaling hyperparameter
λ and the noise variance σ2 admit a solution in closed
form. The shaping hyperparameter β is updated solv-
ing a simple scalar optimization problem. This problem
can be further simplified by using a factorization of the
first-order stable spline kernel, see [3] for details.
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4.2 MMSE estimate of the impulse response

Having an estimate η̂ available, the MMSE estimate of
g corresponds to

ĝ := E [g|y] =

∫
g p(g|y; η̂) dg (39)

=

∫
g p(g, z|y; η̂) dg dz . (40)

Again, this quantity can be computed using both the
sampling methods described in the previous section.

We summarize the overall procedure for system identi-
fication from quantized data in the following algorithm.

Algorithm 3: System identification with quantized out-
put measurements

Input: {yt}Nt=1, {ut}N−1t=0

Output: {ĝt}mt=1

Initialization: Set an initial value of η̂(0)

Repeat until convergence:
(1) E-step: Compute Q(η, η(n)) using Algorithm 1 or

Algorithm 2
(2) M-step: update η̂(n+1) according to Proposition 6

Compute ĝ using Algorithm 1 or Algorithm 2

The initial value η̂(0) can be set either randomly or by us-
ing values of the kernel hyperparameters and noise vari-
ance returned by the standard nonparametric method
for non-quantized data (see [34]).

4.3 Which sampling method?

Algorithm 3 for quantized system identification works
with both the sampling methods presented in Section 3,
because it requires the computation of the posterior ex-
pectation of quadratic functions of the type (18) and of
g. Choosing the sampling method depends on the user
requirements. Method 1 allows for any type of inference
and therefore it can be used to compute useful statis-
tics such as confidence intervals on the estimate of g
and quantile estimation. On the other hand, Method 2
requires sampling only from p(z|y, η); if implemented
properly (see Remark 4), this method is expected to have
a faster convergence to the required expectations. The
experiments presented in the next section show that the
two sampling methods substantially give the same per-
formance in terms of accuracy in reconstructing the true
impulse response.

5 Numerical experiments

We test the proposed technique by means of 2 Monte
Carlo experiments of 100 runs each. For each Monte
Carlo run, we generate an impulse response by picking

10 pairs of complex conjugate zeros with magnitude ran-
domly chosen in [0, 0.99] and random phase and, simi-
larly, 10 pairs of complex conjugate poles with magni-
tude randomly chosen in [0, 0.92] and random phase.
The obtained impulse response is rescaled in order to
have a random `2-gain in the interval [2, 4]. The goal
is to estimate m = 50 samples of this impulse response
from N input-output data. The input sequences are re-
alizations of white noise with unit variance. We compare
the following estimators.

• KB-GS-1: This is the method described in this pa-
per, making use of the sampling technique of Section
3.3 (Algorithm 1). The parameter M , denoting the
number of samples generated by the sampler, is set to
100 for each iteration of the EM method, and to 500
for the final computation of g (last step of Algorithm
3). The burn-in phase consists of M0 = 100 samples.
Convergence of the EM method is established by a
threshold on the relative difference of the current and
previous parameter estimates, i.e. the method stops if
the condition

‖η(n+1) − η(n)‖22
‖η(n)‖22

≤ 10−3

is satisfied. In our simulations, we have verified that
our choice of M was adequate to guarantee a good
degree of approximation (the reader interested in con-
vergence diagnostics is referred to, e.g., [15, Ch. 11.4]).

• KB-GS-2: This is the method described in this paper,
making use of the sampling technique of Section 3.4
(Algorithm 2). The algorithm settings are the same as
the previous method.

• KB-St.: This is the standard nonparametric kernel-
based method proposed in [34] and revisited in [11].
It is not designed for handling quantized data. The
kernel adopted for identification is (8). The kernel hy-
perparameters are estimated by marginal likelihood
maximization, while σ2 is estimated via least-squares
residuals.

• KB-Or.: Same as KB, with the difference that in this
case the vector z is available to the estimator. Hence,
this estimator is regarded as an Oracle.

• ML-GS: This is the method proposed in [20], based
on maximum likelihood identification of the impulse
response, namely

ĝ = arg max
g, σ2

p(y; g, σ2) . (41)

To solve the likelihood problem, a scheme based on
the EM method is proposed. In our implementation,
the E-step of the EM iterations is computed using the
Gibbs sampler (in contrast, [20] proposes a scenario-
based approach). The length of g is also set to 50,
while the convergence is established by using the same
conditions as the estimator KB-GS-1.
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• MAP-GS: This is the method proposed in [12], based
on maximum-a-posteriori (MAP) identification of the
impulse response, namely

ĝ = arg max
g

p(y|g; σ2)p(g; λ, β) , (42)

where the prior p(g; λ, β) corresponds to (7). Again,
an EM solution scheme based on the Gibbs sampler is
employed to solve this problem, setting m = 50, while
the convergence is established by using the same con-
ditions as the estimator KB-GS-1. To facilitate hyper-
parameter and noise variance tuning, we plug those
that are estimated by the method KB-Or., which has
access to the non-quantized output z.

The performance of the estimators is evaluated by means
of the fitting score, computed as

FITi = 1− ‖g
i − ĝi‖2
‖gi‖2

, (43)

where gi is the impulse response generated at the i-th
Monte Carlo run and ĝi the estimate computed by the
tested methods.

5.1 Binary quantizer

The first experiment considers the following binary
quantizer

Qb[x] :=

{
1 if x ≥ 1

−1 if x < 1
.

For each Monte Carlo run, the noise variance is such

that var(Ug)
σ2 = 10, i.e. the ratio between the variance

of the noiseless (non-quantized) output and the noise
is equal to 10. If σ2 > 2, the system is discarded. We
generate N = 500 data samples. Figure 3 shows the

KB-GS-1 KB-GS-2 KB-St.KB-Or. ML-GS MAP-GS

F
it

0.2

0.4

0.6

0.8

1

Figure 3. Box plots of the fitting scores for the binary quan-
tizer experiment.

results of the Monte Carlo runs. The advantage of us-
ing the proposed identification scheme, compared to the
method that does not account for the quantizer, is ev-
ident. Despite the large loss of information caused by
the quantizer, the proposed method gives a fit which is
quite comparable to the oracle method (KB-Or.). The
proposed sampling mechanisms yield nearly equivalent
performance. Furthermore, there seems to be a substan-
tial advantage in using a Bayesian approach compared
to the non-regularized estimator ML-GS, which is tai-
lored for short FIR systems rather than IIR systems. The
high number of coefficients to be estimated inevitably
leads to high variance in the estimates. If this effect is
not suitably alleviated by regularization (i.e., introduc-
ing a “good” bias), the performance of the estimator is
doomed to be poor. Finally, the proposed estimators,
based on computing the MMSE estimate of the impulse
response, outperform the estimator MAP-GS, which is
based on computing the MAP estimate of the impulse
response.

5.2 Ceil-type quantizer

In the second experiment we test the performance of
the proposed method on systems followed by a ceil-type
quantizer, which is defined as

Qc[x] := dxe .

Again, for each Monte Carlo run, the noise variance is

such that var(Ug)
σ2 = 10. We generate N = 200 data

samples.

As shown in Figure 4, in this case, if one compares the
oracle-type method (i.e. KB-Or.) with the same method
using quantized data (KB-St.), the loss of accuracy is
relatively low. This is because this type of quantizer has
a mild effect on the measurements. It can be seen, how-
ever, that the proposed methods are able to give a fit
that is comparable to the oracle KB-Or., regardless of
the employed sampling method. We notice also that the
Bayesian approach has a major impact on the perfor-
mance, as seen by the gap in the performance between
ML-GS and the other estimators.

6 Conclusions

In this paper, we have introduced a novel method for sys-
tem identification when the output is subject to quanti-
zation. We have proposed a MCMC scheme that exploits
the Bayesian description of the unknown system. In par-
ticular, we have shown how to design two integration
schemes based on the Gibbs sampler by exploiting the
knowledge of the conditional probability density func-
tions of the variables entering the system. The two sam-
pling techniques can be used in combination with the
EM method to perform empirical Bayes estimation of
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KB-GS-1 KB-GS-2 KB-St.KB-Or. ML-GS MAP-GS
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Figure 4. Box plots of the fitting scores for the ceil-type quan-
tizer experiment.

the kernel hyperparameters and the noise variance. We
have highlighted, through some numerical experiments,
the advantages of employing our method when quantiz-
ers affect the accuracy of measurements.

As a final remark, we note that the cascaded composi-
tion of a linear LTI dynamic system followed by a static
nonlinear function is known in system identification as
a Wiener system [18], [24]. However, in Wiener systems
the nonlinear function is generally assumed unknown, so
a direct extension of the method proposed in this paper
to general Wiener systems does not appear immediate,
and would require the use of more involved and MCMC
techniques (see, e.g., [26]).
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