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Abstract

This thesis investigates sequential decision making tasks that fall in the
framework of reinforcement learning (RL). These tasks involve a decision
maker repeatedly interacting with an environment modeled by an unknown
finite Markov decision process (MDP), who wishes to maximize a notion of
reward accumulated during her experience. Her performance can be measured
through the notion of regret, which compares her accumulated expected re-
ward against that achieved by an oracle algorithm always following an optimal
behavior. In order to maximize her accumulated reward, or equivalently to
minimize the regret, she needs to face a trade-off between exploration and
exploitation.

The first part of this thesis investigates combinatorial multi-armed bandit
(MAB) problems, which are RL problems whose state-space is a singleton.
It also addresses some applications that can be cast as combinatorial MAB
problems. The number of arms in such problems generically grows exponen-
tially with the number of basic actions, but the rewards of various arms are
correlated. Hence, the challenge in such problems is to exploit the underly-
ing combinatorial structure. For these problems, we derive asymptotic (i.e.,
when the time horizon grows large) lower bounds on the regret of any admis-
sible algorithm and investigate how these bounds scale with the dimension of
the underlying combinatorial structure. We then propose several algorithms
and provide finite-time analyses of their regret. The proposed algorithms
efficiently exploit the structure of the problem, provide better performance
guarantees than existing algorithms, and significantly outperform these algo-
rithms in practice.

The second part of the thesis concerns RL in an unknown and discrete
MDP under the average-reward criterion. We develop some variations of the
transportation lemma that could serve as novel tools for the regret analysis
of RL algorithms. Revisiting existing regret lower bounds allows us to derive
alternative bounds, which motivate that the local variance of the bias func-
tion of the MDP, i.e., the variance with respect to next-state transition laws,
could serve as a notion of problem complexity for regret minimization in RL.
Leveraging these tools also allows us to report a novel regret analysis of the
KL-Ucrl algorithm for ergodic MDPs. The leading term in our regret bound
depends on the local variance of the bias function, thus coinciding with obser-
vations obtained from our presented lower bounds. Numerical evaluations in
some benchmark MDPs indicate that the leading term of the derived bound
can provide an order of magnitude improvement over previously known results
for this algorithm.



Sammanfattning

I denna avhandling behandlas sekventiella beslutsproblem som faller inom
ramverket för förstärkande inlärning (eng: reinforcement learning, RL). Des-
sa problem involverar en beslutstagare som, upprepade gånger, interagerar
med en miljö som kan modelleras enligt en Markoviansk beslutsprocess (eng:
Markov decision process, MDP). Beslutstagaren försöker maximera ett mått
på den förväntade belöningen som kan ackumuleras vid dessa interaktioner.
Hur bra beslutstagaren gör ifrån sig kan kvantifieras genom dess ånger (eng:
regret), som jämför beslutstagarens förväntade ackumulerade belöning gente-
mot den belöning som en orakelalgoritm (som alltid beter sig optimalt) kan
åstadkomma. För att beslutstagaren ska maximera sin ackumulerade belö-
ning, eller ekvivalent, minimera sin ånger, så måste vid varje interaktion för-
och nackdelarna med att utforska miljön gentemot att exploatera den vägas
mot varandra.

Den första delen av denna avhandling behandlar problem modellerade
som kombinatoriska flerarmade banditer (eng: multi-armed bandit, MAB).
Dessa är RL-problem vars tillståndsrum består av endast ett element. Även
tillämpningar som kan modelleras med hjälp av MAB:er behandlas. I allmän-
het växer antalet armar exponentiellt med antalet tillgängliga handlingar, men
belöningarna för de olika armarna är korrelerade. Utmaningen i dessa problem
ligger i att utnyttja den underliggande kombinatoriska strukturen. För dessa
problem härleder vi asymptotiska (d.v.s. när tiden låts gå mot oändligheten)
undre gränser på ångern för godtyckliga algoritmer, samt studerar hur dessa
undre gränser skalas med dimensionen hos den underliggande kombinatoriska
strukturen. Vi föreslår sedan flera algoritmer, samt härleder gränser för de-
ras ånger som är giltiga även icke-asymptotiskt. De föreslagna algoritmerna
utnyttjar effektivt strukturen hos problemen, har bättre teoretiska garantier
än redan existerande algoritmer, samt överträffar prestandamässigt dessa i
praktiken.

Den andra delen av avhandlingen behandlar RL i en okänd och diskret
MDP under ett medelbelöningskriterium. Vi utvecklar nya verktyg som kan
användas för att utföra ångeranalys för RL-algoritmer. Mer specifikt härleder
vi variationer på transportlemmat och kombinerar dessa med Kullbeck-Leibler
koncentrationsolikheter. Med dessa nya verktyg kan vi härleda alternativa,
nya, undre gränser för ångern som påvisar att den lokala variansen hos bias-
funktionen av MDP:n (d.v.s. variansen med avseende på dess övergångsfunk-
tion) kan användas som ett mått på problemets komplexitet för ångeranalys
i RL. Med hjälp av dessa verktyg utför vi en ny ångeranalys för KL-Ucrl-
algoritmen för ergodiska MDP:er. Den ledande termen i analysen beror på
den lokala variansen hos biasfunktionen, vilket rättfärdigar varianstermen i
vår härleda undre gräns. Numeriska simuleringar för några standardtestfall
indikerar att den ledande termen i den härledda undre gränsen kan vara upp
till en storleksordning bättre än tidigare kända gränser för denna algoritm.
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Abbreviations

APF Approximate PF
iff if and only if
i.i.d. independent and identically distributed
KKT Karush-Kuhn-Tucker
KL Kullback-Leibler
LP Linear Program
MAB Multi-armed Bandit
MDP Markov Decision Process
PF Proportionally Fair
RL Reinforcement Learning
UCB Upper Confidence Bound
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Notations

� Absolute continuity relation
∼ Distributed according to
IA Indicator function of event A: IA = 1 if A is true, and IA = 0 otherwise.
I Identity matrix
1 The vector of all ones
A> The transpose of matrix A
[n] The set {1, . . . , n} for n ∈ N
N The set of natural numbers
R The set of real numbers
R+ The set of non-negative real numbers
R++ The set of positive real numbers
E[·] Expectation
P(·) Probability
Vp(·) Variance under distribution p
P(X ) The set of probability distributions over alphabet X
S(f) Span of function f
exp Exponential function
log The logarithm to base e
llnp(n) The function log(log(max(n, e)))
KL(P,Q) The Kullback-Leibler divergence between

discrete distributions P and Q
kl(u, v) The Kullback-Leibler divergence between Bernoulli

distributions with parameters u and v
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Chapter 1

Introduction

This thesis investigates sequential decision making tasks that fall in the framework
of reinforcement learning (RL). These tasks arise in a broad range of real-world
applications including game playing [1, 2], sequential clinical trials [3, 4], commu-
nication systems [5, 6], economics [7, 8], recommendation systems [9, 10], robotics
[11], power systems [12], to name a few. A sequential decision making task involves
a decision maker repeatedly interacting with an environment with unknown dy-
namics. The decision maker wishes to maximize a notion of reward accumulated
during her experience. To this end, she has to learn the optimal behavior, or a
near-optimal one, as quickly as possible. At each time (or round), the decision
maker selects an action. As a result, she receives an instantaneous reward and the
state of the system (or environment) evolves. The decision maker does not know
the system dynamics, i.e., the way the state of the system evolves, and the reward
functions. In order to maximize her cumulative reward, she has to learn reward
functions and system dynamics using her observed rewards and state transitions.
She therefore needs to face a trade-off between exploration and exploitation: On
the one hand, she must explore different actions in various states to maintain a
precise enough model of the system, and on the other hand, her chosen action in a
given state should be consistent with her past experience to maximize the reward.

The performance of the decision maker (or equivalently that of the learning al-
gorithm she uses) can be measured through several metrics. The most important
metrics considered in the literature include (i) asymptotic convergence to optimality,
(ii) convergence rate to (near-)optimality, and (iii) regret; see, e.g., [13]. Metric
(i) is concerned with the eventual learning of the optimal behavior, whereas (ii)
takes into account the speed at which such a behavior is learnt. It turns out that
a more practical notion is captured by convergence rate towards finding a near-
optimal behavior. The notion of regret is usually defined as the difference between
the accumulated reward of the algorithm when compared to an oracle algorithm
always performing the optimal behavior. One of the weaknesses associated to per-
formance metrics (i) and (ii) is that they do not incorporate the potentially large
penalties that the decision maker has undergone to learn a (near-)optimal behavior.
Therefore, among the aforementioned metrics, regret is considered as the most ap-
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2 Introduction

pealing since it penalizes the performance of the algorithm by taking into account
the mistakes during the experience.

RL can also be viewed through the lens of adaptive optimal control, as argued
in, e.g., [14, 15], as it amounts to the problem of controlling an unknown dynamical
system in order to acquire the maximal cumulative reward. Broadly speaking,
there are two classes of control problems: Tracking problems, where the goal is to
follow a reference trajectory, and optimal control problems whose objective is to
maximize a notion of reward, which itself is a function of the trajectory followed
by the system. RL problems fall in the second class and have been studied in
the control community under various names including ‘adaptive control’, ‘optimal
control’, ‘robust control of unknown Markov decision processes (MDPs)’, etc. From
a theoretical perspective, a big class of RL algorithms rely on the tools developed
for direct and indirect adaptive optimal control methods.

In this thesis we investigate two classes of RL problems: the first one is com-
binatorial MAB problem in the stochastic setting, whereas the second one is that
of RL in an MDP under average-reward criterion, which we will refer to as RL in
undiscounted MDPs, or for short, undiscounted RL.

1.1 Stochastic Combinatorial MAB Problems

The first part of this thesis investigates online combinatorial optimization problems
in the stochastic setting and under bandit feedback. These problems, which are also
referred to as stochastic combinatorial bandits1 in the literature, are RL problems
where there is no notion of state (or equivalently, the state-space is a singleton), and
where the set of actions (or arms, according to MAB terminology) is endowed with a
given combinatorial structure. The MAB framework was introduced in the seminal
paper by Robbins [16] in 1952 to study the sequential design of experiments2. Lai
and Robbins [18] studied the classical MAB problem and derived a lower bound
on the regret of any admissible policy, asymptotically scaling as Ω(log(T )) after T
rounds. They also constructed policies for certain reward distributions and showed
that they asymptotically achieve the aforementioned lower bound, that is their
regret upper bounds asymptotically grow at most as O(log(T )), where the constant
in O(.) is the same as that in the lower bound.

The considered setup may be concretely described as follows: Let E be a ground
set with cardinality d. The set of arms A is an arbitrary subset of {0, 1}d, such that
each a ∈ A is a subset of at most m basic actions taken from E. Arm a is identified
with a binary column vector (a1, . . . , ad)>. In each round n ≥ 1, a decision maker
selects an arm a ∈ A and receives a reward Xa(n) := a>X(n) =

∑
i∈E aiXi(n).

The reward vector X(n) ∈ Rd+ is unknown, and for all i ∈ E, (Xi(n))n≥1 is drawn
i.i.d. from an unknown distribution. The reward sequences may be arbitrarily

1In this thesis, we will use the terms ‘online combinatorial optimization’, ‘combinatorial MAB’,
and ‘combinatorial bandit’, interchangeably.

2The first algorithm for MAB problems, however is due to Thompson [17], which dates back
to 1933.
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correlated across basic actions. After selecting an arm a in round n, the decision
maker receives some feedback. We are interested in two types of feedback:

(i) Semi-bandit feedback 3 under which after round n, for all i ∈ E, the component
Xi(n) of the reward vector is revealed if and only if ai = 1.

(ii) Bandit feedback under which only the reward a>X(n) is revealed.

Based on the feedback received up to round n − 1, the decision maker selects
an arm for the next round n. Her goal is to identify a policy, amongst all feasible
policies, maximizing the cumulative expected reward over T rounds. To this aim,
she is required to balance exploitation and exploration: Arms with higher observed
rewards should be selected often whilst all arms should be explored to learn their
average rewards. Equivalently, the decision maker aims at designing a policy that
minimizes the regret, where the regret of policy π is defined as the gap between the
expected reward achieved by π and that achieved by an oracle algorithm always
selecting the optimal arm:

Rπ,T = max
a∈A

E[
T∑
n=1

Xa(n)]− E[
T∑
n=1

Xaπ(n)(n)] , (1.1)

where aπ(n) denotes the arm chosen by policy π at time n. The expectation is here
taken with respect to the randomness in the rewards and the possible randomization
in the policy. The notion of regret quantifies the performance loss due to the need
for learning the average rewards of the various arms.

1.1.1 Objectives
In combinatorial MAB problems, one could apply classical sequential arm selection
policies, developed in, e.g., [20, 21], as if arms would yield independent rewards.
Such policies would have a regret asymptotically scaling as |A| log(T ). However,
since the number of arms |A| could grow exponentially with d, treating arms as
independent would lead to a prohibitive regret. In contrast to classical MAB stud-
ied by Lai and Robbins [18], where the random rewards from various arms are
independent, in combinatorial MAB problems the rewards of the various arms are
inherently correlated since arms may share the basic actions. It may then be cru-
cial to exploit these correlations, i.e., the structure of the problem to speed up the
exploration of sub-optimal arms. This in turn results in the design of efficient arm
selection policies that have a regret scaling as C log(T ), where C is much smaller
than |A|.

The objectives in this thesis for combinatorial MABs may be formalized as
follows: Firstly, we would like to study the asymptotic (namely when T grows
large) regret lower bounds for policies with bandit and semi-bandit feedback. Such

3The term ‘semi-bandit feedback’ was introduced by Audibert et al. [19]. Note that this type
of feedback is relevant for combinatorial problems only.
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lower bounds provide fundamental performance limits that no policy can beat.
Correlations significantly complicate the derivation and the expression of the regret
lower bounds. However, study of such lower bounds is of great importance as they
provide insights into the design of arm selection policies being capable of exploiting
the combinatorial structure of the problem. Secondly, we would like to propose arm
selection policies whose performance approaches the proposed lower bounds.

1.2 Reinforcement Learning in Undiscounted Markov
Decision Processes

The second part of this thesis concerns RL in Markov Decision Processes (MDPs)
under the average-reward criterion, when the decision maker interacts with the
system in a single stream of observations, starting from an initial state without any
reset.

The setup we consider can be formally described as follows. LetM = (S,A, ν, p)
denote an MDP, where S and A respectively denote the finite set of states and set
of actions available at any state. Let S and A denote the respective cardinalities
of S and A. The functions ν and p respectively denote the reward function and
transition kernel. For any (s, a), ν(s, a) has support [0, 1] and mean µ(s, a). The
decision maker does not know ν and p. At each time step t ∈ N, the decision maker
chooses one action at ∈ A in her current state st ∈ S based on her past decisions
and observations. When executing action at in state st, the decision maker receives
a random reward rt drawn independently from distribution ν(st, at). The state
then transits to a next state s′ ∈ S sampled with probability p(s′|st, at), and a
new decision step begins. As the transition probabilities and reward functions are
unknown, the decision maker has to learn them by trying different actions and
recording the realized rewards and state transitions.

As already stated, the performance of the decision maker is assessed through
the notion of regret, which compares the reward collected by the algorithm to
that obtained by an oracle always following an optimal policy, where a policy is a
mapping from S toA. Letting g? denote the maximal achievable long-term reward4,
we define the regret of a learning algorithm A after T steps as

RegretA,T := Tg? −
T∑
t=1

r(st, at) , (1.2)

where at = A(st, ({st′ , at′ , rt′})t′<t), and st+1 ∼ p(·|st, at) is a sequence of states
generated by A, and r(st, at) ∼ ν(st, at).

4For a precise definition of g?, we refer to Chapter 2. Note further that we consider commu-
nicating MDPs, for which the optimal gain does not depend on the initial state.
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1.2.1 Objective

To date, several algorithms with finite-time regret guarantees have been proposed
for the aforementioned RL setup. Although these algorithms enjoy rate-optimal5
regret bounds that hold uniformly over time (scaling as either O(log(T )) or Õ(

√
T )

depending on the context of analysis), none of them, to the best of our knowledge,
is shown to be order-optimal. Hence, finding an algorithm with an order-optimal
and finite-time regret guarantee for RL under average-reward criterion is still an
open problem.

A big class of these algorithms implement the paradigm of optimism in the
face of uncertainty mainly through maintaining confidence bounds on the tran-
sition kernel and reward function. While the only known, up to our knowledge,
tight and problem-dependent lower bound (cf. [22]) suggests that such confidence
bounds should be defined using the Kullback-Leibler (KL) divergence of involved
distributions, most proposed algorithms rely on confidence bounds defined by the
L1 or total variation norm. The use of L1 norm, instead of the KL-divergence, al-
lows one to describe the uncertainty of the transition kernel by a polytope, which in
turn brings computational advantages and ease in the regret analysis. On the other
hand, such polytopic models are typically known to provide poor representations
of underlying uncertainties [23].

The shortcomings due to use of such polytopic models are avoided by resorting
to KL-divergence to define the confidence bounds, as already incorporated into the
design of the KL-Ucrl algorithm [24]. Despite such potential benefits as well as su-
perior numerical performance of KL-Ucrl over existing algorithms, the best known
regret bound for KL-Ucrl matches that of Ucrl2 [25]. Hence, from a theoretical
perspective, the potential gain of use of KL-divergence to define confidence bounds
for transition probabilities has remained largely unexplored. Our goal is to inves-
tigate these benefits. Our approach towards this end relies on the development of
concentration inequalities that enable to decouple the concentration properties of
the transition kernel from the specific structure of the involved value functions. As
we shall see later, these results allow us to derive a refined regret bound for KL-Ucrl
for the class of ergodic MDPs.

1.3 Motivating Examples

Combinatorial MAB and undiscounted RL can be used to model a variety of ap-
plications. Here, we provide two examples to motivate the proposed algorithms
and their analyses provided in subsequent chapters. The first example consid-
ers dynamic spectrum access in wireless systems whereas the second one concerns
shortest-path routing in multihop networks.

5We a policy is said to be rate-optimal if its regret asymptotically grows at the same rate of
the optimal algorithm.
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1.3.1 Dynamic Spectrum Access

As the first motivating example, we consider a dynamic spectrum access scenario as
studied in [26]. Spectrum allocation has attracted considerable attention recently,
mainly due to the increasing popularity of cognitive radio systems. In such systems,
transmitters have to explore spectrum to find frequency bands free from primary
users. The fundamental objective here is to devise an allocation that maximizes the
network-wide throughput. In such networks, transmitters should be able to select a
channel that (i) is not selected by neighbouring transmitters to avoid interference,
and (ii) offers good radio conditions.

Consider a network consisting of L users or links indexed by i ∈ [L] = {1, . . . , L}.
Each link can use one of the K available radio channels indexed by j ∈ [K]. Inter-
ference is represented as an interference graph G = (V,E) 6 where vertices are links
and edges indicate interference among links. More precisely, we have (i, i′) ∈ E if
links i and i′ interfere, i.e., these links cannot be simultaneously active. A spectrum
allocation is represented as an allocation matrix a ∈ {0, 1}L×K , where aij = 1 if
and only if transmitter of user i uses channel j. Allocation a is feasible if (i) for all
i, the corresponding transmitter uses at most one channel, i.e.,

∑
j∈[K] aij ≤ 1, and

(ii) two interfering links cannot be active on the same channel, i.e., for all i, i′ ∈ [L],
(i, i′) ∈ E implies for all j ∈ [K], aijai′j = 0. 7 Let A be the set of all feasible
allocation matrices. In the following we denote by F = {F`, ` ∈ [f ]} the set of
maximal cliques of the interference graph G. We also introduce F`i ∈ {0, 1} such
that F`i = 1 if and only if link i belongs to the maximal clique F`. Hence, for any
clique ` and channel j,

∑
i∈[L] F`iaij ≤ 1. An example of an interference graph

along with a feasible allocation is shown in Figure 1.1.
We consider a time slotted system, where the duration of a slot corresponds to

the transmission of a single packet. We denote by Xij(n) the number of packets
successfully transmitted during slot n when user i selects channel j for transmission
in this slot and in absence of interference. Depending on the ability of transmitters
to switch channels, we consider two settings. In the stochastic setting, the number
of successful packet transmissions Xij(n) on link i and channel j are independent
over i and j, and are i.i.d. across slots n. The average number of successful packet
transmissions per slot is denoted by E[Xij(n)] = θij , and is supposed to be un-
known initially. Xij(n) is a Bernoulli random variable of mean θij . The stochastic
setting models scenarios where the radio channel conditions are stationary. In the
adversarial setting, Xij(n) ∈ [0, 1] can be arbitrary (as if it was generated by an
adversary), and unknown in advance. This setting is useful to model scenarios
where the duration of a slot is comparable to or smaller than the channel coherence
time. In such scenarios, we assume that the channel allocation cannot change at
the same pace as the radio conditions on the various links, which is of interest in
practice, when the radios cannot rapidly change channels.

6In some works, interference graph is referred to as conflict graph.
7This model assumes that the interference graph is the same over the various channels. This

assumption, however, can be relaxed.



1.3. Motivating Examples 7

ch. 1 ch. 2 ch. 3 
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(a) Interference graph

ch. 1 ch. 2 ch. 3 

link 1 link 2 link 3 link 4 link 5 

link 2 

link 1 

link 3 link 4 

link 5 

(b) An example of a feasible allocation

Figure 1.1: Spectrum allocation in a wireless system with 5 links and 3 channels

If the radio conditions on each (user, channel) pair were known, the problem
would reduce to the following combinatorial optimization problem:

max
a∈A

∑
i∈[L],j∈[K]

Xijaij (1.3)

subject to:
∑
j∈[K]

aij ≤ 1, ∀i ∈ [L],

∑
i∈[L]

F`iaij ≤ 1, ∀` ∈ [f ], j ∈ [K],

aij ∈ {0, 1}, ∀i ∈ [L], j ∈ [K]. (1.4)

Problem (1.3) is indeed a coloring problem of the interference graph G, which
is shown to be NP-complete for general interference graphs. In contrast, if all
links interfere each other (i.e., no two links can be active on the same channel), a
case referred to as full interference, the above problem becomes an instance of a
Maximum Weighted Matching in a bipartite graph (vertices on one side correspond
to users and vertices on the other side to channels; the weight of an edge, i.e., a
(user, channel) pair, represents the radio conditions for the corresponding user and
channel). As a consequence, it can be solved in strongly polynomial time [27].

In practice, the radio conditions on the various channels are not known a priori,
and they evolve over time in an unpredictable manner. The presented spectrum al-
location problem can be cast as a combinatorial MAB problem, where the objective
is to identify a policy maximizing the expected number of successfully transmitted
packets over T time slots. The corresponding notion of regret, defined similarly to
(1.1), quantifies the performance loss due to the need for learning radio channel con-
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ditions. Spectrum sharing problems similar to this have been recently investigated
in [6, 5, 28, 29, 30].

1.3.2 Shortest-Path Routing
Shortest-path routing is amongst the first instances of combinatorial MAB problems
considered in the literature, e.g., in [31, 32]. As our second example, we consider
shortest-path routing in the stochastic setting as studied in [33, 34].

Consider a network whose topology is modeled as a directed graph G = (V,E),
where V is the set of nodes and E is the set of links. Each link i ∈ E may, for ex-
ample, represent an unreliable wireless link. Without loss of generality, we assume
that time is slotted and that one slot corresponds to the time to send a packet over a
single link. At time t, Xi(t) is a binary random variable indicating whether a trans-
mission on link i is successful. (Xi(t))t≥1 is a sequence of i.i.d. Bernoulli variables
with initially unknown mean θi. Hence if a packet is sent on link i repeatedly until
the transmission is successful, the time Di to complete the transmission (referred
to as the delay on link i) is geometrically distributed with mean 1/θi (see Figure
1.2). Let θmin = mini∈E θi > 0, and let θ = (θi)i∈E be the vector representing
the packet successful transmission probabilities on the various links. We consider
a single source-destination pair (u, v) ∈ V 2, and denote by A ⊆ {0, 1}d the set of
loop-free paths from u to v in G, where each path a ∈ A is a d-dimensional binary
vector; for any i ∈ E, ai = 1 if and only if i belongs to a. Hence, for any a ∈ A,
the length of path a is ‖a‖1 =

∑
i∈E ai.

Source 

Destination 2 

4 
7 

1 
6 

Source 

Destination 2 

4 
7 

1 
6 

Figure 1.2: Shortest-path routing in a network: A realization of delay for the links
along the chosen path (in red)

We assume that the source is fully backlogged (i.e., it always has packets to
send), and that the parameter θ is initially unknown. Packets are sent successively
from u to v over various paths to estimate θ, and in turn to learn the path a?,
namely the path whose average delay is minimal. After a packet is sent, we assume
that the source gathers some feedback from the network (essentially per-link or
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src/dst

1− θi

j

1− θj

(r = 1)

θjθi
k

1− θk

θk
`

1− θ`

θ`

Figure 1.3: The Markov chain induced by a path in the shortest-path routing

end-to-end delays) before sending the next packet. If θ were known, one would
choose the path a? given by

a? ∈ argmin
a∈A

∑
i∈E

ai
θi
. (1.5)

Our objective is to design and analyze online routing strategies, i.e., strategies
that take routing decisions based on the feedback received for the packets previ-
ously sent. Depending on the received feedback (per-link or end-to-end delay), we
consider two different types of online routing policies: (i) Source routing with end-
to-end (bandit) feedback in which the path used by a packet is determined at the
source based on the observed end-to-end delays for previous packets, and (ii) source
routing with per-link (semi-bandit) feedback, where the path used by a packet is de-
termined at the source based on the observed per-link delays for previous packets.
The variants of online routing problem described above can be cast as:

• a combinatorial MAB problem where the rewards are geometrically distributed,
and where each path corresponds to an arm;

• and as a RL problem where the state-space is the set V of nodes, and where
outgoing links at each node correspond to available actions in that state.
Moreover, the decision maker receives a non-zero reward (equal to 1) only
when the packet is successfully delivered to the destination (see Figure 1.3).

For each case, we can define the corresponding regret definition similarly to
(1.1) or (1.2). Furthermore, one can establish the relation between the two. In
both setups the regret quantifies the performance loss due to the need to explore
sub-optimal paths to learn the path with the minimum delay.

1.4 Thesis Outline and Contributions

Here we present the outline and contributions of this thesis in detail as well as the
relation to the corresponding publications.
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Chapter 2: Background
This chapter provides background material on classical stochastic MAB and undis-
counted RL. In particular, it presents regret lower bounds and some well-known
algorithms along with their performance guarantees for both stochastic MAB and
undiscounted RL.

Chapter 3: Stochastic Combinatorial MABs
In chapter 3, we study generic stochastic combinatorial MAB with a generic com-
binatorial structure and bounded rewards. We derive tight and problem-specific
lower bounds on the regret of any admissible algorithm under bandit and semi-
bandit feedback. These constitute the first lower bounds proposed for generic com-
binatorial MABs in the literature. Our derivation leverages the theory of optimal
control of Markov chains with unknown transition probabilities. We further investi-
gate scaling of the lower bound with the dimension of the underlying combinatorial
structure. Furthermore, we propose ESCB, an algorithm that efficiently exploits the
structure of the problem, and provide a finite-time analysis of its regret. ESCB has
a better performance guarantee than existing algorithms and significantly outper-
forms these algorithms in practice as confirmed by our numerical experiments.

The chapter is based on the following publications:

• Marc Lelarge, Alexandre Proutiere, and M. Sadegh Talebi, “Spectrum Bandit
Optimization,” in Information Theory Workshop (ITW), 2013.

• Richard Combes, M. Sadegh Talebi, Alexandre Proutiere, and Marc Lelarge,
“Combinatorial Bandits Revisited,” in Advances in Neural Information Pro-
cessing Systems 28 (NIPS), 2015.

• M. Sadegh Talebi and Alexandre Proutiere, “An Optimal Algorithm for Stochas-
tic Matroid Bandit Optimization,” in International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), 2016.

Chapter 4: Stochastic Online Shortest-Path Routing
In Chapter 4, we study online shortest-path problem discussed in Section 1.3.2. We
consider several scenarios that differ in where routing decisions are made and in the
feedback available when making the decision. Leveraging similar techniques as in
Chapter 3, for each scenario we derive a tight asymptotic lower bound on the regret.
For the case of source routing, namely when routing decisions are determined at the
source node, we then propose two algorithms: GeoCombUCB-1 and GeoCombUCB-2.
Moreover, we improve the regret upper bound of KL-SR [33]. These algorithms
exhibit a trade-off between computational complexity and performance. Moreover,
the regret upper bounds of these algorithm improve over those of state-of-the-art
algorithms. Numerical experiments also validated that these policies outperform
state-of-the-art algorithms in practice.

The chapter is based on the following work:
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• M. Sadegh Talebi, Zhenhua Zou, Richard Combes, Alexandre Proutiere, and
Mikael Johansson, “Stochastic Online Shortest Path Routing: The Value of
Feedback,” IEEE Transaction on Automatic Control, to appear.

Chapter 5: Learning Proportionally Fair Allocations
Chapter 5 addresses a generic sequential resource allocation problem, which is moti-
vated by a fairly large class of applications that arise in, e.g., crowdsouring systems
and wireless communication. The considered problem involves a decision maker,
who selects in each round an allocation of resources (servers) to a set of tasks con-
sisting of a large number of jobs. A job (or sub-task) is successfully treated by a
server with a fixed and task-server dependent probability in a round, and the de-
cision maker is informed on whether this job is completed at the end of the round.
The success probabilities are initially unknown and have to be learnt. The objec-
tive of the decision maker is to sequentially assign jobs of various tasks to servers
so that it rapidly learns and converges to the Proportionally Fair (PF) allocation
(or other similar allocations achieving an appropriate trade-off between efficiency
and fairness). In that chapter, we provide a formulation of the problem as a MAB
problem, for which we devise a sequential assignment algorithm with low regret.
The latter is defined as the difference in utility achieved by an oracle algorithm
aware of success probabilities and by the proposed algorithm.

The chapter is based on the following work:

• M. Sadegh Talebi and Alexandre Proutiere, “Learning Proportionally Fair
Allocations with Semi-bandit Feedback,” in preparation.

Chapter 6: Variance-Aware Regret Bounds for Undiscounted RL
Chapter 6 concerns RL in MDPs under average-reward criterion. We revisit some
concentration inequalities that prove useful for the analysis of this setting. We
revisit the analysis of the KL-Ucrl algorithm of Filippi et al. [24] and show that
under mild assumptions its regret scales with the local variance of the bias function
of the MDP. Our regret bounds illuminates the benefit that could be obtained by
using Kullback-Leibler divergence. We also provide variance-aware regret lower
bounds for the considered RL problem. Our derivation of lower bounds largely
relies on the existing ones in the literature.

The chapter relies on the following works:

• M. Sadegh Talebi and Odalric-Ambrym Maillard, “Variance-Aware Regret
Bounds for Undiscounted RL in MDPs,” submitted to Algorithmic Learning
Theory (ALT).

• M. Sadegh Talebi, Alexandre Proutiere, and Odalric-Ambrym Maillard, “Re-
visiting Regret Lower Bounds for Undiscounted Reinforcement Learning,” in
preparation.
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Chapter 7: Conclusions and Future Work
Chapter 7 draws some conclusions and provides some directions for the future work.

Appendices
The thesis is concluded with two appendices. The first appendix overviews some
important properties of the Kullback-Leibler divergence, whereas the second one
presents several important concentration inequalities. The results in both appen-
dices prove useful for the analyses in the various chapters of this thesis.

1.4.1 Additional publications:
• Mohammad Hassan Hajiesmaili, M. Sadegh Talebi, and Ahmad Khonsari,

“Multi-Period Network Rate Allocation with End-to-End Delay Constraints,”
IEEE Transactions on Control of Network Systems, to appear.

• Mohammad Hassan Hajiesmaili, M. Sadegh Talebi, and Ahmad Khonsari,
“Utility-optimal Dynamic Rate Allocation under Average End-to-end Delay
Requirements,” in Decision and Control Conference (CDC), 2015.



Chapter 2

Background

This chapter provides background materials on stochastic MABs and undiscounted
reinforcement learning in MDPs.

2.1 Stochastic MAB

The multi-armed bandit (MAB) problem was introduced in the seminal paper by
Robbins [16] to study the sequential design of experiments. The first bandit algo-
rithm, however, dates back to a paper by Thompson [17] in 1933. In this section, we
give an overview of regret lower bounds as well as various algorithms for stochastic
MAB.

The classical stochastic MAB is formalized as follows. Let us assume that
we have K ≥ 2 arms. Successive plays of arm i generates the reward sequence
(Xi(n))n≥1. For any i, the sequence of rewards (Xi(n))n≥1 is drawn i.i.d. from a
parametric distribution ν(θi), where θi ∈ Θ is a parameter initially unknown to the
decision maker. We let µ(θ) denote the expected value of ν(θ) for any θ ∈ Θ. We
assume that the rewards are independent across various arms.

A policy or algorithm π is a sequence of random variables Iπ(1), Iπ(2), . . . all
taking values from [K], where Iπ(n) denotes the arm chosen at round n under π,
such that {Iπ(n) = i} ∈ Fn for all i ∈ [K] and n ≥ 1. Let Π be the set of all feasible
policies. The objective is to identify a policy in Π maximizing the cumulative
expected reward over a finite time horizon T . The expectation is here taken with
respect to the randomness in the rewards and the possible randomization in the
policy. Equivalently, we aim at designing a policy that minimizes regret, where the
regret of policy π ∈ Π is defined by:

Rπ,T = max
i∈[K]

E[
T∑
n=1

Xi(n)]− E[
T∑
n=1

XIπ(n)(n)].

For any i ∈ [K] introduce ∆i = maxj∈[K] µ(θj) − µ(θi). Moreover, let tπi (n)
denote the number of times arm i is selected up to round n under policy π, i.e.,

13
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tπi (n) =
∑n
s=1 I{Iπ(s) = i}. Then, the regret Rπ,T can be decomposed as follows:

Rπ,T =
∑
i∈[K]

∆iE[tπi (T )].

2.1.1 Lower Bounds on the Regret
In this subsection we present lower bounds on the regret for stochastic MAB prob-
lems.

Lai-Robbins Lower Bound

The first lower bound was proposed by Lai and Robbins in their seminal paper [18].
They consider a simple parametric case in which Θ ⊂ R. Namely, the distribution
of the rewards of a given arm is parameterized by a scalar parameter. To state
their result, we first introduce the notion of uniformly good algorithms.

Definition 2.1 ([18]). A policy or algorithm π is uniformly good if for all θ ∈ Θ,
the regret under π satisfies Rπ,T = o(Tα) for any α > 0.

Let i? be an optimal arm, namely µ(θi?) = maxi∈[K] µ(θi). For the case of
distributions parameterized by a single parameter, Lai and Robbins show that the
number of times that a sub-optimal arm i is pulled by any uniformly good policy
π satisfies:

lim inf
T→∞

E[tπi (T )]
log(T ) ≥

1
KL(ν(θi), ν(θi?)) ,

where KL(p, q) denotes the Kullback-Leibler divergence between two distributions
p and q.1 From the regret decomposition rule described above, it then follows that
the regret satisfies:2

lim inf
T→∞

Rπ,T

log(T ) ≥
∑

i:∆i>0

∆i

KL(θi, θi?) .

This result indeed defines the asymptotic optimality criterion: An algorithm π
is said to be asymptotically optimal if its regret for any θ ∈ Θ satisfies:

lim sup
T→∞

Rπ,T

log(T ) ≤
∑

i:∆i>0

∆i

KL(θi, θi?) .

Lai-Robbins lower bound is generalized in subsequent works, e.g., [36, 37, 38].
Extension to multiple play, i.e., the case where multiple arms are pulled at the
same time, is studied by Anantharam et al. [36, 37]. Let us assume that arms are
enumerated such that µ(θ1) ≥ µ(θ2) ≥ · · · > µ(θm+1) ≥ · · · ≥ µ(θK) and that at

1With some abuse of notation, hereafter we write KL(θ, θ′) to indicate KL(ν(θ), ν(θ′)).
2A simplified proof of this result can be found in [35, Chapter 1].
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each round, m arms are played. Anantharam et al. [36] show that the regret of any
uniformly good rule π satisfies:

lim inf
T→∞

Rπ,T

log(T ) ≤
K∑

i=m+1

µ(θm)− µ(θi)
KL(θi, θm) .

Furthermore, [37] investigates the case when multiple arms are played and rewards
are generated from an aperiodic and irreducible Markov chain with a finite state-
space. These results were also extended and generalized by Burnetas and Katehakis
[38] to distributions that rely on multiple parameters, and by Graves and Lai [39]
to a more general framework of adaptive control of Markov chains.

Regret Lower Bound for Adaptive Control of Markov Chains

Graves and Lai [39] study adaptive control algorithms for controlled Markov chains
with unknown transition probabilities. The Markov chain is assumed to have a
general state-space and its transition probabilities are parameterized by an unknown
parameter belonging to some compact metric space. The framework of Graves and
Lai generalizes those of Lai and Robbins [18], Anantharam et al. [37], and Burnetas
and Katehakis [38], and plays a pivotal role in the derivation of lower bound on the
regret for various problems in this thesis. Here, we give an overview of this general
framework.

Consider a controlled Markov chain (Xn)n≥0 on a finite state-space S with a
control set U . The transition probabilities given control u ∈ U are parameterized
by θ taking values in a compact metric space Θ: The probability to move from state
x to state y given the control u and the parameter θ is p(x, y;u, θ). The parameter θ
is not known. The decision maker is provided with a finite set of stationary control
laws G = {g1, . . . , gK}, where each control law gj is a mapping from S to U : When
control law gj is applied in state x, the applied control is u = gj(x). It is assumed
that if the decision maker always selects the same control law g, the Markov chain
is then irreducible with stationary distribution πgθ . Now the reward obtained when
applying control u in state x is denoted by r(x, u), so that the expected reward
achieved under control law g is:

µθ(g) =
∑
x∈S

r(x, g(x))πgθ (x).

Given θ, an optimal control law is optimal if its expected reward equals

µ?θ := max
g∈G

µθ(g).

Letting J(θ) = {j ∈ [K] : µθ(gj) = µ?θ}, the set of optimal stationary control laws
is {gj , j ∈ J(θ)}. Now the objective of the decision maker is to sequentially select
control laws so as to maximize the expected reward up to a given time horizon T .

An adaptive control algorithm ϕ is a sequence of random variables I(1), I(2), . . .
that belong to G such that {I(n) = g} ∈ Fn for all g ∈ G and n ≥ 1. An adaptive
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control algorithm ϕ is said to be uniformly good if for all θ ∈ Θ, we have that
RT,ϕ = O(log(T )) and S(T ) = o(log(T )), where S(T ) denotes the number of
switchings between successive control laws such that both are not optimal, up to
round T . The performance of an adaptive control algorithm ϕ can be quantified
through the notion of regret which compares the expected reward to that obtained
by always applying the optimal control law:

RT,ϕ = Tµ?θ − E[
T∑
n=1

r(Xn, un)] =
∑

g∈G:µθ(g)<µ?
θ

(µ?θ − µθ(g))E[tg(T )],

where (Xn)n≥1 denotes the sequence of states generated by ϕ.
In order to state the lower bound on the regret of a uniformly good (adaptive

control) rule, we first introduce some concepts. For control law g ∈ G, the Kullback-
Leibler information number is defined by

Ig(θ, λ) =
∑
x

∑
y

log p(x, y; g(x), θ)
p(x, y; g(x), λ)p(x, y; g(x), θ)πgθ (x).

Next we introduce the notion of bad parameter set. Let us decompose Θ into L
subsets {Θj , j ∈ [L]}, such that for any θ ∈ Θj , gj is the stationary control law,
i.e.,

Θj = {θ ∈ Θ : µθ(gj) = max
g∈G

µθ(g)}.

Then the set of bad parameters, denoted by B(θ), is

B(θ) =
{
λ ∈ Θ : λ /∈

⋃
j∈J(θ)

Θj and Igj (θ, λ) = 0,∀j ∈ J(θ)
}
.

Indeed, B(θ) is the set of bad parameters that are statistically indistinguishable
from θ under optimal control laws {gj , j ∈ J(θ)}.

The following theorem asserts that under certain regularity conditions, the re-
gret of any uniformly good rule admits the asymptotic lower bound of (c(θ) +
o(1)) log(T ).

Theorem 2.1 ([39, Theorem 1]). For every θ ∈ Θ and for any uniformly good
algorithm ϕ,

lim inf
T→∞

RT,ϕ

log(T ) ≥ c(θ),

where

c(θ) = inf
{ ∑
j /∈J(θ)

xj(µ? − µ(gj)) : xj ≥ 0, inf
λ∈B(θ)

∑
j /∈J(θ)

xjI
gj (θ, λ) ≥ 1

}
.
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We remark that c(θ) is the optimal value of a linear semi-infinite program (LSIP)
[40]. Hence, in general it is difficult to compute though in some cases deriving
explicit solution is possible.

Theorem 2.1 indicates that within the T first rounds, the total amount of draw
of a sub-optimal control law gj should be of the order of x?j log(T ), where x?j is the
optimal solution of the presented optimization problem. Graves and Lai present
policies that achieve this objective, but they are unfortunately extremely difficult
to implement in practice. Indeed, these policies may require to solve, in each round,
a LSIP that might be computationally expensive.

Minimax Lower Bound

We finally present the following theorem from [21], which establishes a problem-
independent lower bound on the regret:

Theorem 2.2 ([21, Theorem 5.1]). We have that:

inf
π

sup
(νk)k∈[K]

RT,π ≥
1
20
√
KT,

where sup is taken over all set of K distributions on [0, 1] and inf is taken over all
policies.

This lower bound implies that for any algorithm there exists a choice of reward
sequence such that the expected regret grows at least as Ω(

√
KT ).

2.1.2 Algorithms for Stochastic MAB
In this section we present some of the most important algorithms for the stochastic
MAB problem.

Upper Confidence Bound Index Policies

Most of the algorithms we present here are upper confidence bound index policies, or
index policies for short, whose underlying idea is to select the arm with the largest
(high-probability) upper confidence bound for the expected reward. To this end,
an index policy maintains an index function for each arm, which is a function of the
past observations of this arm only (e.g., the empirical average reward, the number
of draws, etc.). The index policy then simply consists in selecting the arm with the
maximal index at each round. Algorithm 2.1 shows the pseudo-code of a generic
index policy that relies on index function ξ.

An index policy relies on constructing an upper confidence bound for the ex-
pected reward of each arm3 in a way that µi ∈ [µ̂i(n) − δi(n), µ̂i(n) + δi(n)] with
high probability, where µ̂i(n) denotes the empirical average reward of arm i up to

3Of course, for loss minimization we are interested in lower confidence bounds.
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Algorithm 2.1 Index policy using index ξ
for n ≥ 1 do

Select arm I(n) ∈ arg maxi∈[K] ξi(n).
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈ [K].

end for

time n. A sub-optimal arm will be selected if δi(n) is large or if µ̂i(n) is large.
Observe that δi(n) quickly decreases if arm i is sampled sufficiently. Moreover, the
number of times that i is selected and µ̂i(n) is badly estimated is finite. Hence it
is expected that after sampling sub-optimal arms sufficiently, the index policy will
select the optimal arm most of the time.

Index policies were first introduced in the seminal work of Gittin [41] for the
MABs in the Bayesian setting. For non-Bayesian stochastic MAB problems, the
first index policy was introduced by Lai and Robbins [18]. This policy constitutes
the first asymptotically optimal algorithm for the classic MAB problem. Lai and
Robbins’ algorithm was very complicated. Hence it motivated developments of
simpler index policies in subsequent works, e.g., in [42, 20, 43, 44, 45]. Agrawal
[42] proposed simple index policies in explicit form for some distributions such
as Bernoulli, Poisson, Gaussian, etc. He further showed that these policies are
asymptotically optimal and achieve O(log(T )) regret.

The UCB1 Algorithm [20]. It wasn’t until the paper by Auer et al. [20] that a
finite-time analysis of index policies was presented. Auer et al. consider rewards
drawn from distributions with (known) bounded supports. Without loss of gener-
ality assume that the support of rewards is [0, 1]. Under this assumption, Auer et
al. propose the following index

bi(n) = µ̂i(n) +

√
α log(n)
ti(n) .

To simplify the presentation, in what follows we assume that the first arm i = 1
is the unique optimal arm. In the following theorem, we present a regret upper
bound for UCB1 for α = 3/2. 4

Theorem 2.3 ([20]). The regret under π =UCB1 satisfies

Rπ,T ≤ 6
∑

i:∆i>0

log(T )
∆i

+ Kπ2

6 +
∑
i>1

4
∆i
.

4In their paper, Auer et al. originally chose α = 2 and provided the following regret upper
bound for UCB1:

RUCB1,T ≤ 8
∑
i:∆i>0

log(T )
∆i

+
(

1 +
π2

3

)∑
i>1

∆i.
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Observe that UCB1 achieves a sub-optimal regret in view of Lai and Robbins’
lower bound since kl(θi, θ1) > 2∆2

i .

The UCB-V Algorithm [44]. Incorporating variance estimates into index func-
tion allows to have superior algorithms. One such index policy is UCB-Tuned [20],
for which no theoretical guarantee is proposed. Audibert et al. [44] proposed UCB-V
(UCB1 with Variance estimates) index which incorporates variance estimates (em-
pirical variance) in the index. UCB-V index is defined as

θ̂i(n) +

√
2αVi(n) log(n)

ti(n) + 3α log(n)
ti(n) ,

where Vi(n) is the empirical variance of arm i up to round n:

Vi(n) = 1
ti(n)

ti(n)∑
n=1

(Xi(n)− θ̂i(n))2.

Let σ2
i denote the variance of arm i. It is shown that UCB-V achieves the following

regret upper bound [44]:

RUCB-V,T ≤ 10
( ∑
i:∆i>0

σ2
i

∆i
+ 2
)

log(T ).

The KL-UCB Algorithm [43]. The KL-UCB algorithm is an optimal algorithm for
stochastic MABs with bounded rewards proposed by Garivier and Cappé [43] (see
also [45, 46]). KL-UCB relies on the following index:

bi(n) = sup
{
q ∈ Θ : ti(n)kl(θ̂i(n), q) ≤ log(n) + 3 log(log(n))

}
.

The following theorem provides the regret bound of KL-UCB.

Theorem 2.4 ([43]). The regret under π =KL-UCB satisfies

Rπ,T ≤ (1 + ε)
∑

i:∆i>0

∆i

kl(θi, θ1) log(T ) + C1 log(log(T )) + C2(ε)
T β(ε) ,

where C1 is a positive constant and where C2(ε) and β(ε) denote positive functions
of ε. Hence,

lim sup
T→∞

Rπ,T

log(T ) ≤
∑

i:∆i>0

∆i

kl(θi, θ1) .

It is noted that the regret upper bound of KL-UCB matches the lower bound of
Burnetas and Katehakis [38].
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Algorithm 2.2 TS
Initialization: For each arm i ∈ [K] set Si = 0, Fi = 0.
for n ≥ 1 do

For each arm i, sample zi(n) from Beta(Si + 1, Fi + 1).
Play arm I(n) = arg maxi∈[K] zi(n) and receive the reward XI(n).
if XI(n) = 1 then
Set SI(n) = SI(n) + 1.

else
Set FI(n) = FI(n) + 1.

end if
end for

The Thompson Sampling Algorithm

Thompson Sampling (TS) was proposed by Thompson [17] in 1933. However, it was
not until very recently that its regret analysis was presented by Agrawal and Goyal
[47, 48] and Kaufmann et al. [49].

In contrast to previously described index policies, TS belongs to the family of
randomized probability matching algorithms and selects an arm based on posterior
samples. The underlying idea in TS is to assume a prior distribution on the pa-
rameters of the reward distribution of every arm. Then at any time step, TS plays
an arm according to its posterior probability of being the best arm. Algorithm
2.2 presents the pseudo-code of TS for the case of Bernoulli rewards, for which the
appropriate prior distribution is the Beta distribution (see, e.g., [48] for details).

The first regret analysis for TS was proposed by Agrawal and Goyal [47]. Later,
Kaufmann et al. [49] improved this regret analysis and proved the asymptotic opti-
mality of TS for classical stochastic MABs. Optimality of TS was also addressed by
Agrawal and Goyal [48] with a different regret analysis. In the following theorem,
we provide the regret upper bound for TS with Beta priors.

Theorem 2.5 ([48, Theorem 1]). The regret under TS using Beta priors satisfies:

RTS,T ≤ (1 + ε)
∑

i:∆i>0

∆i

kl(θi, θ1) log(T ) + C(ε, θ1, . . . , θK),

where C(ε, θ1, . . . , θK) is a problem-dependent constant independent of T . In par-
ticular, C(ε, θ1, . . . , θK) = O(Kε−2).

2.2 Theory of Markov Decision Processes

In this section, we briefly overview the background material on the theory of MDPs.
These results can be found in standard textbooks, e.g., [50].

Consider a finite MDP M as a tuple M = (S,A, ν, p) where S is a finite set of
states and A is a finite set of actions available at any state, with respective cardinal-
ities S and A. The functions ν and p respectively denote the reward function and
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the transition kernel. Taking action a in state s results in a random instantaneous
reward drawn from ν(s, a) with mean µ(s, a), as well as a transition to state s′ with
probability p(s′|s, a).

A policy in MDP M is a mapping from the set of states to the set of actions.
More formally, let π : S → P(A) denote a possibly stochastic policy. We fur-
ther introduce the notation p(s′|s, π(s)) = EZ∼π(s)[p(s′|s, Z)], and Pπf to denote
the function s 7→

∑
s′∈S p(s′|s, π(s))f(s′). Likewise, let µπ(s) = EZ∼π(s)[µ(s, Z)]

denote the mean reward after choosing action π(s) in step s.

Definition 2.2 (Expected Cumulative Reward). The expected cumulative reward
of policy π when run for T steps from initial state s1 is defined as

Rπ,T (s1) = E
[ T∑
t=1

r(st, at)
]

= µπ(s1) + (Pπµπ)(s1) + · · · =
T∑
t=1

(P t−1
π µπ)(s1) .

where at ∼ π(st), st+1 ∼ p(·|st, at), and finally r(s, a) ∼ ν(s, a).

Definition 2.3 (Average Gain and Bias). Let us introduce the average transition
operator Pπ = limT→∞

1
T

∑T
t=1 P

t−1
π . The average gain gπ and bias function bπ

are defined by

gπ(s1) = limT→∞
1
TRπ,T (s1) = (Pπµπ)(s1) ,

bπ(s) =
∑∞
t=1

(
(P t−1
π − Pπ)µπ

)
(s) .

The previous definition requires some mild assumption on the MDP for the
limits to make sense. It is shown (see, e.g., [50]) that the average gain achieved by
executing a stationary policy π in a communicating MDP M is well-defined and
further does not depend on the initial state, i.e., gπ(s1) = gπ. For this reason, in
the sequel, we restrict our attention to such MDPs. Let ? denote an optimal policy,
that is 5 g? = maxπ gπ.

Lemma 2.1 (Bias and Gain). The gain and bias function satisfy the following
relations

(Bellman equation) bπ + gπ = µπ + Pπbπ

(Fundamental matrix) bπ = (I − Pπ + Pπ)−1(I − Pπ)µπ .

This result is an easy consequence of the fact that Pπ (see Definition 2.3) satisfy
PπPπ = PπPπ = PπPπ = Pπ (see [50] for details).

According to the standard terminology, we say a policy is b?-improving policy
if it satisfies π(s) = argmaxa∈A µ(s, a) + (Pab?)(s) . Applying the theory of MDPs

5The maximum is reached since there are only finitely many deterministic policies.
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(see, e.g., [50]), it can be shown that any b?-improving policy is optimal and thus
that we can choose ? to satisfy6 the following fundamental identity

∀s ∈ S, b?(s) + g? = max
a∈A

(
µ(s, a) +

∑
y∈S

p(y|s, a)b?(y)
)
.

This equation is referred to as Bellman optimality equation.
In the sequel, we recall the definitions of diameter and mixing time:

Definition 2.4 (Diameter [25]). Let Tπ(s′|s) denote the first hitting time of state
s′ when following stationary policy π from initial state s. The diameter D of an
MDP M is defined as

D := max
s 6=s′

min
π

E[Tπ(s′|s)].

Definition 2.5 (Mixing Time [51]). Let Cπ denote the Markov chain induced by
policy π in an ergodic MDP M and let TCπ represent the hitting time of Cπ. The
mixing time TM of MDP M is defined as

TM := max
π

TCπ .

2.2.1 Value Iteration

Now we introduce Value Iteration (VI), also known as successive approximation,
which is an iterative procedure to find an optimal policy (as well as bias function)
via solving Bellman optimality equation.

VI defines a sequence of functions (un)n∈N and policies (πn)n∈N, where u0 = 0,
and for all n ∈ N,{

un+1(s) = maxa∈A µ(s, a) + (Paun)(s) ,
πn+1(s) = U

(
Argmaxa∈A µ(s, a) + (Paun)(s)

)
,

where U(B) denotes the uniform distribution over a set B.
One can stop VI when S(un+1 − un) ≤ ε, where ε > 0 is an input parameter,

and where for any function f defined on S, S(f) := maxs∈S f(s) − mins∈S f(s)
denotes the span of f .7 If n is such that the stopping criterion above is met, then
it holds that

g? − gπn+1 ≤ ε, |un+1 − un − g?| ≤ ε and |un+1 − un − gπn+1| ≤ ε .

6The solution to this fixed-point equation is defined only up to an additive constant.
7Span operator actually acts as a semi-norm (see [50]).
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2.3 Undiscounted RL in MDPs

In this section, we provide background material on RL under average-reward cri-
terion in MDPs, which we refer to as undiscounted RL. The problem involves a
decision maker interacting with an unknown environment that can be modeled by
an unknown and discrete MDP. She interacts with the system in a single stream
of observations, starting from an initial state without any reset. The game goes
as follows: The decision maker starts in some state s1 ∈ S at time t = 1. At
each time step t ∈ N, the decision maker chooses one action a ∈ A in her current
state s ∈ S based on her past decisions and observations. When executing action a
in state s, she receives a random reward r drawn independently from distribution
ν(s, a) with support [0, 1] and mean µ(s, a). The state then transits to a next state
s′ ∈ S sampled with probability p(s′|s, a), and a new decision step begins. As the
transition probabilities and reward functions are unknown, the decision maker has
to learn them by trying different actions and recording the realized rewards and
state transitions.

The performance of the decision maker can be quantified through the notion
of regret, which compares the reward collected by the algorithm to that obtained
by an oracle always following an optimal policy. Given a learning algorithm A,
consider the following quantity that compares the cumulative reward after T steps
obtained by an optimal algorithm to that obtained by A:

RegA,T :=
T∑
t=1

r(s?t , ?(s?t ))−
T∑
t=1

r(st, at) ,

where at = A(st, ({st′ , at′ , rt′})t′<t) and s?t+1 ∼ p(·|s?t , ?(s?t )) with s?1 = s1 is a
sequence of states generated by the optimal strategy.

By an application of Azuma-Hoeffding’s inequality for bounded martingales, it
is immediate to show that with probability higher than 1− δ,

RegA,T ≤
T∑
t=1

(
P t−1
? µ? − r(st, at)

)
+
√

2T log(1/δ)

=
T∑
t=1

(P t−1
? − P ?)µ? +

[
Tg? −

T∑
t=1

r(st, at)
]

+
√

2T log(1/δ) .

Thus, following [25], it makes sense to focus on the control of the middle term
in brackets only, which we now call the effective regret:

RegretA,T := Tg? −
T∑
t=1

r(st, at) .

We finally introduce the following quantity that appears in the known problem-
dependent lower-bounds on the regret, and plays the analogue of the mean gap in
the bandit literature.
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Definition 2.6 (Sub-optimality gap). The sub-optimality of action a at state s is

ϕ(s, a) = µ(s, ?(s))− µ(s, a) + (p(·|s, ?(s))− p(·|s, a))>b? . (2.1)

Note importantly that ϕ is defined in terms of the bias b? of the optimal policy ?.
Indeed, it can be shown that minimizing the effective regret is essentially equivalent
to minimizing the quantity

∑
s,a ϕ(s, a)E[NT (s, a)], where NT (s, a) is the total

number of steps when action a has been played in state s. More precisely, it is not
difficult to show that for any stationary policy π and all t

Lemma 2.2 (Effective Regret to Pseudo-regret Reduction [52]). Let π be any
stationary policy. Then, it holds for all T and any initial state,

Rπ,T (s1) =
(
[PT−1
π − I]b?

)
(s1) +

∑
s,a

E[NT (s, a)]ϕ(s, a)

≤ D +
∑
s,a

E[NT (s, a)]ϕ(s, a) .

2.3.1 Regret Lower Bounds
In this section we present lower bounds on the regret for undiscounted RL. The
first bound is an asymptotic problem-dependent lower bound, whereas the second
one is a non-asymptotic one that holds in a minimax sense.

Burnetas-Katehakis Lower Bound

Burnetas and Katehakis [22] derive a tight lower bound on the regret for the class
of ergodic MDPs. They consider RL in ergodic MDPs, where the decision maker
does not know the transition probabilities except for their support. However, she
knows the average rewards. In other words, she knows µ(s, a) and S+

s,a := {s′ :
p(s′|s, a) > 0} for all pairs (s, a).

To present their lower bound, we introduce some notations. For any state-
action pair (s, a), we denote by ∆s,a the parameter space for the probability vector
p(·|s, a):

∆s,a =
{
q ∈ RS+ :

∑
y∈S

q(y) = 1 and q(y) > 0,∀y ∈ S+
s,a

}
.

We further define ∆ :=
∏

(s,a) ∆s,a.
We now introduce the notion of critical state-action pairs. To this aim, for a

given state-action pair (s, a) and probability vector q ∈ ∆s,a, we define a modi-
fied MDP M ′ = (S,A, ν,Q), where the modified transition law Q ∈ P satisfies:
q(·|s′, a′) = q if (s′, a′) = (s, a), and Q(·|s′, a′) = p(·|s′, a′) otherwise. Note that
MDP M ′ depends on the true MDP M and on (s, a, q): M ′ = M ′(M, s, a, q). For
simplicity, we omit its dependence on these quantities.
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For any state-action pair (s, a), we let Λ(s, a) be the set of all distributions that
make action a the unique optimal action at state s in the modified MDP M ′:

Λ(s, a) := {q ∈ ∆s,a : O(s,M ′) = {a}},

where O(s,M ′) denotes the set of optimal actions in state s in MDPM ′. Introduce
for any state-action pair (s, a):

K(s, a) = inf
{

KL(p(·|s, a), q) : q ∈ Λ(s, a)
}
.

A state-action pair (s, a) is said to be critical if a is not optimal in state s, yet there
exists some modified MDP M ′ in which a is optimal in s. Furthermore, we let CM
denote the set of all critical state-action pairs of M :

CM =
{

(s, a) : a /∈ O(s,M), Λ(s, a) 6= ∅
}
.

We note that definition of K implies that 0 < K(s, a) < ∞ iff (s, a) is critical.
Moreover, if a is sub-optimal at state s, K(s, a) = 0, and when Λ(s, a) = ∅, K(s, a) =
∞.

The following theorem provides the asymptotic regret lower bound on the regret
of any uniformly fast convergent (UF) algorithm for ergodic MDPs. By definition,
an algorithm A is uniformly fast convergent (UF) if from all starting states s0 ∈ S,
and all ergodic MDPs, the regret under A satisfies RA,T (s0) = o(Tα) as T grows
large, for all α > 0 (see [22]). Let ΠF denote the set of all UF algorithms.

Theorem 2.6 (Burnetas-Katehakis Lower Bound [22, Theorem 2]). For all algo-
rithms A ∈ ΠF , any ergodic MDP M , and any initial states s0 ∈ S:

lim inf
T→∞

E[RegretA,T (s0)]
log T ≥ cbk(M) :=

∑
(s,a)∈CM

ϕ(s, a)
K(s, a) . (2.2)

Minimax Lower Bound

Now we turn to the minimax lower bound presented by Jaksch et al. [25]. To
present a lower bound, they consider a family of hard-to-learn MDPs in the class of
communicating MDPs. Leveraging techniques for deriving minimax lower bounds
for MAB problems as in [21], they show that:

Theorem 2.7 ([25, Theorem 5]). For any algorithm A, there exists an MDP M
with S ≥ 10 states, A ≥ 10, and diameter D ≥ 10 logA(S), such that for any initial
state, the expected regret under A satisfies:

E[RegretA,T ] ≥ 0.015
√
DSAT .

The lower bound in Theorem 2.7 implies that the expected regret scales at least
as Ω(

√
DSAT ).
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2.3.2 Algorithms for Undiscounted RL
In this section, we present two algorithms that could be used for the considered RL
setup.

The Burnetas-Katehakis Algorithm

Burnetas and Katehakis [22] propose one of the first algorithms for RL under
average-reward criterion for the class of ergodic MDPs. Under the assumption that
the decision maker knows average reward function µ and the support of transition
kernel, they propose an algorithm, which we refer to as Burnetas-Katehakis.

To present Burnetas-Katehakis, we introduce the set of relatively frequently
sampled actions for any state s at time t as

Dt,s := {a ∈ A : Nt(s, a) ≥ log2Nt(s)} .

Any action a /∈ Dt,s is referred to as relatively under-sampled in state s at time
t. Given MDP M , the associated restricted empirical MDP to M at time t is
an MDP Mt that excludes relatively under-sampled actions in various states, and
whose transition kernel is the empirical kernel derived by the observations so far;
namely Mt = (S,Dt, µ, p̂t), where Dt = ∪sDt,s. Burnetas-Katehakis also relies
on the following index function: for all (s, a) and t ≥ 1,

Ut(s, a) = sup
q∈Λ(s,a)

{
µ(s, a) + q>b̂t : Nt(s, a)KL(p̂t(·|s, a), q) ≤ log t

}
, (2.3)

where b̂t is a bias function satisfying the Bellman optimality equation for restricted
empirical MDP Mt.

The Burnetas-Katehakis algorithm can be described as follows. At each time
step t, the algorithm forms a Mt = (S,Dt, ν, p̂t) and then finds b̂t by solving Bell-
man optimality equation for Mt. As such a solution might be misleading due to
estimation errors, the algorithm computes the index Ut for all actions. If all the op-
timal actions inMt may become under-sampled in the next time step, the algorithm
takes one of them arbitrarily. Otherwise, it chooses the action with the highest in-
dex at ∈ argmaxa∈A Ut(st, a). We refer to Algorithm 2.3 for the pseudo-code of
Burnetas-Katehakis.

The following theorem provides the regret upper bound for Burnetas-Katehakis:

Theorem 2.8 ([22, Theorem 1]). For any starting state, the regret under algorithm
A = Burnetas-Katehakis satisfies:

lim sup
T→∞

E[RegretA,T ]
log(T ) ≤ cbk(M) =

∑
(s,a)∈CM

ϕ(s, a)
K(s, a) .

In view of the lower bound of Theorem 2.6, Burnetas-Katehakis is asymptoti-
cally optimal in the class of ergodic MDPs. We remark that the above regret bound
only holds asymptotically (i.e., as T → ∞) and to the best of our knowledge, no
finite-time analysis for Burnetas-Katehakis is provided in the literature.
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Algorithm 2.3 Burnetas-Katehakis [22]
for t ≥ 1 do

Let Dt,s := {a ∈ A : Nt(s, a) ≥ log2 Nt(s)} and Dt = ∪sDt,s
Find b̂t by solving the Bellman equations for the restricted empirical MDP Mt =

(S,Dt, µ, p̂t)
Let O(s,Mt) be the set of optimal actions in state s in Mt

Let Γt = {a ∈ O(st,Mt) : Nt(st, a) < log2(Nt(st) + 1)}
if Γt = O(st,Mt) then
Choose any at ∈ Γt arbitrarily

else
Choose at ∈ argmaxa∈A Ut(st, a)

end if
end for

The Ucrl2 Algorithm

Ucrl2 [25] is an algorithm designed for the class of communicating MDPs, which
implements the principle of “optimism in face of uncertainty”.

The algorithm works in episodes of increasing lengths. To compute the opti-
mistic policy for the k-th episode, Ucrl2 first defines a set of plausible MDPsMk,
which is the set of all MDPs M ′ with state-space S and action space A, whose
reward function and transition kernel satisfies:

|µ̃(s, a)− µ̂k(s, a)| ≤

√
3.5 log(2SAtk/δ)

Nk(s, a)+ , (2.4)

‖p̃(·|s, a)− p̂k(·|s, a)‖1 ≤

√
14S log(2Atk/δ)

Nk(s, a)+ , (2.5)

where tk denotes the time where episode k starts.

Extended Value Iteration. To find an optimistic MDP M̃k ∈Mk as well as a
near-optimal policy in M̃k, one can use the following iterative procedure, referred
to as Extended Value Iteration: for all s ∈ S,

u0(s) = 0 ,

ui+1(s) = max
a∈A

{
µ̃(s, a) + max

p∈P(s,a)
u>i p

}
. (2.6)

Computing the inner maximization can be done in O(S) steps by an algorithm
due to [53]; for details see Algorithm 2 in [25]. The pseudo-code of Ucrl2 is provided
in Algorithm 2.4.

The following theorem provides a finite-time upper bound on the regret of
Ucrl2:
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Algorithm 2.4 Ucrl2 [25]
Set δ ∈ (0, 1],
Initialize: For all (s, a), set N0(s, a) = 0 and v0(s, a) = 0. Set t = 1, k = 1, and
observe initial state s1

for episodes k ≥ 1 do
Set tk = t

Set Nk(s, a) = Nk−1(s, a) + vk−1(s, a) for all (s, a)
Compute empirical estimates µ̂k(s, a) and p̂k(·|s, a) for all (s, a), and form the set of

plausible MDPsMk

Mk =
{
M ′ = (S,A, µ̃k, p̃k) : (2.4) and (2.5) hold

}
.

Find an 1√
tk
-optimal policy π̃k and an optimistic MDP M̃k ∈ Mk using Extended

Value Iteration (see (2.6))
while vk(st, at) ≥ Nk(st, at) do
Play action at = π̃k(st), and observe the next state st+1 and reward rt
Update Nk(s, a, x) and vt+1(s, a) for all actions a and states s, x

end while
end for

Theorem 2.9 ([25, Theorem 2]). Let M be a communicating MDP. Then, starting
from any initial state in M , the regret under algorithm A = Ucrl2 after T ≥ 2 steps
is bounded by

RegretA,T ≤ 34DS
√
AT log(T/δ)

with probability at least 1− δ.

2.A Proof of Lemma 2.2

Since g? is a constant function, it first comes

Rπ,T =
T∑
t=1

(
g? − P t−1

π µπ

)
=

T∑
t=1

P t−1
π

(
g? − µπ

)
.

Then we note that by construction it holds that g? − µ? = (P? − I)b?. thus,
introducing the sub-optimality gap ϕπ(s) = µ?(s) + (P?b?)(s)− µπ(s)− (Pπb?)(s).
Then it comes

g? − µπ = ϕπ + g? − µ? − P?b? + Pπ̃b
? = (Pπ − I)b? + ϕπ .

Thus far, we have we obtained that

Rπ,T =
T∑
t=1

P t−1
π ϕπ +

T∑
t=1

P t−1
π (Pπ − I)b? =

T∑
t=1

P t−1
π ϕπ + (PT−1

π − I)b? .
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In order to conclude, we note that

(
T∑
t=1

P t−1
πk

ϕπk)(s1) =
T∑
t=1

Est−1 [ϕπk(st−1)]

=
∑
s,a

ϕa(s)
T∑
t=1

Est−1 [I{st−1 = s, πk(s) = a}]

=
∑
s,a

ϕa(s)E[NT (s, a)] .

For the inequality, we use the simple bound [PT−1
π −I]b? ≤ ‖PT−1

π −I‖1 1
2S(b?) ≤ D .

�





Chapter 3

Stochastic Combinatorial MABs

This chapter investigates generic combinatorial MABs with Bernoulli rewards and
relies on the publications [54] and [55]. It begins with an outline of contributions
and an overview of related works in Section 3.1. Section 3.2 describes the model
and objectives. In Section 3.3, we derive lower bounds on the regret under semi-
bandit and bandit feedback. In Section 3.4, we present the ESCB algorithm and
provide a finite-time analysis of its regret. We provide simulation results in Section
3.5. Finally, Section 3.6 summarizes the chapter. All proofs are presented in the
appendix.

3.1 Contributions and Related Work

In this chapter we make the following contributions:
(a) We derive asymptotic (as the time horizon T grows large) regret lower bounds
satisfied by any algorithm under semi-bandit and bandit feedback (Theorems 3.1
and 3.4). These lower bounds are problem-specific and tight: There exists an al-
gorithm that attains the bound on all problem instances, although the algorithm
might be computationally expensive. To our knowledge, such lower bounds have
not been proposed in the case of stochastic combinatorial bandits. The dependency
of the lower bound in terms of problem dimensions (m, d) is unfortunately not ex-
plicit (recall that d denotes the number of basic actions and m is the maximal
number of basic actions per arm). For semi-bandit feedback, we further provide
a simplified lower bound (Theorem 3.3) and derive its scaling in (m, d) in specific
examples.
(b) In the case of semi-bandit feedback, we propose ESCB (Efficient Sampling for
Combinatorial Bandits), an algorithm whose regret scales at most asO(

√
md

∆min
log(T ))

(Theorem 3.8), where ∆min denotes the expected reward difference between the best
and the second-best arm. ESCB assigns an index to each arm. Our proposed indexes
are the natural extensions of KL-UCB and UCB indexes defined for unstructured
bandits [43, 20]. We present numerical experiments for some specific combinatorial
problems, which show that ESCB significantly outperforms existing algorithms.

31
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3.1.1 Related Work

Previous contributions on stochastic combinatorial MABs mainly considered semi-
bandit feedback. Most of these contributions focused on specific combinatorial
structures, e.g., fixed-size subsets [36, 56], matroids [57, 58], or permutations [30,
59]. Generic combinatorial problems were investigated in [60], [61], and [62]. Gai
et al. [60] propose LLR, a variant of the UCB algorithm that assigns index to basic
actions. Gai et al. [60] establish a loose regret bound of O(m

3d∆max
∆min

log(T )) for LLR,
where ∆max denotes the expected reward difference between the best and the worst
arm. Chen et al. [61] present a general framework for combinatorial optimization
problems in the semi-bandit setting that covers a large class of problems. Under
mild regularity conditions, their proposed framework also allows for nonlinear re-
ward functions. The proposed algorithm in [61], CUCB, is a variant of UCB that
assigns index to basic actions. For linear combinatorial problems, CUCB achieves a
regret of order O( m

2d
∆min

log(T )), which improves over the regret bound of LLR by a
factor of m∆max/∆min. For linear combinatorial problems, Kveton et al. [62] im-
prove the regret upper bound of CUCB1 to O( md

∆min
log(T )). However, the constant

in the leading term of this regret bound is fairly large. They also derive another
regret bound scaling as O(m

4/3d
∆min

log(T )) with better constants2. Our algorithms
improve over LLR and CUCB by a multiplicative factor of (at least)

√
m. We also

remark that for combinatorial MABs under semi-bandit feedback, Wen et al. [63]
provide algorithms with problem-independent regret bounds of order O(

√
T ). The

performance guarantees of these algorithms are presented in Table 3.1.
In spite of specific lower bound examples, problem-dependent regret lower bounds

that hold for all problem instances have not been reported in existing works so far.
Such specific results are mainly proposed to examine the tightness of regret bounds.
For instance, to prove that a regret of O( md

∆min
log(T )) is order-optimal3 in terms of

d and m, and cannot be beaten in general, Kveton et al. [62] artificially create an
instance of shortest-path routing problem, where the rewards of the basic actions
of the same arm are identical, or in other words, they consider a classical bandit
problem where the rewards of the various arms are either 0 or equal to m. This
does not contradict our regret bounds scaling as O(

√
md

∆min
log(T )) 4 since we assume

independence among the rewards of various basic actions.
Linear combinatorial MABs may be viewed as linear optimization over a poly-

hedral set. Dani et al. [65] consider stochastic linear optimization over compact and
convex sets under bandit feedback. They propose algorithms with high-probability

1In [62], the proposed algorithm is CombUCB1, which is essentially identical to CUCB.
2A similar regret scaling for the case of matching problem is provided independently in [59].
3A policy π is order-optimal in terms of d and m, if it satisfies the following: For all prob-

lem instances, Rπ,T = O(C1g(d,m) log(T )) with C1 independent of d, m, and T , and there
exists a problem instance and a constant C2 > 0, independent of d, m, and T , such that
lim infT→∞Rπ′,T / log(T ) ≥ C2g(d,m) for any uniformly good algorithm π′.

4We mention that using a refined analysis one can show that ESCB enjoys a regret upper bound
of O( log2(m)d

∆min
log(T )); see [64].
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Algorithm Regret

LLR [60] O
(
m3d∆max

∆2
min

log(T )
)

CUCB [61] O
(
m2d
∆min

log(T )
)

CombUCB1 (CUCB) [62] O
(
m4/3d
∆min

log(T )
)

CombUCB1 (CUCB) [62] O
(
md

∆min
log(T )

)
ESCB (Theorem 3.8) O

( √
md

∆min
log(T )

)
ESCB [64] O

(
log2(m)d

∆min
log(T )

)
Table 3.1: Regret upper bounds for stochastic combinatorial bandits under semi-
bandit feedback.

regret bounds scaling as O(log3(T )). We stress, however, that Dani et al. [65] as-
sume that the set of arms A is full rank and therefore, their algorithms are not
applicable to all classes of A.

Finally, we mention that some studies addressed combinatorial MABs under
Markovian rewards in the semi-bandit feedback setting. While generic problems
are investigated by Tekin et al. [66], most of existing works focused on specific
problems, e.g., fixed-size subsets [37] and permutations [67, 29].

3.2 Model and Objectives

We consider MAB problems where each arm a is a subset of at mostm basic actions
taken from a set E with cardinality d. For i ∈ E, Xi(n) denotes the reward of basic
action i in round n. For each i, the sequence of rewards (Xi(n))n≥1 is i.i.d. with
Bernoulli distribution with mean θi. Rewards are assumed to be independent across
actions. We denote by θ = (θ1, . . . , θd)> ∈ Θ = [0, 1]d the vector of unknown
expected rewards of the various basic actions.

The set of arms A is an arbitrary subset of {0, 1}d, such that each of its elements
a has at most m basic actions. Arm a is identified with a binary column vector
(a1, . . . , ad)>, and we have ‖a‖1 ≤ m, ∀a ∈ A. At the beginning of each round n,
an algorithm or policy π, selects an arm aπ(n) ∈ A based on the arms chosen in
previous rounds and their observed rewards. The reward of arm aπ(n) selected in
round n is Xaπ(n)(n) =

∑
i∈E a

π
i (n)Xi(n) = aπ(n)>X(n).

We consider both semi-bandit and bandit feedback. Under semi-bandit feedback
and policy π, at the end of round n, the outcome of basic actions Xi(n) for all
i ∈ aπ(n) 5 are revealed to the decision maker, whereas under bandit feedback,
aπ(n)>X(n) can only be observed. Let Πs and Πb be respectively the set of all
feasible policies with semi-bandit and bandit feedback. The objective is to identify

5Throughout for simplicity of the notation, for any binary vector z, we write i ∈ z to denote
zi = 1, and similarly i /∈ z to imply zi = 0.
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a policy in Πs and Πb maximizing the cumulative expected reward over a finite
time horizon T . The expectation is here taken with respect to the randomness in
the rewards and the possible randomization in the policy. Equivalently, we aim at
designing a policy that minimizes regret, where the regret of policy π is defined by:

Rπ,T = max
a∈A

E[
T∑
n=1

Xa(n)]− E[
T∑
n=1

Xaπ(n)(n)].

Finally, we denote by µa(θ) = a>θ the expected reward of arm a, and let
a?(θ) ∈ A, or a? for short, be any arm with the maximum expected reward: a?(θ) ∈
arg maxa∈A µa(θ). In what follows, to simplify the presentation, we assume that
a? is unique. We further define: µ?(θ) = a?>θ, ∆min = mina 6=a? ∆a where
∆a = µ?(θ)− µa(θ), and ∆max = maxa ∆a.

3.3 Regret Lower Bounds

3.3.1 Semi-bandit Feedback
Given θ, define the set of parameters that cannot be distinguished from θ when
selecting action a?(θ), and for which arm a?(θ) is sub-optimal:

Bs(θ) =
{
λ ∈ Θ : λi = θi, ∀i ∈ a?(θ), µ?(λ) > µ?(θ)

}
.

Let kl(u, v) be the Kullback-Leibler divergence between Bernoulli distributions of
respective means u and v, i.e., kl(u, v) = u log(u/v) + (1− u) log((1− u)/(1− v)).
We derive a regret lower bound valid for any uniformly good algorithm in Πs (see
Definition 2.1). The proof of this result relies on a general result on controlled
Markov chains due to Graves and Lai [39]; we refer to Chapter 2 for an overview
of their result.

Theorem 3.1. For all θ ∈ Θ and for any uniformly good policy π ∈ Πs,

lim inf
T→∞

Rπ,T

log(T ) ≥ cs(θ), (3.1)

where cs(θ) is the optimal value of the following optimization problem:

inf
x≥0

∑
a∈A

xa∆a (3.2)

subject to:
∑
i∈E

kl(θi, λi)
∑
a∈A

xaai ≥ 1, ∀λ ∈ Bs(θ). (3.3)

Observe first that optimization problem (3.2) is a linear semi-infinite program
[40], which can be solved for any fixed θ, but its optimal value is difficult to compute
explicitly. Determining how cs(θ) scales as a function of the problem dimensions
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d and m is not obvious. Also note that (3.2) has the following interpretation:
Assume that (3.2) has a unique solution x?. Then any uniformly good algorithm
must select action a at least x?a log(T ) + o(log(T )) times over the T first rounds.
From [39], we know that there exists an algorithm which is asymptotically optimal,
namely its regret matches the lower bound of Theorem 3.1. However this algorithm
suffers from two problems: It is computationally infeasible for large problems since
it involves solving problem (3.2) T times. Furthermore, the algorithm has no finite-
time performance guarantees, and numerical experiments suggest that its finite-time
performance on typical problems is rather poor.

Remark 3.1. Theorem 3.1 can be generalized in a straightforward manner for
when rewards belong to a one-parameter exponential family of distributions (e.g.,
Gaussian, Exponential, Gamma, etc.) by replacing kl by the appropriate divergence
measure.

Specific Cases

The lower bound presented in Theorem 3.1 is unfortunately implicit. Here we
consider two specific cases, where we can provide explicit expressions for c(θ).

Matroids. Consider a weighted matroid M = (E, I, θ), where E and θ respec-
tively denote the ground set and weight function, namely each i ∈ E has weight
θi. Moreover, I ⊂ 2E is the set of independent sets (for background materials
on matroids, we refer to Appendix 3.K). Here each arm corresponds to a basis of
matroid M , i.e., an inclusion-wise maximal element of I. Equivalently, the set of
arms A corresponds to the set of bases of matroid M .

To present the lower bound for the combinatorial MAB problem defined by
matroid M , we introduce mapping σM : E \ a? → a? with

σM (i) = argmin
j∈Ki

θj , ∀i ∈ E \ a?,

where Ki := {` ∈ a? : (a? \ `) ∪ {i} ∈ A}. Figure 3.1 shows an example of Ki for
the case of graphic matroids.

By Proposition 3.1 (see Appendix 3.K), we have that Ki 6= ∅ for any i /∈ a?.
Moreover, for any i /∈ a?, if ` ∈ Ki, then θ` > θi. We show this claim by con-
tradiction: Assume this does not hold, namely θ` < θi since θ comprises distinct
elements. Consider a′ = (a? \ `)∪{i}. Then, by Proposition 3.1, a′ ∈ A. Moreover,

µa′(θ)− µ?(θ) =
∑
k∈a′

θk −
∑
k∈a?

θk = θi − θ` > 0,

which contradicts the optimality of a?. Hence, θ` > θi for any ` ∈ Ki.
The next theorem provides a regret lower bound for the policies in Πs, which

may be viewed as the specialization of Theorem 3.1 for the case of matroids.



36 Stochastic Combinatorial MABs

1 

2 

4 

6 

3 
5 

Figure 3.1: An example for the set Ki in the case of graphic matroids: Edges shown
with solid line correspond to optimal actions. Two sub-optimal actions are shown
in dashed line, where K3 = {1, 2} and K6 = {1, 2, 5}.

Theorem 3.2. For any matroid M and for any uniformly good algorithm π ∈ Πs,

lim inf
T→∞

Rπ,T

log(T ) ≥
∑

i∈E\a?

θσM (i) − θi
kl(θi, θσM (i))

.

Remark 3.2. When the underlying matroid is the uniform matroid Um,d, the prob-
lem reduces to MAB with multiple plays as studied in [36, 56]. Assume that ba-
sic actions are enumerated such that θ1 ≥ θ2 ≥ · · · ≥ θm > · · · ≥ θd. Then
a? = {1, 2, . . . ,m} and σM (i) = m for all i /∈ a?. Hence, the regret lower bound of
Theorem 3.2 reduces to the lower bound of Anantharam et al. [36].

For the case of semi-bandit feedback, a specific lower bound example for the
case of a partition matroid is presented in Kveton et al. [57] to support the claim
that regret scaling of Ω( d−m∆min

log(T )) is tight. In contrast to their lower bound, the
one in Theorem 3.2 is problem-dependent and tight, i.e., it holds for any matroid
M , and cannot be improved.

Matchings. As a second example, we consider a specific case of the matching
problem, where A is the set of perfect matchings in the complete bipartite graph
Km,m. We choose parameter θ as follows: Let 0 < β < α < 1. Let θ ∈ Θ be defined
such that θi = α if i ∈ a? and θi = β otherwise. The following corollary to Theorem
3.1 provides the regret lower bound for the aforementioned matching problem:

Corollary 3.1. For all integer m ≥ 2 and all 0 < β < α < 1, we have:

cs(θ) ≥
m(m− 1)(α− β)

2kl(β, α) .

Let us remark that for the considered instance of matching problem, ∆min =
2(α − β). Hence, the lower bound presented in Corollary 3.1 implies, in view of
inequality kl(x, y) ≤ (x−y)2

y(1−y) , the existence of a class of problems whose regret is at
least Ω( d

∆min
log(T )).



3.3. Regret Lower Bounds 37

A Simplified Lower Bound

We now return back to the generic case and study how the coefficient cs(θ) in our
proposed regret lower bound scales as a function of the problem dimensions d and
m. To this aim, we present a simplified regret lower bound.

Definition 3.1. Given θ, we say that a set H ⊂ A \ a? has property P (θ) iff, for
all (a, a′) ∈ H2 with a 6= a′, we have (a \ a?) ∩ (a′ \ a?) = ∅.

Theorem 3.3. Let H be a maximal (inclusion-wise) subset of A satisfying the
property P (θ). Define β(θ) = mina6=a? ∆a

|a\a?| . Then:

cs(θ) ≥
∑
a∈H

β(θ)
maxi∈a\a? kl

(
θi,

1
|a\a?|

∑
j∈a?\a θj

) .
Corollary 3.2. Let θ ∈ [α2 , α]d for some constant 0 < α < 1

2 and A be such
that each arm a ∈ A, a 6= a? has at most k sub-optimal basic actions. Then:
cs(θ) = Ω(|H|/k).

Theorem 3.3 provides explicit regret lower bound and Corollary 3.2 states that
cs(θ) has to scale at least with the size of H. As will be discussed next, for most
combinatorial structures of interest, |H| is proportional to d − m, which implies
that in these cases one cannot obtain a regret smaller than O((d−m)∆−1

min log(T )).
This result is intuitive since d − m is the number of parameters not observed
when selecting the optimal arm. The algorithm proposed below has a regret of
O(d
√
m∆−1

min log(T )), which is acceptable since typically,
√
m is much smaller than

d.
Next we examine Theorem 3.3 for some concrete classes of A.

Matchings. In the first example, we assume that A is the set of perfect match-
ings in the complete bipartite graph Km,m, with |A| = m! and d = m2. A maximal
subset H of A satisfying property P (θ) can be constructed by adding all match-
ings that differ from the optimal matching by only two edges; see Figure 3.2 for
illustration in the case of m = 4. Here |H| =

(
m
2
)
and thus, |H| scales as d−m.

Spanning trees (matroids revisited). Consider the problem of finding the
minimum spanning tree in a complete graph KN .6 This corresponds to letting A
be the set of all spanning trees in KN , where |A| = NN−2 (Cayley’s formula). In
this case, we have d =

(
N
2
)

= N(N−1)
2 , which is the number of edges of KN , and

m = N − 1. A maximal subset H of A satisfying property P (θ) can be constructed
by composing all spanning trees that differ from the optimal tree by one edge only;
see Figure 3.3. In this case, H has d−m = (N−1)(N−2)

2 elements.
6Let us remark that spanning trees in a given graph are bases of the corresponding graphic

matroid, for which Theorem 3.2 already provides a tight lower bound on the regret. Nonetheless,
we present this case here for the sake of illustration.
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(a) a? (b) (c) (d) (e) (f) (g)

Figure 3.2: Matchings in K4,4: (a) The optimal matching a?, (b)-(g) elements of
H.

(a) a? (b) (c) (d) (e) (f) (g)

Figure 3.3: Spanning trees inK5: (a) The optimal spanning tree a?, (b)-(g) elements
of H.

A coloring problem. Consider the problem of coloring a star graph with N1
nodes with N2 ≥ N1 available colors. The task is to color nodes such that every
two adjacent nodes have different colors. Let wij denote the weight of assignment
of color j ∈ [N2] to node i ∈ [N1]. The goal is to find a coloring scheme maximizing
the sum of the weights. There are d = N1N2 basic actions and each arm (coloring)
has at most m = N1 basic actions. For simplicity we assume N1 = N2 = N (so
d = N2 and m = N). An arm or coloring in this case can be represented by
a bipartite graph (see, e.g., Figure 3.4), whose left-hand (resp. right-hand) side
vertices correspond to nodes of the star (resp. colors). Figure 3.4 displays the
elements of H for the case of N = 4. One can easily verify that H has (N − 1)2

elements, and so |H| = Ω(N2) = Ω(d).

Below we consider a particular instance of routing problem in which the under-
lying topology is a grid. This instance demonstrates that Theorem 3.3 may prove
inapplicable for routing problems.

Routing in a grid. Consider routing in anK-by-K directed grid, whose topology
is shown in Figure 3.5(a), where the source (resp. destination) node is shown in red
(resp. blue). Here A is the set of all

(2K−2
K−1

)
paths with m = 2(K − 1) edges.

We further have d = 2K(K − 1). In this example, elements of any maximal set
H satisfying P (θ) do not cover all sub-optimal links. For instance, for the grid
shown in Figure 3.5(a), there are 6 links that do not appear in any arm in H shown
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Figure 3.4: Coloring star graph: (a) Star topology, (b) optimal coloring a? with
minimal number of colors, (c)-(k) elements of H.

here. Moreover, one may easily prove that in this case, |H| scales as K rather than
K2 = d.

3.3.2 Bandit Feedback
Now we consider the case of bandit feedback. Consider a ∈ A and introduce for all
k = 0, 1, . . . ,m:

ψaθ (k) =
∑

X⊆a,|X|=k

∏
i∈X

θi
∏

i∈a\X

(1− θi). (3.4)

For two sets of parameters θ, λ ∈ Θ, we define the KL information number under
arm a as:

Ia(θ, λ) =
m∑
k=0

ψaθ (k) log ψ
a
θ (k)

ψaλ(k) . (3.5)

Now we define the set of bad parameters for a given θ, i.e., parameters for
which arm a?(θ) is sub-optimal, yet the distribution of the reward of the optimal
arm a?(θ) is the same under θ or λ:

Bb(θ) =
{
λ ∈ Θ :

∑
i∈a?

λi =
∑
i∈a?

θi, µ
?(λ) > µ?(θ)

}
.

The slight difference between the definitions of Bb(θ) and Bs(θ) comes from the
difference of feedback (bandit vs. semi-bandit). It is also noted that the set of bad
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(a) (b)

(c) (d) (e)

Figure 3.5: Routing in a grid: (a) Grid topology with source (red) and destination
(blue) nodes, (b) optimal path a?, (c)-(e) elements of H.

parameters in the case of bandit feedback contains that of semi-bandit feedback,
i.e., Bs(θ) ⊂ Bb(θ).

In the following theorem, we derive an asymptotic regret lower bound. This
bound is different than that derived in Theorem 3.1, due to the different nature of
the feedback considered. Comparing the two bounds may indicate the price to pay
by restricting the set of policies to those based on bandit feedback only.

Theorem 3.4. For all θ ∈ Θ, for any uniformly good policy π ∈ Πb,

lim inf
T→∞

Rπ,T

log(T ) ≥ cb(θ), (3.6)

where cb(θ) is the optimal value of the following optimization problem:

inf
x≥0

∑
a∈A

xa∆a (3.7)

subject to:
∑
a∈A

xaI
a(θ, λ) ≥ 1, ∀λ ∈ Bb(θ). (3.8)

The variables x?a, a ∈ A solving (3.7) have the same interpretation as that given
previously in the case of semi-bandit feedback. Similarly to the lower bound of
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Theorem 3.1, the above lower bound is implicit. In this case, it is however much
more complicated to see how cb(θ) scales with m and d, and we let if for future
work.

Remark 3.3. Of course, we know that cb(θ) ≥ cs(θ), since the lower bounds we
derive are tight and getting semi-bandit feedback can be exploited to design smarter
arm selection policies than those we can devise using bandit feedback (i.e., Πb ⊂ Πs).

We conclude this section by providing an specialization of Theorem 3.4 to the
case of matroids:

Theorem 3.5. For any matroid M and for any uniformly good algorithm π ∈ Πb,

lim inf
T→∞

Rπ,T

log(T ) ≥
∑

i∈E\a?

θσM (i) − θi
maxa:i∈a Ia(θ, ζiM )

,

where ζiM is a vector of parameters defined as ζiM,j = θj if j 6= i, and ζiM,i = θσM (i).

The proof of the above theorem involves decomposing the set of bad parameters
as Bb(θ) = ∪i6∈a?Bib(θ), where Bib(θ) is the set of parameters λ ∈ Bb(θ) such that
λi > θσM (i); see Appendix 3.G for details.

3.4 Algorithms

In this section, we present ESCB, an algorithm for the case of semi-bandit feedback
that relies on arm indexes. First we introduce two new index functions that will be
used by ESCB.

In general, an index function for a given arm a is defined as a function of
properties of arm a but also depends on the round n. These properties could well
include the empirical estimate of mean reward, empirical variance of reward, and
number of pulls of a. Moreover, it should be defined so that it exceeds µa(θ) = a>θ
with high probability.

To present the index functions, we introduce the following notations. Under a
given algorithm, at time n, we define ti(n) =

∑n
s=1 ai(s) the number of times basic

action i has been sampled. The empirical mean reward of action i is then defined
as θ̂i(n) = (1/ti(n))

∑n
s=1Xi(s)ai(s) if ti(n) > 0 and θ̂i(n) = 0, otherwise. Finally,

we define the corresponding vectors t(n) = (ti(n))i∈E and θ̂(n) = (θ̂i(n))i∈E .

3.4.1 Indexes
Our first index function is an extension of KL-UCB index to the case of combinatorial
arms. Let λ ∈ Θ, t ∈ Nd, and n ∈ N. Our first index for arm a, denoted by
ba(n, λ, t), is defined as the optimal value of the following optimization problem:

max
q∈Θ

a>q (3.9)
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subject to:
∑
i∈E

aitikl(λi, qi) ≤ f(n) ,

with f(n) = log(n) + 4m log(log(n)). As we shall see later, ba may be computed
efficiently using a line search procedure similarly to that used to compute KL-UCB
index.

Our second index ca(n, λ, t) is a generalization of the UCB1 and UCB-Tuned in-
dexes:

ca(n, λ, t) = a>λ+
√
f(n)

2
∑
i∈E

ai
ti

Note that, in the classical bandit problems with independent arms, i.e., when
m = 1, ba reduces to the KL-UCB index (which yields an asymptotically optimal
algorithm) and ca reduces to the UCB-Tuned index [20]. The next theorem provides
generic properties of our indexes. An important consequence of these properties
is that the expected number of times where ba?(n, θ̂(n), t(n)) or ca?(n, θ̂(n), t(n))
underestimates µ? is finite, as stated in the corollary below.

Theorem 3.6. (i) For all n ≥ 1, a ∈ A and λ ∈ [0, 1]d, we have ba(n, λ, t) ≤
ca(n, λ, t). (ii) There exists Cm > 0 depending on m only such that, for all a ∈ A
and n ≥ 2:

P(ba(n, θ̂(n), t(n)) ≤ a>θ) ≤ Cmn−1(log(n))−2.

Corollary 3.3. We have:∑
n≥1

P(ba?(n, θ̂(n), t(n)) ≤ µ?) ≤ 1 + Cm
∑
n≥2

n−1(log(n))−2 <∞.

Statement (i) in the above theorem is obtained combining Pinsker’s and Cauchy-
Schwarz inequalities. The proof of statement (ii) is based on a concentration in-
equality on sums of empirical KL-divergences proven in [68] (see Appendix B). It
enables to control the fluctuations of multivariate empirical distributions for expo-
nential families. It should also be observed that indexes ba and ca can be extended
in a straightforward manner to the case of continuous linear bandit problems, where
the set of arms is the unit sphere and one wants to maximize the dot product be-
tween the arm and an unknown vector. Index function ba can also be extended to
the case where reward distributions are not Bernoulli but lie within an exponen-
tial family (e.g., Gaussian, Exponential, Gamma, etc.), replacing kl by a suitably
chosen divergence measure.

Remark 3.4. A close look at ca reveals that the indexes proposed in [61], [62],
and [60] are too conservative to be optimal in our setting: There the “confidence
bonus”

∑
i∈E

ai
ti

was replaced by (at least) m
∑
i∈E

ai
ti
. We remark that [61], [62]

assumed that the various basic actions are arbitrarily correlated, while we assume
independence among basic actions.
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3.4.2 Index Computation
While the index ca is explicit, ba is defined as the optimal value of an optimization
problem. We show that it may be computed by a simple line search.

Consider arm a. Fix n ∈ N, λ ∈ Θ, and t ∈ Nd. Define Ja(λ) = {i ∈ a : λ 6= 1},
and for γ > 0, define:

F (γ, λ, n, t) =
∑

i∈Ja(λ)

tikl(λi, g(γ, λi, ti)) , with

g(γ, λi, ti) = 1
2

(
1− γti +

√
(1− γti)2 + 4γλiti

)
.

Theorem 3.7. If Ja(λ) = ∅, ba(n, λ, t) = ‖a‖1. Otherwise:
(i) γ 7→ F (γ, λ, n, t) is strictly increasing, and F (R+, λ, n, t) = R+.
(ii) Define γ? as the unique solution to F (γ, λ, n, t) = f(n). Then

ba(n, λ, t) = ‖a‖1 − |Ja(λ)|+
∑

i∈Ja(λ)

g(γ?, λi, ti).

Theorem 3.7 shows that ba can be computed using a line search procedure
such as bisection, as this computation amounts to solving the non-linear equation
F (γ, λ, n, t) = f(n), where F is a strictly increasing function. The proof of Theo-
rem 3.7 follows from KKT conditions and the convexity of the KL divergence (see
Appendix A for a summary of the properties of the KL divergence).

3.4.3 The ESCB Algorithm
Having introduced the index function, we are now in a position to present the
ESCB algorithm. Following the principle of “optimism in face of uncertainty” as in
UCB1 and KL-UCB, ESCB consists in selecting in each round the arm with the largest
index. More precisely, in round n it selects the arm a(n) ∈ argmaxa∈A ba(n) or
a(n) ∈ argmaxa∈A ca(n), where we define ba(n) := ba(n, θ̂(n), t(n)) and ca(n) :=
ca(n, θ̂(n), t(n)).

The pseudo-code of ESCB is presented in Algorithm 3.1. We consider two vari-
ants of the algorithm based on the choice of the index ξa: ESCB-1 when ξa = ba
and ESCB-2 if ξa = ca.

In practice, ESCB-1 outperforms ESCB-2, as verified by numerical results in
Section 3.5. Introducing ESCB-2 is however instrumental in the regret analysis of
ESCB-1 (in view of Theorem 3.6 (i)). The following theorem provides a finite-time
analysis of our ESCB algorithms.

Theorem 3.8. The regret under algorithm π ∈ {ESCB-1, ESCB-2} satisfies for any
time horizon T > 1:

Rπ,T ≤
16d
√
m

∆min
(log(T ) + 4m log(log(T ))) + 4dm3

∆2
min

+ C ′m,
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Algorithm 3.1 ESCB
for n ≥ 1 do

Select arm a(n) ∈ arg maxa∈A ξa(n).
Observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈ a(n).

end for

where C ′m ≥ 0 does not depend on θ, d, and T . As a consequence Rπ,T =
O(d
√
m∆−1

min log(T )) when T →∞.

ESCB with time horizon T has a complexity of O(|A|T ) as neither ba nor ca
can be written as a>y for some vector y ∈ Rd. Assuming that the offline (static)
combinatorial problem is solvable in O(V (A)) time, the complexity of CUCB in [61]
and [62] after T rounds is O(V (A)T ). Thus, if the offline problem is efficiently
implementable, i.e., V (A) = O(poly(d)), CUCB is efficient, whereas ESCB is not
since A may generically have exponentially (in d) many elements. Next, we provide
an extension to ESCB, which we may call Epoch-ESCB, that may attain almost the
same regret as ESCB while enjoying much lower computational complexity.

3.4.4 Epoch-ESCB: An Algorithm with Lower Computational
Complexity

Epoch-ESCB algorithm works in epochs of varying lengths. Epoch k comprises
rounds {Nk, . . . , Nk+1 − 1}, where Nk+1 (and thus the length of the k-th epoch) is
determined at time n = Nk, i.e., at the start of the k-th epoch. The Epoch-ESCB al-
gorithm simply consists in playing the arm with the maximal index at the beginning
of every epoch, and playing the current leader (i.e., the arm with the highest empir-
ical average reward) in the rest of rounds. If the leader is the arm with the maximal
index, the length of epoch k will be set twice as long as the previous epoch k − 1,
i.e., Nk+1 = Nk + 2(Nk − Nk−1). Otherwise, it will be set to 1. In contrast to
ESCB, Epoch-ESCB computes the maximal index infrequently, and more precisely
(almost) at an exponentially decreasing rate. Thus, one might expect that after T
rounds, the maximal index will be computed O(log(T )) times. The pseudo-code of
Epoch-ESCB is presented in Algorithm 3.2.

We assess the performance of Epoch-ESCB through numerical experiments in
Section 3.5, and leave the analysis of its regret as a future work. These experiments
corroborate our conjecture that the complexity of Epoch-ESCB after T rounds will
be O(V (A)T + log(T )|A|). Compared to CUCB, the complexity is penalized by
|A| log(T ), which may become dominated by the term V (A)T as T grows large.

3.5 Numerical Experiments

In this section, we compare the performance of ESCB against existing algorithms
through numerical experiments for some classes of A. When implementing ESCB,
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Algorithm 3.2 Epoch-ESCB
Initialization: Set k = 1 and N0 = N1 = 1.
for n ≥ 1 do

Compute L(n) ∈ arg maxa∈A a>θ̂(n).
if n = Nk then
Select arm a(n) ∈ arg maxa∈A ξa(n).
if a(n) = L(n) then

Set Nk+1 = Nk + 2(Nk −Nk−1).
else

Set Nk+1 = Nk + 1.
end if
Increment k.

else
Select arm a(n) = L(n).

end if
Observe the rewards, and update ti(n) and θ̂i(n),∀i ∈ a(n).

end for

we replace f(n) by log(n), ignoring the term proportional to log(log(n)), as is done
when implementing KL-UCB in practice.

Experiment 1: Matching

In our first experiment, we consider the matching problem in complete bipartite
graph K5,5, for which d = 52 = 25 and m = 5. Furthermore, we consider parameter
θ defined in Corollary 3.1.

Figure 3.6(a)-(b) depicts the regret of various algorithms for the case of α = 0.7
and β = 0.5. The curves in Figure 3.6(a) are shown with a 95% confidence intervals.
We observe that ESCB-1 has the smallest regret. Moreover, ESCB-2 significantly
outperforms CUCB and LLR, and its regret is close to that of ESCB-1. Moreover, we
observe that the regret of Epoch-ESCB is quite close to that of ESCB-2.

Figures 3.7(a)-(b) presents the regret of various algorithms for the case of
α = 0.95 and β = 0.3. The difference compared to the former case is that ESCB-1
significantly outperforms ESCB-2. The reason is that in the former case, mean re-
wards of most basic actions were close to 1

2 , for which the performance of UCB-type
algorithms are closer to their KL-based counterparts. On the other hand, when
mean rewards are not close to 1

2 , there exists a significant performance gap be-
tween ESCB-1 and ESCB-2. Comparing the results with the ‘lower bound’ curve,
we highlight that ESCB-1 gives close-to-optimal performance in both cases. Fur-
thermore, similarly to the previous case, Epoch-ESCB attains a regret whose curve
is almost indistinguishable from that of ESCB-2.

The number of epochs in Epoch-ESCB vs. time for the two examples is displayed
in Figure 3.8(a)-(b), where the curves are shown with 95% confidence intervals. We
observe that in both cases, the number of epochs grows at a rate proportional to
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Figure 3.6: Regret of various algorithms for matchings with α = 0.7 and β = 0.5.

log(n)/n at round n. Since the number of times Epoch-ESCB computes the index
ca is equal to the number of epochs, these curves suggest that the computational
complexity of index computations in Epoch-ESCB after n rounds scales as |A| log(n).

Experiment 2: Spanning Trees

In the second experiment, we consider spanning trees problem for the case of N = 5.
In this case, we have d =

(5
2
)

= 10, m = 4, and |A| = 53 = 125. We generate
parameter θ uniformly at random from [0, 1]10. Figure 3.9 portrays the regret of
various algorithms with 95% confidence intervals, for a case with ∆min = 0.54. The
results show that our algorithms outperform CUCB and LLR.
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Figure 3.7: Regret of various algorithms for matchings with α = 0.95 and β = 0.3.

3.6 Summary

In this chapter we investigated stochastic combinatorial MABs with Bernoulli re-
wards. We derived asymptotic regret lower bounds for both bandit and semi-bandit
feedback. The proposed lower bounds are not explicit, and hence we further ex-
amined its scaling in terms of the dimension of the decision space for the case
of semi-bandit feedback. We then proposed the ESCB algorithm and provided a
finite-time analysis of its regret. ESCB achieves lower regret compared to state-of-
the-art algorithms and outperforms these algorithms in practice. We also proposed
Epoch-ESCB that has lower computational complexity than ESCB. The regret anal-
ysis of Epoch-ESCB is much more complicated than that of ESCB, and hence is let
for future work.
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Figure 3.8: Number of epochs in Epoch-ESCB vs. time for Experiment 1 and 2 (%95
confidence interval).

3.A Proof of Theorem 3.1

To derive regret lower bounds, we apply the techniques used by Graves and Lai [39]
to investigate efficient adaptive decision rules in controlled Markov chains; we refer
to Chapter 2 for a brief summary of their general framework.

To this end, we construct a controlled Markov chain as follows. The state-space
is S = {0, 1}d. The set of controls corresponds to the set of arms A, and the set
of control laws is also A. These laws are constant in the sense that the control
applied by control law a ∈ A does not depend on the state of the Markov chain,
and corresponds to selecting arm a. The parameter θ takes values in [0, 1]d and the
transition probabilities are given as follows: For all x, y ∈ S,

p(x, y; a, θ) = p(y; a, θ) =
∏
i∈E

pi(yi; a, θ),

where for all i ∈ E, if ai = 0, pi(0; a, θ) = 1, and if ai = 1, pi(yi; a, θ) = θyii (1 −
θi)1−yi . Finally, the reward r(y, a) is defined by r(y, a) = a>y. Note that the
state-space of the Markov chain is here finite, and so, we do not need to impose
any cost associated with switching control laws (see the discussion on page 718 in
[39]). Note that the KL divergence under arm a is

Ia(θ, λ) =
∑
i∈E

aikl(θi, λi).

From [39, Theorem 1], we conclude that for any uniformly good algorithm π ∈ Πs,

lim inf
T→∞

Rπ,T

log(T ) ≥ cs(θ),
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Figure 3.9: Regret of various algorithms for spanning trees with N = 5 and ∆min =
0.54.

where cs(θ) is the optimal value of the following optimization problem:

inf
x≥0

∑
a6=a?

xa∆a, (3.10)

subject to: inf
λ∈Bs(θ)

∑
a 6=a?

xaI
a(θ, λ) ≥ 1. (3.11)

Substituting the expression of Ia(θ, λ) into (3.11) completes the proof. �

3.B Proof of Theorem 3.2

Let M = (E, I, θ) be a weighted matroid. To ease notation, we use the abbrevia-
tions B(θ) and σ to respectively denote Bs(θ) and σM . Applying Theorem 3.1 and



50 Stochastic Combinatorial MABs

(a) a? (b) (c) (d) (e) (f) (g)

Figure 3.10: Spanning trees in K5: (a) The optimal spanning tree a?, (b)-(g) a(i).

using similar lines as in the proof of Theorem 3.3, we have

inf
x≥0

∑
a 6=a?

xa∆a,

subject to: inf
λ∈Ba(θ)

∑
i∈a\a?

kl(θi, λi)
∑
k∈A

kixk ≥ 1 , ∀a 6= a?, (3.12)

where Ba(θ) =
{
λ ∈ Θ : λi = θi,∀i ∈ a?, µ?(θ) < µ?(λ)

}
.

Let i ∈ E \ a? and consider a(i) := (a? \σ(i))∪{i}. Proposition 3.1 implies that
a(i) ∈ A (see Figure 3.10 that portrays an instance of {a(i), i ∈ E \ a?} for the case
of graphic matroids). We may simplify the left-hand side of the constraint (3.12)
corresponding to arm a(i) as follows:

inf
λ∈B

a(i) (θ)

∑
j∈a(i)\a?

kl(θj , λj)
∑
k

kjxk = inf
λ∈B

a(i) (θ)
kl(θi, λi)

∑
k

kixk

= inf
λ∈Θ:λi>θσ(i)

kl(θi, λi)
∑
k

kixk

= kl(θi, θσ(i))
∑
k

kixk.

Hence, the constraint (3.12) for a = a(i) may be equivalently written as∑
k

kixk ≥
1

kl(θi, θσ(i))
.

Letting A− = A \ ({a?} ∪ {a(i), i ∈ E \ a?}), it then follows that

cs(θ) = inf
x≥0

∑
a∈A

∆axa (3.13)

subject to:
∑
k 6=a?

kixk ≥
1

kl(θi, θσ(i))
, ∀i ∈ E \ a?,

inf
λ∈Ba(θ)

∑
k∈A

xk
∑
i∈E

kikl(θi, λi) ≥ 1, ∀a ∈ A−.
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Now we bound the objective function of problem (3.13) from below. Let a 6= a?

and further define a bijection τa : E → E defined as follows: If i ∈ a \ a?, then
τa(i) = j for some j ∈ Ki. Otherwise, τa(i) = i. We have:

∆a =
∑
i∈a

(θτa(i) − θi) =
∑

i∈E\a?
ai(θτa(i) − θi) ≥

∑
i∈E\a?

ai(θσ(i) − θi).

Hence, introducing zi =
∑
a aixa for any i ∈ E \ a?, we obtain:∑

a

xa∆a ≥
∑
a

xa
∑

i∈E\a?
ai(θσ(i) − θi) =

∑
i∈E\a?

(θσ(i) − θi)zi.

As a result,

cs(θ) ≥ inf
z≥0

∑
i∈E\a?

(θσ(i) − θi)zi

subject to: zi ≥
1

kl(θi, θσ(i))
, ∀i ∈ E \ a?,

which yields cs(θ) =
∑
i∈E\a?

θσ(i)−θi
kl(θi,θσ(i)) and thus concludes the proof. �

3.C Proof of Corollary 3.1

By Theorem 3.1, the regret of any uniformly good policy in Πs is at least Ω(cs(θ) log(T ))
as T grows large, where

cs(θ) = inf
x≥0

∑
a 6=a?

xa∆a,

subject to: inf
λ∈Ba(θ)

∑
i∈a\a?

kl(β, λi)
∑
a′∈A

a′ixa′ ≥ 1 , ∀a 6= a?,

with Ba(θ) =
{
λ ∈ Θ : λi = α,∀i ∈ a?, µ?(θ) < µ?(λ)

}
.

To derive an explicit lower bound on the regret for the considered parameter θ,
in the sequel we simplify the objective and constraints of the above problem.

Let a 6= a? and consider the constraint corresponding to arm a 6= a?. Let ρ > 0.
Since x 7→ kl(β, z) is continuous for z > β, we can choose ξ > α such that

|kl(β, ξ)− kl(β, α)| ≤ ρkl(β, α) .

Now consider λ̃a ∈ Θ such that λ̃ai = α if i ∈ a?, and λ̃ai = ξ if i ∈ a \ a?, and
λ̃ai = β otherwise. As λ̃a ∈ Ba(θ), we have

inf
λ∈Ba(θ)

∑
i∈a\a?

kl(β, λi)
∑
a′

a′ixa′ ≤
∑

i∈a\a?
kl(β, λ̃ai )

∑
a′

a′ixa′
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= kl(β, ξ)
∑

i∈a\a?

∑
a′

a′ixa′ .

Defining ε = ρ
1+ρ and noting that ∆a = |a \ a?|(α− β) for any a 6= a?, we thus get

that

cs(θ) ≥ inf
x≥0

(α− β)
∑
a6=a?

|a \ a?|xa

subject to:
∑

i∈a\a?

∑
a′

a′ixa′ ≥
1− ε

kl(β, α) , ∀a 6= a?

for every ε ∈ (0, 1). Now, applying Lemma 3.1, proven next, and letting ε→ 0 give
the desired result

cs(θ) ≥
m(m− 1)(α− β)

kl(β, α) ,

and conclude the proof. �

Lemma 3.1. Let A be the set of perfect matchings in Km,m for a given m ≥ 2,
and consider parameter θ defined in Corollary 3.1. Define

g?(θ) = min
x≥0

∑
a6=a?(θ)

|a \ a?(θ)|xa

subject to:
∑

i∈k\a?(θ)

∑
a∈A

aixa ≥ 1, ∀k 6= a?(θ).

Then g?(θ) = m(m− 1).

Proof. For any 2 ≤ j ≤ m, introduce Dj ∈ A as the set of arms that have j
sub-optimal basic actions:

Dj = {a ∈ A : |a \ a?| = j},

and let Dj be its cardinality. Hence, A = ∪mj=2Dj ∪ {a?} and Dj ∪ Dj′ = ∅ for all
j 6= j′. The symmetry in the problem implies the existence of at least one solution
x? satisfying the following property: For any j, for all a, a′ ∈ Dj , x?a = x?a′ . Observe
that the dependence of xa on a is captured by |a \ a?|, and hence for all a ∈ Dj , we
introduce yj = x?a . We then get:

∑
a6=a?

|a \ a?|xa =
m∑
j=2

j
∑
a∈Dj

x?a =
m∑
j=2

jDjyj . (3.14)

Let k 6= a? and consider i ∈ k \ a?. We have that:∑
a

aix
?
a =

m∑
j=2

∑
a∈Dj

aix
?
a =

m∑
j=2

yj
∑
a∈Dj

ai.
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Note that
∑
i/∈a?

∑
a∈Dj ai = jDj since there are a total number of jDj sub-optimal

basic actions in Dj . Then, symmetry in A implies:∑
a∈Dj

ai = 1
m(m− 1)

∑
i/∈a?

∑
a∈Dj

ai = jDj

m(m− 1) ,

so that the constraint corresponding to arm k becomes:
∑m
j=2 jDjyj ≥ m(m− 1).

Putting this together with (3.14) concludes the proof of the lemma.

3.D Proof of Theorem 3.3

The proof proceeds in three steps. In the subsequent analysis, given the optimiza-
tion problem P, we use val(P) to denote its optimal value. Moreover, for brevity
we use the short-hand B(θ) to denote Bs(θ).

Step 1. We begin with introducing an equivalent formulation for problem (3.10)
by simplifying its constraints. In particular, we show that constraint (3.11) is
equivalent to:

inf
λ∈Ba(θ)

∑
i∈a\a?

kl(θi, λi)
∑
k∈A

kixk ≥ 1, ∀a 6= a?,

where Ba(θ) =
{
λ ∈ Θ : λi = θi, ∀i ∈ a?, µ?(θ) < µa(λ)

}
. Fix a 6= a?. In view of

the definition of Ba(θ), we can find λ ∈ Ba(θ) such that λi = θi,∀i ∈ (E \ a) ∪ a?.
Thus, for the right-hand side of the a-th constraint in (3.11), we get:

inf
λ∈Ba(θ)

∑
k 6=a?

xkI
k(θ, λ) = inf

λ∈Ba(θ)

∑
i∈E

kl(θi, λi)
∑
k 6=a?

kixk

= inf
λ∈Ba(θ)

∑
i∈a\a?

kl(θi, λi)
∑
k

kixk,

and therefore problem (3.10) can be equivalently written as:

cs(θ) = inf
x≥0

∑
a6=a?

∆axa, (3.15)

subject to: inf
λ∈Ba(θ)

∑
i∈a\a?

kl(θi, λi)
∑
k

kixk ≥ 1, ∀a 6= a?. (3.16)

Next, we formulate an LP whose value gives a lower bound for cs(θ). Consider
a 6= a?. Let ε > 0 and define λ̃a(ε) = (λ̃ai (ε))i∈E with

λ̃ai (ε) =
{ 1
|a\a?|

∑
j∈a?\a θj + ε if i ∈ a \ a?,

θi otherwise.
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Clearly λ̃a(ε) ∈ Ba(θ) and therefore:

inf
λ∈Ba(θ)

∑
i∈a\a?

kl(θi, λi)
∑
k

kixk ≤
∑

i∈a\a?
kl(θi, λ̃ai (ε))

∑
k

kixk,

Then:

cs(θ) ≥ inf
x≥0

∑
a 6=a?

∆axa (3.17)

subject to:
∑

i∈a\a?
kl(θi, λ̃ai (ε))

∑
k

kixk ≥ 1, ∀a 6= a?. (3.18)

Introducing ga(ε) = maxi∈a\a? kl(θi, λ̃ai (ε)) for any a 6= a?, we form P1 as
follows:

P1: inf
x≥0

∑
a 6=a?

∆axa (3.19)

subject to:
∑

i∈a\a?

∑
k

kixk ≥
1

ga(ε) , ∀a 6= a?. (3.20)

Observe that cs(θ) ≥ val(P1) since the feasible set of problem (3.17) is contained
in that of P1.

Step 2. In this step, we formulate an LP to give a lower bound for val(P1). To
this end, for any sub-optimal basic action i ∈ E, we define zi =

∑
a aixa. Further,

we let z = (zi)i∈E . Next, we represent the objective of P1 in terms of z, and give
a lower bound for it as follows:

∑
a6=a?

∆axa =
∑
a 6=a?

xa
∑

i∈a\a?

∆a

|a \ a?|

=
∑
a 6=a?

xa
∑

i∈E\a?

∆a

|a \ a?|
ai

≥ min
a 6=a?

∆a

|a \ a?|
·
∑

i∈E\a?

∑
a′ 6=a?

a′ixa′

= min
a 6=a?

∆a

|a \ a?|
·
∑

i∈E\a?
zi .

Recalling the definition β(θ) = mina 6=a? ∆a

|a\a?| and defining

P2: inf
z≥0

β(θ)
∑

i∈E\a?
zi



3.E. Proof of Corollary 3.2 55

subject to:
∑

i∈a\a?
zi ≥

1
ga(ε) , ∀a 6= a?,

yields: val(P1) ≥ val(P2).

Step 3. Introduce a set H satisfying property P (θ) as stated in Definition 3.1.
Now define

Z =
{
z ∈ Rd+ :

∑
i∈a\a?

zi ≥ 1/ga(ε), ∀a ∈ H
}
,

and

P3: inf
z∈Z

β(θ)
∑

i∈E\a?
zi.

Observe that val(P2) ≥ val(P3) since the feasible set of P2 is contained in Z. The
definition of H implies that

∑
i∈E\a? zi =

∑
a∈H

∑
i∈a\a? zi. Letting ε → 0, we

thus get

val(P3) =
∑
a∈H

β(θ)
maxi∈a\a? kl

(
θi,

1
|a\a?|

∑
j∈a?\a θj

) .
The proof is completed by observing that: cs(θ) ≥ val(P1) ≥ val(P2) ≥ val(P3). �

3.E Proof of Corollary 3.2

Fix a 6= a?. For any i ∈ a \ a?, we have:

kl
(
θi,

1
|a \ a?|

∑
j∈a?\a

θj

)
≤ 1
|a \ a?|

∑
j∈a?\a

kl (θi, θj) (By convexity of kl)

≤ 1
|a \ a?|

∑
j∈a?\a

(θi − θj)2

θj(1− θj)

≤ 1
|a \ a?|

∑
j∈a?\a

α2/4
α/2(1− α/2)

≤ α

2− α ≤
1
3 ,

where the second inequality follows from the inequality kl(p, q) ≤ (p−q)2

q(1−q) for all
(p, q) ∈ [0, 1]2, and where the third inequality uses the fact that x 7→ x(1 − x) is
increasing over x ∈ (0, 1

2 ). Moreover, we have that

β(θ) = min
a 6=a?

∆a

|a \ a?|
≥ ∆min

maxa |a \ a?|
= ∆min

k
.
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Applying Theorem 3.3, we get:

cs(θ) ≥
∑
a∈H

β(θ)
maxi∈a\a? kl

(
θi,

1
|a\a?|

∑
j∈a?\a θj

) ≥ ∆min

3k |H|,

which gives the required lower bound and completes the proof. �

3.F Proof of Theorem 3.4

To prove the theorem, we apply the techniques used by Graves and Lai [39] as used
in the case of semi-bandit feedback. To this end, we construct a controlled Markov
chain as follows. The state-space is S = {0, . . . ,m}. The set of controls corresponds
to the set of arms A, and the set of control laws is also A. The parameter θ takes
values in [0, 1]d. The probability that the reward under arm a is equal to k is then
ψaθ (k) defined in (3.4), and so:

p(k′, k; a, θ) = ψaθ (k), ∀k, k′ ∈ S.

From [39, Theorem 1], we conclude that for any uniformly good rule π,

lim inf
T→∞

Rπ,T

log(T ) ≥ cb(θ),

where cb(θ) is the optimal value of the following optimization problem:

cb(θ) = inf
x≥0

∑
a6=a?

xa∆a, (3.21)

subject to: inf
λ∈Bb(θ)

∑
k 6=a?

xkI
k(θ, λ) ≥ 1, (3.22)

where Ik(θ, λ) is defined in (3.5). This concludes the proof. �

3.G Proof of Theorem 3.5

Let M = (E, I, θ) be a weighted matroid. To ease notation, we use the abbrevia-
tions B(θ) and σ to respectively denote Bb(θ) and σM . Recall from Theorem 3.4
that the regret of any uniformly good policy π ∈ Πb for any θ ∈ Θ satisfies

lim inf
T→∞

Rπ,T

log(T ) ≥ cb(θ),

where cb(θ) is the optimal value of the optimization problem:

inf
x≥0

∑
a∈A

∆axa (3.23)
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subject to:
∑
a 6=a?

xaI
a(θ, λ) ≥ 1, ∀λ ∈ B(θ) .

We argue that µ?(λ) > µ?(θ) implies that there exists at least one sub-optimal
action i with λi > θσ(i). Hence, we decompose B(θ) into sets where in each set,
action i is better than action σ(i) under λ. For any i /∈ a?, define

Ai(θ) =
{
λ :
∑
`∈a?

λ` =
∑
`∈a?

θ`, λi > θσ(i)

}
.

Then, B(θ) =
⋃
i/∈a? Ai(θ) and problem (3.23) reads

cb(θ) = inf
x≥0

∑
a

xa∆a (3.24)

subject to: inf
λ∈Ai(θ)

∑
a 6=a?

xaI
a(θ, λ) ≥ 1, ∀i /∈ a?.

Consider ζi with ζii = θσ(i) and ζij = θj for j 6= i. Since ζi ∈ Ai(θ), we have

inf
λ∈Ai(θ)

∑
a6=a?

xaI
a(θ, λ) ≤

∑
a

xaI
a(θ, ζi)

=
∑
a

aixaI
a(θ, ζi)

≤ max
a:i∈a

Ia(θ, ζi)
∑
a

aixa.

Hence, problem (3.24) is lower bounded as follows:

cb(θ) ≥ inf
x≥0

∑
a

xa∆a (3.25)

subject to: max
a:i∈a

Ia(θ, ζi)
∑
a

aixa ≥ 1, ∀i /∈ a?.

Recall from the proof of Theorem 3.2 that
∑
a xa∆a ≥

∑
i∈E\a?(θσ(i) − θi)zi.

Hence, problem (3.25) is further lower bounded as

cb(θ) ≥ inf
z≥0

∑
i∈E\a?

(θσ(i) − θi)zi

subject to: zi ≥
1

maxa:i∈a Ia(θ, ζi) , ∀i /∈ a
?,

which further gives

cb(θ) ≥
∑

i∈E\a?

θσ(i) − θi
maxa:i∈a Ia(θ, ζi)

and concludes the proof. �
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3.H Proof of Theorem 3.6

Proof of the first statement. Consider arm a ∈ A and let q, λ ∈ Θ, t ∈ Nd,
and n ∈ N. Applying Cauchy-Schwarz inequality gives

a>(q − λ) =
∑
i∈a

√
ti(qi − λi)

1√
ti
≤
√∑

i∈a
ti(qi − λi)2

√∑
i∈a

1
ti
.

By Pinsker’s inequality (see Lemma A.2),

a>(q − λ) ≤
√

1
2
∑
i∈a

tikl(λi, qi)
√∑

i∈a

1
ti
.

Hence,
∑
i∈a tikl(λi, qi) ≤ f(n) implies:

a>q = a>λ+ a>(q − λ) ≤ a>λ+
√
f(n)

2
∑
i∈a

1
ti

= ca(n, λ, t),

so that by definition of ba(n, λ, t), we deduce ba(n, λ, t) ≤ ca(n, λ, t).

Proof of the second statement. If
∑
i∈a ti(n)kl(θ̂i(n), θi) ≤ f(n), then by

definition of ba we have ba(n, θ̂(n), t(n)) ≥ a>θ. Therefore, using [68, Theorem 2]
(see Corollary B.1), there exists a constant Cm such that for all n ≥ 2 we have:

P(ba(n, θ̂(n), t(n)) < a>θ) ≤ P
(∑
i∈a

ti(n)kl(θ̂i(n), θi) > f(n)
)

≤ Cmn−1(log(n))−2,

which concludes the proof. �

3.I Proof of Theorem 3.7

Consider a and n fixed throughout the proof. Recall that Ja(λ) = {i ∈ a : λi 6= 1}.
Consider q? ∈ Θ the optimal solution of the following optimization problem:

max
q∈Θ

a>q

subject to:
∑
i∈a

tikl(λi, qi) ≤ f(n),

so that ba(n, λ, t) = a>q?. Consider i 6∈ a. Then a>q does not depend on qi and
from Lemma A.1 (statement (i)), we get qi = λi. Now consider i ∈ a. From Lemma
A.1 (statement (i)), we get that 1 ≥ q?i ≥ λi. Hence q?i = 1 if λi = 1. If Ja(λ) is
empty, then q?i = 1 for all i ∈ a, so that ba(n, λ, t) = ‖a‖1.
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Now consider the case where Ja(λ) 6= ∅. From Lemma A.1 (statement (iii)) and
the fact that

∑
i∈a tikl(λi, q?i ) <∞, we get λi ≤ q?i < 1. From the KKT conditions

(see, e.g., [69]), there exists Lagrange multiplier γ? > 0 such that for all i ∈ Ja(λ):

1 = γ?tikl′(λi, q?i ).

For γ > 0 define λi ≤ qi(γ) < 1 as a solution to the following equation:

1 = γtikl′(λi, qi(γ)).

It follows from Lemma A.1 (statement (i)) that γ 7→ qi(γ) is uniquely defined,
strictly decreasing, and λi < qi(γ) < 1. From Lemma A.1 (statement (iii)), we
deduce that qi(R+) = [λi, 1]. Define the function:

F (γ, λ, n, t) =
∑

i∈Ja(λ)

tikl(λi, qi(γ)).

From the reasoning above, F is well-defined, strictly increasing, and F (R+, λ, n, t) =
R+. Therefore, γ? is the unique solution to F (γ?, λ, n, t) = f(n), and q?i = qi(γ?).
Furthermore, replacing kl′ (see, e.g., Lemma A.1) by its expression we obtain the
following quadratic equation:

qi(γ)2 + qi(γ)(γti − 1)− γtiλi = 0.

Solving for qi(γ), we obtain that qi(γ) = g(γ, λi, ti), which concludes the proof. �

3.J Proof of Theorem 3.8

To prove Theorem 3.8, we borrow some ideas from the proof of [62, Theorem 3].
For any n ∈ N, s ∈ Rd, and a ∈ A define hn,s,a =

√
f(n)

2
∑
i∈E

ai
si
, and introduce

the following events:

Gn =
{∑
i∈a?

ti(n)kl(θ̂i(n), θi) > f(n)
}
,

Hi,n = {ai(n) = 1, |θ̂i(n)− θi| ≥ m−1∆min/2}, Hn =
⋃
i∈E

Hi,n,

Fn = {∆a(n) ≤ 2hT,t(n),a(n)}.

Then the regret can be bounded as:

Rπ,T = E[
T∑
n=1

∆a(n)] ≤ E[
T∑
n=1

∆a(n)(I{Gn}+ I{Hn})] + E[
T∑
n=1

∆a(n)I{Gn, Hn}]

≤ mE[
T∑
n=1

(I{Gn}+ I{Hn})] + E[
T∑
n=1

∆a(n)I{Gn, Hn}],
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since ∆a(n) ≤ m.
Next we show that for any n such that a(n) 6= a?, it holds that Gn ∪Hn ⊂

Fn. Recall that ca(n) ≥ ba(n) for any a and n (Theorem 3.6). Moreover, if Gn
holds, we have

∑
i∈a? ti(n)kl(θ̂i(n), θi) ≤ f(n), which by definition of ba implies:

ba?(n) ≥ a?>θ. Hence we have:

I{Gn, Hn, a(n) 6= a?} = I{Gn, Hn, ξa(n)(n) ≥ ξa?(n)}

≤ I{Hn, ca(n)(n) ≥ a?>θ}

= I{Hn, a(n)>θ̂(n) + hn,t(n),a(n) ≥ a?>θ}

≤ I{a(n)>θ + ∆a(n)/2 + hn,t(n),a(n) ≥ a?>θ}
= I{2hn,t(n),a(n) ≥ ∆a(n)}
≤ I{2hT,t(n),a(n) ≥ ∆a(n)}
= I{Fn},

where the second inequality follows from the fact that eventGn implies: a(n)>θ̂(n) ≤
a(n)>θ + ∆min/2 ≤ a(n)>θ + ∆a(n)/2.

Hence, the regret is upper bounded by:

Rπ,T ≤ mE[
T∑
n=1

I{Gn}] +mE[
T∑
n=1

I{Hn}] + E[
T∑
n=1

∆a(n)I{Fn}].

We will prove the following inequalities:

(i) E[
T∑
n=1

I{Gn}] ≤ m−1C ′m,

(ii) E[
T∑
n=1

I{Hn}] ≤ 4dm2∆−2
min,

(iii) E[
T∑
n=1

∆a(n)I{Fn}] ≤ 16d
√
m∆−1

minf(T ) ,

with C ′m ≥ 0 independent of θ, d, and T .
Hence as announced:

Rπ,T ≤ 16d
√
m∆−1

minf(T ) + 4dm3∆−2
min + C ′m.

Analysis of inequality (i). An application of Theorem B.6 gives

E[
T∑
n=1

I{Gn}] =
T∑
n=1

P
(∑
i∈a?

ti(n)kl(θ̂i(n), θi) > f(n)
)

≤ 1 +
∑
n≥2

Cmn
−1(log(n))−2 ≡ m−1C ′m <∞.
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Analysis of inequality (ii). Fix i and n. Define s =
∑n
n′=1 I{Hn′,i}. Observe

that Hn′,i implies ai(n′) = 1, hence ti(n) ≥ s. Therefore, applying Applying [70,
Lemma B.1] (see Corollary B.2 in Appendix B), we have that

∑T
n=1 P(Hn,i) ≤

4m2∆−2
min. Using the union bound:

∑T
n=1 P(Hn) ≤ 4dm2∆−2

min.

Analysis of inequality (iii). Let ` > 0. For any n introduce the following
events:

Sn = {i ∈ a(n) : ti(n) ≤ 4mf(T )∆−2
a(n)},

An = {|Sn| ≥ `},
Bn = {|Sn| < `, [∃i ∈ a(n) : ti(n) ≤ 4`f(T )∆−2

a(n)]}.

We claim that for any n such that a(n) 6= a?, we have Fn ⊂ (An ∪ Bn). To
prove this, we show that when Fn holds and a(n) 6= a?, the event An ∪Bn cannot
happen. Let n be a time instant such that a(n) 6= a? and Fn holds, and assume
that An ∪Bn = {|Sn| < `, [∀i ∈ a(n) : ti(n) > 4`f(T )∆−2

a(n)]} happens. Then Fn
implies:

∆a(n) ≤ 2hT,t(n),a(n) = 2
√
f(T )

2

√√√√ ∑
i∈E\Sn

ai(n)
ti(n) +

∑
i∈Sn

ai(n)
ti(n)

< 2
√
f(T )

2

√
m

∆2
a(n)

4mf(T ) + |Sn|
∆2
a(n)

4`f(T ) < ∆a(n), (3.26)

where the last inequality uses the observation that An ∪Bn implies |Sn| < `.
Clearly, (3.26) is a contradiction. Thus Fn ⊂ (An ∪Bn) and consequently:

T∑
n=1

∆a(n)I{Fn} ≤
T∑
n=1

∆a(n)I{An}+
T∑
n=1

∆a(n)I{Bn}. (3.27)

To further bound the right-hand side of the above, we introduce the following events
for any i:

Ai,n = An ∩ {i ∈ a(n), ti(n) ≤ 4mf(T )∆−2
a(n)},

Bi,n = Bn ∩ {i ∈ a(n), ti(n) ≤ 4`f(T )∆−2
a(n)}.

It is noted that:∑
i∈E

I{Ai,n} = I{An}
∑
i∈E

I{i ∈ Sn} = |Sn|I{An} ≥ `I{An},

and hence: I{An} ≤ 1
`

∑
i∈E I{Ai,n}. Moreover I{Bn} ≤

∑
i∈E I{Bi,n}. Let each

basic action i belong to Ki sub-optimal arms, ordered based on their gaps as:
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∆i,1 ≥ · · · ≥ ∆i,Ki > 0. Also define ∆i,0 =∞. Plugging the above inequalities into
(3.27), we have

T∑
n=1

∆a(n)I{Fn} ≤
T∑
n=1

∑
i∈E

∆a(n)

`
I{Ai,n}+

T∑
n=1

∑
i∈E

∆a(n)I{Bi,n}

=
T∑
n=1

∑
i∈E

∆a(n)

`
I{Ai,n, a(n) 6= a?}+

T∑
n=1

∑
i∈E

∆a(n)I{Bi,n, a(n) 6= a?}

≤
T∑
n=1

∑
i∈E

∑
k∈[Ki]

∆i,k

`
I{Ai,n, a(n) = k}+

T∑
n=1

∑
i∈E

∑
k∈[Ki]

∆i,kI{Bi,n, a(n) = k}

≤
∑
i∈E

T∑
n=1

∑
k∈[Ki]

∆i,k

`
I{i ∈ a(n), ti(n) ≤ 4mf(T )(∆i,k)−2, a(n) = k}

+
∑
i∈E

T∑
n=1

∑
k∈[Ki]

∆i,kI{i ∈ a(n), ti(n) ≤ 4`f(T )(∆i,k)−2, a(n) = k}

≤ 8df(T )
∆min

(m
`

+ `
)
,

where the last inequality follows from Lemma 3.2, which is proven next. The proof
is completed by setting ` =

√
m. �

Lemma 3.2. Let C > 0 be a constant independent of n. Then for any i such that
Ki ≥ 1:

T∑
n=1

Ki∑
k=1

I{i ∈ a(n), ti(n) ≤ C(∆i,k)−2, a(n) = k}∆i,k ≤ 2C
∆min

.

Proof. Borrowing some techniques from [61], we have:

T∑
n=1

Ki∑
k=1

I{i ∈ a(n), ti(n) ≤ C(∆i,k)−2, a(n) = k}∆i,k

=
T∑
n=1

Ki∑
k=1

k∑
j=1

I{i ∈ a(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], a(n) = k}∆i,k

≤
T∑
n=1

Ki∑
k=1

k∑
j=1

I{i ∈ a(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], a(n) = k}∆i,j

≤
T∑
n=1

Ki∑
k=1

Ki∑
j=1

I{i ∈ a(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], a(n) = k}∆i,j
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≤
T∑
n=1

Ki∑
j=1

I{i ∈ a(n), ti(n) ∈ (C(∆i,j−1)−2, C(∆i,j)−2], a(n) 6= a?}∆i,j

≤ C

∆i,1 +
Ki∑
j=2

C((∆i,j)−2 − (∆i,j−1)−2)∆i,j

≤ C

∆i,1 +
∫ ∆i,2

∆i,Ki

Cx−2dx ≤ 2C
∆i,Ki

≤ 2C
∆min

,

which completes the proof.

3.K Background on Matroids

In this section we give a formal definition of matroids and state some useful related
results. More details can be found in, e.g., [71, 27].

Definition 3.2. Let E be a finite set and I ⊂ 2E. The pair M = (E, I) is called a
matroid if the following conditions hold: (i) ∅ ∈ I, (ii) if X ∈ I and Y ⊆ X, then
Y ∈ I, and (iii) if X,Y ∈ I with |X| > |Y |, then there is some element ` ∈ X \ Y
such that Y ∪ {`} ∈ I.

The set E is usually referred to as the ground set and the elements of I are called
the independent sets. Any system satisfying conditions (i) and (ii) in Definition 3.2
is called an independence system. Condition (iii) is referred to as the augmentation
property. Any (inclusion-wise) maximal independent set is called a basis for matroid
M . In other words, if X ∈ I is a basis for M , then X ∪ {`} /∈ I for all ` ∈ E \X.

Proposition 3.1 ([71]). Let M = (E, I) be a matroid. Then

(i) all bases of M have the same cardinality (referred to as rank of M),

(ii) for all bases X,Y of M , if ` ∈ X \ Y , then there exists k ∈ Y \X such that
(X \ `) ∪ {k} is a basis for M . 7

(iii) for all bases X,Y of M , if ` ∈ X \ Y then there exists k ∈ Y \X such that
(Y \ k) ∪ {`} is a basis for M .

Next we provide some examples of matroids.

Uniform matroid. Let E be a set with cardinality d. Given a positive integer
m ≤ d, the uniform matroid of rank m is Um,d = (E, I), where I is the collection
of subsets of E with at most m elements, i.e., I = {X ⊆ E : |X| ≤ m}. Hence,
every subset of E with cardinality m is a basis for the uniform matroid Um,d.

7For any set X and element `, by a slight abuse of notation, we write X \ ` to imply X \ {`}.
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Partition matroid. Let E be a finite set. Assume that {Ei}i∈[l] is a partition
of E, i.e., Ei, i ∈ [l] are disjoint sets and ∪i∈[l]Ei = E. Given integers k1, . . . , kl,
define I = {X ⊆ E : |X ∩Ei| ≤ ki, ∀i ∈ [l]}. Then (E, I) is a partition matroid of
rank

∑
i∈[l] ki. 8

Graphic matroid. Given an undirected graph G = (V,H) (that may contain
loops), define I = {F ⊆ H : (V, F ) is a forest}. Then, it can be shown thatM(G) =
(H, I) is a matroid, referred to as graphic matroid. Every spanning forest of G is
a basis for matroid M(G).

8In some papers, the notion of partition matriod is defined with ki = 1 for every i ∈ [l].



Chapter 4

Stochastic Online Shortest-Path Routing

In most real-world networks, link delays vary stochastically due to unreliable links
and random access protocols (e.g., in wireless networks), mobility (e.g., in mobile
ad-hoc networks), randomness of demand (e.g., in overlay networks for peer-to-
peer applications), etc. In many cases, the associated parameters to links, e.g., the
packet transmission success probabilities in wireless sensor networks, are initially
unknown and must be estimated by transmitting packets and observing the out-
comes. When designing routing policies, we therefore need to address a challenging
trade-off between exploration and exploitation: On the one hand, it is important
to route packets on new or poorly known links to explore the network and ensure
that the optimal path is eventually found; on the other hand, it is critical that
the accumulated knowledge on link parameters is exploited so that paths with low
expected delays are preferred. When designing practical routing schemes, one is
mostly concerned about the finite-time behaviour of the system and it is crucial to
design algorithms that quickly learn link parameters so as to efficiently track the
optimal path.

The design of such routing policies is often referred to as an online shortest-path
routing problem in the literature [31, 72, 32, 34, 73], and is a particular instance
of a combinatorial MAB problem. In this chapter, we study the stochastic version
of this problem. More precisely, we consider a network, in which the transmission
of a packet on a given link is successful with an unknown but fixed probability. A
packet is sent on a given link repeatedly until the transmission is successful; the
number of time slots to complete the transmission is referred to as the delay on
this link. We wish to route N packets from a given source to a given destination
in a minimum amount of time. A routing policy selects a path to the destination
on a packet-by-packet basis. The path selection can be done at the source (source
routing), or in the network as the packet progresses towards the destination (hop-
by-hop routing). In the case of source routing, some feedback is available when
the packet reaches the destination. This feedback can be either the end-to-end
delay, or the delays on each link on the path from the source to the destination. In
the MAB literature, the former type of feedback is referred to as bandit feedback,
whereas the latter is called semi-bandit feedback (as introduced in [74]). The routing

65
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policy then selects the path for the next packet based on the feedback gathered from
previously transmitted packets. In the case of hop-by-hop routing, routing decisions
are taken for each transmission and the packet is sent over a link selected based on
all transmission successes and failures observed so far (for the current packet, and
all previously sent packets) on the various links.

The performance of a routing policy is assessed through its expected total delay,
i.e., the expected time required to send all N packets to the destination. Equiv-
alently, it can be measured through the notion of regret, defined as the difference
between the expected total delay under the policy considered and the expected to-
tal delay of an oracle policy that would be aware of all link parameters, and would
hence always send the packets on the optimal path. Regret conveniently quantifies
the loss in performance due to the fact that link parameters are initially unknown
and need to be learnt.

In this chapter we study the online shortest-path routing problem in the stochas-
tic setting as described above. Using the machinery of Chapter 3, we derive
problem-specific lower bounds on the regret. We present three algorithms for this
class of problems and provide upper bounds on their regret. These upper bounds
are the best ones proposed so far in the literature for the considered problem. We
also provide numerical experiments, which show that our algorithms outperform
existing ones.

This chapter is based on the work [75] and is organized as follows: Section 4.1
outlines our contributions of the chapter and discusses related works. Section 4.2
describes the network model, feedback models, and objectives. In Section 4.3, we
present regret lower bounds for various types of feedback. In Section 4.4, we present
routing policies for the case of source routing with semi-bandit feedback along with
their regret analysis. Section 4.5 presents numerical experiments. In Section 4.6,
we give a brief summary of the materials presented in this chapter.

4.1 Contributions and Related Work

The first part of this chapter is motivated by the following fundamental questions:
(i) what is the benefit of allowing routing decisions at every node, rather than
only at the source? and (ii) what is the added value of feeding back the observed
delay for every link that a packet has traversed compared to only observing the
end-to-end delay?1 To answer these questions, we derive tight regret lower bounds
satisfied by any routing policy in the different scenarios, depending on where routing
decisions are made and what information is available to the decision maker when
making these decisions. By comparing the different lower bounds, we are able to
quantify the value of having semi-bandit feedback rather than bandit feedback,
and the improvements that can possibly be achieved by taking routing decisions
hop by hop. We then propose routing policies in the semi-bandit feedback setting
exhibiting better regret upper bounds than existing algorithms.

1The effect of different forms of feedback in the adversarial setting was studied in, e.g., [72, 32].
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More precisely, our contributions are the following:

1. Regret lower bounds. We derive tight asymptotic (when N grows large) regret
lower bounds. The first two bounds concern source routing policies under bandit
and semi-bandit feedback, respectively, whereas the third bound is satisfied by any
hop-by-hop routing policy. As we shall see later, these regret bounds are tight in
the sense that one can design actual routing policies, despite being complex and
impractical, that achieve these bounds. As it turns out, the regret lower bound for
source routing policies with semi-bandit feedback and that for hop-by-hop routing
policies are identical, indicating that taking routing decisions hop by hop does
not bring any advantage. On the contrary, the regret lower bounds for source
routing policies with bandit and semi-bandit feedback can be significantly different,
illustrating the importance of having information about per-link delays.

2. Routing policies. In the case of semi-bandit feedback, we propose three online
source routing policies, namely GeoCombUCB-1, GeoCombUCB-2, and KL-SR (KL-
based Source-Routing). Geo refers to the fact that the delay on a given link is
geometrically distributed, Comb stands for combinatorial, and UCB (Upper Confi-
dence Bound) indicates that these policies are based on the same “optimism in
face of uncertainty” principle as in the celebrated UCB algorithm designed for classi-
cal MAB problems [20]. KL-SR already appears in [33]. Here we improve its regret
analysis, and show that its regret scales at most as O(dm∆−1

minθ
−2
min log(N)), 2 where

d is the number of links in the network, m denotes the length (number of links)
of the longest path in the network from the source to the destination, θmin is the
success transmission probability of the link with the worst quality, and ∆min is the
minimal gap between the average end-to-end delays of a sub-optimal and of the
optimal path (formal definitions of θmin and ∆min are provided in Section 4.2). We
further show that the regret under GeoCombUCB-1 and GeoCombUCB-2 scales at most
as O(d

√
m∆−1

minθ
−2
min log(N)).

The trade-off between computational complexity and performance (regret) of
online routing policies is certainly hard to characterize, but our policies provide a
first insight into such a trade-off. Furthermore, they exhibit better regret upper
bounds than that of the CUCB (Combinatorial UCB) algorithm [61], which is, to
our knowledge, the state-of-the-art algorithm for stochastic online shortest-path
routing. Furthermore, we conduct numerical experiments, showing that our routing
policies perform significantly better than CUCB. We also mention that the Thompson
Sampling (TS) algorithm of [76] is applicable to the shortest-path problem, but
its analysis for general topologies is an open problem. While TS performs slightly
better than our algorithms on average, its regret sometimes has a large variance
according to our experiments. The regret guarantees of various algorithms and
their computational complexities are summarized in Table 4.1.3

2This improves over the regret upper bound scaling as O(∆maxdm3∆−1
minθ

−3
min log(N)) derived

in [33], where ∆max denotes the maximal gap between the average end-to-end delays of a sub-
optimal and of the optimal path.

3In Table 4.1, V and A respectively denote the set of all nodes and the set of all possible paths
between the source and the destination.
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Algorithm Regret Complexity

CUCB [61] O
(

dm
∆minθ3

min
log(N)

)
O(d|V |)

GeoCombUCB-1 (Theorem 4.5) O
(

d
√
m

∆minθ2
min

log(N)
)

O(|A|)

GeoCombUCB-2 (Theorem 4.5) O
(

d
√
m

∆minθ2
min

log(N)
)

O(|A|)

KL-SR (Theorem 4.6) O
(

dm
∆minθ2

min
log(N)

)
O(d|V |)

Table 4.1: Comparison of various algorithms for shortest-path routing under semi-
bandit feedback.

It is worth noting that this chapter is concerned about a single decision maker or
agent learning to route her traffic on the optimal path. The agent learns to interact
with a stochastic environment that is not influenced by the agent’s decisions. This
setting is relevant in wireless systems as explained above, but also in scenarios
where the agent competes with many other similar agents strategically routing
their traffic (see the literature on mean-field games). Our results do not apply to
cases where a few selfish agents compete for the network resources. This scenario,
often referred to as adversarial in the literature, has attracted a lot attention over
the few past decades; see, e.g., [77]. In the adversarial setting, there are algorithms
approaching Nash Equilibria (NE) under some fairly mild assumptions. To the best
of our knowledge, when link qualities are stochastically varying, the convergence to
NEs has not been investigated.

The analysis presented in this chapter can be easily extended to more general
link models, provided that the (single-link) delay distributions are taken within
one-parameter exponential families of distributions.

4.1.1 Related Work
We summarize existing results for generic stochastic combinatorial bandits that
could be applied to online shortest-path routing. In [61], the authors present CUCB,
an algorithm for generic stochastic combinatorial MAB problems under semi-bandit
feedback. When applied to the online routing problem, the best regret upper bound
for CUCB scales as O( dm

∆minθ3
min

log(N)) (see Appendix 4.H for details). This upper
bound constitutes the best existing result for our problem, where the delay on
each link is geometrically distributed. It is important to note that most proposed
algorithms for combinatorial bandits [60, 62, 54] deal with bounded rewards, i.e.,
here bounded delays, and are not applicable to geometrically distributed delays.

Stochastic online shortest-path routing problems have been addressed in [78,
34, 79]. Liu and Zhao [78] consider routing with bandit (end-to-end) feedback
and propose a forced-exploration algorithm with O(d3m log(N)) regret in which a
random barycentric spanner4 path is chosen for exploration. He et al. [34] consider

4A barycentric spanner is a set of paths from which the delay of other paths can be computed



4.2. Model and Objectives 69

routing under semi-bandit feedback, where the source chooses a path for routing
and a possibly different path for probing. Our model coincides with the coupled
probing/routing case in their paper, for which they derive an asymptotic lower
bound on the regret growing logarithmically with time. As we shall see later, their
lower bound is not tight.

Finally, it is worth noting that the papers cited above considered source-routing
only. To the best of our knowledge, the work presented here is the first to consider
online routing problems with hop-by-hop decisions. Such a problem can be formu-
lated as a classical MDP, in which the states are the packet locations and the actions
are the outgoing links of each node. However, most studies consider MDP problems
under stricter assumptions than ours and/or targeted different performance mea-
sures. Burnetas and Katehakis [22] derive the asymptotic lower bound on the regret
and propose an asymptotically optimal index policy. Their result can be applied
only to the so-called ergodic MDPs [50], where the induced Markov chain by any
policy is irreducible and consists of a single recurrent class. In hop-by-hop routing,
however, the policy that routes packets on a fixed path results in a Markov chain
with reducible states that are not in the chosen path. [25] and [24] study the bigger
class of communicating MDPs and present algorithms with finite-time regret upper
bounds scaling logarithmically with time. Nevertheless, these algorithms perform
badly when applied to hop-by-hop routing due to loose confidence intervals and due
to the fact that the routing policy is not updated at each time slot.

4.2 Model and Objectives

4.2.1 Network Model
The network is modeled as a directed graph G = (V,E), where V is the set of nodes
and E is the set of links with cardinality d. Each link i ∈ E may, for example,
represent an unreliable wireless link. Without loss of generality, we assume that
time is slotted and that one slot corresponds to the time to send a packet over a
single link. LetXi(t) be a binary random variable indicating whether a transmission
on link i at time t is successful. (Xi(t))t≥1 is a sequence of i.i.d. Bernoulli variables
with initially unknown mean θi. Hence, if a packet is sent on link i repeatedly until
the transmission is successful, the time to complete the transmission (referred to
as the delay on link i) is geometrically distributed with mean 1/θi. Let θ = (θi)i∈E
be the vector representing the packet successful transmission probabilities on the
various links. We consider a single source-destination pair (src, dst) ∈ V 2, and
denote by A ⊆ {0, 1}d the set of loop-free paths from src to dst in G, where each
path a ∈ A is a d-dimensional binary vector; for any i ∈ E, ai = 1 if and only
if i belongs to a. Let m denote the maximum length of the paths in A, i.e.,
m = maxa∈A

∑
i∈E ai. For brevity, in what follows, for any binary vector z, we

write i ∈ z to denote zi = 1. Moreover, for any vector z, we use the convention
that z−1 = (z−1

i )i.

as its linear combination with coefficients in [−1, 1] [31].



70 Stochastic Online Shortest-Path Routing

For any path a, Dθ(a) =
∑
i∈a

1
θi

is the average packet delay through path a

given link success rates θ. The path with minimal delay is: a? ∈ arg mina∈ADθ(a).
Moreover, for any path a ∈ A, we define ∆a = Dθ(a)−Dθ(a?) = (a−a?)>θ−1. Let
∆min = min∆a 6=0 ∆a. We let θmin = mini∈E θi and assume that θmin > 0. Finally
define D? = Dθ(a?) and D+ = maxa∈ADθ(a) the delays of the shortest and longest
paths, respectively.

4.2.2 Objectives and Feedback

We assume that the source is fully backlogged (i.e., it always has packets to send)
and that the parameter θ is initially unknown. Packets are sent successively from
source (src) to destination (dst) over various paths, and the outcome of each packet
transmission is used to estimate θ, and in turn to learn the path a? with the
minimum average delay. After a packet is sent, we assume that the source gathers
feedback from the network (essentially per-link or end-to-end delays) before sending
the next packet.

We consider and compare three different types of online routing policies, depend-
ing (i) on where routing decisions are taken (at the source or at each node), and (ii)
on the received feedback (per-link or end-to-end path delay). The corresponding
policy sets are defined below:

• Policy Set Π1: The path used by a packet is determined at the source based on
the observed end-to-end delays for previous packets. More precisely, for the n-
th packet, let aπ(n) be the path selected under policy π, and let Dπ(n) denote
the corresponding end-to-end delay. Then aπ(n) depends on aπ(1), . . . , aπ(n−
1), Dπ(1), . . . , Dπ(n− 1).

• Policy Set Π2: The path used by a packet is determined at the source based on
the observed per-link delays for previous packets. In other words, under policy
π, aπ(n) depends on aπ(1), . . . , aπ(n−1), (dπi (1), i ∈ aπ(1)), . . . , (dπi (n−1), i ∈
aπ(n− 1)), where dπi (k) is the delay experienced on link i for the k-th packet
(if this packet uses link i at all).

• Policy Set Π3: Routing decisions are taken at each node in an adaptive man-
ner. At a given time t, the packet is sent over a link selected based on all
successes and failures observed on the various links before time t.

In the case of source-routing policies (in Π1 ∪Π2), if a transmission on a given
link fails, the packet is retransmitted on the same link until it is successfully received
(per-link delays are geometric random variables). On the contrary, in the case of
hop-by-hop routing policies (in Π3), the routing decisions at a given node can be
adapted to the observed failures on a given link. For example, if transmission
attempts on a given link failed, one may well decide to switch link and select a
different next-hop node.
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The regret Rπ,N of policy π up to the N -th packet is the expected difference of
delays for the first N packets under π and under the policy that always selects the
optimal path a? for transmission:

Rπ,N := E

[
N∑
n=1

Dπ(n)
]
−NDθ(a?),

where Dπ(n) denotes the end-to-end delay of the n-th packet under policy π and
the expectation E[·] is taken with respect to the random transmission outcomes and
possible randomization in the policy π. The regret quantifies the performance loss
due to the need to explore sub-optimal paths to learn the path with the minimum
delay.

Objectives. The goal is to design online routing policies in Π1, Π2, and Π3 that
minimize regret over the first N packets. As it turns out, there are policies in any
Πj , j = 1, 2, 3, whose regrets scale as O(log(N)) when N grows large, and no policy
can have a regret scaling as o(log(N)). More specifically, our objective is to derive,
for each j = 1, 2, 3, an asymptotic regret lower bound cj(θ) log(N) for policies
in Πj , and then propose simple policies whose regret upper bounds asymptotically
approach that of the optimal algorithm, i.e., an algorithm whose regret matches the
lower bound in Πj . As we shall discuss later, such an algorithm exists. Therefore,
by comparing c1(θ), c2(θ), and c3(θ), we can quantify the potential performance
improvements taking routing decisions at each hop rather than at the source only,
and observing per-link delays rather than end-to-end delays.

4.3 Regret Lower Bounds

4.3.1 Source-Routing with Bandit Feedback
Consider routing polices in Π1 that make routing decisions at source. Denote by
ψaθ (k) the probability that the delay of a packet sent on path a is k slots, and by
h(a) the length (or number of links) of path a. The end-to-end delay is the sum
of several independent random geometric variables. If we assume that θi 6= θj for
i 6= j, according to [80], we have for all k ≥ h(a),

ψaθ (k) =
∑
i∈a

( ∏
j∈a,j 6=i

θj
θj − θi

)
θi(1− θi)k−1,

i.e., the path delay distribution is a weighted average of the individual link delay
distributions, where the weights can be negative but always sum to one.

The next theorem provides the fundamental performance limit of online routing
policies in Π1.
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Theorem 4.1. For all θ and for any uniformly good policy π ∈ Π1,

lim inf
N→∞

Rπ,N

log(N) ≥ c1(θ),

where c1(θ) is the infimum of the following optimization problem:

inf
x≥0

∑
a∈A

xa∆a (4.1)

subject to: inf
λ∈B1(θ)

∑
a6=a?

xa

∞∑
k=h(a)

ψaθ (k) log ψ
a
θ (k)

ψaλ(k) ≥ 1,

with B1(θ) =
{
λ : {λi, i ∈ a?} = {θi, i ∈ a?}, min

a∈A
Dλ(a) < Dλ(a?)

}
.

It is important to observe that in the definition of B1(θ), the equality {λi, i ∈
a?} = {θi, i ∈ a?} is a set equality, i.e., order does not matter (e.g., if a? = {1, 2},
the equality means that either λ1 = θ1, λ2 = θ2 or λ1 = θ2, λ2 = θ1). The proof of
Theorem 4.1 follows similar steps as in the proof of Theorem 3.4, but also requires
a property for geometric random variables established in Lemma 4.4 in Appendix
4.I.

Remark 4.1. The difference between set of bad parameters in Theorem 4.1 and
Theorem 3.4 comes from the different nature of Bernoulli and geometric distribu-
tions. By comparing bad parameter sets in the two theorems, we may conclude that
bandit feedback in the case of geometrically distributed rewards provides relatively
more information than in the case of Bernoulli rewards.

4.3.2 Source-Routing with Semi-Bandit (Per-Link) Feedback
We now consider routing policies in Π2 that make decisions at the source, but
receive feedback on the individual link delays on the chosen path. Let KLG(u, v)
denote the KL-divergence between two geometric distributions with parameters u
and v:

KLG(u, v) :=
∑
k≥1

u(1− u)k−1 log u(1− u)k−1

v(1− v)k−1 .

The next theorem provides the regret lower bound for online routing policies in
Π2:

Theorem 4.2. For all θ and for any uniformly good policy π ∈ Π2,

lim inf
N→∞

Rπ,N

log(N) ≥ c2(θ),
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where c2(θ) is the infimum of the following optimization problem:

inf
x≥0

∑
a∈A

xa∆a (4.2)

subject to: inf
λ∈B2(θ)

∑
a6=a?

xa
∑
i∈a

KLG(θi, λi) ≥ 1,

with B2(θ) =
{
λ : λi = θi,∀i ∈ a?, min

a∈A
Dλ(a) < Dλ(a?)

}
.

Similarly to Theorem 3.1, Theorem 4.2 can be seen as a direct consequence of
[39, Theorem 1] (the problem can be easily mapped to a controlled Markov chain).
We therefore omit its proof.

We also note that similarly to the case of Bernoulli rewards in Chapter 3, it
holds that c1(θ) ≥ c2(θ), since the lower bounds we derive are tight and getting
semi-bandit feedback can be exploited to design smarter routing policies than those
we can devise using bandit feedback (i.e., Π1 ⊂ Π2).

Remark 4.2. The asymptotic lower bound proposed in [34] has a similar expres-
sion to ours, but the set B2(θ) is replaced by B′2(θ) =

⋃
i∈E{λ : λj = θj ,∀j 6=

i,mina∈ADλ(a) < Dλ(a?)}. Note that B′2(θ) ⊂ B2(θ), which implies that the lower
bound derived in [34] is smaller than ours. In other words, we propose a regret
lower bound that improves that in [34]. Furthermore, our bound is tight (it cannot
be improved further).

4.3.3 Hop-by-hop Routing
Finally, we consider routing policies in Π3. These policies are more involved to
analyze as the routing choices may change at any intermediate node in the network,
and they are also more complex to implement. Surprisingly, the next theorem states
that the regret lower bound for hop-by-hop routing policies is the same as that
derived for strategies in Π2 (source-routing with semi-bandit feedback). In other
words, we cannot improve the performance by taking routing decisions at each hop.

Theorem 4.3. For all θ and for any uniformly good policy π ∈ Π3,

lim inf
N→∞

Rπ,N

log(N) ≥ c3(θ) = c2(θ).

The proof of Theorem 4.3 is more involved than those of previous theorems,
since in the hop-by-hop case, the chosen path could change at intermediate nodes.
To overcome this difficulty, we introduce another notion of regret corresponding to
the achieved throughput (i.e., the number of packets successfully received by the
destination per unit time), which we refer to as the throughput regret. The proof
uses the results of [39] for throughput regret, but also relies on Lemma 4.2, which
provides an asymptotic relationship between Rπ,N and the throughput regret.
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Remark 4.3. Theorem 4.3, together with the tightness of our regret lower bounds,
implies that in spite of exploiting additional feedback, hop-by-hop routing policies
cannot yield better regret than source routing policies at least asymptotically when
the number of transmissions grows large. Hop-by-hop routing could provide a sig-
nificant advantage if the link qualities change on a fast time scale. To achieve a
low regret in this situation, an efficient algorithm should not try to retransmit many
times over a link whose quality went from good to bad.

4.3.4 Numerical Example
There are examples of network topologies where the above asymptotic regret lower
bounds can be explicitly computed. One such example is the line network5; see
Figure 4.1(a) for an instance of line network. Notice that in line networks, the
optimal routing policy consists in selecting the best link in each hop. The following
lemma is immediate:

Lemma 4.1. For any line network with m hops, we have:

c1(θ) ≥
∑
i/∈a?

(
max
p:i∈a

∞∑
k=m

ψaθ (k) log ψaθ (k)
ψaϑi(k)

)−1
(

1
θi
− 1
θζ(i)

)
, (4.3)

c2(θ) = c3(θ) =
∑
i/∈a?

1
KLG(θi, θζ(i))

(
1
θi
− 1
θζ(i)

)
,

where ζ(i) is the best link on the same hop as link i, and where ϑi is a vector of
link parameters defined as ϑij = θj if j 6= i, and ϑii = θζ(i).

As a consequence of the above lemma, we can establish the following result on
the scaling of regret with problem parameters:

Proposition 4.1. There exist problem instances in line networks with arbitrar-
ily small θmin, for which the regret of any uniformly good policy in Π2 ∪ Π3 is
Ω
(

d−m
∆minθ2

min
log(N)

)
.

For line networks, both c1(θ) and c2(θ) scale linearly with the number of links
in the network. In Figure 4.1(b), we present the median, along with 25% and 75%
quantiles, for the ratio of the lower bound of c1(θ) (i.e., the right-hand side of
(4.3)) to c2(θ) for various values of θ (we randomly generated 104 link parameters
θ) as a function of the network diameter m in a simple line network, which has
two links in the first hop and one link in the rest of hops and hence d = m + 1.
These results suggest that collecting semi-bandit feedback (per-link delays) can
significantly improve the performance of routing policies. The gain is significant
even for fairly small networks.

5A line network is a graph of vertices {1, . . . , n}, where the neighbors of i are i− 1 and i+ 1.
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Figure 4.1: (a) A line network, (b) Semi-bandit vs. bandit feedback: Box-plot for
the ratio of the lower bound of c1(θ) (the right-hand side of (4.3)) to c2(θ) for a
line network. The plot shows the median (black curve), 25% quantile, and 75%
quantile.

4.4 Routing Policies for Semi-bandit Feedback

Theorems 4.1-4.2-4.3 indicate that within the first N packets, the total amount of
packets routed on a sub-optimal path a should be of the order of x?a log(N), where
x?a is the optimal solution of the optimization problems in (4.1) and (4.2). In [39],
the authors present policies that achieve the regret bounds of Theorems 4.1-4.2-4.3
(see [39, Theorem 2]). These policies suffer from two problems: firstly, they are
computationally infeasible for large problems since their implementation involves
solving in each round a semi-infinite linear program [40] similar to those providing
the regret lower bounds (defined in (4.1) and (4.2)). Secondly, these policies have no
finite-time performance guarantees, and numerical experiments suggest that their
finite-time performance on typical problems is rather poor.

In this section, we present online routing policies for semi-bandit feedback, which
are simple to implement, yet approach the performance limits identified in the
previous section. We further analyze their regret and show that they outperform
existing algorithms. To present our policies, we introduce additional notations.
Under a given policy, we let ti(n) be the total number of transmission attempts
(including retransmissions) on link i before the n-th packet is sent. We define θ̂i(n)
the empirical success rate of link i estimated over the transmissions of the first (n−1)
packets. Furthermore, we define the corresponding vectors t(n) = (ti(n))i∈E and
θ̂(n) = (θ̂i(n))i∈E .

Note that the proposed policies and regret analysis presented in this section
directly apply for generic combinatorial optimization problems with linear objective
function and geometrically distributed rewards.
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Index Type Computation Algorithm
ba Path Line search GeoCombUCB-1
ca Path Explicit GeoCombUCB-2
ωi Link Line search KL-SR

Table 4.2: Summary of indexes.

4.4.1 Path and Link Indexes
The proposed policies rely on indexes attached either to individual links or paths.
Next we introduce three indexes used in our policies. They depend on the round,
i.e., on the number n of the packet to be sent, the number of times a link has been
sampled, and the estimated link parameters θ̂(n). The three indexes and their
properties (i.e., in which policy they are used and how one can compute them) are
summarized in Table 4.2. Let n ≥ 1 and assume that the n-th packet is to be sent.
The indexes are defined as follows.

Path Indexes

Let λ ∈ (0, 1]d, t ∈ Nd, and n ∈ N. The first path index, denoted by ba(n, λ, t)
for path a ∈ A, is motivated by the index ba presented in Chapter 3. ba(n, λ, t) is
defined as the infimum of the following optimization problem:

inf
u∈(0,1]d

a>u−1

subject to:
∑
i∈a

tikl(λi, ui) ≤ f1(n),

ui ≥ λi, ∀i ∈ E,

where f1(n) = log(n) + 4m log(log(n)), and for all u, v ∈ [0, 1], kl(u, v) is the KL
information number between two Bernoulli distributions with respective means u
and v, i.e., kl(u, v) = u log(u/v) + (1− u) log((1− u)/(1− v)).

The second index is denoted by ca(n, λ, t) and defined for path a ∈ A as:

ca(n, λ, t) = a>λ−1 −
√∑

i∈a

2f1(n)
tiλ3

i

.

Similarly to Theorem 3.6, the next theorem provides generic properties of the
two indexes ba and ca.

Theorem 4.4. (i) For all n ≥ 1, a ∈ A, λ ∈ (0, 1]d, and t ∈ Nd, we have
ba(n, λ, t) ≥ ca(n, λ, t).

(ii) There exists a constant Km > 0 depending on m only such that for all a ∈ A
and n ≥ 2:

P(ba(n, θ̂(n), t(n)) > a>θ) ≤ Kmn
−1(log(n))−2.
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Algorithm 4.1 GeoCombUCB

for n ≥ 1 do
Select path a(n) ∈ arg mina∈A ξa(n) (ties are broken arbitrarily), where

ξa(n) = ba(n) for GeoCombUCB-1, and ξa(n) = ca(n) for GeoCombUCB-2.
Collect feedback on links i ∈ a(n), and update θ̂i(n) for i ∈ a(n).

end for

Algorithm 4.2 KL-SR [33]
for n ≥ 1 do
Select path a(n) ∈ arg mina∈A a>ω(n) (ties are broken arbitrarily).
Collect feedback on links i ∈ a(n), and update θ̂i(n) for i ∈ a(n).

end for

Corollary 4.1. We have:∑
n≥1

P(ba?(n, θ̂(n), t(n)) > a?>θ−1) ≤ 1 +Km

∑
n≥2

n−1(log(n))−2 <∞.

Link Index

Our third index is a link index. For n, t ∈ N and λ ∈ (0, 1], the index ωi(n, λ, t) of
link i ∈ E is defined as:

ωi(n, λ, t) = min
{ 1
u

: u ∈ [λ, 1], tkl
(
λ, u

)
≤ f2(n)

}
,

where f2(n) = log(n) + 4 log(log(n)).

4.4.2 Routing policies

We present three routing policies, referred to as GeoCombUCB-1, GeoCombUCB-2, and
KL-SR, respectively. For the transmission of the n-th packet, GeoCombUCB-1 (resp.
GeoCombUCB-2) selects the path a with the smallest index ba(n) := ba(n, θ̂(n), t(n))
(resp. ca(n) := ca(n, θ̂(n), t(n))). KL-SR was initially proposed in [33] and for
the transmission of the n-th packet, it selects the path a(n) ∈ arg mina∈A a>ω(n),
where ω(n) = (ωi(n))i∈E and ωi(n) := ωi(n, θ̂i(n), ti(n)). The pseudo-code of
GeoCombUCB and KL-SR are presented in Algorithm 4.1 and Algorithm 4.2, respec-
tively.

In the following theorems, we provide a finite-time analysis of GeoCombUCB and
KL-SR, and show the optimality of KL-SR in line networks. Define ε = (1−2− 1

4 )∆min
D+ .
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Theorem 4.5. For all N ≥ 1, under policies
π ∈ {GeoCombUCB-1, GeoCombUCB-2} we have:

Rπ,N ≤
32d
√
mf1(N)

∆minθ2
min

+ 2D+

(
2Km +

∑
i∈E

1
ε2θ2

i

)
.

Hence, Rπ,N = O
(

d
√
m

∆minθ2
min

log(N)
)
when N →∞.

Theorem 4.6. For all N ≥ 1, under policy π = KL-SR we have:

Rπ,N ≤
360dmf2(N)

∆minθ2
min

+ 2D+

(
4m+

∑
i∈E

1
ε2θ2

i

)
.

Hence, Rπ,N = O
(

dm
∆minθ2

min
log(N)

)
when N →∞.

Remark 4.4. The regret bound of KL-SR scales as O(m) while that of GeoCombUCB
scales as O(

√
m). Indeed, the index ωi used in KL-SR ignores the statistical inde-

pendence of delays of various links in a given path, whereas the indexes ba and ca
in GeoCombUCB use this independence and yield smaller confidence intervals.

The proof of Theorem 4.6 is completely different from the regret analysis of
KL-SR in [33]; it relies on Lemma 4.3, which provides a sharp lower bound for the
index ωi, and borrows some ideas from [62, Theorem 5].

Remark 4.5. Theorem 4.6 holds even when the delays on the various links are not
independent, as in [62].

The proposed policies have better performance guarantees than existing routing
algorithms. Indeed, as shown in Appendix 4.H, the best known regret upper bound
for the CUCB algorithm [61] is O

(
dm

∆minθ3
min

log(N)
)
, which constitutes a weaker

performance guarantee than those of our routing policies. The numerical experi-
ments presented in the next section will confirm the superiority of GeoCombUCB and
KL-SR over CUCB.

The next proposition states that KL-SR is asymptotically optimal in line net-
works:

Proposition 4.2. In line networks, the regret under π = KL-SR satisfies

lim sup
N→∞

Rπ,N

log(N) ≤ c2(θ) .

Hence, Rπ,N = O
(

d−m
∆minθ2

min
log(N)

)
when N →∞.

Remark 4.6. When the link parameters smoothly evolve over time, we can modify
the proposed routing policies so that routing decisions are based on past choices
and observations over a sliding window consisting of a fixed number of packets, as
considered in [81] and [70].
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4.4.3 Implementation
Next we discuss the implementation of our routing policies and give simple meth-
ods to compute ba(n, λ, t), ca(n, λ, t), ωi(n, λ, t) given a, i, n, λ, and t. The path
index ca is explicit and easy to compute. The computation of link index ωi is also
straightforward as it amounts to finding the roots of a strictly convex and increasing
function in one variable (note that v 7→ kl(u, v) is strictly convex and increasing
for v ≥ u). Hence, the index ωi can be computed by a simple line search. The path
index ba(n, λ, t) can also be computed using a simple line search, as shown below.

Introduce Ja(λ) = {i ∈ a : λi 6= 1}, and for γ > 0 define:

F (γ, λ, n, t) =
∑

i∈Ja(λ)

tikl(λi, g(γ, λi, ti)),

with g(γ, λi, ti) = 1
2γti

(
γλiti − 1 +

√
(1− γλiti)2 + 4γti

)
.

Now, following similar lines as in the proof of Theorem 3.7, we can prove that:

Proposition 4.3. (i) γ 7→ F (γ, λ, n, t) is strictly increasing, and F (R+, λ, n, t) =
R+. (ii) If Ja(λ) = ∅, ba(n, λ, t) =

∑
i∈E ai. Otherwise, let γ? be the unique

solution to F (γ, λ, n, t) = f1(n). Then,

ba(n, λ, t) =
∑
i∈E

ai − |Ja(λ)|+
∑

i∈Ia(λ)

g(γ?, λi, ti).

As stated in Proposition 4.3, γ? can be computed efficiently by a simple line
search and ba is easily deduced. We thus have efficient methods to compute the
three indexes. To implement our policies, we then need to find in each round,
the path minimizing the index (or the sum of link indexes along the path for
KL-SR). KL-SR can be implemented (in a distributed fashion) using the Bellman-
Ford algorithm, and its complexity is O(|V |d) in each round. GeoCombUCB-1 and
GeoCombUCB-2 are more computationally involved than KL-SR and have complexity
O(|A|) in each round.

4.5 Numerical Experiments

In this section, we conduct numerical experiments to compare the performance of
the proposed source-routing policies to that of the CUCB algorithm [61] and TS ap-
plied to our online routing problem. The CUCB algorithm is an index policy in Π2
(the set of source-routing policies with semi-bandit feedback) that selects path a(n)
for the transmission of the n-th packet:

a(n) ∈ arg min
a∈A

∑
i∈a

1
θ̂i(n) +

√
1.5 log(n)/ti(n)

.

We consider a grid network whose topology is depicted in Figure 4.3(a), where
the node in red (resp. blue) is the source (resp. the destination). In this network,
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there are
(6

3
)

= 20 possible paths from the source to the destination. Let us com-
pare these algorithms in terms of their per-packet complexity. The complexity of
GeoCombUCB-1 and GeoCombUCB-2 is O(|A|), whereas that of KL-SR, CUCB, and TS is
O(|V |d).

In Figures 4.2(a)-(b), we plot the regret against the number of the packets N
under the various routing policies, and for two sets of link parameters θ. For each
set, we choose a value of θmin and generate the values of θi independently, uniformly
at random in [θmin, 1]. The results are averaged over 100 independent runs, and
the 95% confidence intervals are shown using the grey area around curves. The
three proposed policies outperform CUCB, and GeoCombUCB-1 attains the smallest
regret amongst the proposed policies. The comparison between GeoCombUCB-2 and
KL-SR is more subtle and depends on the link parameters: While in Figure 4.2(a)
KL-SR significantly outperforms GeoCombUCB-2, they attain regrets growing simi-
larly for the link parameter of Figure 4.2(b). Yet there are some parameters for
which KL-SR is significantly outperformed by GeoCombUCB-2. KL-SR seems to per-
form better than GeoCombUCB-2 in scenarios where ∆min is large. TS performs
slightly better than GeoCombUCB-1 on average. Its regret, however may not be well
concentrated around the mean for some link parameters, as in Figure 4.2(b). Fur-
thermore, the regret analysis of TS for shortest-path routing with general topologies
is an open problem.

4.5.1 A distributed hop-by-hop routing policy
Motivated by the Bellman-Ford implementation of the KL-SR algorithm, we propose
KL-HHR, a distributed routing policy that is a hop-by-hop version of the KL-SR algo-
rithm and hence belongs to the set of policies Π3. We first introduce the necessary
notations. For any node v ∈ V , we let Av denote the set of loop-free paths from
node v to the destination. For any time slot τ , we denote by n(τ) the packet num-
ber that is about to be sent or is already in the network. For any link i, let θ̃i(τ) be
the empirical success rate of link i up to time slot τ , that is θ̃i(τ) = si(n(τ))/t′i(τ),
where t′i(τ) denotes the total number of transmission attempts on link i up to time
slot τ . Moreover, with slight abuse of notation, we denote the index of link i at
time τ by ωi(τ, θ̃i(τ)). Note that by definition t′i(τ) ≥ ti(n) and θ̃i(τ) is a more
accurate estimate of θi than θ̂i(n(τ)).

We define `v(τ) as the minimum cumulative index from node v to the destina-
tion:

`v(τ) = min
a∈Av

∑
i∈a

ωi(τ, θ̃i(τ)).

The index `v(τ) can be computed using the Bellman-Ford algorithm. KL-HHR (Al-
gorithm 4.3) works based on the following idea: Assuming that the current packet
is at node v at time τ , send it to node v′ such that ω(v,v′)(τ, θ̃v(τ)) + `v′(τ) is
minimal over all outgoing links of node v.

We compare the performance of KL-HHR, KL-SR, and TS through numerical ex-
periments for a network shown in Figure 4.3(b), in which there are 40 links and
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Figure 4.2: Regret versus number of received packets

413 possible paths between the source (in red) and the destination (in blue). Fig-
ures 4.4(a)-(b) display the regret under KL-HHR, KL-SR, and TS, averaged over 100
independent runs, against the number of the packets N for two sets of link param-
eters θ. These parameters are generated similarly to the previous experiments. As
expected, KL-HHR outperforms KL-SR in both scenarios since it can change routing
decisions dynamically at intermediate nodes thus avoiding retransmissions on bad
links when they are discovered. Note however that, in both scenarios, the regret of
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Algorithm 4.3 KL-HHR for node v
for τ ≥ 1 do
Select link (v, v′) ∈ E, where

v′ ∈ arg min
w∈V :(v,w)∈E

(
ω(v,w)(τ, θ̃v(τ)) + `w(τ)

)
.

Update index of the link (v, v′).
end for

(a) (b)

Figure 4.3: Network topologies

both KL-HHR and KL-SR seem to grow at the same rate as the number of received
packets grows large. Moreover, TS would outperform KL-HHR asymptotically, i.e.,
as the number of received packets grows large. On the other hand, in scenarios
where θmin is very small, if the number of total packets N is not very large, KL-HHR
could outperform TS; see, e.g., Figure 4.4(b).

The regret analysis of KL-HHR is left for future work.

4.6 Summary

In this chapter we investigated online shortest-path routing problems in networks
with stochastic link delays. We derived asymptotic regret lower bounds for source
routing policies under bandit and semi-bandit feedback, and for hop-by-hop routing
policies. We further showed that the regret lower bounds for source routing policies
with semi-bandit feedback and that for hop-by-hop routing policies are identical.
We then proposed two online source routing policies, namely GeoCombUCB-1 and
GeoCombUCB-2, and provided a finite-time analysis of their regret. Moreover, we
improve the regret upper bound of KL-SR [33]. These routing policies strike an in-
teresting trade-off between computational complexity and performance, and exhibit
better regret upper bounds than state-of-the-art algorithms. Furthermore, through
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Figure 4.4: Regret versus number of received packets

numerical experiments we demonstrated that these policies outperform state-of-the-
art algorithms in practice. As future work, we plan to propose practical algorithms
with provable performance bounds for hop-by-hop routing and source-routing with
bandit feedback. Furthermore, we would like to study the effect of delayed feedback
on the performance as studied in, e.g., [82].
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4.A Proof of Theorem 4.3

To prove the theorem, we first define another notion of regret corresponding to the
achieved throughput (i.e., the number of packets successfully received by the des-
tination per unit time). The throughput regret is introduced to ease the analysis
since computing the throughput regret is easier in the hop-by-hop case. Define
µθ(a) as the average throughput on path a given link success rates θ: µθ(a) =
1/Dθ(a). The fontswitchthroughput regret Sπ,T of π over time horizon T is:
Sπ,T := Tµθ(a?) − E [Nπ(T )] , where Nπ(T ) is the number of packets received
up to time T under policy π. Lemma 4.2, stated at the end of the proof, provides
the relation between asymptotic bound on Rπ,N and Sπ,T .

Now we are ready to prove Theorem 4.3. The proof relies on the framework of
Graves and Lai [39]. To apply their result, we construct the following controlled
Markov chain. We let the state of the Markov chain be the packet location. The
action is the selected outgoing link. The transitions between two states take one
time slot – the time to make a transmission attempt. Hence, the transition prob-
ability between state x and y with the action of using link i is denoted by (where
y 6= x) P iθ(x, y) = θi if link i connects node x and y, and is zero otherwise. On the
other hand, the probability of staying at the same state is the transmission failure
probability on link i if link i is an outgoing link, that is P iθ(x, x) = 1 − θi if link i
is an outgoing link, and is zero otherwise.

We assume that the packet is injected at the source immediately after the pre-
vious packet is successfully delivered, and we are interested in counting the number
of successfully delivered packets. In order not to count the extra time slot we will
spend at the destination, we use a single Markov chain state to represent both the
source and the destination.

We give a reward of 1 whenever the packet is successfully delivered to the
destination. Let r(x, y, i) be the immediate reward after the transition from node
x to node y under the action i, i.e., r(x, y, i) = 1 if y is the destination node and is
zero otherwise (see Figure 4.5 for an example). Hence, r(x, i) (i.e., the reward at
state x with action i) is

r(x, i) =
{
θi if link i connects node x and the destination;
0 otherwise.

The stationary control law prescribes the action at each state, i.e., the outgoing
link at each node. A stationary control law of this Markov chain is then a path a
in the network, and we assign arbitrary actions to the nodes that are not on the
path a. The maximal irreducibility measure is then to assign measure zero to the
nodes that are not on the path a, and a counting measure to the nodes on the
path a. The Markov chain is irreducible with respect to this maximal irreducibility
measure, and the stationary distribution of the Markov chain under path a is

πaθ (x) =
1

θa(x)∑
i∈a

1
θi

I{if node x is on the path a},
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where a(x) denotes the link we choose at node x. The long-run average reward of
the Markov chain under control law a is

∑
x π

a
θ (x)r(x, a(x)) = 1/

∑
i∈a

1
θi

= µθ(a).
The optimal control law is then a? with long run average reward µθ(a?).

src/dst

1− θi

j

1− θj

(r = 1)

θjθi
k

1− θk

θk
`

1− θ`

θ`

Figure 4.5: A Markov chain example under a control law a

The throughput regret of a policy π ∈ Π3 for this controlled Markov chain at
time T is

Sπ,T = Tµθ(a?)− Eθ[
T∑
t=1

r(xt, π(t, xt))], (4.4)

where xt is the state at time t and π(t, xt) is the corresponding action for state xt
at time t. To this end, we construct a controlled Markov chain that corresponds to
the hop-by-hop routing in the network. Now define Ia(θ, λ) as the KL information
number for a control law a:

Ia(θ, λ) =
∑
x

πaθ (x)
∑
y

P
a(x)
θ (x, y) log

P
a(x)
θ (x, y)
P
a(x)
λ (x, y)

=
∑
x

πaθ (x)
(
θa(x) log

θa(x)

λa(x)
+ (1− θa(x)) log

1− θa(x)

1− λa(x)

)
= µθ(a)

∑
i∈a

kl(θi, λi)
θi

= µθ(a)
∑
i∈a

KLG(θi, λi),

where we used Lemma A.4 in the last equality. Since Ia(θ, λ) = 0 iff θi = λi for all
i ∈ a, the set B2(θ) of bad parameters is:

B2(θ) =
{
λ : λi = θi,∀i ∈ a?, max

a∈A
µλ(a) > µλ(a?)

}
=
{
λ : λi = θi,∀i ∈ a?, min

a∈A
Dλ(a) < Dλ(a?)

}
.

Applying [39, Theorem 1], we get: lim infT→∞Sπ,T / log(T ) ≥ c′3(θ), with

c′3(θ) = inf
{∑
a∈A

xa(µθ(a?)− µθ(a)) : x ≥ 0,
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inf
λ∈B2(θ)

∑
a6=a?

xaµθ(a)
∑
i∈a

KLG(θi, λi) ≥ 1
}
.

By Lemma 4.2, c3(θ) ≥ c′3(θ)/µθ(a?). Lastly, observe that µθ(a?) − µθ(a) =
µθ(a?)µθ(a)(Dθ(a)−Dθ(a?)). It then follows that c′3(θ)/µθ(a?) = c2(θ) and there-
fore, c3(θ) ≥ c2(θ). On the other hand, c3(θ) ≤ c2(θ) since Π2 ⊂ Π3. As a result,
c3(θ) = c2(θ) and the proof is completed. �

In Lemma 4.2 below we provide the connection between the throughput regret
Sπ,T and delay regret Rπ,N .

Lemma 4.2. For any π ∈ Πi, i = 1, 2, 3, and any β > 0 we have:

lim inf
T→∞

Sπ,T

log(T ) ≥ β =⇒ µθ(a?) lim inf
N→∞

Rπ,N

log(N) ≥ β.

Proof. Define µ? = µθ(a?) and rt =
∑t
n=1(Dπ(n) −D?). Define Ft the σ-algebra

generated by (aπ(n), (dπi (n), i ∈ aπ(n)))1≤n≤t, where dπi (k) is the delay experienced
on link i for the k-the packet under policy π. Then aπ(t) is Ft−1-measurable and
E[rt − rt−1|Ft−1] equals

E[Dπ(t)−D?|Ft−1] = Dθ(aπ(t))−D? ≥ 0,

so (rt)0≤t≤T is a Ft-submartingale. Since T ≤
∑Nπ(T )+1
n=1 Dπ(n) and µ? = 1/D?,

we have

Tµ? −Nπ(T ) ≤ 1 +
Nπ(T )+1∑
n=1

(µ?Dπ(n)− 1) = 1 + µ?rNπ(T )+1.

Since (rt)0≤t≤T is a submartingale, Nπ(T ) ≤ T is a bounded stopping time, Doob’s
stopping theorem [83, Theorem 5.4.1] gives: E(rNπ(T )+1) ≤ E(rT+1) = Rπ,T+1.
Taking expectations above yields:

Sπ,T

log(T ) ≤
1

log(T ) + µ?
Rπ,T+1

log(T ) .

Letting T →∞ proves the result since log(T )
log(T+1) → 1.

4.B Proof of Proposition 4.1

Consider a problem instance with line topology in which θi = α for all i /∈ a?, and
θi = α+ α2 for all i ∈ a? for some α ∈ (0, 0.36]. Hence, θi < 0.5 for all i ∈ a?. For
any uniformly good policy π ∈ Π2 ∪Π3, by Lemma 4.1 we have:

lim inf
N→∞

Rπ,N

log(N) ≥
∑
i/∈a?

1
KLG(θi, θζ(i))

( 1
θi
− 1
θζ(i)

)
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≥
∑
i/∈a?

1
2(θζ(i) − θi)

=
∑
i/∈a?

1
2θiθζ(i)(θ−1

i − θ
−1
ζ(i))

= d−m
2α(α+ α2)(α−1 − (α+ α2)−1)

= d−m
2α(α+ α2)∆min

≥ d−m
4α2∆min

= d−m
4θ2

min∆min
,

where in the second inequality we used Lemma A.4 and

kl(u, v) ≤ (u− v)2

v(1− v) ≤
2(u− v)2

v

for v ≤ 0.5. This implies that the regret of any uniformly good policy π ∈ Π2 ∪Π3

for this problem instance is at least Ω
(

d−m
∆minθ2

min
log(N)

)
. �

4.C Proof of Theorem 4.4

Proof of statement (i). Let a ∈ A, n ∈ N, t ∈ Nd, and u, λ ∈ (0, 1]d with
ui ≥ λi for all i. By Cauchy-Schwarz inequality we have:

a>λ−1 − a>u−1 =
∑
i∈a

ui − λi
uiλi

=
∑
i∈a

√
ti(ui − λi)√

ui

1
λi
√
tiui

≤
√∑

i∈a

ti(ui − λi)2

ui

√∑
i∈a

1
tiuiλ2

i

≤
√∑

i∈a

ti(ui − λi)2

ui

√∑
i∈a

1
tiλ3

i

,

where we used ui ≥ λi for all i in the last step. Using Lemma A.3, it then follows
that

a>λ−1 − a>u−1 ≤
√∑

i∈a
2tikl(λi, ui)

√∑
i∈a

1
tiλ3

i

.

Thus,
∑
i∈a tikl(λi, ui) ≤ f1(n) implies:

a>λ−1 − a>u−1 ≤
√∑

i∈a

2f1(n)
tiλ3

i

,

or equivalently, a>u−1 ≥ ca(n, λ, t). Hence, by definition of ba(n, λ, t), we have
ba(n, λ, t) ≥ ca(n, λ, t).
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Proof of statement (ii). If the constraint
∑
i∈a ti(n)kl(θ̂i(n), θi) ≤ f1(n) holds,

then we have ba(n, θ̂(n), t(n)) ≤ a>θ−1 by definition of ba. Therefore, using Corol-
lary B.1 ([68, Theorem 2]), there exists Km such that for all n ≥ 2:

P(ba(n, θ̂(n), t(n)) > a>θ−1) ≤ P
(∑
i∈a

ti(n)kl(θ̂i(n), θi) > f1(n)
)

≤ Kmn
−1(log(n))−2,

which concludes the proof. �

4.D Proof of Theorem 4.5

To prove the theorem, we borrow some ideas from the analysis of [62, Theorem 3].
Define κ = (1− 2− 1

4 ) and ε = κ∆min
D+ . Note that the definition of D+, together

with the fact that Dθ(a?) > 0, implies that ε < κ. For s ∈ Nd and a ∈ A define
h(s, a) =

∑
i∈a

1
si
. Define si(n) = ti(n)θ̂i(n) the number of packets routed through

link i before the n-th packet is sent and s(n) = (si(n))i∈E . To ease notation, define
h(n) = h(s(n), a(n)).

Proof of Theorem 4.5. For any n, introduce the following events:

An =
{∑
i∈a?

ti(n)kl(θ̂i(n), θi) > f1(n)
}
,

Bn,i = {ai(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆a(n) ≤ (1− κ)−2θ−1
min
√

2f1(N)h(n)}.

We first prove that a(n) 6= a? implies: n ∈ An ∪ Bn ∪ Fn. Consider n such that
a(n) 6= a? and An ∪ Bn does not occur. By design of the algorithm, ξa(n)(n) ≤
ξa?(n), and ξa?(n) ≤ D? since An does not occur. By Theorem 4.4 we have
ca(n)(n) ≤ ba(n)(n). Hence ca(n)(n) ≤ D?. This implies:

a(n)>θ̂(n)−1 −

√√√√∑
i∈p

2f1(n)
si(n)θ̂i(n)2

≤ D?,

so that:

∆a(n) ≤ a(n)>θ−1 − a(n)>θ̂(n)−1 +

√√√√ ∑
i∈a(n)

2f1(n)
si(n)θ̂i(n)2

.

Since Bn does not occur, θ̂(n)−1 ≥ θ−1/(1 + ε) and:

a(n)>θ−1 − a(n)>θ̂(n)−1 ≤ a(n)>θ−1ε

(1 + ε) ≤ D+ε = κ∆min ≤ κ∆a(n).
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Moreover, θ̂i(n) ≥ θmin(1− κ) for all i ∈ a(n), and f1(n) ≤ f1(N) so:∑
i∈a(n)

2f1(n)
si(n)θ̂i(n)2

≤ 2f1(N)h(n)
(1− κ)2θ2

min
.

Hence:

∆a(n) ≤ κ∆a(n) +
√

2f1(N)h(n)
(1− κ)θmin

,

and ∆a(n) ≤ (1− κ)−2θ−1
min
√

2f1(N)h(n). Therefore, n ∈ Fn.
The regret Rπ,N is upper bounded by:

E
[ N∑
n=1

∆a(n)

]
≤ E

[ N∑
n=1

∆a(n)(I{An}+ I{Bn}+ I{Fn})
]
.

Set A. Applying Corollary 4.1, we have:∑
n≥1

P(An) ≤ 1 +Km

∑
n≥2

n−1(log(n))−2 ≤ 4Km. (4.5)

Set B. Define τi(n) =
∑n
n′=1 I{Bn′,i}. Since Bn′,i implies ai(n′) = 1, we have

si(n) ≥ τi(n). Applying [70, Lemma B.1] (see Corollary B.2 in Appendix B), we
have

∑N
n=1 P(Bn,i) ≤ 2(εθi)−2. A union bound yields:

N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (4.6)

Set F . Define U = 4f1(N)
(1−κ)4θ2

min
. Define the set

Sn = {i ∈ a(n) : si(n) ≤ mU∆−2
a(n)}

and events:

Gn = {|Sn| ≥
√
m},

Ln = {|Sn| <
√
m, min

i∈a(n)
si(n) ≤

√
mU∆−2

a(n)]}.

Assume that neither Gn nor Ln occurs. Then:

h(n) =
∑

i∈a(n),i∈Sn

1
si(n) +

∑
i∈a(n),i/∈Sn

1
si(n)

≤
|Sn|∆2

a(n)√
mU

+
(m− |Sn|)∆2

a(n)

mU
<

2∆2
a(n)

U
,
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since |Sn| <
√
m. Hence ∆2

a(n) > Uh(n)/2 and Fn does not occur. So Fn ⊂ Gn∪Ln.
Further decompose Gn and Ln as:

Gi,n = Gn ∩ {i ∈ a(n), si(n) ≤ mU∆−2
a(n)},

Li,n = Ln ∩ {i ∈ a(n), si(n) ≤
√
mU∆−2

a(n)}.

Applying Lemma 3.2 twice, we get:

N∑
n=1

∆a(n)I{Gi,n} ≤
2mU
∆min

,

N∑
n=1

∆a(n)I{Li,n} ≤
2
√
mU

∆min
.

We have
∑
i∈E I{Gi,n} = |Sn|I{Gn} ≥

√
mI{Gn}. So:

N∑
n=1

∆a(n)I{Gn} ≤
1√
m

N∑
n=1

∑
i∈E

∆a(n)I{Gi,n} ≤
2d
√
mU

∆min
.

Further:
N∑
n=1

∆a(n)I{Ln} ≤
N∑
n=1

∑
i∈E

∆a(n)I{Li,n} ≤
2d
√
mU

∆min
.

Since I{Fn} ≤ I{Gn}+ I{Ln} we get:

E

[
N∑
n=1

∆a(n)I{Fn}

]
≤ 4d

√
mU

∆min
. (4.7)

Combining (4.5), (4.6), and (4.7) with ∆a(n) ≤ D+, yields the announced result:

Rπ,N ≤
4d
√
mU

∆min
+ 2D+

(
2Km + ε−2

∑
i∈E

θ−2
i

)
.

�

4.E Proof of Theorem 4.6

The proof technique is similar to the analysis of [62, Theorem 5].
For s ∈ Nd and a ∈ A define h′(s, a) = (

∑
i∈a

1√
si

)2, and as before si(n) =
ti(n)θ̂i(n) and s(n) = (si(n))i∈E , and h′(n) = h′(s(n), a(n)). We will use the
following lemma.
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Lemma 4.3. For all n, t ∈ N, λ ∈ (0, 1], and i ∈ E:

ωi(n, λ, t) ≥
1
λ
−
√

2f2(n)
tλ3 .

Proof. Let i ∈ E, n, t ∈ N and u, λ ∈ (0, 1] with u ≥ λ. We have:

1
λ
− 1
u

=
√
t(u− λ)2

u

1√
tuλ2

≤
√

2tkl(λ, u) 1√
tλ3

,

where the second inequality follows from Lemma A.3 and u ≥ λ. Hence, tKL(λ, u) ≤
f2(n) implies:

1
u
≥ 1
λ
−
√

2f2(n)
tλ3 .

The above holds for all u ∈ [λ, 1]. Thus, the claim of the lemma follows by definition
of ωi(n, λ, t).

Proof of Theorem 4.6. For any n, we define the following events:

An,i = {ωi(n) > 1/θi}, An =
⋃
i∈a?

An,i,

Bn,i = {ai(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆a(n) ≤ (1− κ)−2θ−1
min
√

2f2(N)h′(n)}.

We show that a(n) 6= a? implies: n ∈ An ∪ Bn ∪ Fn. Consider n such that
a(n) 6= a? and An ∪ Bn does not occur. By design of the algorithm, a(n)>ω(n) ≤
a?>ω(n), and a?>ω(n) ≤ D? since An does not occur. Hence a(n)>ω(n) ≤ D?. By
Lemma 4.3, for all i:

ωi(n) ≥ 1
θ̂i(n)

−

√
2f2(n)

si(n)θ̂i(n)2
.

Summing over i ∈ a(n) we get:

∆a(n) ≤ a(n)>θ−1 − a(n)>θ̂(n)−1 +
∑
i∈a(n)

√
2f2(n)

si(n)θ̂i(n)2
.

As before, when Bn does not occur we have

a(n)>θ−1 − a(n)>θ̂(n)−1 ≤ κ∆a(n).

Furthermore, θ̂i(n) ≥ θmin(1− κ) for all i ∈ a(n), and f2(n) ≤ f2(N) so that:

∑
i∈a(n)

√
2f2(n)

si(n)θ̂i(n)2
≤
∑
i∈a(n)

√
f2(N)

si(n)θ2
min(1− κ)2 .
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Hence:

∆a(n) ≤ κ∆a(n) +
√

2f2(N)h′(n)
(1− κ)θmin

and ∆a(n) ≤ (1− κ)−2θ−1
min
√

2f2(N)h′(n) so that n ∈ Fn.
The regret Rπ,N is upper bounded by:

E
[ N∑
n=1

∆a(n)

]
≤ E

[ N∑
n=1

∆a(n)(I{An}+ I{Bn}+ I{Fn})
]
.

Set A. By [43, Theorem 10] (see Theorem B.5) and a union bound:

P(An) ≤
∑
i∈a?

P(An,i) ≤ mdf2(n) log(n)ee1−f2(n).

Hence:
N∑
n=1

P(An) ≤ m
(

1 + e
∑
n≥2
df2(n) log(n)ee−f2(n)

)
≤ 8m. (4.8)

Set B. As in the proof of Theorem 4.5:

N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (4.9)

Set F . Define U ′ = 2m2f2(N)(1 − κ)−4θ−2
min. Similarly to the proof of [62, The-

orem 5], consider α, β > 0, and for ` ∈ N define α` =
(

1−β√
α−β

)2
α` and β` = β`.

Introduce set S`,n and event G`,n:

S`,n = {i ∈ a(n), si(n) ≤ U ′α`∆−2
a(n)},

G`,n = {|S`,n| ≥ β`m} ∩ {|Sj,n| < βjm, j = 1, ..., `− 1}.

If ∪`≥1G`,n = {|S`,n| < mβ`, ` ≥ 1} occurs, then:

∑
`≥1

|S`−1,n| − |S`,n|√
α`

= |S0,n|√
α1

+
∑
`≥1
|S`,n|

( 1
√
α`+1

− 1
√
α`

)
<
mβ0√
α1

+
∑
`≥1

mβ`

( 1
√
α`+1

− 1
√
α`

)
= m

∑
`≥1

β` − β`−1√
α`

≤ m,
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since 1√
α`+1

− 1√
α`
≥ 0. Now:

|{i : si(n) ∈ U ′∆−2
a(n)[α`, α`−1]}| = |S`−1,n| − |S`,n|

so that: √
h′(n) ≤

∑
`≥1

(|S`−1,n| − |S`,n|)√
α`

∆a(n)√
U ′

< m
∆a(n)√
U ′

.

Hence, ∆2
a(n) > h′(n)U ′m−2 and thus, Fn does not occur. Therefore, Fn ⊂

∪`≥1G`,n and:
N∑
n=1

∆a(n)I{Fn} ≤
N∑
n=1

∑
`≥1

∆a(n)I{G`,n}.

Further decompose G`,n as:

Gi,`,n = G`,n ∩ {i ∈ a(n), si(n) ≤ U ′α`∆−2
a(n)}.

Observe that:
I{G`,n} ≤

|S`,n|
mβ`

I{G`,n} = 1
mβ`

∑
i∈E

I{Gi,`,n}.

Applying Lemma 3.2, we get:

N∑
n=1

∆a(n)I{Gi,`,n} ≤
N∑
n=1

∆a(n)I

{
si(n) ≤ U ′α`

∆2
a(n)

}
≤ 2U ′α`

∆min
.

Putting everything together:

N∑
n=1

∆a(n)I{Fn} ≤
2dU ′

m∆min

∑
`≥1

α`
β`
≤ 90dU ′

m∆min
(4.10)

by choosing α = 0.15 and β = 0.24 so that
∑
`≥1

α`
β`
≤ 45.

The proof is completed by combining (4.8), (4.9), (4.10), and using the fact that
∆a(n) ≤ D+. �

4.F Proof of Proposition 4.2

In the line network, KL-SR simply chooses the link with the smallest index on each
hop. Hence, on each hop, KL-SR is equivalent to the KL-UCB algorithm for a classical
MAB with geometrically distributed rewards. By [43, Theorem 1 and Lemma 6],
the regret of KL-SR on the j-th hop, for any j ∈ {1, . . . ,m}, asymptotically grows
as: ∑

i∈Ej\a?

log(N)
KLG(θi, θζ(i))

(
1
θi
− 1
θζ(i)

)
,
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where Ej denotes the set of links in the j-th hop. Since decisions at various hops
are decoupled, the regret due to all hops satisfies

lim sup
N→∞

RKL-SR,N

log(N) ≤
m∑
j=1

∑
i∈Ej\a?

1
KLG(θi, θζ(i))

(
1
θi
− 1
θζ(i)

)

=
∑
i/∈a?

1
KLG(θi, θζ(i))

(
1
θi
− 1
θζ(i)

)
= c2(θ).

Furthermore, using Lemma A.4 and Lemma A.3 in Appendix B, we have for
any i /∈ a?:

1
KLG(θi, θζ(i))

(
1
θi
− 1
θζ(i)

)
=

θζ(i) − θi
θζ(i)KL(θi, θζ(i))

≤ 2
θζ(i) − θi

.

Moreover, in line networks ∆min = mini/∈a?(θ−1
i − θ

−1
ζ(i)). Thus,

c2(θ) ≤
∑
i/∈a?

2
θζ(i) − θi

=
∑
i/∈a?

2
θiθζ(i)(θ−1

i − θ
−1
ζ(i))

≤ d−m
∆min

· 2
mini/∈a? θiθζ(i)

≤ 2(d−m)
∆minθ2

min
,

which completes the proof. �

4.G Proof of Proposition 4.3

The proof uses the same ideas as in the proof of Theorem 3.7. Note that if i /∈ Ja(λ),
then the optimal solution satisfies ui = 1 since kl(1, v) =∞ unless v = 1. Thus, if
Ja(λ) = ∅, then ui = 1,∀i ∈ E, and ba(n, λ, t) =

∑
i∈E ai.

If Ja(λ) 6= ∅, let i ∈ Ja(λ). Computing ba involves solving a convex optimization
problem with one inequality constraint, which must hold with equality since ui 7→
kl(λi, ui) is monotone increasing for ui ≥ λi. Since d

dui
kl(λi, ui) = u−λ

u(1−u) , the
corresponding KKT conditions are:

1
ui2
− γti

ui − λi
ui(1− ui)

= 0,
∑

i∈Ja(λ)

tikl(λi, ui)− f1(n) = 0.

with γ > 0 the Lagrange multiplier. The first equation is a quadratic equation:

u2
i + ui

(
1
γti
− λi

)
− 1
γti

= 0.

Solving for ui, we obtain ui(γ) = g(γ, λi, ti) and replacing in the second equation,
we obtain F (γ, λ, n, t) = f1(n). We finally note that one can verify by inspection
g(γ, λi, ti) ≥ λi, so that the box constraints in the definition of ba(n, λ, t) are
satisfied. This completes the proof. �
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4.H Regret Upper Bound of The CUCB Algorithm

CUCB (see [61]) uses the following link index:

γi(n) = 1
θ̂i(n) +

√
1.5 log(n)/ti(n)

, ∀i ∈ E

Define κ = (1 − 2− 1
4 ) and ε = κ∆min

D+ < κ. For any s ∈ Nd and a ∈ A define
h′(s, a) = (

∑
i∈a

1√
si

)2, and as in the proof of Theorem 5.4, si(n) = ti(n)θ̂i(n) and
s(n) = (si(n))i∈E , and h′(n) = h′(s(n), a(n)). We have that:

a(n)>γ(n) =
∑
i∈a(n)

1

θ̂i(n) +
√

1.5θ̂i(n) log(n)/si(n)

=
∑
i∈a(n)

1
θ̂i(n)

−
∑
i∈a(n)

√
1.5 log(n)/(si(n)θ̂i(n)3)

1 + θ̂i(n)− 1
2
√

1.5 log(n)/si(n)

≥ a(n)>θ̂(n)−1 −
∑
i∈a(n)

√
1.5 log(n)
si(n)θ̂i(n)3

. (4.11)

For any n, introduce the following events:

An,i =
{
|θ̂i(n)− θi| >

√
1.5 log(n)/ti(n)

}
, An =

⋃
i∈a?

An,i,

Bn,i = {ai(n) = 1, |θ̂i(n)− θi| ≥ εθi}, Bn =
⋃
i∈E

Bn,i,

Fn = {∆a(n) ≤ (1− κ)− 5
2 θ
− 3

2
min
√

2 log(N)h′(n)}.

We show that if a(n) 6= a? then An ∪ Bn ∪ Fn occurs. Consider n such that
a(n) 6= a? and An ∪ Bn does not occur. By design of the algorithm, a(n)>γ(n) ≤
(a?)>γ(n), and (a?)>γ(n) ≤ D? since An does not occur. Hence a(n)>γ(n) ≤ D?.

When Bn does not occur, (1 − κ)θmin ≤ θ̂i(n) ≤ (1 + ε)θi and a(n)>θ−1 −
a(n)>θ̂(n)−1 ≤ κ∆a(n). Hence, using (4.11) we get

∆a(n) = a(n)>θ−1 −D? ≤ a(n)>θ−1 − a(n)>γ(n)

≤ κ∆a(n) + (1− κ)− 3
2 θ
− 3

2
min
√

1.5 log(N)h′(n)

so that ∆a(n) ≤ (1− κ)− 5
2 θ
− 3

2
min
√

1.5 log(N)h′(n) and thus n ∈ Fn.
Hence, Rπ,N is upper bounded by:

E
[ N∑
n=1

∆a(n)

]
≤ E

[ N∑
n=1

∆a(n)(I{An}+ I{Bn}+ I{Fn})
]
.
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Firstly note that using a Chernoff bound and a union bound, we have that
P(An) ≤ 2mn−2 (see, e.g., [61, Lemma 3]). Hence

N∑
n=1

P(An) ≤
N∑
n=1

2m
n2 ≤

2π2m

3 . (4.12)

Furthermore, as in the proof of Theorem 4.5:

N∑
n=1

P(Bn) ≤ 2ε−2
∑
i∈E

θ−2
i . (4.13)

Finally, defining U ′ = 2m2f2(N)(1−κ)− 5
2 θ−3

min and applying the same techniques
as in the proof of Theorem 4.6, we deduce that

N∑
n=1

∆a(n)I{Fn} ≤
278dm log(N)

∆minθ3
min

. (4.14)

Putting (4.12), (4.13), and (4.14) together, gives the desired result and concludes
the proof. �

4.I Technical Lemmas

Lemma 4.4 ([75, Lemma 2]). Consider (Xi)i independent with Xi ∼ Geo(θi) and
θi ∈ (0, 1]. Consider (Yi)i independent with Yi ∼ Geo(λi) and λi ∈ (0, 1]. Define
X =

∑
iXi and Y =

∑
i Yi. Then X d=Y iff (θi)i = (λi)i up to a permutation6.

6The symbol d= denotes equality in distribution.



Chapter 5

Learning Proportionally Fair Allocations

This chapter addresses a generic sequential resource allocation problem, where one
strives to find a fair and efficient operating point of the system. The problem
considered involves a decision maker, who selects in each round an allocation of
resources (servers) to a set of tasks consisting of a large number of jobs. A job of
task i assigned to server j is successfully treated with probability θij in a round,
and the decision maker is informed on whether this job is completed at the end
of the round. The probabilities θij ’s are initially unknown and have to be learnt.
The objective of the decision maker is to sequentially assign jobs of various tasks
to servers so that it rapidly learns and converges to the Proportionally Fair (PF)
allocation (or other similar allocations achieving an appropriate trade-off between
efficiency and fairness). We formulate the problem as a MAB problem, and devise
a sequential assignment algorithm with low regret. The latter is defined as the
difference in utility achieved by an oracle algorithm aware of the θij ’s and by the
proposed algorithm.

This chapter is organized as follows. Section 5.1 discusses the motivation of
studying the aforementioned resource allocation scenario through some real world
applications and states the contributions of this chapter. It is followed by an
overview of related works in Section 5.2. Section 5.3 provides a precise description
of the problem and introduces the notion of approximate PF allocation, referred
to as APF, which allows us to cast the problem as a combinatorial MAB. Section
5.4 presents a procedure to compute APF and investigates its properties. A regret
lower bound for learning APF is provided in Section 5.5, and Section 5.6 presents
an algorithm for learning APF. Finally, Section 5.7 summarizes the chapter.

5.1 Motivation and Contributions

To motivate our resource allocation problem, let us introduce some definitions.
There are m tasks and s servers respectively indexed by i and j. The task service
rates are defined as follows: If z = (zij)i,j represents the probabilities that at the
beginning of each slot, a job of task i is assigned to server j for any (i, j), then the
service rate of task i is γi(z, θ) =

∑
j∈[s] θijzij , for all i. z will be referred to as an

97
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allocation distribution, or for short, an allocation. An allocation z is efficient if the
global service rate of the system is high, and fair if all tasks are served at similar
rates avoiding starvation. An allocation known to achieve an appropriate trade-off
between efficiency and fairness is the Proportionally Fair (PF) allocation [84]: It
maximizes the sum of the logarithm of the task service rates. In many systems
involving resource allocation problems, PF is often preferred to other allocations
for the ease of its implementation [84, 85], and its behavior in dynamical scenarios
(here when tasks arrive and leave after completion) [86]. Hence, we assume that
the decision maker wishes to sequentially allocate tasks to servers so as to quickly
learn and converge to the PF allocation (θ is initially unknown, and so is the PF
allocation).

The work presented in this chapter is motivated by the following two important
problems in wireless communication systems:

(1) Dynamic Spectrum Access. Transmitters are today able to exploit a large
part of the radio spectrum, and can switch frequency bands rapidly. The service rate
achieved on a link operating on a given band depends on the channel conditions,
which in turn depend on the band and the link (this phenomenon is known as
frequency-selective fading [87]). The outcomes of packet transmissions are also
random as a result of the so-called fast fading [87]. The average successful packet
transmission rates of links on the various frequency bands are usually unknown and
have to be learnt.

(2) Access Point Selection. When users in a wireless network may attach to
various access points, we get a similar situation. The throughput experienced by a
user depends on the random channel conditions towards the selected access point.
In both examples, the system and the corresponding allocation problem can be
directly mapped into the generic parallel server system and the resource allocation
problem described above: Servers correspond to either frequency bands or access
points, tasks are links or users, and jobs are data packets.

5.1.1 Contributions of the Chapter
Keeping these applications in mind, we address our generic resource allocation
problem. Our contributions are as follows:

(i) We first provide a precise description of the system model and of our ob-
jectives. We introduce the notion of Approximate PF (APF) allocation, as an
approximation to the PF allocation, and define a notion of expected regret that
captures the rate at which the allocation chosen by the decision maker converges
towards the APF allocation. Our regret definition enables us to cast the problem
as a combinatorial MAB with a non-linear reward function. Furthermore, we pro-
vide an efficient algorithm to compute APF and characterize its tightness. To the
best of our knowledge, characterization of APF is new and could be independently
interesting.

(ii) We derive an asymptotic (as T grows large) regret lower bound for learning
APF. This bound is tight in the sense that there exist policies that achieve it. Our
regret lower bound is implicit. So we further provide an explicit lower bound valid
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for specific problem instances indicating the dependence of the best possible regret
on θmin and ∆min, where θmin is the job success rate of the worst task-server pair
and ∆min is the minimal gap between the average utility of the optimal and that
of a sub-optimal allocation.

(iii) We develop an algorithm for learning APF, which we may call ES-APF (Ef-
ficient Sampling for APF). We further show that the regret under ES-APF scales at
most as O(m3∆−1

minθ
−1
min log(T )) and examine its performance numerically.

5.2 Related Work

There are a few studies that consider allocation of tasks to a set of servers in the
bandit setting, for which optimistic algorithms with regret growing as O(log(T )) or
O(
√
T ) are provided (see, e.g., [88, 89, 90]). To the best of our knowledge, [88, 89]

have made the first attempt on such resource allocation problems in the bandit
setting. In particular, Lattimore et al. [89] consider allocation ofm jobs to a set of s
heterogenous resources. In their setup, in each round t an allocation matrixM(t) is
chosen, whose elementMij(t) denotes the portion of resource type j allocated to job
i. An allocation matrix is feasible iff

∑m
i=1Mij(t) ≤ 1 for all j. Job i is successfully

completed according to a Bernoulli distribution of mean min(1,
∑
j∈[s]Mij(t)θij),

where θij ≥ 0 is an initially unknown but fixed cut-off parameter capturing the
difficulty of job i when using resource j. At the end of each round, the decision
maker is informed on whether each job i is completed successfully or not, and
her goal is to maximize the number of successfully completed jobs in expectation.
Inspired by the algorithms for stochastic linear bandits developed in [65], Lattimore
et al. [89] present an optimistic algorithm with logarithmic regret.

Johari et al. [90] study a resource allocation scenario where a decision maker
wishes to assign a set of clients of various types to a set of heterogenous servers.
The outcome of processing job i on server j is a binary random variable sampled
i.i.d. from a Bernoulli distribution with parameter θij . The decision maker aims
at maximizing the number of successfully completed jobs. Her performance is
compared against an asymptotically optimal matching policy, where (i) the number
of servers and client arrival rates grow large and (ii) the system state has stationary
asymptotic behavior. The authors of [90] provide an optimistic algorithm with
logarithmic regret against the offline matching policy. We note that Johari et
al. only consider the case where server types and success probabilities are known,
and the decision maker needs to learn clients’ types only.

Despite some similarities between these models and ours, the aim of these works
is to learn an allocation maximizing the throughput of the system without providing
any guarantee on the fairness. In all these studies, the payoff is accrued to the overall
system performance and no notion of fairness for individual users is considered. To
the best of our knowledge, the work presented in this chapter is the first to address
fair resource allocation in the bandit setting.

A different line of works that accounts for resource constraints under bandit
feedback is the budgeted MAB problem as investigated in [91, 92, 93]. These
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problems are natural generalizations of the classical MAB problem, in which the
pull of any arm results in the corresponding random reward, but also consumes
some resource that is shared by all arms and is limited in supply. Different arms
may consume the resource at different rates and the task terminates when the
resource is exhausted. The resource consumption could be deterministic (as in,
e.g., [92, 93]) or stochastic, as studied in [91]. To the best of our knowledge, the
considered resource allocation in this chapter cannot be mapped into the framework
of budgeted MABs. Furthermore, none of these studies take fairness into account.

We also mention that a notion of fairness for MAB problems has recently been
proposed by Joseph et al. [94]. Precisely speaking, this notion requires that for
any pair of arms i and j, if the average reward of i is greater than that of j,
then at all rounds with high probability, the algorithm plays arm j with a smaller
probability than it draws arm i. Although the authors of [94] take into account
fair allocation for individual players, their notion of fairness is completely different
than ours. Clearly, in our setup the imposed fairness changes the offline optimal
arm compared to the unfair setting, whereas their notion does not.

We conclude this section by discussing the relation of our problem to bandit
convex optimization. Due to concavity of PF utility function, our resource allo-
cation problem resembles convex optimization in the bandit setting as studied in,
e.g., [95]. In the latter problem, the decision maker chooses a point from a compact
convex decision space, whereas in ours she has to choose an assignment from a finite
set. Moreover, she receives richer information than bandit feedback. These facts
allow her to obtain a regret growing as O(log(T )), as opposed to Ω(

√
T ) in the case

of bandit convex optimization (see, e.g., [65]).

5.3 Problem Formulation

We consider a system consisting of m tasks indexed by i ∈ [m] = {1, . . . ,m}, who
wish to share s < m available servers indexed by j ∈ [s]. We assume that each task
has an unlimited number of sub-tasks or jobs. We consider a time slotted system,
where completion of each job takes one slot. When task i is assigned to server j,
the completion outcome is drawn i.i.d. from a Bernoulli distribution with success
probability θij . We assume that processing of jobs occurs independently at various
servers and that the matrix of success probabilities θ = (θij)i∈[m],j∈[s] is fixed but
unknown to the decision maker. Let θmin = mini,j θij and assume that θmin > 0.

Assignment of servers to tasks is represented as an assignment matrix M ∈
{0, 1}m×s, whereMij = 1 iff task i is assigned to server j. An assignment matrixM
is feasible iff for all j, the server j is allocated to one task only, i.e.,

∑
i∈[m]Mij = 1

for all j ∈ [s]. Let M be the set of all feasible assignment matrices. The chosen
assignment matrix may change at the beginning of each slot. At a given time slot t,
we let Xij(t) be an indicator showing whether job of task i is successfully completed
at server j when it is assigned to this server in slot t. Thus, E[Xij(t)] = θij .
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5.3.1 The PF Allocation
For any task i and server j, let zij denote the probability that server j is assigned
to task i and define the corresponding matrix z = (zij)i∈[m],j∈[s]. The set of all
feasible allocation matrices denoted by Z is expressed as

Z =
{
z ∈ Rm×s+ :

∑
i∈[m]

zij = 1, ∀j ∈ [s]
}
.

The service rate of task i achieved under z, denoted by γi(z, θ), is defined as the
expected number of jobs successfully completed when the underlying assignment
matrix is distributed according to z:

γi(z, θ) = E[
∑
j∈[s]

MijXij ] =
∑
j∈[s]

θijzij .

The Proportionally Fair (PF) allocation is an allocation in Z maximizing the
sum of the logarithm of service rate of all tasks [84]. Formally, it is the solution to
the following problem:

PF1(θ) : max
z∈Z

f(z, θ) :=
∑
i∈[m]

log γi(z, θ). (5.1)

For a given θ, the PF allocation, i.e., the optimal solution to PF1(θ) will be de-
noted by zpf(θ). We let Spf(θ) be binary matrix associated to the support of zpf(θ):
For all (i, j), Spf

ij (θ) = 1 iff zpf
ij (θ) > 0. Furthermore, let γpf

i (θ) := γi(zpf(θ), θ) be
the service rate of task i under zpf(θ). The quantity fpf(θ) :=

∑
logi γ

pf
i (θ) will be

referred to as the system utility under the PF allocation. We finally remark that
PF1(θ) is a convex problem for all θ and hence can be solved in polynomial time.

5.3.2 The APF Allocation
The decision maker wishes to learn the PF allocation zpf and to choose an as-
signment drawn according to zpf . Such an implementation may not lead to a
well-defined notion for the expected regret for all problem instances. If there are
more than one server to be allocated to user i under zpf , then by drawing just one
assignment according to zpf , we do not receive feedback for some task-server pair
(i, j) in the support of zpf . Hence, this would potentially require more exploration
and it is not clear whether one can guarantee logarithmic regret. To accommodate
this situation, we introduce the notion of Approximate PF (APF) allocation, as an
approximation to the PF allocation. APF is an allocation in Z under which (i)
each task is only assigned to one server, and (ii) the system utility is as close to fpf

as possible. To formalize this, we introduce

A =
{
A ∈ {0, 1}m×s :

∑
j∈[s]

Aij = 1, ∀i ∈ [m]
}
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and for anyA ∈ A, we define the matrix z(A) ∈ [0, 1]m×s with zij(A) = Aij/
∑
k∈[m]Akj

for all i and j. Finding APF amounts to solving the following problem:

PF2(θ) : max
A∈A

f(z(A), θ). (5.2)

Let Aapf(θ) be any optimal solution to PF2(θ). We will refer to z(Aapf(θ)) as an
APF allocation. Furthermore, we let γapf

i (θ) := γi(z(Aapf(θ)), θ) denote the service
rate of task i under APF, and let f apf(θ) := f(z(Aapf(θ)), θ) denote the utility
achieved under APF.

For the sake of brevity, we use the following conventions throughout this chapter.
We may omit the dependence of various quantities on θ when it is clear from the
context that the underlying parameter is θ. Furthermore, by a slight abuse of
notation, we refer to any A ∈ A as an allocation, and to Aapf as the APF allocation.
Finally, for any binary matrix Z, we write (i, j) ∈ Z to denote Zij = 1, and similarly
(i, j) /∈ Z to imply Zij = 0.

5.3.3 Online Server Allocation Problem

At the beginning of each time slot t, an algorithm or policy π selects an allocation
Aπ(t) ∈ A based on the past decisions (Aπ(t′))t−1

t′=1 and their observed rewards. It
then draws an assignment Mπ(t) ∈ M according to zπ(t) := z(Aπ(t)). At the end
of time slot t, the decision maker receives Xij(t) for all (i, j) such that Mπ

ij(t) = 1.
Let Π be the set of all feasible policies. We measure the performance of a policy
through the notion of regret with respect to the APF allocation Aapf . The regret
of a policy π ∈ Π after T rounds is the expected difference of the system utility for
the first T time slots under an oracle policy always selecting Aapf and under π:

Rπ,T = Tf apf − E[
T∑
t=1

∑
i∈[m]

logE[Y πi (t)]] .

Here Y πi (t) denotes the number of successfully completed jobs of task i under π
at time t. Furthermore, the first expectation is taken with respect to the possible
randomization in policy π, whereas the second captures the randomization in the
rewards. In particular, for any task i, server j, and time t, we have

E[Y πi (t)] = θij∑
i∈[m]A

π
ij(t)

if Aπij(t) = 1.

The regret quantifies the loss in total system utility due to the need to explore
sub-optimal allocations to learn Aapf . We further remark that our proposed al-
gorithm does not have any randomization, and therefore we can remove the first
expectation.
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Frame-based policies. We introduce a restricted class of policies Πf ⊂ Π, re-
ferred to as frame-based policies, for which we provide problem-specific regret lower
bound in Section 5.5. A frame-based policy π implements zπ in the following way:
It proceeds in frames of varying lengths. Let us index a frame by n ∈ N and
denote by Λn the set of time slots in frame n. At the beginning of a frame n, π
chooses an allocation Aπ(n) based on the past decisions and their observed rewards.
Let zπ(n) := z(Aπ(n)). Then, it plays a minimal set of assignments so that each
task-server pair (i, j) is played with frequency zπij(n) over Λn, namely

1
|Λn|

∑
t∈Λn

Mπ
ij(t) = zπij(n), ∀i, ∀j.

For any matrix A ∈ A and j ∈ [s], we use aj to denote the sum of the elements of
the j-th column of A, that is aj =

∑
iAij . Moreover, we let `A denote the smallest

positive integer that is divisible by aj , j = 1, . . . , s. Using this notation, it is easy
to confirm (by the design of APF allocation) that we have |Λn| = `Aπ(n).

5.4 Tightness of APF Allocation

This section is devoted to investigating the tightness of APF allocation. As a by-
product, we present an algorithm for computing such an allocation in polynomial
time.

We first provide the following lemma, which characterizes the tightness of the
APF allocation in terms of utility difference between the PF and APF allocations.

Lemma 5.1. For all θ, we have fpf(θ)−f apf(θ) = V (θ), where V (θ) is the optimal
value of the following problem:

min
w∈Ns

∑
j∈[s]

wj log(wj/wpf
j (θ)) (5.3)

subject to:
∑
j∈[s]

wj = m,

wj ≤
∑
i∈[m]

Spf
ij (θ), ∀j ∈ [s],

where wpf
j (θ) := maxi∈[m] θij/γ

pf
i (θ) for any j ∈ [s].

Lemma 5.1 may be interpreted using the projection using the KL-divergence.
To this end, first observe that for any θ, using Lemma 5.4 (see Appendix 5.A), we
have ∑

j

wpf
j =

∑
j

max
i

θij

γpf
i

=
∑
j

∑
i

θij

γpf
i

zpf
ij = m .

Noting that the objective of problem (5.3) can be written as mKL
(
w
m ,

wpf

m

)
, one

may interpret V (θ) as the distance (in terms of the KL-divergence) between the
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distribution of tasks to servers under the PF allocation (i.e., wpf/m) and under the
APF allocation. Equivalently, the optimal solution to problem (5.3) may be further
viewed as the projection of wpf/m, using the KL-divergence, onto the set of feasible
distributions that induce APF allocations.1

To gain further insight, we numerically evaluate V (θ). Figure 5.1 shows the
relative utility difference between PF and APF (fpf −f apf)/f apf for uniformly sam-
pled parameters averaged over 100 independent experiments. These curves show
that for a given number of servers s, the relative utility difference decreases as the
number of tasks increases. In a similar flavour, the curve in Figure 5.1(b) indicates
that the difference tends to zero as the ratio of the number of tasks to the number
of servers m/s increases.

5.4.1 Computing the APF Allocation
Problem (5.3) in Lemma 5.1 can be used to compute the APF allocation Aapf . Let-
ting wapf denote any maximizer of problem (5.3), we recall that wapf

j corresponds
to the number of tasks sharing server j under the APF allocation (we refer to the
proof of Lemma 5.1). Hence, in the first step towards finding APF, we determine
wapf by solving problem (5.3), which can be carried out using dynamic program-
ming; see Appendix 5.F for details. Now, given wapf , finding Aapf can be cast as
the following problem:

max
A∈A

∑
i∈[m]

∑
j∈[s]

Aij log(θij/wapf
j ) (5.4)

subject to:
∑
i∈[m]

Aij = wapf
j , ∀j ∈ [s],

A ≤ Spf .

We then show that:

Lemma 5.2. For any θ, problem (5.4) is a matroid intersection problem.

As a consequence of Lemma 5.2, problem (5.4) can be solved in polynomial time
[97, Theorem 10.13]. We therefore have a procedure to compute the corresponding
APF allocation of a given PF allocation. The pseudo-code of this procedure is
provided in Algorithm 5.1.

Algorithm 5.1 Computing APF
Find zpf(θ) any solution to problem PF1(θ).
Let wpf

j (θ) = maxi θij/γpf
i (θ) for all j.

Find wapf(θ) the solution to problem (5.3) using dynamic programming.
Find Aapf(θ) the solution to problem (5.4).

1For a thorough description of projection using the KL-divergence, see Chapter 3, I-projections
in [96].
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Figure 5.1: The relative utility difference between PF and APF allocations (see
Lemma 5.1)

5.5 Regret Lower Bound

In this section, we provide a fundamental performance limit satisfied by any al-
gorithm in Πf . Our proposed performance limit is a lower bound on the regret
that holds asymptotically, i.e., when the time horizon T grows large. To derive this
lower bound, we leverage the result in [39], as used in the previous chapters.
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Let us define, by a slight deviation from our notation,

f(A, θ) := f(z(A), θ) =
∑
i,j

Aij log(θij/aj),

and recall that Aapf ∈ argmaxA∈A f(A, θ). Furthermore, for any allocation A ∈ A,
define ∆A = f(Aapf , θ) − f(A, θ). We define B(θ) as the set of bad parameters
that cannot be distinguished from θ when the underlying allocation is Aapf , and for
which Aapf is sub-optimal:

B(θ) =
{
λ : (Aapf

ij λij = Aapf
ij θij , ∀i, j) and max

A∈A
f(A, λ) > f(Aapf , θ)

}
.

The following theorem presents a regret lower bound for any uniformly good
policy in Πf . Recall that a policy π is uniformly good if for all θ, the regret
satisfies Rπ,T = o(Tα) for any α > 0.

Theorem 5.1. For all θ and any uniformly good policy π ∈ Πf ,

lim inf
T→∞

Rπ,T

log(T ) ≥ c(θ),

where c(θ) is the infimum of the following optimization problem:

inf
x≥0

∑
A6=Aapf

∆AxA (5.5)

subject to: inf
λ∈B(θ)

∑
A 6=Aapf

xA
∑
i,j

Aij
aj

kl(θij , λij) ≥ 1.

In the above theorem, the optimal solution to problem (5.5), denoted by x?,
may be interpreted as the number of explorations of sub-optimal allocations under
an optimal algorithm, namely an algorithm whose regret asymptotically matches
the lower bound of Theorem 5.1.

Theorem 5.1 provides a tight lower bound on the regret of any policy in Πf

in the sense that it can be achieved. Such an implicit bound however fails at
providing further insights into the dependence of regret on problem dimension as
well as other relevant parameters. In order to gain further insights, we study the
following problem instance.

Assume that m is a multiple of s. Let α ∈ (0, 0.5) and β ∈ (α2 , α). Define
parameter θ such that θij = α if mod(i − j, s) = 0 and θij = β otherwise. It is
straightforward to check that zapf = zpf , and that zpf

ij = s
m if θij = α, and zpf

ij = 0
otherwise; see Figure 5.2 for an illustration for the case with s = 2.

Using the lower bound in Theorem 5.1, in the following lemma we provide an
explicit lower bound on the regret of the aforementioned problem instance:

Lemma 5.3. For the above problem instance with m/s ≥ 5, it holds that c(θ) ≥
0.15m

θmin∆min
(1 − 1

s ). Hence, the regret of any uniformly good policy π ∈ Πf for this
problem instance satisfies: Rπ,T = Ω

(
m

θmin∆min
log(T )

)
.
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.... 

.... 

Figure 5.2: Lower bound example: tasks and servers are respectively shown by
circles and boxes. Here only connections for task-server pairs under the optimal
allocation, namely the ones with θij = α, are shown. All other connections have
success rate θij = β ∈ (α2 , α).

5.6 The ES-APF Algorithm

In this section we develop an optimistic algorithm for learning APF allocation. Our
proposed algorithm is a frame-based policy (a policy in Πf ) that works based on
the KL-UCB index [43].

Let λ ∈ (0, 1], and n,N ∈ N. Define the KL-UCB index function [43]:

u(n, λ,N) = sup
{
q ∈ [λ, 1] : Nkl(λ, q) ≤ g(n)

}
,

where g(n) = log(n) + 4 log(log(n)). We can now define the index for an allocation
A ∈ A as follows: Given λ ∈ (0, 1]m×s, N ∈ Nm×s, and n ∈ N, define

ξA(n, λ,N) = f
(
A, (u(n, λij , Nij))i∈[m],j∈[s]

)
.

Our proposed algorithm, which we refer to as ES-APF (Efficient Sampling for
APF), is an index policy relying on ξA index function. To present ES-APF, we intro-
duce the following notations. Let Nij(n) be the total number of samples obtained
for task-server pair (i, j) before the start of the n-th frame. Define θ̂ij(n) the em-
pirical success rate of the jobs of task i on server j over the trials of the first n− 1
frames. Furthermore, define the corresponding matrices N(n) = (Nij(n))i∈[m],j∈[s],
θ̂(n) = (θ̂ij(n))i∈[m],j∈[s].

ES-APF works as follows: Let tn denote the first time slot of frame n. At
t = tn, ES-APF computes the index for job success rates of each task-server pair
(i, j), denoted by bij(n) := u(n, θ̂ij(n), Nij(n)). It then selects an allocation with
the largest index: A(n) ∈ argmaxA∈A ξA(n), where ξA(n) := ξA(n, θ̂(n), N(n)).
Having determined A(n), ES-APF determines the sequence of assignments to be
played in the n-th frame (M(t))tn≤t≤t+`A(n)−1 to implement z(A(n)). The pseudo-
code of ES-APF is described in Algorithm 5.2.
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Algorithm 5.2 ES-APF
for n ≥ 1 do

Let tn = t
Find A(n) the solution to problem PF2(b(n)) using Algorithm 5.1.
Decompose A(n) into a sequence of assignments (M(t))tn≤t≤tn+`A(n)−1 – see Algo-

rithm 5.4.
Play assignments (M(t))tn≤t≤tn+`A(n)−1 and collect feedback on task-server pairs.

Update θ̂ij(n) and Nij(n) for all i, j.
end for

Remark 5.1. We remark that the frame size `A could grow exponentially in the
number of servers s for some A 6= Aapf . Although this may seem as a shortcoming
of the design of ES-APF, we note that this leads to gathering more observations for
the task-server pairs belonging to such an allocation A (with large `A), and thus a
more accurate (smaller) index for f(A, θ). Consequently, A would be explored in
fewer frames.

In the following theorem, we provide a finite-time bound on the regret of ES-APF:

Theorem 5.2. For all T > 1 and under policy π =ES-APF, we have:

Rπ,T ≤
360m3g(T )
θmin∆min

+
(

8m+ 2ε−2
∑
i,j

θ−2
ij

)
max
A

`A∆A,

where ε = (1−2− 1
3 ) ∆min

max(m,∆min) . Hence, Rπ,T = O
(

m3

θmin∆min
log(T )

)
when T →∞.

Two comments are in order. (i) In view of Lemma 5.3, the dependence of regret
upper bound of ES-APF on θmin is tight and cannot be improved further. We remark
that such a tight dependence on θmin may not be guaranteed if one would use the
UCB index for job success rates θij instead of the KL-UCB index. Indeed, following
similar steps as in the proof of Theorem 5.2, we find out that the best known regret
bound with the UCB index, instead of KL-UCB, would grow asO(m3∆−1

minθ
−2
min log(T )).

In the sequel, we also confirm the superiority of ES-APF over a similar algorithm
that relies on UCB through numerical experiments.

(ii) In the case of combinatorial MABs with semi-bandit feedback, the regret of
an optimal algorithm scales as O(m×s). In contrast, we argue that in our problem
and using frame-based policies, the regret should rather scale as m2. This obser-
vation can be intuitively justified as follows. Note that for any chosen allocation
A with the corresponding frame size `A, a given server j is shared among aj tasks.
Since at each time, only one of these tasks are sampled, each task-server pair (i, j) is
actually sampled Aij`A/aj times. This implies that in order to obtain g samples for
a given task-server pair (i, j), an allocation A has to be played ajg times. Hence,
to obtain g samples for all task-server pairs, on average one effectively requires

1
ms

∑
i,j aj = m/s more samples than the case of combinatorial MABs. Hence,

there are effectively m× s× m
s = m2 unknown parameters in the system.
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Figure 5.3: Regret of various algorithms averaged over 50 runs; 95% confidence
intervals

Finally we mention that ES-APF has a polynomial time complexity per frame
as one can compute the index for various task-server pairs efficiently, and that
computation of A(n) involves solving PF1(b(n)) and a matroid intersection problem,
both of which can be solved in polynomial time.

A Numerical Example

We briefly illustrate the performance under our proposed algorithm through a sim-
ple numerical experiment. We consider a scenario comprising m = 10 tasks and
s = 3 servers, where θ is sampled uniformly at random from [0, 1]10×3. Figure 5.3
depicts the regret, averaged over 50 independent experiments, against the number
of frames for a case where θmin = 0.06 and where (fpf − f apf)/fpf = 1.4× 10−3.

We also compare the performance under ES-APF to a variant of ES-APF where
confidence bounds on success probabilities are defined using the classical UCB index,
which we refer to as ES-APF-UCB. Figure 5.3 shows that, as expected, ES-APF signif-
icantly outperforms ES-APF-UCB. The superior behavior of ES-APF over ES-APF-UCB
have been confirmed for other set of parameters in our experiments as well.

5.7 Summary

We investigated a generic sequential resource allocation under semi-bandit feedback,
where a decision maker wishes to quickly learn and converge to the PF allocation, or
an approximate PF allocation. We presented a notion of approximate PF allocation,
referred to as APF, which allows us to study the problem within the framework
of combinatorial MAB. We derived a lower bound on the regret for learning APF
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allocation and presented an index policy for learning APF allocation enjoying a
regret of order O(m3θ−1

min∆−1
min log(T )).

5.A Proof of Lemma 5.1

To prove the lemma, we first present a useful property of the optimal solution
to problem PF1(θ). Throughout this section, the underlying parameter is θ. We
therefore omit the dependence of various quantities on θ.

Lemma 5.4. For all j ∈ [s]:

Spf
ij = 1 iff θij

γpf
i

= max
`

θ`j

γpf
`

.

Proof. Introduce the Lagrangian for problem PF1(θ):

L(z, µ, ν) =
∑
i∈[m]

log
(∑
j∈[s]

θijzij

)
+
∑
i∈[m]

∑
j∈[s]

νijzij −
∑
j∈[s]

µj

(∑
i∈[m]

zij − 1
)
.

KKT conditions at the optimal solution zpf satisfy, for all i and j,

(i) θij∑
k∈[s] θikz

pf
ik

− µj + νij = 0,

(ii) νijz
pf
ij = 0,

(iii) νij ≥ 0.

Let (i, j) ∈ [m] × [s]. If Spf
ij = 1, then zpf

ij > 0 so that (ii) implies νij = 0. Hence,
by (i) we have θij/γpf

i = µj . Moreover, note that (i) and (iii) together imply that
µj = max` θ`j/γpf

` . Therefore, Spf
ij = 1 implies θij/γpf

i = max` θ`j/γpf
` .

Now if θij/γpf
i = max` θ`j/γpf

` , one necessarily has νij = 0, which further implies
zpf
ij > 0, and thus Spf

ij = 1. This completes the proof.

Next we prove the lemma.

Proof of Lemma 5.1. For any A ∈ A, we have that

f(zpf , θ)− f(z(A), θ) =
∑
i

log γpf
i −

∑
i,j

Aij log(θij/aj)

=
∑
j

aj log aj −
∑
i,j

Aij log(θij/γpf
i )

≥
∑
j

aj log aj −
∑
j

aj log(wpf
j ), (5.6)
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where the last inequality follows from the definition of wpf
j . Furthermore, we deduce

from Lemma 5.4 that inequality (5.6) holds with equality only if Aij = 1 implies
Spf
ij = 1. Recalling the definition of A, the latter happens if A ≤ Spf .2
It then follows that

f(zpf , θ)−max
A∈A

f(z(A), θ) = f(zpf , θ)− max
A∈A:A≤Spf

f(z(A), θ)

= min
A∈A:A≤Spf

∑
j

aj log(aj/wpf
j ).

Noting that the constraint A ≤ Spf further implies aj ≤
∑
i∈[m] S

pf
ij for j ∈ [s],

we get

f(zpf , θ)−max
A∈A

f(z(A), θ) = min
w∈Ns

∑
j∈[s]

wj log(wj/wpf
j )

subject to:
∑
j∈[s]

wj = m,

wj ≤
∑
i∈[m]

Spf
ij , ∀j ∈ [s],

and the claim of the lemma follows directly. �

5.B Proof of Lemma 5.2

To prove the lemma, it suffices to show that any A ∈ A, which is feasible for
problem (5.4), is a basis for the intersection of two matroids. To verify this claim,
we consider a bipartite graph G = (U ∪ S,E), where U and S respectively denote
the set of tasks and servers, and where E denotes the set of task-server pairs in the
support of zpf . Fix w ∈ Ns. Let δ(v) ∈ E denote the edge incident to node v ∈ U
or v ∈ S. Define

I1 = {F ⊂ E : |F ∩ δ(u)| ≤ 1, u ∈ U},
I2 = {F ⊂ E : |F ∩ δ(v)| ≤ wv, v ∈ S}.

Then M1 = (E, I1) and M2 = (E, I2) define two partition matroids on E with
respective ranks s and m. Let I ⊂ E and denote by A its corresponding indicator
matrix, that is Aij ∈ {0, 1} and Aij = 1 iff (i, j) ∈ I. If I ∈ I1 then

∑s
j=1Aij = 1

for all i. Moreover, if I ∈ I2 then
∑m
i=1Aij = wj for all j. Hence, for each A ∈ A

and A ≤ Spf , there exists I ∈ I1 ∩ I2, and the claim follows. �

2Throughout this chapter, matrix inequalities are taken component-wise.
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5.C Proof of Theorem 5.1

To derive the asymptotic lower bound on the regret, we apply [39, Theorem 1] (see
Chapter 2 for an overview of the framework of [39]).

Let π ∈ Πf be a uniformly good policy. We first derive a lower bound for a
notion of regret R′π,F that corresponds to the regret incurred after F := Fπ(T )
frames. Observe that letting `max := maxA∈A `A, we have the following relation:
T
`max

≤ F ≤ T . As we shall see later, any asymptotic lower bound on R′π,F implies
an asymptotic lower bound on Rπ,T .

We construct the following controlled Markov chain. The state-space is {0, 1}m×s×`max .
The control set is the set of allocations A. The parameter θ = (θij)i∈[m],j∈[s] de-
fines transition probabilities. The parameter θ takes value in the compact set
Θ = [ε, 1]m×s for ε arbitrarily close to zero. The set of control laws are stationary
and each of them corresponds to an allocation. A transition in the Markov chain
occurs at time slots when a new frame is started, and the transition probabilities
are p(k, l;A, θ) = p(l;A, θ), that is they do not depend on the starting state.

For any two parameter matrices θ and λ, we define the KL-divergence under
allocation A as:

IA(θ, λ) =
∑
y

p(y;A, θ) log p(y;A, θ)
p(y;A, λ) .

Consider a frame where allocation A is selected. The average reward under
control law A is `Af(A, θ). The incurred regret by the end of the frame is `A∆A.
Further, in the course of the frame, for any i and j server j will be allocated to task
i in `A/aj time slots. Recalling that the outcome of various servers are independent
and that the trials are independent across time, by additivity of the KL-divergence
for independent random variables, we obtain

IA(θ, λ) =
∑
i,j

`A
aj
Aijkl(θij , λij). (5.7)

Finally, by applying [39, Theorem 1], we conclude that the regret under any
uniformly good policy π ∈ Πf satisfies

lim inf
F→∞

R′π,F
log(F ) ≥ c(θ) ,

where

c(θ) = inf
{∑

A

∆A`AuA : u ≥ 0, inf
λ∈B(θ)

∑
A 6=Aapf

IA(θ, λ)uA ≥ 1
}

= inf
{∑

A

∆A`AuA : u ≥ 0, inf
λ∈B(θ)

∑
A 6=Aapf

`AuA
∑
i,j

Aij
aj

kl(θij , λij) ≥ 1
}
.

(5.8)
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Introducing xA = `AuA for any A ∈ A gives a lower bound for R′π,F .
Now observe thatR′π,F ≤ Rπ,T ≤ R′π,F+`max∆max, where ∆max := maxA∈A∆A.

We thus get, using the relation T
`max

≤ F ≤ T , that

R′π,F
log(F ) ≤

Rπ,T

log(T ) ·
log(T )

log(T/`max) .

Letting F →∞ gives log(T )
log(T/`max) → 1. Therefore, for any β > 0,

lim inf
F→∞

R′π,F
log(F ) ≥ β =⇒ lim inf

T→∞

Rπ,T

log(T ) ≥ β.

Putting this together with the derived lower bound on R′π,F , we conclude the proof.
�

5.D Proof of Lemma 5.3

Decompose the set of bad parameters as B(θ) =
⋃
K 6=Aapf BK(θ), with

BK(θ) =
{
λ ∈ Θ : λij = α,∀(i, j) ∈ Aapf , f(K,λ) > f(Aapf , θ)

}
.

By Theorem 5.1, the regret of any uniformly good algorithm π ∈ Πf for this problem
instance satisfies:

lim inf
T→∞

Rπ,T

log(T ) ≥ c(θ),

where c(θ) is the optimal value of the of following:

inf
x≥0

∑
A6=Aapf

∆AxA (5.9)

subject to: inf
λ∈BK(θ)

∑
(i,j)∈K\Aapf

kl(β, λij)
∑
A

Aij
aj

xA ≥ 1, ∀K 6= Aapf .

The rest of the proof proceeds in two steps.

Step 1: simplifying the objective of problem (5.9). Observe that f(Aapf , θ) =
m log(sα/m). It then follows that, for any A 6= Aapf ,

∆A = m logα−
(

(m− |A \Aapf |) logα+ |A \Aapf | log β
)
−m log(m/s) +

∑
j

aj log aj

= |A \Aapf | log(α/β) +
∑
j

aj log aj −m log(m/s).
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Introducing

δA := exp
( 1
|A \Aapf |

[∑
j

aj log aj −m log(m/s)
])
, ∀A 6= Aapf ,

we obtain ∆A = |A\Aapf | log(αδA/β). Observe that for any A ∈ A,
∑
j aj = m, and

hence the log-sum inequality implies:
∑
j aj log aj ≥ m log(m/s), so that δA ≥ 1

for all A 6= Aapf and thus, log(δA) is well-defined. Hence,∑
A6=Aapf

∆AxA =
∑

A 6=Aapf

|A \Aapf | log(αδA/β)xA. (5.10)

Step 2: simplifying the constraints of problem (5.9). Introduce the set of
allocations that differ from Aapf by only one task-server pair: A′ := {A : |A\Aapf | =
1}. It follows that for any A ∈ A′,

δA := δ =
(m
s

+ 1
)

log
(m
s

+ 1
)

+
(m
s
− 1
)

log
(m
s
− 1
)
− 2m

s
log
(m
s

)
.

Hence,

c(θ) ≥ inf
x≥0

log(αδ/β)
∑

A 6=Aapf

xA

subject to: inf
λ∈BK(θ)

∑
(i,j)∈K\Aapf

kl(β, λij)
∑
A

Aij
aj

xA, ∀K ∈ A−.

Let K ∈ A− and ρ > 0. By continuity of z 7→ kl(β, z) for z > β, we can choose
ξ > αδ such that

|kl(β, ξ)− kl(β, αδ)| ≤ ρkl(β, αδ) .

Now consider parameter λ̃K such that λ̃Kij = ξ if (i, j) ∈ K \ Aapf , and λ̃Kij = α for
(i, j) ∈ Aapf . Otherwise, λ̃Kij = β. It is straightforward to check that λ̃K ∈ BK(θ),
and thus

inf
λ∈BK(θ)

∑
(i,j)∈K\Aapf

kl(β, λij)
∑
A

Aij
aj

xA ≤
∑

(i,j)∈K\Aapf

kl(β, λ̃Kij )
∑
A

Aij
aj

xA

= kl(β, ξ)
∑

(i,j)∈K\Aapf

∑
A

Aij
aj

xA. (5.11)

Hence, defining ε = ρ
1+ρ and recalling the definition of A−, we get

c(θ) ≥ inf
x≥0

log(αδ/β)
∑

A6=Aapf

xA
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subject to:
∑
A

Aij
aj

xA ≥
1− ε

kl(β, αδ)
, ∀(i, j) /∈ Aapf .

Noting that∑
(i,j)/∈Aapf

∑
A

Aij
aj

xA =
∑
A

xA
∑
j

1
aj

∑
i:(i,j)/∈Aapf

Aij ≤ s
∑
A

xA ,

we further obtain

c(θ) ≥ inf
x≥0

log(αδ/β)
∑

A6=Aapf

xA

subject to:
∑
A

xA ≥
m(s− 1)(1− ε)
skl(β, αδ)

,

which implies c(θ) ≥ m log(αδ/β)
kl(β,αδ)

(
1− 1

s

)
. Now observe that

log(αδ/β)
kl(β, αδ)

≥ αδ(1− αδ)
(αδ − β)2

log(αδ/β) ≥ 1− αδ
αδ − β

≥ 1− αδ
αδ log(αδ/β)

,

where we used kl(x, y) ≤ (x−y)2

y(1−y) for all x, y ∈ (0, 1) in the first inequality, and
log z ≥ 1− 1

z for all z ≥ 1 (see, e.g., [98]) in the second and the third inequalities.
We thus get

c(θ) ≥ 1/δ − α
2β log(αδ/β)

≥ 0.15
β log(αδ/β)

,

where the last inequality follows from the observation that under the assumption
m/s ≥ 5 we have δ ≤ 1.2231. Moreover, it uses the fact that β ≥ α

2 and α ≤ 0.5.
Hence,

lim inf
T→∞

Rπ,T

log(T ) ≥
0.15m

β log(αδ/β)

(
1− 1

s

)
.

The proof is completed by observing that θmin = β and ∆min = log(αδ/β). �

5.E Proof of Theorem 5.2

We first provide Lemma 5.5, which gives an upper bound on the index function u.

Lemma 5.5. For all N,n ∈ N, and λ ∈ (0, 1]:

log(u(n, λ,N)) ≤ log(λ) +
√

2g(n)
Nλ

.
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Proof. Let N,n ∈ N and x, λ ∈ (0, 1] with x ≥ λ. We have:

log(x)− log(λ) ≤ x− λ√
λx

=
√
N(x− λ)2

x

√
1
Nλ
≤
√

2Nkl(λ, x) 1√
Nλ

,

where the first inequality follows from Lemma 5.6, stated in Appendix 5.H, and the
second is due to Lemma A.3. Hence, Nkl(λ, x) ≤ g(n) implies:

log(x) ≤ log(λ) +
√

2g(n)
Nλ

.

The above holds for all x ∈ [λ, 1], and thus, the lemma follows by the definition of
u(n, λ,N).

Define κ = 1− 2− 1
3 and ε = κ∆min

max(m,∆min) . Observe that ε ≤ κ. Furthermore, for

N ∈ Nm×s and A ∈ A define r(N,A) =
(∑

i,j
Aij√
Nij

)2
. To ease notation, define

r(n) = r(N(n), A(n)).

Next we prove the Theorem.

Proof of Theorem 5.2. Let T ≥ 1 and denote by F (T ) the number of frames initiated
by the algorithm up to time T (note that F (T ) is a bounded stopping time with
F (T ) ≤ T ). For any n ≥ 1, the regret incurred in frame n is `A(n)∆A(n). Hence,

Rπ,T ≤ E
[F (T )∑
n=1

∆A(n)`A(n)I{A(n) 6= Aapf}
]
.

For any frame n, define the following events:

Bn,i,j =
{
bij(n) < θij

}
, Bn =

⋃
(i,j)∈Aapf

Bn,i,j ,

Cn,i,j =
{
Aij(n) = 1, |θ̂ij(n)− θij | ≥ εθij

}
, Cn =

⋃
i,j

Cn,i,j .

Moreover, for any time t, let nt denote the frame to which t belongs, and define

Dt =
{

∆A(nt) ≤ (1− κ)−3/2θ
−1/2
min

√
2g(T )r(nt)

}
.

Consider a time slot t where A(nt) 6= Aapf . We show that A(nt) 6= Aapf implies:
t ∈ Bnt ∪ Cnt ∪Dt. First observe that

f(A(nt), b(nt)) = max
A∈A

f(A, b(nt)) ≥ f(Aapf , b(nt)).
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Assume that Bnt ∪ Cnt does not occur. One the one hand, bij(nt) ≥ θij for all
(i, j) ∈ Aapf . Hence, f(Aapf , b(nt)) ≥ f(Aapf , θ) since f(·, θ) is increasing in θ. Since
Cnt does not occur, for all i and j, we have

(1− κ)θmin ≤ θ̂ij(nt) ≤ (1 + ε)θij ,

where we used ε ≤ κ. Using the above results together with Lemma 5.5, we deduce{
A(nt) 6= Aapf , Bnt , Cnt

}
⊂
{
f(A(nt), b(nt)) ≥ f apf , Cnt

}
⊂

{∑
i,j

Aij(nt)
√

2g(T )
Nij(nt)θ̂ij(nt)

+ f(A(nt), θ̂(nt)) ≥ f apf , Cnt

}

⊂

{√
2g(T )

(1− κ)θmin

∑
i,j

Aij(nt)√
Nij(nt)

+ f(A(nt), (1 + ε)θ) ≥ f apf

}

⊂

{
(1− κ)−1/2θ

−1/2
min

√
2g(T )r(nt) + f(A(nt), θ) + κ∆A(nt) ≥ f

apf

}
(5.12)

⊂
{

∆A(nt) ≤ (1− κ)−3/2θ
−1/2
min

√
2g(T )r(nt)

}
,

where (5.12) follows from that fact that for any A ∈ A, we have

f(A, (1 + ε)θ)− f(A, θ) =
∑
i,j

Aij log(1 + ε) ≤ mε = mκ∆min

max(m,∆min) ≤ κ∆A,

where we used log(z + 1) ≤ z for all z > −1. Hence, A(nt) 6= Aapf implies:
t ∈ Bnt ∪ Cnt ∪Dt.

Hence, the regret Rπ,T is upper bounded by:

Rπ,T ≤ E
[ F (T )∑
n=1

∆A(n)`A(n)I{A(n) 6= Aapf}
]

≤ E
[ F (T )∑
n=1

`A(n)∆A(n)(I{Bn}+ I{Cn})
]

+ E
[ T∑
t=1

∆A(nt)I{Dt}
]

≤ (max
A

`A∆A)
T∑
n=1

(P(Bn) + P(Cn)) + E
[ T∑
t=1

∆A(nt)I{Dt}
]
,

where we used F (T ) ≤ T . We will prove the following inequalities:
T∑
n=1

P(Bn) ≤ 8m,

T∑
n=1

P(Cn) ≤ 2ε−2
∑
i,j

θ−2
ij ,
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E
[ T∑
t=1

∆A(nt)1{Dt}
]
≤ 360m2g(T )(θmin∆min)−1.

Hence as announced:

Rπ,T ≤
360m3g(T )
θmin∆min

+ (max
A

`A∆A)
(

8m+ 2ε−2
∑
i,j

θ−2
ij

)
.

Set Bn. By Theorem B.5 ([43, Theorem 10]), we have P(Bn,i,j) ≤ dg(n) log(n)ee1−g(n).

Using a union bound and since
∑
i,j A

apf
ij = m,

T∑
n=1

P(Bn) ≤
∑

(i,j)∈Aapf

T∑
n=1

P(Bn,i,j) ≤ 8m. (5.13)

Set Cn. Define τij(n) =
∑n
n′=1 I{Cn′,i,j}. Since Cn′,i,j implies Aij(n′) = 1,

we have Nij(n) ≥ τij(n). Applying Theorem B.7 ([70, Lemma B.1]), we have∑T
n=1 P(Cn,i,j) ≤ 2(εθij)−2. A union bound yields:

T∑
n=1

P(Cn) ≤ 2ε−2
∑
i,j

θ−2
ij . (5.14)

Set Dt. To derive an upper bound on the regret incurred due to event Dt, we
borrow some techniques from [62]. Define V = 2m2g(T )(1 − κ)−3θ−1

min. Similarly
to the proof of [62, Theorem 5], consider α, β > 0, and for l ∈ N define αl =(

1−β√
α−β

)2
αl and βl = βl. Introduce set Sl,t and event Gl,t:

Sl,t = {(i, j) ∈ A(nt), Nij(nt) ≤ V αl∆−2
A(nt)},

Gl,t = {|Sl,t| ≥ βlm} ∩ {|Sk,t| < βkm, k = 1, . . . , l − 1}.

If ∪l≥1Gl,t = {|Sl,t| < mβl, l ≥ 1} occurs, then:∑
l≥1

|Sl−1,t| − |Sl,t|√
αl

= |S0,t|√
α1

+
∑
l≥1
|Sl,t|

( 1
√
α`+1

− 1
√
αl

)
<
mβ0√
α1

+
∑
l≥1

mβl

( 1
√
α`+1

− 1
√
αl

)
= m

∑
l≥1

βl − βl−1√
αl

≤ m,

since 1√
αl+1

− 1√
αl
≥ 0. Observe that

|{(i, j) : Nij(nt) ∈ V∆−2
A(nt)[αl, αl−1]}| = |Sl−1,t| − |Sl,t|.
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Hence,

√
r(nt) ≤

∑
l≥1

|Sl−1,t| − |Sl,t|√
αl

∆A(nt)√
V

< m
∆A(nt)√

V
.

Hence ∆2
A(nt) > Vm−2r(nt), and Dt does not occur. Therefore, Dt ⊂ ∪l≥1Gl,t

and:

T∑
t=1

∆A(nt)I{Dt} ≤
T∑
t=1

∑
l≥1

∆A(nt)I{Gl,t}.

We further decompose Gl,t as:

Gi,j,l,t = Gl,t ∩
{

(i, j) ∈ A(nt), Nij(nt) ≤ V αl∆−2
A(nt)

}
.

Observe that:

I{Gl,t} ≤
|Sl,t|
mβl

I{Gl,t} = 1
mβl

∑
i,j

I{Gi,j,l,t}.

Hence,

∑
i,j

T∑
t=1

∆A(nt)I{Gi,j,l,t} ≤
∑
i,j

T∑
t=1

∆A(nt)I
{
Aij(nt) = 1, Nij(nt) ≤

V αl
∆2
A(nt)

}

≤
∑
i,j

T∑
t=1

V αl∆−2
min∑

τ=1
I{Aij(nt) = 1, Nij(nt) = τ}

√
V αl
τ

≤ m2
V αl∆−2

min∑
τ=1

√
V αl
τ

,

where in the second line we used
∑
i,j

∑T
t=1 I{Aij(nt) = 1, Nij(nt) = τ} ≤ m2.

Using the inequality
∑T
t=1 t

− 1
2 ≤ 1 +

∫ T
1 t−

1
2 dt ≤ 2

√
T yields

∑
i,j

T∑
t=1

∆A(nt)I{Gi,j,l,t} ≤
2m2V αl

∆min
,

so that

T∑
t=1

∆A(nt)I{Dt} ≤
∑
i,j

T∑
t=1

∑
l≥1

∆A(nt)
1
mβl

I{Gi,j,l,t} ≤
2mV
∆min

∑
l≥1

αl
βl
.
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By choosing α = 0.15 and β = 0.24 so that
∑
l≥1

αl
βl
≤ 45, we obtain

T∑
t=1

∆A(nt)I{Dt} ≤
90mV
∆min

. (5.15)

Combining (5.13), (5.14), and (5.15) yields the desired result and concludes the
proof. �

5.F Dynamic Programming for Solving Problem (5.4)

Consider the following problem:

min
x∈Ns

s∑
j=1

xj log(xj/αj) (5.16)

subject to:
s∑
j=1

xj = m ,

xj ≤ cj , ∀j.

The above problem can be solved using dynamic programming. To this end, for
any j ∈ [s] and u ∈ N, we introduce

δj(u) = (u+ 1) log
(u+ 1

αj

)
− u log

( u
αj

)
.

Algorithm 5.3 describes the pseudo-code of dynamic programming for solving
problem (5.16).

Algorithm 5.3 Dynamic Programming for Problem (5.16)

Set X(k, j, w) = 1 for all j, k, w ∈ [s].
for j = 1..s do
X(k, j, s+ 1)← X(k, j, s) + I{k = j}, ∀k
V (j, s+ 1)← V (j, s) + δj(X(j, j, s))I{k = j}, ∀k

end for
for j = 1..s do

for w = s+ 2..m do
Let kj ∈ argminj:X(k,j,w−1)≤ck δk(X(k, j, w − 1)).
X(k, j, w)← X(k, j, w − 1) + I{k = kj}
V (j, w)← V (j, w − 1) + δkj (X(kj , j, w − 1))I{k = kj}

end for
end for
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5.G Decomposition to Assignments

We present a simple algorithm to decompose a given allocation matrix A to a
minimal sequence of assignments (M(k))k∈Λ satisfying:

M(k) ∈M, ∀k ∈ Λ, (5.17)
1
|Λ|
∑
k∈Λ

Mij(k) = zij(A), ∀i,∀j. (5.18)

Here, Λ denotes the set of time slots in a given frame where allocation A is chosen.
In particular, |Λ| = `A.

Algorithm 5.4 Decomposition of Allocation A
c← `A

Let matrix B with Bij = cAij/aj for all i and j.
k ← 0
while B 6= 0 do
M(k)← 0
for j = 1..s do
Let i0 ∈ argmini:Bij>0 Bij .
Mi0j(k)← 1
Bi0j ← Bi0j − 1

end for
k ← k + 1

end while
Output (M(k))k.

A simple procedure to make a sequence (M(k))k satisfying (5.17)-(5.18) is
provided in Algorithm 5.4. Observe that for any j, it holds that

∑
iMij(k) =

Mi0j(k) = 1. Moreover, by the design of the algorithm,Mij(k) = 1 implies Bij > 0.
Recalling that Bij > 0 iff Aij = 1, and that A ∈ A, we deduce

∑
jMij(k) ≤ 1

so that M(k) ∈ M. Moreover, for any i and j, by the design of the algorithm,
task-server pair (i, j) will be chosen Bij times. Hence,

1
c

c∑
k=1

Mij(k) = Bij
c

= Aij
aj

= zij(A),

so that constraint (5.18) is satisfied.

5.H Technical Lemmas

Lemma 5.6. For all x ≥ 1, we have log x ≤ x−1√
x
.
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Proof. Consider the function u(x) = (x− 1)/
√
x− log x defined for x ≥ 1. Clearly,

f is continuous in [1,+∞) and u(1) = 0. Furthermore,

u′(x) = 2x− x+ 1
2x
√
x
− 1
x

= (
√
x− 1)2

2x
√
x
≥ 0 , ∀x > 1.

Hence, u(x) ≥ 0 for all x ≥ 1 and the claim of the lemma follows.



Chapter 6

Variance-Aware Regret Bounds
for Undiscounted RL

In this chapter1, we consider Reinforcement Learning (RL) in an unknown and
discrete Markov Decision Process (MDP) under the average-reward criterion, when
the decision maker interacts with the system in a single stream of observations,
starting from an initial state without any reset. More formally, letM = (S,A, ν, P )
denote an MDP where S is a finite set of states and A is a finite set of actions
available at any state, with respective cardinalities S and A. ν and P denote
the reward function and transition kernel, respectively. The game goes as follows:
The decision maker starts in some state s1 ∈ S at time t = 1. At each time
step t ∈ N, the decision maker chooses one action a ∈ A in her current state
s ∈ S based on her past decisions and observations. When executing action a
in state s, she receives a random reward r drawn independently from distribution
ν(s, a) with support [0, 1] and mean µ(s, a). The state then transits to a next state
s′ ∈ S sampled with probability p(s′|s, a), and a new decision step begins. As the
transition probabilities and reward functions are unknown, the decision maker has
to learn them by trying different actions and recording the realized rewards and
state transitions. For background material on RL and MDPs, we refer to Chapter
2.

The performance of the decision maker can be quantified through the notion of
regret, which compares her collected reward to that obtained by an oracle always
following an optimal policy, where a policy is a mapping from states to actions.
More formally, let π : S → P(A) denote a possibly stochastic policy. We fur-
ther introduce the notation p(s′|s, π(s)) = EZ∼π(s)[p(s′|s, Z)], and Pπf to denote
the function s 7→

∑
s′∈S p(s′|s, π(s))f(s′). Likewise, let µπ(s) = EZ∼π(s)[µ(s, Z)]

denote the mean reward after choosing action π(s) in step s.
We can now introduce the notion of regret. Given a learning algorithm A,

consider the following quantity that compares the cumulative reward after T steps
1Part of the research presented in this chapter was carried out while the author was a visiting

PhD student at SequeL team in INRIA - Lille Nord Europe. The main part of this chapter is
based on the work [99].
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obtained by an optimal algorithm (denoted by ?) to that obtained by A:

RegA,T :=
T∑
t=1

r(s?t , ?(s?t ))−
T∑
t=1

r(st, at) ,

where at = A(st, ({st′ , at′ , rt′})t′<t) and s?t ∼ p(·|s?t , ?(s?t )) with s?1 = s1 is a se-
quence of states generated by the optimal strategy, and finally r(s, a) ∼ ν(s, a).

By an application of Azuma-Hoeffding’s inequality for bounded martingales, it
is immediate to show that with probability higher than 1− δ,

RegA,T ≤
T∑
t=1

(
P t−1
? µ? − r(st, at)

)
+
√

2T log(1/δ)

=
T∑
t=1

(P t−1
? − P ?)µ? +

[
Tg? −

T∑
t=1

r(st, at)
]

+
√

2T log(1/δ) .

where for any policy π, Pπ = limT→∞
1
T

∑T
t=1 P

t−1
π .

Thus, following [25], it makes sense to focus on the control of the middle term
in brackets only, which we now call the effective regret:

RegretA,T := Tg? −
T∑
t=1

r(st, at) .

6.1 Motivation and Contributions

To date, several algorithms have been proposed in order to minimize the regret
based on the “optimism in the face of uncertainty” principle, coming from the
literature on stochastic MABs (see [16]). Algorithms designed based on this prin-
ciple typically maintain confidence bounds on the unknown reward and transition
distributions, and choose an optimistic model that leads to the highest average
long-term reward. One of the first algorithms based on this principle for MDPs is
Burnetas-Katehakis [22], which is shown to be asymptotically optimal; we refer
to Chapter 2 for the description of this algorithm. Burnetas-Katehakis uses the
KL-divergence to define confidence bounds for transition probabilities. Subsequent
studies by [100], [51], [25], and [101] propose algorithms that maintain confidence
bounds on transition kernel defined by L1 or total variation norm. The use of
L1 norm, instead of KL-divergence, allows one to describe the uncertainty of the
transition kernel by a polytope, which in turn brings computational advantages and
ease in the regret analysis. On the other hand, such polytopic models are typically
known to provide poor representations of underlying uncertainties; for a thorough
discussion on this matter, we refer to the literature on the robust control of MDPs
with uncertain transition kernels, e.g., [23], and more appropriately to [24]. In-
deed, as argued in [24], optimistic models designed by L1 norm suffer from two
shortcomings:
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(i) The L1 optimistic model could lead to inconsistent models by assigning a zero
mass to an already observed element.

(ii) Due to polytopic shape of L1-induced confidence bounds, the maximizer of a
linear optimization over L1 ball could significantly vary for a small change in
the value function, thus resulting in sub-optimal exploration.

These shortcomings are discussed in [24], and we refer to pages 120–121 there for
relevant illustrations.

Both of these shortcomings are avoided by using the Kullback-Leibler (KL)
divergence and the properties of corresponding KL-ball. In [24], the authors in-
troduce the KL-Ucrl algorithm that modifies Ucrl2 [25] by replacing L1 norms
with KL-divergences in order to define the confidence bound on transition prob-
abilities. Further, they provide an efficient way to carry out linear optimization
over the KL-ball, which is necessary in each iteration of the Extended Value Iter-
ation. Despite these favorable properties and the strictly superior performance in
numerical experiments (even for very short time horizons), the best known regret
bound for KL-Ucrl matches that of Ucrl2. Hence, from a theoretical perspective,
the potential gain of use of KL-divergence has remained largely unexplored.

6.1.1 Contributions of the Chapter
The main objective in this chapter is to investigate the benefits of KL-based confi-
dence bounds for regret minimization in RL. In particular, we study KL-Ucrl and
provide a new high-probability regret bound for it, scaling as

Õ
(√

S
∑
s,a V?

s,aT +D
√
T
)
,

for ergodic MDPs with S states, A actions, and diameter D. Here, V?
s,a :=

Vp(·|s,a)(b?) denotes the variance of the optimal bias function b? of the true (un-
known) MDP with respect to next state distribution under state-action (s, a). This
bound improves over the best previous bound Õ(DS

√
AT ) for KL-Ucrl [24] as√

V?
s,a ≤ D. Interestingly, in several examples

√
V?
s,a � D and actually

√
V?
s,a is

comparable to
√
D. Our numerical experiments on typical MDPs further confirm

that
√
S
∑
s,a V?

s,a could be much smaller than DS
√
A. To prove the above regret

bound, we provide novel concentration inequalities inspired by the transportation
method that relate the so-called transportation cost under two discrete probabil-
ity measures to the KL-divergence between the two measures and the associated
variances. These concentration inequalities enable to decouple the concentration
properties of the transition kernel from the specific structure of the involved bias
(or value) functions. To the best of our knowledge, these inequalities are new and
could be independently interesting.

Leveraging these inequalities also enables us to simplify the (implicit) regret
bound of the Burnetas-Katehakis algorithm and obtain an explicit one asymptot-
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ically growing as

O
([∑

s,a

V?
s,a

ϕ(s, a) + SAΨ
]

log(T )
)
,

where Ψ denotes the span2 of bias function and ϕ(s, a) is a notion of gap between
the average rewards of an optimal and of a sub-optimal action a in state s. To the
best of our knowledge, these regret bounds are the first to provide such insights
into the benefit of KL-divergence over L1 norm for RL.

In order to justify these results, we revisit existing lower bounds on the re-
gret for the considered setup to make appear their dependence on the aforemen-
tioned variance terms. Specifically, building on the minimax regret lower bound of
Jaksch et al. [25], we provide an alternative lower bound of order Ω(

√
SAVmaxT ),

where Vmax := maxs,a V?
s,a. In view of this lower bound, our regret upper bound

for KL-Ucrl can be improved by only a factor
√
S. Further, we study a fam-

ily of ergodic MDPs and show that an application of Burnetas-Katehakis lower
bound [22] to them leads to an explicit regret lower bound growing at least as
Ω
(∑

s,a

V?
s,a

ϕ(s,a) log(T )
)
as T grows large.

6.2 Related Work

The study of RL in MDPs under average-reward criterion dates back to the seminal
papers by Graves and Lai [39], and Burnetas and Katehakis [22]. This line of
research was further followed over the last decade by several studies including [100,
25, 102, 24, 103, 104].

In the sequel, we briefly discuss the contribution of these papers. Under some
reasonable assumption, Burnetas and Katehakis [22] provide an MDP-dependent
asymptotic lower bound of the form cbk log(T ) on the regret for the class of er-
godic MDPs, where cbk is an implicit MDP-dependent constant (see Theorem
2.6 for a precise definition). Furthermore, they propose an index policy, which
we refer to as Burnetas-Katehakis (Algorithm 2.3), that achieves this regret
bound asymptotically. Tewari and Bartlett [100] study RL for the same class of
MDPs and propose OLP (Optimistic Linear Programming), which is quite similar to
Burnetas-Katehakis except that instead of the KL-divergence, it uses L1 norm to
define confidence bounds. OLP is computationally simpler than Burnetas-Katehakis
and enjoys a regret bound scaling as O

(
SAΨ2

Φ log(T )
)
, where Φ = min(s,a) ϕ(s, a).

We note that both OLP and Burnetas-Katehakis rely on the knowledge of average
reward functions and satisfy regret bounds that grow asymptotically logarithmi-
cally in T . Furthermore, these asymptotic bounds hide an additive term that could
be exponential in the number of state S (cf. [25, p. 1566], [22]).

Auer and Ortner [51] study the same problem for the larger class of unichain
MDPs but under less restrictive assumptions. They propose Ucrl whose regret

2The span of function f that takes values in a set X is defined as S(f) = maxx∈X f(x) −
minx∈X f(x).
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scales at most as O
(
S5ATMκ

2
M

∆2 log(T )
)
uniformly over time, where TM denotes the

mixing time of MDP (see Definition 2.5) and κM is a constant defined in terms
of hitting times of stationary policies in the true MDP. Jaksch et al. [25, 102]
propose Ucrl2 as a generalization of Ucrl for the class of communicating MDPs
(see Algorithm 2.4). Ucrl2 achieves a regret of Õ(DS

√
AT ) with high probability

uniformly over time. They also provide a problem-dependent regret bound for
Ucrl2 growing as Õ

(
D2S2A

∆ log(T )
)
, where ∆ denotes the smallest gap between

the average reward of an optimal policy and of a sub-optimal policy. Inspired by
Ucrl2, Filippi et al. [24] propose KL-Ucrl, which enjoys the same performance
guarantee as Ucrl2, though numerically it shows a superior performance. KL-Ucrl
has a similar design as Ucrl2 except that it maintains confidence intervals based
on the KL-divergence instead of L1 norm. For the class of communicating MDPs,
Jaksch et al. [25] also establish a non-asymptotic minimax lower bound on the
expected regret scaling as Ω(

√
DSAT ). Thus, the regret bounds of Ucrl2 and

KL-Ucrl are far from the optimal scaling, at most, by a factor
√
DS.

Bartlett and Tewari [101] address the larger class of weakly communicating
MDPs, under the assumption that reward functions are known and that an upper
bound D′ on the span of the bias function is given. Their proposed algorithm,
Regal, is inspired by Ucrl2 but also uses the idea of regularization. It attains
a Õ(D′S

√
AT ) regret with high probability. It is however still an open problem

to incorporate the imposed assumptions into an implementable algorithm. Ortner
[105, 106] studies learning in unknown MDPs with deterministic transitions. De-
spite the similarity of this setting to the classical MAB, one cannot directly use
corresponding algorithms since the number of policies grows exponentially in S.
Ortner [105, 106] presents UCycle, which is an adaptation of Ucrl2 to the case of
deterministic transitions and achieves a regret of O(SA∆ log(T )).

There are two recent studies [107, 103] that present algorithms for RL under
average-reward criterion based on posterior sampling. Under the assumption of
known reward function and known time horizon, the algorithm of Agrawal and Jia
[103] enjoys a regret scaling as Õ

(
D
√
SAT +DS7/4A3/4T 1/4

)
. In particular, for

T ≥ S5A, this bound grows as Õ
(
D
√
SAT

)
, which constitutes the best known

regret upper bound for learning in communicating MDPs and has tight dependen-
cies on S and A. The TSDE algorithm by Ouyang et al. [107] achieves a regret
growing as Õ(D′S

√
AT ) for the class of weakly communicating MDPs, where D′

is a given bound on the span of the bias function. We refer to Tables 6.1 and 6.2
for a summary of these results.

All the papers cited above consider RL in MDPs with finite state-space. Undis-
counted RL in continuous state-space is recently investigated in a few studies, e.g.,
by Ortner and Ryabko [108], Ortner [109], Lakshmanan et al. [110]. Regret bounds
reported in these works hold under various assumptions on the structure of reward
and transition functions. Ortner and Ryabko [108] investigate undiscounted RL
with continuous state-space under a fairly general setting in which only smooth-
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Algorithm Setting Regret

Burnetas-Katehakis
[22]

ergodic, known rewards O(cbk log(T )) – asymptotically

Burnetas-Katehakis
[22] (Theorem 6.2)

ergodic, known rewards O
((

SAVmax
Φ + DSA

)
log(T )

)
–

asymptotically

OLP [100] ergodic, known rewards O
(
D2SA

Φ log(T )
)

– asymptoti-
cally

Ucrl [51] unichain O
(
S5ATMκ

∆2 log(T )
)

Ucrl2 [102, 25] communicating O
(
D2S2A

∆ log(T )
)

KL-Ucrl [24] communicating O
(
D2S2A

∆ log(T )
)

Lower Bound [22] ergodic (generic),
known rewards

Ω(cbk log(T )) – asymptotically

Lower Bound
(Proposition 6.1)

ergodic (specific in-
stance)

Ω
(∑

s,a

V?s,a
ϕ(s,a) log(T )

)
– asymp-

totically

Table 6.1: Comparison of various problem-dependent regret bounds for RL under
average reward criterion

ness assumptions on rewards and transition probabilities are made. Assuming α-
Hölder continuity of reward functions and transition probabilities, they present a
Ucrl2-style algorithm called UCCRl, which combines state aggregation and the op-
timistic principle. For the case S = [0, 1]d and under the assumption that the
Hölder parameter is known to the decision maker, UCCRl achieves a regret of order
Õ
(
T (2d+1)/(2d+2α)) with high probability. Lakshmanan et al. [110] investigate RL

in the same setup as in [106], but further assume that transition probabilities are
κ-time smoothly differentiable. Employing kernel density estimation techniques,
they propose UCCRl-KD achieving a regret growing as Õ

(
T

β+αβ+2α
β+2αβ+2α

)
with high

probability, where β := α+ κ.
We finally mention that some studies consider regret minimization in MDPs

in the episodic setting, where the length of each episode is fixed and known; see,
e.g., [111], [112], and [113]. Although these problems bear some similarities to the
average-reward setting, the techniques developed in these paper strongly rely on
the fixed length of the episode, which is usually considered to be small, and do not
directly carry over to the problem considered in this chapter.

6.3 The KL-Ucrl Algorithm

The KL-Ucrl algorithm [24, 114] is a model-based algorithm inspired by Ucrl2
[25]. To present the algorithm, we first describe how it defines, at each given time
t, the set of plausible MDPs based on the observation available at time t. To
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Algorithm Setting Regret
Ucrl2 [102, 25] communicating Õ

(
DS
√
AT
)

KL-Ucrl [24] communicating Õ
(
DS
√
AT
)

[103] communicating, known
rewards

Õ
(
D
√
SAT

)
, T ≥ S5A

Regal [101] weakly communicating,
known rewards

Õ
(
D′S
√
AT
)

TSDE [107] weakly communicating Õ
(
D′S
√
AT
)

Minimax Lower Bound
[102, 25]

communicating Ω
(√

DSAT
)

Table 6.2: Comparison of various problem-independent regret bounds for RL under
average reward criterion

this end, we introduce the following notations. Under a given algorithm and for a
state-action pair (s, a), let Nt(s, a) denote the number of visits, up to time t, to
(s, a): Nt(s, a) =

∑t−1
t′=0 I{st′ = s, at′ = a}. Then, let Nt(s, a)+ = max{Nt(s, a), 1}.

Similarly, Nt(s, a, s′) denotes the number of visits to (s, a), up to time t, followed by
a visit to state s′: Nt(s, a, s′) =

∑t−1
t′=0 I{st′ = s, at′ = a, st′+1 = s′}. We introduce

the empirical estimates of transition probabilities and rewards:

µ̂t(s, a) =
∑t−1
t′=0 rtI{st′ = s, at′ = a}

Nt(s, a)+ , p̂t(s′|s, a) = Nt(s, a, s′)
Nt(s, a)+ .

KL-Ucrl, as an optimistic model-based algorithm, considers the set Mt as a
collection of all MDPs M ′ = (S,A, µ′, P ′), whose transition kernels and reward
functions satisfy:

KL(p̂t(·|s, a), p′(·|s, a)) ≤ Cp/Nt(s, a) , (6.1)

|µ̂t(s, a)− µ′(s, a)| ≤
√
Cµ/Nt(s, a) , (6.2)

where Cp = S (B + log(G)(1 + 1/G)), with B = log(2eS2A log(T )/δ) and G =
B + 1/ log(T ), and Cµ = log(4SA log(T )/δ)/1.99. Here δ ∈ (0, 1] is an input
parameter of the algorithm. Importantly, as proven in [24, Proposition 1], with
probability at least 1− 2δ, the true MDP M belongs to the setMt uniformly over
all time steps t ≤ T .

Similarly to Ucrl2, KL-Ucrl (Algorithm 6.1) proceeds in episodes of varying
lengths. We index an episode by k ∈ N. The starting time of the k-th episode
is denoted tk, and by a slight abuse of notation, let Nk := Ntk , Mk := Mtk ,
µ̂k = µ̂tk , and p̂k := p̂tk . At t = tk, the algorithm forms the set of plausible MDPs
Mk based on the observations gathered so far. It then defines an extended MDP
Mext,k = (S,A ×Mk, µext, Pext), where for an extended action aext = (a,M ′), it
defines µext(s, aext) = µ′(s, a) and pext(s′|s, aext) = p′(s′|s, a). Then, a 1√

tk
-optimal

extended policy πext,k is computed in the form πext,k(s) = (M̃k, π̃k(s)), in the sense



130 Variance-Aware Regret Bounds for RL

that it satisfies
g̃k := gπ̃k(M̃k) ≥ max

M ′∈Mk,π
gπ(M ′)− 1√

tk
.

Here gπ(M) denotes the gain of policy π in MDP M . M̃k and π̃k are respectively
called the optimistic MDP and the optimistic policy. Finally, an episode stops at the
first step t = tk+1 when number of local counts vk,t(s, a) =

∑t
t′=tk I{st′ = s, at′ =

a} exceeds Ntk(s, a) for some (s, a). We denote with some abuse vk = vk,tk+1 .

Remark 6.1. The value 1/
√
tk is a parameter of extended value iteration and is

only here for computational reasons: with sufficient computational power, it could
be replaced with 0.

Algorithm 6.1 KL-Ucrl [24], with input parameter δ ∈ (0, 1]
Initialize: For all (s, a), set N0(s, a) = 0 and v0(s, a) = 0. Set t = 1, k = 1, and
observe initial state s1

for episodes k ≥ 1 do
Set tk = t

Set Nk(s, a) = Nk−1(s, a) + vk−1(s, a) for all (s, a)
Find an 1√

tk
-optimal policy π̃k and an optimistic MDP M̃k ∈ Mk using Extended

Value Iteration
while vk(st, at) ≥ Nk(st, at) do
Play action at = π̃k(st), and observe the next state st+1 and reward rt
Update Nk(s, a, x) and vt+1(s, a) for all actions a and states s, x

end while
end for

6.4 Variance-Aware Regret Lower Bounds

In order to motivate the dependence of the regret on the local variance of the bias
function (namely, w.r.t. transition laws), we revisit some regret lower bounds for
our setup in the literature. We begin with the following minimax lower bound for
communicating MDPs that makes appear this scaling:

Theorem 6.1. There exists an MDP M with S states and A actions with S,A ≥
10, such that the expected regret under any algorithm A after T ≥ DSA steps for
any initial state satisfies

E[RegretA,T ] ≥ 0.0123
√

VmaxSAT ,

where Vmax := maxs,aVp(·|s,a)(b?).

Let us recall that Jaksch et al. [25] present a minimax lower bound on the
regret that scales as Ω(

√
DSAT ). Their lower bound is derived by considering a
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family of hard-to-learn MDPs and using similar techniques used in the derivation
of minimax lower bound in MAB, as studied in [21]. To prove the above theorem,
we also consider the same MDP instances as in [25] and leverage their techniques.
We show however that choosing slightly different transition probabilities for the
problem instance leads to a lower bound scaling as Ω(

√
VmaxSAT ), which does not

depend on the diameter.
We also remark that for the considered problem instance, easy calculations

show that for any state-action pair (s, a), the variance of bias function satisfies
c1
√
D ≤ Vp(·|s,a)(b?) ≤ c2D for some constants c1 and c2. Hence, the lower bound

in Theorem 6.1 can serve as an alternative minimax lower bound without any
dependence on the diameter.

Next we consider a family of hard-to-learn ergodic MDPs and examine the lower
bound of Burnetas and Katehakis [22] for them (for an overview on this lower bound,
we refer to Section 2.3.1 in Chapter 2).

Proposition 6.1. There exists a family C of ergodic MDPs, such that for any
M ∈ C, the expected regret under any admissible algorithm A starting from any
initial state in M satisfies

lim inf
T→∞

E[RegretA,T ]
log(T ) ≥

∑
(s,a)∈CM

Vp(·|s,a)(b?)
ϕ(s, a) .

To prove the above proposition, we present a family of MDPs whose design is
inspired by the ones in [25] (see also the proof of Theorem 6.1).

Remark 6.2. Theorem 6.1 and Proposition 6.1 suggest that the local variance of
bias function can serve as a hardness metric for regret in the considered setup.

6.5 Concentration Inequalities and the Kullback-Leibler
Divergence

Before providing variance-aware regret bounds, let us discuss some important tools
that we use for the regret analysis. We believe that these results could also be of
independent interest beyond RL.

Let us first recall a powerful result known as the transportation lemma; see,
e.g., [115, Lemma 4.18]:

Lemma 6.1 (Transportation Lemma). For any function f , let us introduce ϕf :
λ 7→ logEP [exp(λ(f(X) − EP [f ]))]. Whenever ϕf is defined on some possibly
unbounded interval I containing 0, define its dual ϕ?,f (x) = supλ∈I(λx − ϕf (λ)).
Then it holds

∀Q� P, EQ[f ]− EP [f ] ≤ ϕ−1
+,f (KL(Q,P ))

∀Q� P, EQ[f ]− EP [f ] ≥ ϕ−1
−,f (KL(Q,P ))
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where

ϕ−1
+,f (t) = inf{x ≥ 0 : ϕ?,f (x) > t}

ϕ−1
−,f (t) = sup{x ≤ 0 : ϕ?,f (x) > t} .

For the sake of completeness, we provide the proof of this lemma in Appendix B.
This result is especially interesting when Q is the empirical version of P built from
n i.i.d. observations, since in that case it enables to decouple the concentration
properties of the distribution from the specific structure of the considered function.
Further, it shows that controlling the KL divergence between Q and P induces
a concentration result valid for all (nice enough) functions f , which is especially
useful when we do not know in advance the function f we want to handle (such as
bias function b?).

The quantities ϕ−1
+,f , ϕ

−1
−,f may look complicated. When f(X) (where X ∼ P )

is Gaussian, they coincide with t 7→ ±
√

2VP (f)t. Although controlling them in
general is challenging, for bounded functions a Bernstein-type relaxation can be
derived that uses the variance VP (f) and the span S(f). Let us recall that the
span of function f that takes values in a set X is defined as S(f) = maxx∈X f(x)−
minx∈X f(x).

Corollary 6.1 (Bernstein Transportation). For any f such that VP (f) and S(f)
are finite,

∀Q� P, EQ[f ]− EP [f ] ≤
√

2VP (f)KL(Q,P ) + 2
3S(f)KL(Q,P ) ,

∀Q� P, EP [f ]− EQ[f ] ≤
√

2VP (f)KL(Q,P ) .

We also provide below another variation of this result that is especially useful
when the bounds of Corollary 6.1 cannot be handled. This result, to the best of
our knowledge, is new.

Lemma 6.2 (Transportation Method II). Let P ∈ P(X ) be a probability distribu-
tion on a finite alphabet X . Then, for any real-valued function f defined on X , it
holds that

∀P � Q, EQ[f ]− EP [f ] ≤
(√
VP,Q(f) +

√
VQ,P (f)

)√
2KL(P,Q) + S(f)KL(P,Q),

where VP,Q(f) def=
∑

x∈X :P (x)≥Q(x)

P (x)(f(x)− EP [f ])2 .

Next we discuss the implication of these results in our regret analysis. When P is
the transition law under a state-action pair (s, a) and Q is its empirical estimates up
to time t, i.e., Q = p̂t(·|s, a) and P = p(·|s, a), Corollary 6.1 can be used to decouple
EQ[f ]−EP [f ] from specific structure of f . In particular, if f is some optimal value
function (or bias function)3, using the observation that KL(Q,P ) = Õ(N−1

t ), we
3Note that for communicating MDPs, the span of the optimal bias function is bounded by

diameter D, so that use of Corollary 6.1 is allowed.
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derive an upper bound for EQ[f ]−EP [f ], whose first order terms makes appear the
variance of f . This would result in a term scaling as Õ

(√
S
∑
s,a V?

s,aT
)
in our

regret bound, where Õ(·) hides polylogarithmic terms.
Now, for the case when Q = p̂t(·|s, a) and P = p̃t(·|s, a) is the optimistic

transition law at time t, the second inequality in Corollary 6.1 allows us to bound
EP [f ] − EQ[f ] by the variance of f under law p̃(·|s, a), which itself is controlled
by the variance of f under the true law p(·|s, a). This approach would lead to a
term scaling as Õ

(√
S
∑
s,a V?

s,aT+DS2T 1/4
)
. We can remove the term scaling as

Õ(T 1/4) in our regret analysis by resorting to Lemma 6.2 instead, in combination
with the following property of the operator V:

Lemma 6.3. Consider two distributions P,Q ∈ P(X ) with |X | ≥ 2. Then, for any
real-valued function f defined on X , it holds that

(i) VP,Q(f) ≤ VP (f) ,

(ii)
√
VP,Q(f) ≤

√
2VQ(f) + 3S(f)

√
|X |KL(Q,P ) .

6.6 Variance-Aware Regret Upper Bounds

In this section, we present regret upper bounds for Burnetas-Katehakis and
KL-Ucrl that leverage the results presented in the previous section. Let Ψ := S(b?)
denote the span of the bias function, and for any (s, a) ∈ S × A define V?

s,a :=
Vp(·|s,a)(b?) as the variance of the bias function under law p(·|s, a).

We begin with revisiting the regret bound of Burnetas-Katehakis. The follow-
ing corollary to [22, Theorem 1] (see also Theorem 2.8) gives an explicit variance-
aware regret bound for Burnetas-Katehakis valid for any ergodic MDP:

Corollary 6.2 (Variance-Aware Regret Bound for Burnetas-Katehakis). For
any ergodic MDP M and any initial state in M , the regret under algorithm A =
Burnetas-Katehakis satisfies

lim sup
T→∞

E[RegretA,T ]
log(T ) ≤ 4

∑
(s,a)∈CM

V?
s,a

ϕ(s, a) + 4SAΨ .

To the best of our knowledge, the bound reported in the above corollary is the
best explicit bound for Burnetas-Katehakis. The gap-independent term (scaling
as O(SAΨ log(T ))) could be an artefact of the proof, and can probably be removed
with a more careful analysis. We further remark that the OLP algorithm of Tewari
and Bartlett [100], which relies on L1-based confidence bounds, attains a regret
bound asymptotically growing as O

(
SAΨ2

Φ log(T )
)
. Corollary 6.2 improves over

this bound since V?
s,a ≤ Ψ2. As we shall see later, the leading constant

∑
s,a V?

s,a

could be much smaller than SAΨ2 as confirmed by some illustrative examples.
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Next we provide a refined regret bound for a variant of KL-Ucrl for the class of
ergodic MDPs. Let ?̃k denote the optimal policy in the extended MDPMk, whose
gain g̃?̃k satisfies g̃?̃k = maxM ′∈Mk,π gπ(M ′). We consider a variant of KL-Ucrl,
which computes, in every episode k, a policy π̃k satisfying: maxs |b̃k(s)− b̃?̃k(s)| ≤

1√
tk
, and g̃k ≥ g̃?̃k − 1√

tk
.4 We have:

Theorem 6.2 (Variance-Aware Regret Bound for KL-Ucrl). With probability at
least 1− 6δ, the regret under the variant of KL-Ucrl described above for any initial
state satisfies

RegretKL-Ucrl,T ≤
(

31
√
S
∑
s,a V?

s,a + 35S
√
A+
√

2D + 1
)√

T log(log(T )/δ)

+ Õ
(
SA(TMSA+D + S3/2) log(T )

)
,

where Õ hides terms scaling as polylog(log(T )/δ).

Remark 6.3. If the cardinality of the set S+
s,a := {s′ : p(s′|s, a) > 0} for state-

action (s, a) is known, then one can use the following improved confidence bound
for the pair (s, a) (instead of (6.1)):

Nt(s, a)KL(p̂t(·|s, a), p′(·|s, a)) ≤ Cs,ap , (6.3)

where Cs,ap = |S+
s,a|
S Cp (see, e.g., [114, Proposition 4.1] for the corresponding con-

centration result). As a result, if |S+
s,a| for all (s, a) ∈ S × A is known, it is then

straightforward to show that the corresponding variant of KL-Ucrl, which relies on
(6.3), achives a regret growing as Õ

(√∑
s,a |S+

s,a|V?
s,aT +D

√
T
)
.

The regret bound provided in the aforementioned remark is of particular impor-
tance in the case of sparse MDPs, where most states transit to only a few next-states
under various actions. We would like to stress that to get an improvement of a sim-
ilar flavour for Ucrl2, to the best of our knowledge, one has to know the sets S+

s,a

for all (s, a) ∈ S ×A rather than their cardinalities.

Illustrative numerical experiments. In order to better highlight the magni-
tude of the main terms in Theorem 6.2 when compared to other existing results,
and strengthen the discussion, we consider a standard class of environments for
which we compute them explicitly.

For the sake of illustration, we consider the RiverSwim MDP, introduced in [53],
as our benchmark environment. In order to satisfy ergodicity, here we consider a
slightly modified version of the original RiverSwim (see Figure 6.1). Furthermore,

4We study such a variant to facilitate the analysis and presentation of the proof. This variant
of KL-Ucrl may be computationally less efficient than Algorithm 6.1. We stress however that,
in view of the number of episodes (growing as SA log(T )) as well as Remark 6.1, with sufficient
computational power such an algorithm could be practical.
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Figure 6.1: The N -state Ergodic RiverSwim MDP

S Ψ maxs,a V?
s,a Ψ

√
SA

√∑
s,a

V?
s,a

6 6.3 0.6322 21.9 1.8
12 14.9 0.6327 72.9 2.8
20 26.3 0.6327 166.4 3.7
40 54.9 0.6327 490.9 5.3
70 97.7 0.6327 1156.5 7.1
100 140.6 0.6327 1988.3 8.5

Table 6.3: Comparison of span and variance for Ergodic RiverSwim with various
number of states.

to convey more intuition about the potential gains, we consider varying number of
states. The benefits of KL-Ucrl have already been studied experimentally in [24],
and we compute in Table 6.3 features that we believe explain the reason behind
this. In particular, it is apparent that while Ψ

√
SA ≤ D

√
SA grows very large

with S, V?
s,a is about constant and very small on all tested environments. Further,

even on this simple environment, we see that
√∑

s,a V?
s,a is an order or magnitude

smaller than Ψ
√
SA. We believe that these computations highlight the fact that

the regret bound of Theorem 6.2 captures a massive improvement over the initial
analysis of KL-Ucrl in [24], and over alternative algorithms such as Ucrl2.

6.7 Summary

In this chapter, we provided variance-aware regret bounds for Burnetas-Katehakis
and KL-Ucrl, and also revisited existing regret lower bounds, in order to make ap-
pear the local variance of the bias function of the MDP. Computations of these terms
in some illustrative enviroments show that reported upper bound for KL-Ucrl may
improve an order of magnitude over the existing ones (as observed experimentally
in [114]), thus highlighting the fact that trading the diameter of the MDP to the
local variance of the bias function may result in huge improvements.
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6.A Derivation of Minimax Regret Lower Bound

The proof of Theorem 6.1 mainly relies on the problem instance for the derivation
of the minimax lower bound in Jaksch et al. [25] and related arguments there. For
the sake of completeness, we first recall this family of MDPs and then compute the
variance of the corresponding bias function.

To get there, we first consider the two-state MDP M ′ shown in Figure 6.2,
where there are two states {s0, s1}, each having A′ = bA−1

2 c actions. We consider
deterministic rewards defined as r(s0, a) = 0 and r(s1, a) = 1 for all a ∈ A. The
decision maker knows the rewards but not the transition probabilities. Let δ := 4

D ,
where D is the diameter for which we derive the lower bound. Under any action
a, p(s0|s1, a) = δ. In state s0, there is a unique optimal action a?, which will be
referred to as “good” action. For any a 6= a?, we have p(s1|s0, a) = δ whereas
p(s1|s0, a

?) = δ+ ε for some ε ∈ (0, δ2 ) that will be determined later. Note that the
diameter D′ of M ′ satisfies: D′ = 1

δ = D
4 .

... ...
......

1− δ − ε

1− δ

δ

s0 s1

1− δ

δ + ε

δ

Figure 6.2: The MDP M ′ for lower bound [25]

We consider δ ∈ (0, 1
3 ).5 After straightforward calculations, one finds that the

average reward in M ′ is given by

g? = 1/δ
1/δ + 1/(δ + ε) = δ + ε

2δ + ε
.

Furthermore, from Bellman’s optimality equations, we obtain

b?(s0) + δ + ε

2δ + ε
= (δ + ε)b?(s1) + (1− δ − ε)b?(s0) ,

thus giving Ψ := S(b?) = b?(s1) − b?(s0) = 1
2δ+ε . Consider a 6= a? and let p =

p(·|s0, a). It follows that:

Ep[b?] = δb?(s1) + (1− δ)b?(s0) = b?(s0) + δΨ ,

Vp(b?) = δ(b?(s1)− Ep[b?])2 + (1− δ)(b?(s0)− Ep[b?])2 = δ(1− δ)Ψ2 .

Similarly, we obtain

Vp(·|s0,a?)(b?) = (δ + ε)(1− δ − ε)Ψ2 ,

5The case of δ > 1/3 can be handled similarly to the analysis of [25].
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Figure 6.3: The composite MDP M [25]

Vp(·|s1,a)(b?) = δ(1− δ)Ψ2 .

Hence, using the facts that x 7→ x(1− x) is increasing for x ∈ [0, 1
2 ] and ε+ δ ≤ 1

2 ,
we obtain

Vmax := max
s,a

Vp(·|s,a)(b?) = (δ + ε)(1− δ − ε)Ψ2 .

The Composite MDP

We now build a composite MDP M as considered in [25], as a concatenation of
k := bS/2c copies ofM ′ in the form of an A′-ary tree, where only one copy contains
the good action a? (see Figure 6.3). To this end, we first add A′ + 1 additional
actions, so that M has at most A actions per state. For any state s0, one of
these new actions connects s0 to the root, and the rest connect s0 to the leaves.
Whereas for any state s1, all new actions make a transition to the same state
s1. By construction, the diameter of the composite MDP M does not exceed
2(D/4 + logA′ k), so that MDP M has 2bS/2c ≤ S states, bA

′−1
2 c+ b

A′−1
2 c+ 1 ≤ A

actions, and a diameter less than D.

6.A.1 Proof of Theorem 6.1
To derive the claimed result, we derive a lower bound on the regret for the composite
MDP presented above. Our analysis is largely built on the techniques used in the
proof of [25, Theorem 5]. We also closely follow the notations used in [25].

Let us assume, as in the proof of [25, Theorem 5], that all states s0 are identified
so that M is equivalent to an MDP M ′ with kA′ actions (note that following the
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same argument as in [25], despite the same maximal average reward, learning in
M ′ is easier than in M , and so any regret lower bound for M ′ implies a lower
bound in M , too). Note that by construction of M , it holds that Vmax in M
equals Vmax in M ′. Denote by (s?0, a?) the good copy, i.e., the one containing good
action a?. We assume that a? is chosen uniformly at random among all actions
{1, . . . , k} × {1, . . . , A′}. Let E?[·] and Eunif [·] respectively denote the expectation
with respect to the random choice of (s?0, a?) and the expectation when there is no
good action. Furthermore, let Ea[·] denote the expectation conditioned on a = a?,
and introduce N1, N0, and N?

0 as the respective number of visits to s1, s0, and
(s0, a

?).
The proof proceeds in the same steps as in the proof of [25, Theorem 5] up to

equation (36) there, where it is shown that under the assumption that the initial
state is s0,

Ea[N1] ≤ Ea[N0 −N?
0 ] + (δ + ε)D′Ea[N?

0 ] ≤ T − Eunif [N1] + εD′Ea[N?
0 ] ,

Eunif [N1] ≥ T −D′

2 ,

so that the accumulated reward RA,T by the algorithm A in M ′ up to time step T
satisfies

Ea[RA,T ] ≤ Ea[N1] ≤ T +D′

2 + εD′Ea[N?
0 ].

The following lemma, which is a straightforward modification to [25, Lemma 13],
enables us to control Ea[N?

0 ]:

Lemma 6.4. Let f : {s0, s1}T+1 7→ [0, B] be any function defined on any trajectory
sT+1 = (st)1≤t≤T+1 in M ′. Then, for any δ ∈ [0, 1

3 ], ε ∈ (0, 1 − 2δ), and a ∈
{1, . . . , kA′},

Ea[f(s)] ≤ Eunif [f(s)] + εB

√
log(2)Eunif [N?

0 ]
2(δ + ε)(1− δ − ε) .

Noting that N?
0 is a function of sT+1 satisfying N?

0 ∈ [0, T ], by Lemma 6.4 we
deduce that

Ea[N?
0 ] ≤ Eunif [N?

0 ] + εT

√
log(2)Eunif [N?

0 ]
2(δ + ε)(1− δ − ε)

= Eunif [N?
0 ] + εΨT

√
log(2)Eunif [N?

0 ]
2Vmax

,

where we used
√

Vmax = Ψ
√

(δ + ε)(1− ε− δ). As shown in the proof of [25, The-
orem 5],

∑kA′

a=1 Eunif [N?
0 ] ≤ (T +D′)/2 and

∑kA′

a=1
√
Eunif [N?

0 ] ≤
√
kA′(T +D′)/2,
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so that we finally get, using the relation E?[RA,T ] = 1
kA′

∑kA′

a=1 Ea[RA,T ],

E?[RegretA,T,M ′ ] = δ + ε

2δ + ε
T − E?[RA,T ]

≥ δ + ε

2δ + ε
T − T

2 −
εD′T

2kA′ −
εD′2

2kA′

− ε2ΨD′T
kA′

√
log(2)kA′T

4Vmax
− ε2ΨD′T

kA′

√
log(2)kA′D′

4Vmax
− D′

2

≥ εT

4δ + 2ε −
εD′

2kA′ (T +D′)− 0.42ε2ΨD′T√
kA′Vmax

(
√
T +
√
D′)− D′

2 .

Noting that the assumption T ≥ DSA implies T ≥ 16D′kA′, we deduce that

E?[RegretA,T,M ′ ] ≥
εT

4δ + 2ε −
εD′T

2kA′
(

1 + 1
16kA′

)
− 0.42ε2ΨD′T

√
T√

kA′Vmax

(
1 + 1

4
√
kA′

)
− D′

2 .

Note that the first term in the right-hand side satisfies

εT

4δ + 2ε = εTΨ
2 ≥ 5εVmaxT

6 ,

since
Ψ

Vmax
= 2δ + ε

(δ + ε)(1− δ − ε) ≥ 1 + δ

δ + ε
>

5
3 ,

where we use ε ≤ δ/2 in the last step. Hence, we get

E?[RegretA,T,M ′ ] ≥
5
6εVmaxT −

εD′T

2kA′
(

1 + 1
16kA′

)
− 0.42ε2ΨD′T

√
T√

kA′Vmax

(
1 + 1

4
√
kA′

)
− D′

2 .

In particular, setting ε = c
√

kA′

VmaxT
for some c (which will be determined later)

yields

E?[RegretA,T,M ′ ] ≥
5
6c
√
kA′VmaxT −

√
kA′VmaxT

(
cD′

2kA′Vmax

(
1 + 1

16kA′
))

−
√
kA′VmaxT

(
0.42c2

kA′
D′Ψ
V2

max

(
1 + 1

4
√
kA′

))
− D′

2 .

To simplify the above bound, note that

D′

Vmax
≤ (2δ + ε)2

δ(δ + ε)(1− δ − ε) ≤ 2
(2δ + ε

δ

)2
≤ 12.5 , (6.4)
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where we used 1− ε− δ ≥ 1
2 since ε ≤ δ

2 . Moreover,

D′Ψ
V2

max
= D′Ψ

Ψ4(δ + ε)2(1− δ − ε)2

= (2δ + ε)3

δ(δ + ε)2(1− δ − ε)2 ≤ 4
(2δ + ε

δ

)3
≤ 62.5 .

Putting these together with the fact that

D′

2 ≤
√
D′

2

√
T

16kA′ ≤
√

12.5/16
2

√
VmaxT

kA′
≤ 0.45

√
VmaxT

kA′
,

which follows from (6.4), we deduce that

E?[RegretA,T,M ′ ] ≥
√
kA′VmaxT

(5c
6 −

12.5c
2kA′ −

12.5c
32(kA′)2

− 26.25c2

kA′
− 6.6c2

(kA′)3/2 −
0.45
kA′

)
,

Taking c = 0.132 and using the facts k = bS2 c ≥ 5 and A′ = bA−1
2 c ≥ 4 yield the

announced result. This completes the proof provided that we show that this choice
of c satisfies ε ≤ δ

2 . To this end, observe that by the assumption T ≥ DSA ≥ 16kA′
δ ,

it follows that

ε = 0.132
√

kA′

VmaxT
≤ 0.132

4

√
δ

Vmax

≤ 0.132
4

√
δ(2δ + ε)2

(δ + ε)(1− δ − ε) ≤ 0.047(2δ + ε) ,

so that ε ≤ 0.1δ. This concludes the proof. �

6.A.2 Proof of Lemma 6.4
The lemma follows by a slight modification of the proof of [25, Lemma 13]. We
recall that according to equations (49)-(51) in [25],

Ea[f(s)]− Eunif [f(s)] ≤ B

2
√

2 log(2)KL(Punif ,Pa) , (6.5)

where

KL(Punif ,Pa) =
T∑
t=1

KL(Punif(st+1|st),Pa(st+1|st))

=
T∑
t=1

Punif(st = s0, at = a)
(
δ log

( δ

δ + ε

)
+ (1− δ) log

( 1− δ
1− δ − ε

))
.
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Now using the inequality kl(a, b) ≤ (a−b)2

b(1−b) valid for all a, b ∈ (0, 1) (instead of [25,
Lemma 20]) and noting that Eunif [N?

0 ] =
∑T
t=1 Punif(st = s0, at = a), we obtain

KL(Punif ,Pa) = kl(δ, δ + ε)Eunif [N?
0 ] ≤ ε2

(1− δ)(1− δ − ε)Eunif [N?
0 ] .

Plugging this into (6.5) completes the proof. �

6.B Proof of Proposition 6.1

To prove the proposition, we present a family of ergodic MDPs for which the ap-
plication of Burnetas and Katehakis’ lower bound yields the desired result.

Consider MDP M shown in Figure 6.4, which has N + 1 states and A actions
per state. Let δ ∈ (0, 1

3 ) and ε ∈ (0, δ2 ) so that δ + ε ≤ 1
2 . There is only one state

(denoted by sN+1) that gives a non-zero reward: r(sN+1, a) = 1 for all a. MDP
M has quite similar design to MDP M ′ in Figure 6.2: It has the same transition
probabilities and reward functions in all states s ∈ S \ {sN+1}. In state sN+1 and
under any action a (shown in blue), the system makes a transition to state s 6= sN+1
with probability δ

N , and stays in sN+1 with probability 1− δ. Note that MDP M
is ergodic since any state, under any policy, is reachable with positive probability
from any other state.

It is easy to check that the average reward for this MDP is the same as that of
M ′ shown in Figure 6.2, that is g? = δ+ε

2δ+ε . Moreover, for any state s ∈ S \ {sN+1}
Bellman’s optimality equation reads

g? + b?(s) = (ε+ δ)b?(sN+1) + (1− ε− δ)b?(s) ,

so that Ψ′(s) := b?(sN+1) − b?(s) = 1
2δ+ε . It then follows, after algebraic calcula-

tions similar to the ones for MDP M ′ in Figure 6.2, that

Vp(·|s,a)(b?) = δ(1− δ)Ψ′(s)2 ,

and that ϕ(s, a) = εΨ′(s) for a 6= a?.
Now consider a sub-optimal action a 6= a? in state s. We have

K(s, a) = inf
{

KL(p(·|s, a), q) : q ∈ Λ(s, a)
}

= inf
{

kl(δ, x) : x > δ + ε
}

= kl(δ, δ + ε) ,

which, using the inequality kl(x, y) ≤ (x−y)2

y(1−y) valid for all x, y ∈ (0, 1), gives

ϕ(s, a)
K(s, a) = εΨ′(s)

kl(δ, δ + ε) ≥
(ε+ δ)(1− ε− δ)Ψ′(s)2

εΨ′(s)

≥ δ(1− δ)Ψ′(s)2

εΨ′(s) =
Vp(·|s,a)(b?)
ϕ(s, a) ,
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1− δ

s1

1− δ

1− δ − ε
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1− δ

1− δ
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δ

δ

δ

Figure 6.4: MDP M for proof of Proposition 6.1

where we used that the mapping x 7→ x(1− x) is increasing for x ∈ [0, 1
2 ].

Finally, applying [22, Theorem 2] yields the desired result:

cbk(M) =
∑

(s,a)∈CM

ϕ(s, a)
K(s, a) ≥

∑
s6=sN+1

∑
a6=a?

Vp(·|s,a)(b?)
ϕ(s, a) ,

and completes the proof. �

6.C Proof of Corollary 6.1

By a standard Bernstein argument (see for instance [115, Section 2.8]), it holds

∀λ ∈ [0, 3/S(f)), ϕf (λ) ≤ VP (f)
2

λ2

1− S(f)λ
3

,

∀x ≥ 0, ϕ?,f (x) ≥ x2

2(VP (f) + S(f)
3 x)

.
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Then, a direct computation (solving for x in ϕ?,f (x) = t) shows that

ϕ−1
+,f (t) ≤ S(f)

3 t+
√

2tVP (f) +
(S(f)

3 t
)2
≤
√

2tVP [f ] + 2
3 tS(f),

ϕ−1
−,f (t) ≥ S(f)

3 t−
√

2tVP (f) +
(S(f)

3 t
)2
≥ −

√
2tVP [f ] ,

where we used that
√
a+ b ≤

√
a +
√
b for a, b ≥ 0. Combining these bounds, we

get

EQ[f ]− EP [f ] ≤
√

2VP (f)KL(Q,P ) + 2
3S(f)KL(Q,P ) ,

EP [f ]− EQ[f ] ≤
√

2VP (f)KL(Q,P ) .

�

6.D Proof of Lemma 6.2

If EQ[f ] ≤ EP [f ], then the result holds trivially. We thus assume that EQ[f ] >
EP [f ]. It is straightforward to verify that

EQ[f ]− EP [f ] =
∑

x:Q(x)≥P (x)

(f(x)− EQ[f ])(Q(x)− P (x))

+
∑

x:Q(x)<P (x)

(f(x)− EP [f ])(Q(x)− P (x))

+
∑

x:P (x)>Q(x)

(EP [f ]− EQ[f ])(Q(x)− P (x)) . (6.6)

The first term in the right-hand side of (6.6) is upper bounded as∑
x:Q(x)≥P (x)

(f(x)− EQ[f ])(Q(x)− P (x))

=
∑

x:Q(x)≥P (x)

√
Q(x)(f(x)− EQ[f ])Q(x)− P (x)√

Q(x)

(a)
≤
√ ∑
x:Q(x)≥P (x)

Q(x)(f(x)− EQ[f ])2

√√√√ ∑
x:Q(x)≥P (x)

(Q(x)− P (x))2

Q(x)

(b)
≤
√
VQ,P (f)

√
2KL(P,Q) , (6.7)

where (a) follows from Cauchy-Schwarz inequality and (b) follows from Lemma A.7.
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Similarly, the second term in (6.6) satisfies∑
x:Q(x)<P (x)

(f(x)− EP [f ])(Q(x)− P (x))

=
∑

x:Q(x)<P (x)

√
P (x)(f(x)− EP [f ])Q(x)− P (x)√

P (x)

≤
√
VP,Q(f)

√
2KL(P,Q) . (6.8)

Finally, we bound the last term in (6.6):

(EP [f ]− EQ[f ])
∑

x:P (x)>Q(x)

(Q(x)− P (x)) (a)= 1
2(EQ[f ]− EP [f ])‖P −Q‖1

≤ 1
2S(f)‖P −Q‖21

(b)
≤ S(f)KL(P,Q) , (6.9)

where (a) follows from the fact that for any pair of distributions U and V on the
same alphabet X , it holds that

∑
x∈X |U(x)−V (x)| = 2

∑
x:U(x)≥V (x)(U(x)−V (x)),

and where (b) follows from Pinsker’s inequality.
The proof is concluded by combining (6.7), (6.8), and (6.9). �

6.E Proof of Lemma 6.3

Statement (i) is a direct consequence of the definition of VP,Q. We next prove
statement (ii).

Observe that Lemma A.7 implies that for all x ∈ X

|P (x)−Q(x)| ≤
√

2 max(P (x), Q(x))KL(Q,P ) .

Hence,

VP,Q(f) =
∑

x:P (x)≥Q(x)

P (x)(f(x)− EP [f ])2

≤
∑

x:P (x)≥Q(x)

Q(x)(f(x)− EP [f ])2

+
√

2KL(Q,P )
∑

x:P (x)≥Q(x)

√
P (x)(f(x)− EP [f ])2 . (6.10)

The first term in the right-hand side of (6.10) is bounded as follows:∑
x:P (x)≥Q(x)

Q(x)(f(x)− EP [f ])2 ≤ 2
∑

x:P (x)≥Q(x)

Q(x)(f(x)− EQ[f ])2
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+ 2(EQ[f ]− EP [f ])2

≤ 2VQ(f) + 2(EQ[f ]− EP [f ])2 .

Note that

(EQ[f ]− EP [f ])2 ≤ S(f)2‖P −Q‖21 ≤ 2S(f)2KL(Q,P ) ,

which further gives∑
x:P (x)≥Q(x)

Q(x)(f(x)− EP [f ])2 ≤ 2VQ(f) + 4S(f)2KL(Q,P ) .

Now we consider the second term in (6.10). First observe that∑
x:P (x)≥Q(x)

√
P (x)(f(x)− EP [f ])2

≤
√ ∑
x:P (x)≥Q(x)

P (x)(f(x)− EP [f ])2
√∑

x

(f(x)− EP [f ])2

≤
√
VP,Q(f)S(f)

√
|X | ,

thanks to Cauchy-Schwarz inequality. Hence, the second term in (6.10) is upper
bounded by

S(f)
√

2|X |VP,Q(f)KL(Q,P ) .

Combining the previous bounds together, we get

VP,Q(f) ≤ 2VQ(f) + 4S(f)2KL(Q,P ) + S(f)
√

2|X |VP,Q(f)KL(Q,P ) ,

which leads to(√
VP,Q(f)− S(f)

√
|X |KL(Q,P )/2

)2
≤ 2VQ(f) + S(f)2(|X |/2 + 4)KL(Q,P ) ,

so that using the inequality
√
a+ b ≤

√
a+
√
b, we finally obtain√

VQ,P (f) ≤
√

2VQ(f) + S(f)2(|X |/2 + 4)KL(Q,P ) + S(f)
√
|X |KL(Q,P )/2

≤
√

2VQ(f) + S(f)(
√

2|X |+ 2)
√

KL(Q,P ) .

The proof is completed by observing that
√

2|X |+ 2 ≤ 3
√
|X | for |X | ≥ 2. �
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6.F Proof of Corollary 6.2

Let M be an ergodic MDP. Recall that by [22, Theorem 1], the regret under A =
Burnetas-Katehakis for MDP M satisfies:

lim sup
T→∞

E[RegretA,T ]
log(T ) ≤ cbk(M) :=

∑
(s,a)∈CM

ϕ(s, a)
KL(p(·|s, a), q?s,a) ,

where CM denotes the set of critical state-action pairs in M (see Chapter 2), and
where for any (s, a) ∈ CM we define

q?s,a ∈ arg min
q∈Λ(s,a)

KL(p(·|s, a), q) .

Recall that q?s,a ∈ Λ(s, a) implies µ(s, a) + q?s,a
>b? > g? + b?(s) so that

ϕ(s, a) = g? + b?(s)− µ(s, a)− p(·|s, a)>b? < (q?s,a − p(·|s, a))>b? .

Hence, we get for any (s, a) ∈ CM ,

ϕ(s, a)
KL(p(·|s, a), q?s,a) ≤

[
(q?s,a − p(·|s, a))>b?

]2
ϕ(s, a)KL(p(·|s, a), q?s,a) ≤

2Vq?s,a(b?)
ϕ(s, a) , (6.11)

thanks to Corollary 6.1 in the last inequality.
To derive an explicit upper bound for ϕ(s, a)/KL(p(·|s, a), q?s,a) (and in turn for

cbk(M)), we bound Vq?s,a(b?). To this end, fix state-action pair (s, a) ∈ CM . To
ease notation, define the short-hands P = p(·|s, a) and Q = q?s,a. We have that

VQ(b?) =
∑
x

Q(x)(b?(x)− EQ[b?])2

=
∑
x

P (x)(b?(x)− EQ[b?])2 +
∑
x

(Q(x)− P (x))(b?(x)− EQ[b?])2

≤ 2
∑
x

P (x)(b?(x)− EP [b?])2 + 2 (EP [b?]− EQ[b?])2︸ ︷︷ ︸
G1

+
∑
x

(Q(x)− P (x))(b?(x)− EQ[b?])2

︸ ︷︷ ︸
G2

.

Defining Ψ := S(b?), we observe that

G1 ≤ Ψ2‖P −Q‖21 ≤ 2Ψ2KL(P,Q) ,

thanks to Pinsker’s inequality. Moreover, applying Cauchy-Schwarz inequality and
Lemma A.7 gives

G2 ≤
∑

x:Q(x)≥P (x)

Q(x)− P (x)√
Q(x)

√
Q(x)(b?(x)− EQ[b?])2
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≤
√ ∑
x:Q(x)≥P (x)

(Q(x)− P (x))2/Q(x)
√ ∑
x:Q(x)≥P (x)

Q(x)(b?(x)− EQ[b?])4

≤ Ψ
√

2VQ(b?)KL(P,Q) .

Combining these bounds, we deduce

VQ(b?) ≤ 2VP (b?) + Ψ
√

2VQ(b?)KL(P,Q) + 4Ψ2KL(P,Q) ,

or equivalently(√
VQ(b?)−Ψ

√
KL(P,Q)/2

)2
≤ 2VP (b?) + 9

2Ψ2KL(P,Q) .

We thus get √
VQ(b?) ≤

√
2VP (b?) + 2Ψ

√
2KL(P,Q) ,

and VQ(b?) ≤ 4VP (b?) + 16Ψ2KL(P,Q). Define the short-hand ϕ := ϕ(s, a). Now
combining the above bound with (6.11), we deduce

ϕ

KL(P,Q) ≤
2VQ(b?)

ϕ
≤ 4VP (b?) + 16Ψ2KL(P,Q)

ϕ
.

Defining X = ϕ/KL(P,Q), A = 4VP (b?)/ϕ, and B = 16Ψ2, the above inequality
reads X ≤ A+B/X. Solving for X yields X ≤ A/2 +

√
B +A2/4, and so

ϕ

KL(P,Q) ≤
2VP (b?)

ϕ
+

√
16Ψ2 + 4VP (b?)2

ϕ2

≤ 4VP (b?)
ϕ

+ 4Ψ ,

thus giving

cbk(M) ≤ 4
∑

(s,a)∈CM

Vp(·|s,a)(b?)
ϕ(s, a) + 4SAΨ

and completing the proof. �

6.G Proof of Theorem 6.2

In this section, we provide the regret analysis of KL-Ucrl. We will try to follow the
notations used in the proof of [25, Theorem 2].

We first recall the following result indicating that the true model belongs to the
set of plausible MDPs with high probability. Recall that for δ ∈ (0, 1] and T > 1,

Cµ := Cµ(T, δ) = log(4SA log(T )/δ)/1.99
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Cp := Cp(T, δ) = S (B + log(G)(1 + 1/G)) ,

where B := B(T, δ) = log(2eS2A log(T )/δ) and G := G(T, δ) = B + 1/ log(T ).
Moreover, observe that Cp(T, δ) ≤ 4SB.

Lemma 6.5 ([24, Proposition 1]). For all T ≥ 1 and δ > 0, and for any pair (s, a)
it holds that

P
(
∀t ≤ T, |µ̂t(s, a)− µ(s, a)| ≤

√
Cµ/Nt(s, a)

)
≥ 1− δ

SA

P
(
∀t ≤ T, Nt(s, a)KL(p̂t(s, a), p(·|s, a)) ≤ Cp

)
≥ 1− δ

SA
,

In particular, P(∀t ≤ T, M ∈Mt) ≥ 1− 2δ.

Next we prove the theorem.

Proof of Theorem 6.2. Let T ≥ 1 and δ ∈ (0, 1). Fix algorithm A = KL-Ucrl.
Denote by m(T ) the number of episodes started by KL-Ucrl up to time step T
(hence, 1 ≤ k ≤ m(T )).

Applying Azuma-Hoeffding inequality (see Theorem B.3), as in the proof of [24,
Theorem 1], we deduce that

RegretA,T = Tg? −
T∑
t=1

r(st, at) ≤
∑
s,a

NT (s, a)(g? − µ(s, a)) +
√

1
2T log(1/δ) ,

with probability at least 1− δ. The regret up to time T can be decomposed as the
sum of the regret incurred in various episodes. Let ∆k denote the regret in episode
k:

∆k :=
∑
s,a

vk(s, a)(g? − µ(s, a)) .

Therefore, Lemma 6.5 implies that with probability at least 1− 3δ,

RegretA,T ≤
m(T )∑
k=1

∆kI{M ∈Mk}+
√

1
2T log(1/δ) .

Consider an episode k ≥ 1 such that M ∈ Mk. The pair (s, a) is considered as
sufficiently sampled if its number of observations satisfies Nk(s, a) ≥ `s,a, where

`s,a = `s,a(T, δ) := max
{128SBmax(Ψ2, 1)

ϕ(s, a)2 , 32SB
( log(D)

log(1/γ)

)2}
, ∀s, a,

where γ denotes the contraction factor of the mapping induced by the transition
probability matrix P? of the optimal policy (γ can be determined as a function of
elements of P?).
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Consider the case where all state-action pairs are sufficiently sampled (we anal-
yse the case where some pairs are under-sampled (i.e., not sufficiently sampled) at
the end of the proof). We have

|µ̃k(s, a)− µ(s, a)| ≤ |µ̃k(s, a)− µ̂k(s, a)|+ |µ̂k(s, a)− µ(s, a)| ≤ 2

√
Cµ

Nk(s, a)+ .

Hence,

∆k =
∑
s,a

vk(s, a)(g? − µ̃k(s, a)) +
∑
s,a

vk(s, a)(µ̃k(s, a)− µ(s, a))

≤
∑
s,a

vk(s, a)(g? − µ̃k(s, a)) + 2
√
Cµ
∑
s,a

vk(s, a)√
Nk(s, a)+

.

Let µ̃k and P̃k respectively denote the reward vector and transition proba-
bility matrix induced by policy π̃k on M̃k, i.e., µ̃k := (µ̃k(s, π̃k(s)))s, P̃k :=(
p̃k(s′|s, π̃k(s))

)
s,s′

. By Bellman’s optimality equation, g̃k − µ̃k(s, a) = (P̃k − I)b̃k.
Hence, defining vk = (vk(s, π̃k(s))s yields

∆k ≤ vk(P̃k − I)b̃k + (g? − g̃k)vk1 + 2
√
Cµ
∑
s,a

vk(s, a)√
Nk(s, a)+

.

We use the following decomposition for the first term in the right-hand side of
the above inequality:

vk(P̃k − I)b̃k = vk(P̃k − Pk)b?︸ ︷︷ ︸
F1(k)

+ vk(P̃k − Pk)(b̃k − b?)︸ ︷︷ ︸
F2(k)

+ vk(Pk − I)b̃k︸ ︷︷ ︸
F3(k)

.

Let c = 1 +
√

2. The following two lemmas provide upper bounds for F1(k) and
F2(k):

Lemma 6.6. For all k ∈ N such that M ∈ Mk, with probability at least 1 − δ, it
holds that

F1(k) ≤ (4 + 6
√

2)
√
SB

∑
s,a

vk(s, a)

√
V?
s,a

Nk(s, a)+ + 63ΨS3/2B3/2
∑
s,a

vk(s, a)
Nk(s, a)+ .

Lemma 6.7. For all k ∈ N such that M ∈Mk, it holds that

F2(k) + (g? − g̃k)vk1 ≤
(
2
√

32SB + 1
)∑
s,a

vk(s, a)√
Nk(s, a)+

.
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Analysis of Term F3. Now we bound the term
∑m(T )
k=1 F3(k). To this end, simi-

larly to the proof of [25, Theorem 2] and [24, Theorem 1], we define the martingale
difference sequence (Zt)t≥1, where Zt = (p(·|st, at) − est+1)b̃k(t)I{M ∈ Mk(t)} for
t ∈ {tk, tk+1 − 1}, where k(t) denotes the episode containing t. Note that for all
t, |Zt| ≤ 2D. Now applying Azuma-Hoeffding inequality (see Theorem B.3), we
deduce that with probability at least 1− δ

m(T )∑
k=1

F3(k) ≤
T∑
t=1

Zt + 2m(T )D

≤ D
√

2T log(1/δ) + 2DSA log2
( 8T
SA

)
.

The regret due to under-sampled state-action pairs. To analyze the under-
sampled regime, where some state-action pair is not sufficiently sampled, we borrow
some techniques from [51]. For any state-action pair (s, a), let Ls,a denote the set of
indexes of episodes in which (s, a) is chosen and yet (s, a) is under-sampled; namely
k ∈ Ls,a if π̃k(s) = a and Nk(s, a) ≤ `s,a. Furthermore, let τk(s, a) denote the
length of such an episode.

Consider an episode k ∈ Ls,a. By Markov’s inequality, with probability at least
1
2 , it takes at most 2TM to reach state s from any state s′ in k, where TM denotes
the mixing time of M . Let us divide episode k into b τk(s,a)

2TM c sub-episodes, each
with length greater than 2TM . It then follows that in each sub-episode, (s, a) is
visited with probability at least 1

2 .
Using Hoeffding’s inequality, if we consider n such sub-episodes, with probability

at least 1− δ
SA ,

N(s, a) > n/2−
√
n log(SA/δ).

Now we find n that implies N(s, a) < `s,a. Noting that x 7→ x
2 −
√
αx is increasing

for x ≥ α, we have that for n > 10 max(`s,a, log(SA/δ)),

n/2−
√
n log(SA/δ) > 5 max(`s,a, log(SA/δ))−

√
10 max(`s,a, log(SA/δ)) log(SA/δ)

> max(`s,a, log(SA/δ)) .

Hence, with probability at least 1− δ
SA , it holds that∑

k∈Ls,a

⌊τk(s, a)
2TM

⌋
≤ 10 max(`s,a, log(SA/δ)) .

Hence, the regret due to under-sampled state-action pairs can be upper bounded
by ∑

s,a

∑
k∈Ls,a

τk(s, a) ≤ 20TM
∑
s,a

max(`s,a, log(SA/δ)) + 2TM
∑
s,a

|Ls,a|
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≤ 20TM
∑
s,a

max(`s,a, log(SA/δ)) + 2TMS2A2 log2
( 8T
SA

)
,

with probability at least 1− δ. Here we used that |Ls,a| ≤ m(T ).
Now applying Lemmas 6.6 and 6.7 together with the above bounds, and using

the fact Cµ ≤ B/1.99, we deduce that with probability at least 1− 3δ

m(T )∑
k=1

∆kI{M ∈Mk} ≤ (4 + 6
√

2)
√
SB

∑
s,a

vk(s, a)√
Nk(s, a)+

√
V?
s,a

+ (2
√

32SB + 3
√
B + 1)

∑
s,a

vk(s, a)√
Nk(s, a)+

+ 63ΨS3/2B3/2
∑
s,a

vk(s, a)
Nk(s, a)+

+D
√

2T log(1/δ) + 2DSA log2
( 8T
SA

)
+ 20TM

∑
s,a

max(`s,a, log(SA/δ)) + 2TMS2A2 log2
( 8T
SA

)
.

To simplify the above bound, we will use Lemmas 6.9, 6.10, and 6.11 together
with Jensen’s inequality:

m(T )∑
k=1

∑
s,a

vk(s, a)√
Nk(s, a)+

≤ c
∑
s,a

√
NT (s, a) ≤ c

√
SAT ,

m(T )∑
k=1

∑
s,a

vk(s, a)√
Nk(s, a)+

√
V?
s,a ≤ c

∑
s,a

√
V?
s,aNT (s, a) ≤ c

√
T
∑
s,a V?

s,a ,

m(T )∑
k=1

∑
s,a

vk(s, a)
Nk(s, a)+ ≤ 2

∑
s,a

log(NT (s, a)) + SA ≤ 2SA log
(
T
SA

)
+ SA .

Putting everything together, we deduce that with probability at least 1− 6δ,

RegretA,T ≤
m(T )∑
k=1

∆kI{M ∈Mk}+
√

1
2T log(1/δ)

≤ 31
√
S
∑
s,a

V?
s,aTB + 35S

√
ATB + (

√
2D + 1)

√
T log(1/δ)

+ 126S5/2AB5/2 log
(
T
SA

)
+ 2DSA log2

( 8T
SA

)
+ 20TM

∑
s,a

max(`s,a, log(SA/δ)) + 2TMS2A2 log2
( 8T
SA

)
+ 63S5/2A .
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Hence,

RegretA,T ≤ 31
√
S
∑
s,a

V?
s,aTB + 35S

√
ATB + (

√
2D + 1)

√
T log(1/δ)

+ Õ
(
SA(TMSA+D + S3/2) log(T )

)
.

Noting that B = O(log(log(T )/δ)) gives the desired scaling and completes the
proof. �

6.G.1 Proof of Lemma 6.6
We have

F1(k) = vk(P̂k − Pk)b?︸ ︷︷ ︸
G1

+ vk(P̃k − P̂k)b?︸ ︷︷ ︸
G2

Next we provide upper bounds for G1 and G2.

Term G1. We have

G1 =
∑
s

vk(s, π̃k(s))
∑
s′

b?(s′)
(
p̂k(s′|s, π̃k(s))− p(s′|s, π̃k(s))

)
≤
∑
s,a

vk(s, a)
∑
s′

b?(s′)
(
p̂k(s′|s, a)− p(s′|s, a)

)
.

Fix s ∈ S and a ∈ A. Define the short-hands p = p(·|s, a), p̂k = p̂k(·|s, a), and
N+
k = Nk(s, a)+. Applying Corollary 6.1 (the first statement) and using the fact

that M ∈Mk give:∑
s′

b?(s′)(p̂k(s′)− p(s′)) ≤
√

2V?
s,aKL(p̂k, p) + 2

3ΨKL(p̂k, p)

≤
√

8SV?
s,aB/N

+
k + 8ΨSB

3N+
k

.

Therefore,

G1 ≤
√

8SB
∑
s,a

vk(s, a)
√

V?
s,a/Nk(s, a)+ + 8

3ΨSB
∑
s,a

vk(s, a)/Nk(s, a)+ .

Term G2. We have

G2 ≤
∑
s,a

vk(s, a)
∑
s′

b?(s′)
(
p̃k(s′|s, a)− p̂k(s′|s, a)

)
.
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Fix s ∈ S and a ∈ A. Define the short-hands p̂k = p̂k(·|s, a), p̃k = p̃k(·|s, a),
and N+

k = Nk(s, a)+. An application of Lemma 6.2 and Lemma 6.3 gives∑
s′

b?(s′)(p̃k(s′)− p̂k(s′)) ≤
(√
Vp̃k,p̂k(b?) +

√
Vp̂k,p̃k(b?)

)√
2KL(p̂k, p̃k) + ΨKL(p̂k, p̃k)

≤ c
√

2Vp̂k(b?)KL(p̂k, p̃k) + Ψ(1 + 3
√

2S)KL(p̂k, p̃k) ,

where c = 1 +
√

2.
Note that when M ∈ Mk, an application of Lemma 6.8, stated below, implies

that with probability at least 1− δ,

∑
s′

b?(s′)(p̃k(s′)− p̂k(s′)) ≤ 4c
√
SV?

s,aB/N
+
k + ΨS3/2B3/2

N+
k

(12c
√

2 + 12
√

2 + 4/
√
S)

≤ 4c
√
SV?

s,aB/N
+
k + 61ΨS3/2B3/2

N+
k

,

where we used that S ≥ 2. Multiplying by vk(s, a) and summing over s, a yields

G2 ≤ 4c
√
SB

∑
s,a

vk(s, a)
√

V?
s,a/Nk(s, a)+ + 61ΨS3/2B3/2

∑
s,a

vk(s, a)/Nk(s, a)+ .

The lemma follows by combing the bounds on G1 and G2. �

Lemma 6.8. For any episode k ≥ 1 such that M ∈Mk, it holds that for any pair
(s, a), √

Vp̂k(·|s,a)(f) ≤
√

2Vp(·|s,a)(f) + 6SS(f)B√
Nk(s, a)

with probability at least 1− δ.

Proof. Let δ ∈ (0, 1) and (s, a) ∈ S × A. Consider an episode k ≥ 1 such that
M ∈ Mk, and define p̂k = p̂k(·|s, a), p = p(·|s, a), and Nk = Nk(s, a). Observe
that by a Bernstein-like inequality [113, Lemma F.2] (see Theorem B.4), we have:
for all s′ ∈ S, with probability at least 1− δ,

p̂k(s′)− p(s′) ≤

√
2p(s′)Cb
Nk

+ 2Cb
Nk

,

with Cb = Cb(t, δ) := log(3 log(max(e, t))/δ). It then follows that with probability
at least 1− δ,

Vp̂k(f) =
∑
s′

p̂k(s′)(f(s′)− Ep̂k [f ])2
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≤
∑
s′

p(s′)(f(s′)− Ep̂k [f ])2 +
√

2Cb
Nk

∑
s′

√
p(s′)(f(s′)− Ep̂k [f ])2

+ 2Cb
Nk

∑
s′

(f(s′)− Ep̂k [f ])2

≤
∑
s′

p(s′)(f(s′)− Ep̂k [f ])2

︸ ︷︷ ︸
Z1

+
√

2Cb
Nk

∑
s′

√
p(s′)(f(s′)− Ep̂k [f ])2

︸ ︷︷ ︸
Z2

+2CbSS(f)2

Nk
.

(6.12)

Next we bound Z1 and Z2. Observe that

Z1 ≤ 2
∑
s′

p(s′)(f(s′)− Ep[f ])2 + 2(Ep[f ]− Ep̂k [f ])2

≤ 2Vp(f) + 4S(f)2KL(p̂k, p) ,

where the last inequality follows from

(Ep[f ]− Ep̂k [f ])2 ≤ S(f)2‖p− p̂k‖21 ≤ 2S(f)2KL(p̂k, p) . (6.13)

For Z2 we have

Z2 ≤ 2
∑
s′

√
p(s′)(f(s′)− Ep[f ])2 + 2(Ep[f ]− Ep̂k [f ])2

∑
s′

√
p(s′) .

Now, using Cauchy-Schwarz inequality∑
s′

√
p(s′)(f(s′)− Ep[f ])2 ≤

√∑
s′

p(s′)(f(s′)− Ep[f ])2
∑
s′

(f(s′)− Ep[f ])2

≤
√
SVp(f)S(f) ,

so that using (6.13), we deduce that

Z2 ≤ 2S(f)
√
SVp(f) + 4S(f)2KL(p̂k, p)

∑
s′

√
p(s′)

≤ 2S(f)
√
SVp(f) + 4S(f)2KL(p̂k, p)

√
S ,

where the last inequality follows from Jensen’s inequality:

∑
s′

√
p(s′) =

∑
s′

p(s′)

√
1

p(s′) ≤
∑
s′

√
p(s′)
p(s′) =

√
S .

Putting together, we deduce that with probability at least 1− δ,

Vp̂k(f) ≤ 2Vp(f) + 2S(f)
√

2SCb
Nk

(√
Vp(f) + 2S(f)KL(p̂k, p)

)
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+ S(f)2
(

4KL(p̂k, p) + 2SCb
Nk

)
.

Noting that M ∈Mk, we obtain

Vp̂k(f) ≤ 2Vp(f) + S(f)

√
8SVp(f)Cb

Nk
+ 4S(f)2

√
2SCbCp
N

3/2
k

+ (4Cp + 2SCb)S(f)2

Nk

≤ 2Vp(f) + S(f)

√
8SVp(f)Cb

Nk
+ SS(f)2

Nk
(16B

√
2SCb + 16B + 2Cb)

≤ 2Vp(f) + S(f)

√
8SVp(f)B

Nk
+ 36S3/2B3/2S(f)2

Nk
,

with probability at least 1− δ, where we used Cp = 4SB, Cb ≤ B, and S ≥ 2. The
proof is concluded by observing that√

Vp̂k(f) ≤
√

2Vp(f) + S(f)
√
SB

Nk
+ 6S(f)B

√
S3/2

Nk

≤
√

2Vp(f) + 6SS(f)B√
Nk

,

with probability at least 1− δ.

6.G.2 Proof of Lemma 6.7
Let k ≥ 1 be the index of an episode such that M ∈ Mk. Let ?̃ := ?̃k denote the
optimal policy inMk. The proof proceeds in three steps.

Step 1 We remark that by definition of the bias functions, it holds that

b̃k − b? = (g? − g̃k)1 + µ̃k + P̃kb
? − µ? − P?b? + P̃k(b̃k − b?)

≤ (g̃?̃ − g̃k)1 + µ̃k − µk + (P̃k − Pk)b? + P̃k(b̃k − b?)− ϕk ,

where we define ϕk(s) := ϕ(s, π̃k(s)) for all s. Defining

ξk(s) = 2
√
Cµ/Nk(s, π̃k(s))+, ζk(s) = Ψ

√
32SB/Nk(s, π̃k(s))+ ,

we obtain the following bound:

b̃k − b? ≤
1√
tk

1 + ξk + ζk − ϕk + P̃k(b̃k − b?) .

It is straightforward to check that the assumption Nk(s, π̃k(s)) ≥ `s,π̃k(s) for all s
implies

b̃k − b? ≤ P̃k(b̃k − b?) . (6.14)
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Note also that ϕ(s, π̃k(s)) ≥ 0 since ? is b?-improving.
On the other hand, it holds that

b? − b̃?̃ = (g̃?̃ − g?)1 + µ? + P?b
? − µ̃?̃ − P̃?̃b̃?̃

≤ (g̃?̃ − g?)1 + µ? + P?b
? − µ? − P?b̃?̃

= (g̃?̃ − g?)1 + P?(b? − b̃?̃) .

Noting P?1 = 1, and since all entries of P? are non-negative, we thus get for all
J ∈ N

b? − b̃?̃ ≤ J(g̃?̃ − g?)1 + P J? (b? − b̃?̃) .

Step 2 Let us now introduce S+
s = {x ∈ S : P̃k(s, x) > Pk(s, x)} as well as its

complementary set S−s = S \ S+
s . Using (6.14), b̃k − b? ≤ 0 so that

vk(P̃k − Pk)(b̃k − b?) =
∑
s

vk(s, π̃k(s))
∑
x∈S

(P̃k(s, x)− Pk(s, x))(b̃k(x)− b?(x))

≤
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x)︸ ︷︷ ︸
≥0

)(b?(x)− b̃k(x)) .

We thus obtain

vk(P̃k − Pk)(b̃k − b?) ≤
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b?(x)− b̃?̃(x))

+
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b̃?̃(x)− b̃k(x))

≤
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x)

+
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(b̃?̃(x)− b̃k(x))

− J
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))(g? − g̃?̃) . (6.15)

We thus get∑
s

vk(s, π̃k(s))
(

(P̃k − Pk)(b̃k − b?)(s) + g? − g̃?̃
)

≤
∑
s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x) + ηk

+
∑
s

vk(s, π̃k(s))
[
1− J

∑
x∈S−s

(Pk(s, x)− P̃k(s, x))
]
(g? − g̃?̃) ,

(6.16)
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where ηk :=
∑
s vk(s, π̃k(s))

∑
x∈S−s (Pk(s, x)− P̃k(s, x))(b̃?̃(x)− b̃k(x)) is controlled

by the error of computing b̃k in episode k. In particular, for the considered variant
of the algorithm,

ηk ≤
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1
1√
tk

≤
√

32SB
∑
s

vk(s, π̃k(s))
Nk(s, π̃k(s))+ ,

where we used tk ≥ Nk(s, π̃k(s)) for all s.

Step 3 It remains to choose J . To this end, we remark that the mapping induced
by P? is a contractive mapping, namely there exists some γ < 1 such that for any
function f ,

S(P?f) ≤ γS(f) .

Let us choose J ≥ log(D)
log(1/γ) , so that with a simple upper bound, it comes∑

s

vk(s, π̃k(s))
∑
x∈S−s

(Pk(s, x)− P̃k(s, x))[P J? (b? − b̃?̃)](x)

≤
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1
S(P J? (b? − b̃??̃))

2

≤
∑
s

vk(s, π̃k(s))‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1De− log(D)

≤
∑
s

vk(s, π̃k(s))

√
32SB

Nk(s, π̃k(s))+ .

In the sequel, we take J = log(D)
log(1/γ) . This enables us to control the first two

terms in (6.16) and it remains to control the term

∑
s

vk(s, π̃k(s))
[
1− J

∑
x∈S−s

(Pk(s, x)− P̃k(s, x))
]
(g? − g̃?̃) .

In particular we would like to ensure that the bracket is non-negative, since in that
case, it is multiplied by a term that is negative. To this end, we note that the term
in brackets is lower bounded by

1− J‖p(·|s, π̃k(s))− p̃k(·|s, π̃k(s))‖1 ≥ 1− log(D)
log(1/γ)

√
32SB

Nk(s, π̃k(s))+ ,



158 Variance-Aware Regret Bounds for RL

and is thus guaranteed to be non-negative since

Nk(s, π̃k(s)) ≥ `s,π̃k(s) ≥ 32SB
( log(D)

log(1/γ)

)2
.

Putting together, we finally have shown that

vk(P̃k − Pk)(b̃k − b?) + vk(g? − g̃k)1 ≤ vk(P̃k − Pk)(b̃k − b?) + vk(g? − g̃?̃)1 + 1√
tk
vk1

≤
(
2
√

32SB + 1
)∑

s

vk(s, π̃k(s))√
Nk(s, π̃k(s))+

≤
(
2
√

32SB + 1
)∑
s,a

vk(s, a)√
Nk(s, a)+

,

which completes the proof.
�

6.H Technical Lemmas

Lemma 6.9 ([25, Lemma 19]). Consider a sequence (zk)1≤k≤n with 0 ≤ zk ≤
Zk−1 := max

{
1,
∑k−1
i=1 zi

}
for k ≥ 1 and Z0 ≥ 1. Then,

n∑
k=1

zk√
Zk−1

≤ (
√

2 + 1)
√
Zn .

Lemma 6.10. Consider a sequence (zk)1≤k≤n with 0 ≤ zk ≤ Zk−1 := max
{

1,
∑k−1
i=1 zi

}
for k ≥ 1 and Z0 = z1. Then,

n∑
k=1

zk
Zk−1

≤ 2 log(Zn) + 1 .

Proof. We prove the lemma by induction over n. For n = 1, we have z1/Z0 = 1.
Since Z1 = max{1, z1}, it holds that z1/Z0 ≤ 2 log(Z1) + 1.

Now consider n > 1. By the induction hypothesis, it holds that
∑n−1
k=1 zk/Zk−1 ≤

2 log(Zn−1) + 1. Now it follows from the facts zn = Zn − Zn−1 and Zn−1 ≤ Zn ≤
2Zn−1 for n ≥ 2, that

n∑
k=1

zk
Zk−1

≤ 2 log(Zn−1) + zn
Zn−1

+ 1

≤ 2 log(Zn−1) + 2Zn − Zn−1

Zn
+ 1

= 2 log(Zn−1) + 2
(

1− 1
Zn/Zn−1

)
+ 1 ≤ 2 log(Zn) + 1 ,
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where the last inequality follows from log(x) ≥ 1 − 1
x valid for all x ≥ 1 (see, e.g.,

[98]). This concludes the proof.

Lemma 6.11. Let αi, . . . , αd be non-negative numbers and T ≥ 1, and denote by
V the optimal value of the following problem:

max
x

d∑
i=1

√
αixi

subject to :
d∑
i=1

xi = T ,

xi ≥ 0, i = 1, . . . , d .

Then, V =
√
T
∑d
i=1 αi

Proof. Introduce the partial Lagrangian

L(x, λ) =
d∑
i=1

√
αixi + λ

(
T −

d∑
i=1

xi

)
.

Writing KKT conditions, we observe that the optimal point x?i , i = 1, . . . , d satisfies

αi

2
√
x?i
− λ = 0, ∀i and

d∑
i=1

x?i − T = 0 .

Hence, we obtain x?i = αi/(4λ2) (note that this choice of x?i satisfies the inequality
constraints too). Plugging this into the equality constraint, it follows that λ =√

1
4T
∑d
j=1 αj , thus giving x?i = αiT/

∑d
j=1 αj . Therefore,

V =
d∑
i=1

√
αix?i =

d∑
i=1

αi∑d
j=1 αj

√
T
∑d
j=1 αj =

√
T
∑d
j=1 αj ,

which completes the proof.





Chapter 7

Conclusions and Future Work

This chapter concludes the thesis by summarizing the main results and proposing
some directions for future research.

7.1 Conclusions

In Chapter 3, we investigated stochastic combinatorial MABs with Bernoulli re-
wards. Leveraging the theory of adaptive control of Markov chains with unknown
transition probabilities, we derived tight and problem-specific lower bounds on the
regret under bandit and semi-bandit feedback. These bounds are unfortunately
implicit (more precisely, they are optimal values of semi-infinite linear programs).
We then investigated how these lower bounds scale with the dimension of the
set of arms A for some problems of interest. We proposed the ESCB algorithm
for the case of semi-bandit feedback and showed that its regret grows at most as
O(
√
md∆−1

min log(T )) after T rounds, where d denotes the number of basic actions
(i.e., the dimension of A), and m denotes the maximal number of basic actions per
arm. ESCB improves over the state-of-the-art algorithms proposed for combinato-
rial MABs in the literature. ESCB is unfortunately computationally expensive. To
alleviate its computational complexity, we proposed Epoch-ESCB and assessed its
performance numerically.

In Chapter 4, we studied stochastic online shortest-path routing, which was for-
mulated as a stochastic combinatorial MAB problem with geometrically distributed
rewards. Three types of routing policies were considered that include source routing
with bandit feedback, source routing with semi-bandit feedback, and hop-by-hop
routing. We presented regret lower bounds for each type of routing. Our derivations
showed that the regret lower bounds for source routing policies with semi-bandit
feedback and that for hop-by-hop routing policies are identical, indicating that tak-
ing routing decisions hop by hop does not bring any advantage. On the contrary, the
regret lower bounds for source routing policies with bandit and semi-bandit feed-
back can be significantly different, illustrating the importance of having semi-bandit
feedback. In the case of semi-bandit feedback, we proposed two source routing
policies, namely GeoCombUCB-1 and GeoCombUCB-2, which attain a regret scaling as
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O(
√
md∆−1

minθ
−2
min log(N)) after transmitting N packets. Furthermore, we provided

an improved regret bound for KL-SR [33] growing as O(md∆−1
minθ

−2
min log(N)). These

routing policies strike an interesting trade-off between computational complexity
and performance, and exhibit better regret upper bounds than state-of-the-art al-
gorithms.

In Chapter 5, we investigated a generic sequential resource allocation under
semi-bandit feedback, where a decision maker wishes to quickly learn and converge
to an approximate Proportionally Fair (PF) allocation, referred to as APF alloca-
tion. The materials presented in that chapter provide a precise description of the
system model as well as a notion of regret that captures the rate at which the allo-
cation chosen by the decision maker can converge towards the APF allocation. We
derived an asymptotic problem-specific regret lower bound for a class of policies for
this problem and further showed that it scales as Ω(mθ−1

min∆−1
min log(T )) for specific

instances. We also presented an optimistic algorithm for learning APF allocation,
which we called ES-APF, enjoying a regret bound of order O(m3θ−1

min∆−1
min log(T )).

Chapter 6 concerns RL in MDPs under average-reward criterion. We revisited
some existing lower bounds in the literature and provided alternative presentations,
which make appear the local variance of the bias function of the MDP. Further-
more, we revisited the regret analysis of KL-Ucrl [24] and showed that the leading
term Õ(DS

√
AT ) obtained for the regret of KL-Ucrl in [24] can be reduced to

Õ
(√

S
∑
s,a V?

s,aT + D
√
T
)
. Computations of these regret bounds in some il-

lustrative MDP showed that the reported upper bound may improve an order of
magnitude over the existing ones (as observed experimentally in [114]), thus high-
lighting the fact that trading the diameter of the MDP to the local variance of the
bias function may result in huge improvements. Our regret analysis relies on novel
transportation concentration inequalities presented in that chapter, which could
be of independent interest in the performance analysis of RL in MDPs in various
setups.

7.2 Future Work

There are several directions to extend the work carried out in this thesis. Some of
them are outlined next.

Analysis of TS for combinatorial MAB problems. One intriguing direction
for future research is to analyze the performance of TS for the combinatorial MAB
problems considered. Despite its popularity in the MAB literature, TS is seldom
studied for combinatorial problems except for the recent work of Komiyama et
al. [56], which concerns the very simple setting of fixed-size subsets. Regret analysis
of TS for generic combinatorial structures proves quite challenging. Nonetheless, it
is a promising direction since (i) if the offline problem is polynomial-time solvable,
efficient implementations for TS might exist (because arm selection can be cast as
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the same linear combinatorial problem as the offline problem), and (ii) in empirical
evaluations TS exhibits superior performance over existing algorithms.

Efficient algorithms for problems that admit efficient oracles. The cur-
rent implementation of ESCB presented in Chapter 3 (as well as that of GeoCombUCB
in Chapter 4) is computationally expensive as it requires O(|A|) computations in
each round and as |A| could well grow exponentially with the number of basic
actions d. A promising future work is to present a wiser way to implement ESCB
efficiently for problems that admit efficient oracles. To determine whether or not
such an implementation exists will provide a further insight into the trade-off be-
tween computational complexity and performance (in terms of regret) of online
combinatorial problems. This trade-off is certainly hard to characterize and yet of
extreme importance. To the best of our knowledge, existing literature does not pro-
vide rigorous results about such a trade-off. For the case of shortest-path routing
(as an instance of a problem admitting an efficient oracle), our proposed algorithms
in Chapter 4 provide a first insight, up to our knowledge, into such a trade-off.

Non-linear reward functions. In this thesis we mostly concentrated on combi-
natorial problems with modular objective functions. Nonetheless, a lot of interesting
applications may be cast as combinatorial MABs whose average reward function is
non-linear. An interesting direction to continue this work is to devise algorithms
for these cases. A particular case of interest is submodular reward functions under
matroid constraints. There are numerous applications of combinatorial problems
that fall within this framework, which include bidding in ad exchange [116], product
search [117], leader selection in leader-follower multi-agent systems [118], coverage
problem, and influence maximization [119]. Despite some recent studies (see, e.g.,
[120]), there are only few results for stochastic MAB problems with submodular re-
ward functions in the stochastic setting, though these problems have received more
attention in the adversarial setting [121, 116].

Stochastic combinatorial MABs under bandit feedback. Stochastic com-
binatorial MABs under bandit feedback have seldom been studied, though the
problem is very well investigated in the adversarial setting.

Although the setting of semi-bandit feedback is strongly motivated by several
applications involving multiple agents, that of bandit feedback does arguably make
more sense for some other applications. A notable instance is shortest-path routing
scenarios in which the decision maker has only access to the end-to-end (bandit)
feedback rather than per-link (semi-bandit) feedback. Therefore, the need for de-
vising arm selection algorithms for bandit feedback is evident from a practical
standpoint. Although this task could be much more complicated than that of semi-
bandit feedback, we conjecture that for the case of matroids, it might be relatively
straightforward due to the unimodality of these structures.
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Learning PF allocations. An interesting future direction relevant to the re-
source allocation problem studied in Chapter 5 is to devise an algorithm for learn-
ing the PF allocation with analytical performance guarantees. A natural candidate
to accommodate this task is an algorithm that relies on the KL-UCB index (for each
task-server pair) and consists in computing the optimistic PF allocation, namely the
solution to the PF problem parameterized by the indexes. It is however much more
difficult to carry out the corresponding regret analysis due to random nature of the
received feedback. As a future work, we plan to derive a finite-time regret bound
for such an algorithm as well as a regret lower bound for learning such allocations.

Minimax-optimal regret bounds for undiscounted RL. In view of the min-
imax lower bound presented in Chapter 6, there is a possibility to remove a factor√
S from the regret upper bound of KL-Ucrl. In the simpler setting of episodic RL

with known episode horizonH, recently a few studies have shown that by taking ad-
vantage of this knowledge, it is possible to devise minimax-optimal RL algorithms,
namely algorithms whose regret grows as Õ(

√
HSAT ); see, e.g., [112]. We note,

however that such techniques do not apply straightforwardly to RL with average
reward criterion, which was the setup of interest in Chapter 6. Nonetheless, we
believe that combining techniques of such studies with the tools developed in this
thesis is a promising research direction.

Exploiting structure in reinforcement learning. Recalling the regret bounds
in Chapter 6, we have seen that state-of-the-art algorithms typically incur a problem-
independent (resp. problem-independent) regret bound, whose leading term scales
as S
√
T (resp. S2 log(T )), where only dependencies on S and T are shown. More-

over, in view of existing lower bounds, a regret of order
√
ST (or problem-dependent

regret of S log(T )) cannot be beaten by any admissible algorithm. An implication
of these bounds is that existing algorithms would work well for when the size of
state-space is not very large. On the other hand, the majority of nowadays applica-
tions admit a huge state-space, and often, endowed with some structural properties.
In order to successfully apply RL algorithms to such real-world applications, it is
therefore crucial to exploit the structural properties of the underlying problems.
Using the structural properties could result in the reduction of the corresponding
state-space, which would in turn bring huge potential benefits.

To be more specific, identifying the problem structure would result in a reduced
model with orders of magnitude smaller state-space (and possibly actions). Now
devising RL algorithms on this reduced model, one can therefore hope for incurring
much lower regret than that could be obtained by an structure-oblivious algorithm.
Exploiting problem structure in RL is definitely a challenging task that, to the
best of our knowledge, is not rigorously investigated in the literature and exist-
ing heuristic-based algorithms for discounted RL capable of doing so often fail to
provide performance guarantees in terms of regret or sample complexity.

A crucial step in the design of an structure-aware algorithm for RL is state
aggregation. There are some structure-aware algorithms for RL in MDPs with con-
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tinuous state-space, which consider a fairly broad structural properties, such as
Lipschitz or Hölder continuity of reward functions or transition kernel; see, e.g.,
[108, 109, 110] and also refer to the discussion in Section 6.2. We remark, however,
that in practical scenarios we are often interested in more specific structural prop-
erties than the one characterized by a globally determined, for instance, Lipschtiz
constant. To summarize, we believe that it would be very promising to devise
structure-aware algorithms for RL with analytical performance guarantees.





Appendix A

Properties of the KL-Divergence

In this appendix we briefly overview some of the properties of the Kullback-Leibler
(KL) divergence, which prove instrumental throughout this thesis. The KL-divergence,
originally introduced by Kullback and Leibler in [122], defines a distance measure
between two distributions. It has been given other names such as KL information
number, relative entropy, and information divergence. The KL-divergence is a spe-
cial case of a larger class of functions referred to as f -divergence; see, e.g., [96] for
a through treatment.

The majority of the results presented here can be found in, e.g., [123] and [96].

A.1 Definition

Let F and G be two distributions on the same set X with G � F , i.e., G is
absolutely continuous with respect to F . Then, the KL-divergence between F and
G is defined as

KL(F,G) = EF
[
log F (dx)

G(dx)

]
=
∫
X

log F (dx)
G(dx)F (dx),

where F (dx)/G(dx) denotes the Radon-Nikodym derivative of F with respect to
G. KL(F,G) may be derived using densities as well: Let m(dx) be an appropriate
measure. Then,

KL(F,G) =
∫
X

log f(x)
g(x) f(x)m(dx).

We remark that the above expression does not depend on the choice of m(dx).
It is also noted that if G is not absolutely continuous with respect to F , then
KL(F,G) =∞. In the discrete case, namely when F and G are probability vectors
(and X is a finite set), the above definition reads

KL(F,G) =
∑
x∈X

F (x) log F (x)
G(x) ,
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with the usual convention that p log p
q is defined to be 0 if p = 0 and +∞ if

p > q = 0. In what follows, we mainly concern the KL-divergence between two
discrete distributions.

First observe that the KL-divergence is always non-negative: KL(F,G) ≥ 0 with
equality if F (x) = G(x),∀x ∈ X .

The next result, referred to as the chain rule for the KL-divergence, may prove
useful when working with the KL-divergence of joint probability distributions. A
consequence of this result is that the KL-divergence is additive for independent
random variables.

Theorem A.1 (Chain Rule). For two random variables x, y ∈ X we have:

KL(F (x, y), G(x, y)) = KL(F (x), G(x)) + KL(F (y|x), G(y|x)),

where KL(F (y|x), G(y|x)) = Ex[log(F (y|x)/G(y|x))].

The KL-divergence between two Bernoulli distributions with respective param-
eters p and q, denoted by kl(p, q), is:

kl(p, q) = p log p
q

+ (1− p) log 1− p
1− q .

The function kl is sometimes referred to as the binary relative entropy. Some of
the properties of kl(p, q) are summarized in the following lemma.

Lemma A.1 ([54]). The mapping q 7→ kl(p, q) satisfies the following properties
for all p ∈ [0, 1]:
(i) It is strictly convex on [0, 1] and attains its minimum at p with kl(p, p) = 0.
(ii) Its derivative with respect to the second parameter q 7→ kl′(p, q) = q−p

q(1−q) is
strictly increasing on (p, 1).
(iii) For p < 1, we have kl(p, q) →

q→1−
∞ and kl′(p, q) →

q→1−
∞.

The following lemma provides upper and lower bounds for the KL-divergence
of Bernoulli distributions.

Lemma A.2. For any p, q ∈ [0, 1], it holds that

2(p− q)2 ≤ kl(p, q) ≤ (p− q)2

q(1− q) .

The lower bound in the above lemma is referred to as Pinsker’s inequality. The
following lemma presents a local version of Pinsker’s inequality:

Lemma A.3 ([124, Lemma 2]). For 0 ≤ u < v ≤ 1 we have:

kl(u, v) ≥ 1
2v (u− v)2.
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We also provide the following lemma relating the KL-divergence between two
geometric distributions to that of corresponding Bernoulli distributions.

Lemma A.4 ([75, Lemma 3]). For any u, v ∈ (0, 1], we have:

KLG(u, v) = kl(u, v)
u

.

Proof. We have:

KLG(u, v) =
∞∑
i=1

u(1− u)i−1 log u(1− u)i−1

v(1− v)i−1

=
∞∑
i=1

u(1− u)i−1 log u
v

+
∞∑
i=1

(i− 1)u(1− u)i−1 log 1− u
1− v

= log u
v

+ 1− u
u

log 1− u
1− v = kl(u, v)

u
.

We now turn back to the KL-divergence of discrete probability distributions and
study some of its properties below.

Lemma A.5 ([125, Lemma A.5]). Let P and Q be two probability distributions on
a finite alphabet X . Then,

KL(P,Q) ≤
∑
x∈X

kl(P (x), Q(x)) .

Lemma A.6 (Pinsker’s Inequality). For any probability distributions P and Q on
a finite alphabet X , it holds that

KL(P,Q) ≥ 1
2‖P −Q‖

2
1 .

The following lemma provides a local version of Pinsker’s inequality for two prob-
ability vectors, which can be seen as the extension of Lemma A.3 ([124, Lemma 2])
for the case of discrete probability measures. To the best of our knowledge, this
lemma is new.

Lemma A.7. For any probability distributions P and Q on a finite alphabet X , it
holds that

KL(P,Q) ≥ 1
2

∑
x:P (x)6=Q(x)

(P (x)−Q(x))2

max(P (x), Q(x)) .
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Proof. The first and second derivatives of KL satisfy:

∂

∂P (x)KL(P,Q) = 1 + log P (x)
Q(x) , ∀x ∈ X ,

∂2

∂P (x)∂P (y)KL(P,Q) = I{x = y}
P (x) , ∀x, y ∈ X .

By Taylor’s Theorem, there exists a probability vector Ξ, where Ξ = tP+(1−t)Q
for some t ∈ (0, 1), so that

KL(P,Q) = KL(Q,Q) +
∑
x

(P (x)−Q(x)) ∂

∂P
KL(Q,Q)

+ 1
2
∑
x,y

(P (x)−Q(x))(P (y)−Q(y)) ∂2

∂P (x)∂P (y)KL(Ξ, Q)

=
∑
x

(P (x)−Q(x)) +
∑
x

(P (x)−Q(x))2

2Ξ(x)

≥
∑

x:P (x)6=Q(x)

(P (x)−Q(x))2

2 max(P (x), Q(x)) ,

thus concluding the proof.



Appendix B

Concentration Inequalities

This appendix is devoted to the overview of some important concentration inequal-
ities used in various chapters of this thesis.

B.1 Bounded Random Variables

We begin with stating the celebrated Chernoff-Hoeffding bounds:

Theorem B.1 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be 0-1 independent
random variables with E[Xi] = pi. Let Y = 1

n

∑n
t=1Xt and µ = E[Y ] = 1

n

∑n
t=1 pi.

Then for all 0 < λ < 1− µ,

P(X ≥ µ+ λ) ≤ e−nkl(µ+λ,µ),

and for all 0 < λ < µ,

P(X ≤ µ− λ) ≤ e−nkl(µ−λ,µ).

Theorem B.2 (Chernoff-Hoeffding Bound). Let X1, . . . , Xn be random variables
with common ranges [0, 1] and such that E[Xt|X1 . . . , Xt−1] = µ. Let Sn =

∑n
t=1Xt.

Then for all a ≥ 0:

P(Sn ≥ nµ+ a) ≤ e−2a2/n,

P(Sn ≤ nµ− a) ≤ e−2a2/n.

The next theorem states Azuma-Hoeffding inequality for bounded martingale
difference sequences:

Theorem B.3 (Azuma-Hoeffding Inequality [126]). Let (Xt)1≤t≤n be a martingale
difference sequence with |Xi| ≤ c for all i. Then for all ε > 0 and n ∈ N:

P
( n∑
i=1

Xi ≥ ε
)
≤ e−

ε2
2nc2 .
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The following results give the concentration for self-normalized form of bounded
random variables.

Theorem B.4 ([113, Lemma F.2]). Let (Xn)1≤n≤t be a sequence of Bernoulli
random variables with mean µ ∈ [0, 1]. Then, for all δ ∈ (0, 1),

P

(
∃n : µ̂n − µ ≥

√
2µ
n
h(n, δ) + h(n, δ)

n

)
≤ δ ,

where h(n, δ) := 2llnp(n) + log(3/δ).

Theorem B.5 ([43, Theorem 10]). Let (Xt)t≥1 be a sequence of independent ran-
dom variables bounded in [0, 1] defined on a probability space (Ω,F ,P) with com-
mon expectation µ = E[Xt]. Let Ft be an increasing sequence of σ-fields of F such
that for each t, σ(X1, . . . , Xt) ⊂ Ft and for s > t, Xs is independent from Ft.
Consider a previsible sequence (εt)t≥1 of Bernoulli variables (for all t > 0, εt is
Ft−1-measurable). Let δ > 0 and for every t ∈ [n] let

S(t) =
t∑

s=1
εsXs, N(t) =

t∑
s=1

εs, µ̂(t) = S(t)
N(t) ,

u(n) = max{q > µ̂(n) : N(n)kl(µ̂(n), q) ≤ δ}.

Then: P(u(n) < µ) ≤ dδ log(n)ee−(δ+1).

The following theorem is a generalization of Theorem B.5 and gives a concen-
tration inequality on sums of empirical KL-divergences.

Theorem B.6 ([68, Theorem 2]). For all δ ≥ K + 1 and n ∈ N we have:

P
( K∑
i=1

Ni(n)kl(µ̂i(n), µi) ≥ δ
)
≤
(
dδ log(n)eδ

K

)K
e−δ(K+1).

In particular, we have:

Corollary B.1. There exists a constant CK that only depends on K, such that for
all n ≥ 2 we have:

P
( K∑
i=1

Ni(n)kl(µ̂i(n), µi) ≥ log(n) + 4K log(log(n))
)
≤ CKn−1(log(n))−2.

The following lemma proves useful in the proof of various regret bounds through-
out the thesis. It states that if a set of instants Λ can be decomposed into a family
of singletons such that the arm i is drawn sufficiently many times, then the number
of times in Λ (in expectations) at which the empirical average reward of i is badly
estimated is finite.
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Theorem B.7 ([70, Theorem B.1]). Let i ∈ {1, . . . ,K} and δ > 0. Define Fn
the σ-algebra generated by (Xi(t))1≤t≤n,1≤i≤K . Let Λ ⊂ N be a (random) set of
instants. Assume that there exists a sequence of (random) sets (Λ(s))s≥1 such that
(i) Λ ⊂ ∪s≥1Λ(s), (ii) for all s ≥ 1 and all n ∈ Λ(s), Ni(n) ≥ εs, (iii) |Λ(s)| ≤ 1,
and (iv) the event n ∈ Λ(s) is Fn-measurable. Then, for all δ > 0:

E[
∑
n≥1

I{n ∈ Λ, |µ̂i(n)− µi| ≥ δ}] ≤
1
εδ2 .

The proof of the above lemma leverages a concentration inequality proposed in
[70]1. A consequence of the above lemma is the following corollary which states that
the expected number of times at which basic action i is sampled and the empirical
average reward of i exceeds the true mean reward of i by some threshold is finite.
Note that this result holds irrespective of how arm i is chosen. To present the
corollary we let Ai(n) denote the event of sampling basic action i ∈ {1, . . . ,K} at
round n.

Corollary B.2. For all i ∈ {1, . . . ,K} and all δ > 0:

E[
∑
n≥1

I{Ai(n), |µ̂i(n)− µi| ≥ δ}] ≤
1
δ2 .

Proof. Let Λ = {n : I{Ai(n)} = 1}. Observe that for each s ∈ N, there exists at
most one time index ϕs ∈ N such that Ni(ϕs) = s and ϕs ∈ Λ, since Ni(n) =
Ni(n − 1) + 1 for all n ∈ Λ. The set Λ is included in ∪s≥1{ϕs}. The announced
result is then a direct consequence of Lemma B.7 with ε = 1.

B.2 Discrete Probability Distributions

In the following theorems, we provide concentration for the L1 deviation of empirical
distributions of discrete probability measures.

Theorem B.8 (L1-Deviation Bound for Empirical Distribution, [127]). Let P be a
probability distribution on the finite alphabet X . Let (Xn)n≥1 be a set of i.i.d. sam-
ples distributed according to P , and P̂n be the corresponding empirical estimation of
P . Define πP := maxX⊆X min(PP (X), 1−PP (X)), where PP (X) is the probability
of X under P . Furthermore, define

ϕ(z) := 1
1− 2p log 1− p

p
, ∀p ∈ [0, 1/2)

and by convention define ϕ(1/2) = 2. Then with probability at least 1− δ, it holds
that

‖P̂n − P‖1 ≤

√
2

nϕ(πP ) log 2|X | − 2
δ

≤
√

2|X |
n

log 2
δ
.

1We note that a slightly worse bound can be obtained from [48, Lemma 3].
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Theorem B.9 (Uniform L1-Deviation Bound for Empirical Distribution, [113,
Lemma F.3]). Let (Xn)n≥1 be a sequence of i.i.d. categorical variables on a finite
alphabet X with distribution P . Let P̂n be the corresponding empirical distribution.
Then for all δ ∈ (0, 1]

P

(
∃n : ‖P̂n − P‖1 ≥

√
4
n

(
2llnp(n) + log 3(2|X | − 2)

δ

))
≤ δ ,

where llnp(n) := log(log(max(n, e))).

Theorem B.10 ([125, Lemma A.5]). Let P be a probability distribution defined
on a finite alphabet X . Let P̂t be the empirical estimation of P using the samples
drawn from P up to time t. Then, for any ε > 0,

P
(
NtKL(P̂t, P ) > ε

)
≤ 2e(ε log(t) + |X |)e−

ε
|X| .

B.2.1 Transportation Lemma
We restate the following theorem from Chapter 6, known as the transportation
lemma; see, e.g., [115, Lemma 4.18]:

Theorem B.11 (Transportation Lemma). For any function f , let us introduce
ϕf : λ 7→ logEP [exp(λ(f(X)− EP [f ]))]. Whenever ϕf is defined on some possibly
unbounded interval I containing 0, define its dual ϕ?,f (x) = supλ∈I(λx − ϕf (λ)).
Then it holds

∀Q� P, EQ[f ]− EP [f ] ≤ ϕ−1
+,f (KL(Q,P )) ,

∀Q� P, EQ[f ]− EP [f ] ≥ ϕ−1
−,f (KL(Q,P )) ,

where

ϕ−1
+,f (t) = inf{x ≥ 0 : ϕ?,f (x) > t} ,

ϕ−1
−,f (t) = sup{x ≤ 0 : ϕ?,f (x) > t} .

Proof. Let us recall the fundamental equality

∀λ ∈ R, logEP [exp(λ(X − EP [X])] = sup
Q�P

[
λ
(
EQ[X]− EP [X]

)
− KL(Q,P )

]
.

In particular, we obtain on the one hand that (see also [115, Lemma 2.4])

∀Q� P, EQ[f ]− EP [f ] ≤ min
λ∈R+

ϕf (λ) + KL(Q,P )
λ

Since ϕf (0) = 0, then the right-hand side quantity is non-negative. Let us call it
u. Now, we note that for any t such that u ≥ t ≥ 0, then by construction of u, it
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holds KL(Q,P ) ≥ ϕ?,f (t). Thus, {x ≥ 0 : ϕf,?(x) > KL(Q,P )} = (u,∞) and hence
u = ϕ−1

+,f (KL(Q,P )).
On the other hand, it holds

∀Q� P, EQ[f ]− EP [f ] ≥ max
λ∈R−

ϕf (λ) + KL(Q,P )
λ

Since ϕ(0) = 0, then the right hand side quantity is non-positive. Let us call it
v. Now, we note that for any t such that v ≤ t ≤ 0, then by construction of v,
it holds KL(Q,P ) ≥ ϕ?,f (t). Thus, {x ≤ 0 : ϕ?,f (x) > KL(Q,P )} = (−∞, v) and
hence v = ϕ−1

−,f (KL(Q,P )).
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