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Abstract

In system identification, it is often difficult to use a physical intuition when choosing a noise model structure. The importance of
this choice is that, for the prediction error method (PEM) to provide asymptotically efficient estimates, the model orders must
be chosen according to the true system. However, if only the plant estimates are of interest and the experiment is performed in
open loop, the noise model can be over-parameterized without affecting the asymptotic properties of the plant. The limitation
is that, as PEM suffers in general from non-convexity, estimating an unnecessarily large number of parameters will increase
the risk of getting trapped in local minima. Here, we consider the following alternative approach. First, estimate a high-order
ARX model with least squares, providing non-parametric estimates of the plant and noise model. Second, reduce the high-
order model to obtain a parametric model of the plant only. We review existing methods to do this, pointing out limitations
and connections between them. Then, we propose a method that connects favorable properties from the previously reviewed
approaches. We show that the proposed method provides asymptotically efficient estimates of the plant with open-loop data.
Finally, we perform a simulation study suggesting that the proposed method is competitive with state-of-the-art methods.
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1 Introduction

The prediction error method (PEM) is a well-know ap-
proach for estimation of parametric models [13]. If the
model orders are chosen correctly, a quadratic cost func-
tion provides asymptotically efficient estimates when
the noise is Gaussian. The drawback is that, in general,
PEM requires solving a non-convex optimization prob-
lem, which can converge to minima that are only local.
Alternative methods, such as subspace [27] or instru-
mental variable methods [20], are appealing for their low
computational complexity, and are hence useful to ini-
tialize PEM. However, they are in general not as accu-
rate as PEM, although multistep or iterative versions of
IV methods can be asymptotically efficient [21,31].

It is also possible to apply PEM to a more flexible model
than the one of interest, and then perform model order
reduction. With indirect PEM [23], the model-reduction
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step is based on a maximum likelihood cost function. In
some settings, this procedure is advantageous with re-
spect to a direct PEM estimation (see [23] for examples).

However, for settings with output-error or Box-Jenkins
models, the more flexible model must be taken as non-
parametric (i.e., arbitrarily large order). In general, this
can be taken an ARX model, for which the global mini-
mum of the prediction error cost function can be found
by least squares. Because it is high order, this estimate
will have high variance. However, it can be reduced to a
parametric model description of low order. If the model
reduction step is performed according to an exact maxi-
mum likelihood (ML) criterion, the low order estimates
are asymptotically efficient [28], but solving a non-
convex optimization problem is still needed in general.

This approach differs from the setting in [23] because, for
a given order, the non-parametric model does not con-
tain the true system. To analyze this type of approach
theoretically, it is therefore instrumental to let the or-
der depend on the sample size [14]; in particular, the or-
der has to tend to infinity with some maximum rate to
achieve consistency and asymptotic efficiency.

The model order reduction need not necessarily be done
on the high-order model itself, but the residuals of this
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model can be used in a second stage to estimate the low
order model. This idea dates back to [2]. For the class of
ARMAX models, the method was complemented with
the proper filtering for efficiency in [15] and letting the
high-order model order depend on the data [9].

Model-order selection and estimation based on ML has
a long history (e.g., [1, 8, 29]). One classical approach is
to estimate the model orders from data. For ARMAX
models, one iterative procedure is the Hannan-Rissanen-
Kavalieris type methods [8, 10, 11]. These methods do
not use an intermediate high-order model; instead, at
each iteration, they estimate the innovations and select
new model orders according to an information criterion.

Another possibility to perform model order reduc-
tion from a high-order non-parametric model is with
the weighted null-space fitting (WNSF) method [6].
Although it can be motivated by an exact ML cri-
terion [28], this criterion is not minimized explicitly.
Rather, it is interpreted as a weighted least squares
problem by fixing the parameters in the weighting.

While the plant model order can sometimes be based
on physical intuition, the noise model order is usually
a more abstract concept. In [18], a frequency-domain
method is proposed to estimate a parametric model of
the plant and a non-parametric noise model. Because
this approach does not require a noise model-order se-
lection, the authors call it “user-friendly”.

If the data are obtained in open loop, the asymptotic
properties of the plant and noise-model estimates ob-
tained with PEM are uncorrelated if the two trans-
fer functions are independently parametrized [13, 17].
Therefore, when a parametric noise-model estimate is
not of interest, asymptotically efficient estimates of the
plant can be obtained as long as the noise-model order
is chosen high enough for the system to be in the model
set. The limitation of choosing the noise model order
arbitrarily large with PEM is that, as more parameters
are estimated, the complexity of the problem increases.

However, if a non-parametric ARX model is estimated,
there are no issues with local minima, while the order
is arbitrarily large. Then, for the model-reduction step,
an approximate asymptotic ML criterion allows sepa-
rating the estimation of the plant and noise model [28].
This allows obtaining asymptotically efficient estimates
of the plant in open loop without the high order struc-
ture of the noise model affecting the difficulty of the
problem. Nevertheless, the model reduction step still re-
quires solving a non-convex optimization problem. The
ASYM method [37] is based on this approach.

Another approach that does not require a parametric
noise model is the BJSM method [38]. This method uses
a non-parametric ARX model to extend the applicabil-
ity of the Steiglitz-McBride method [24] to colored noise

settings. BJSM uses the ARX model to create a pre-
filtered data set for which the output noise is approxi-
mately white, and the Steiglitz-McBride method is ap-
plied to the pre-filtered data set. In [38], it is shown that
this procedure is asymptotically efficient in open loop.
However, consistency has only been established when the
number of Steiglitz-McBride iterations tends to infinity.

In this paper, we start from an asymptotic ML criterion
to propose a method that uses the Steiglitz-McBride
method instead of non-convex optimization algorithms,
but with improved convergence properties compared
with BJSM. Our contributions are the following. First,
we propose the new method and contextualize it with
other related methods. Second, we perform a theoretical
analysis, showing that the proposed method is con-
sistent and asymptotically efficient in open loop with
one Steiglitz-McBride iteration. This analysis is rather
elaborate due to the necessity, as mentioned earlier, to
let the ARX-model order depend on the sample size.
Third, we perform a simulation study, where we observe
that the proposed method has better finite sample con-
vergence properties than BJSM, and that it may be a
viable alternative to other competitive methods.

2 Preliminaries

Assumption 2.1 (True system) The system has
scalar input ut, scalar output yt and is subject to scalar
noise et. These signals are related by

yt = G◦(q)ut +H◦(q)et, (1)

whereG◦(q) andH◦(q) are rational functions in the time
shift operator q−1 (q−1xt := xt−1) according to

G◦(q) =
L◦(q)

F ◦(q)
=

l◦1q
−1 + · · ·+ l◦mlq

−m◦
l

1 + f◦1 q
−1 + · · ·+ f◦mf q

−m◦
f

,

H◦(q) =
C◦(q)

D◦(q)
=

1 + c◦1q
−1 + · · ·+ c◦mcq

−m◦
c

1 + d◦1q
−1 + · · ·+ d◦mdq

−m◦
d

.

The transfer functions G◦, H◦, and 1/H◦ are assumed
to be stable. The polynomials L◦ and F ◦—as well as C◦

and D◦—do not share common factors.

Let the input sequence {ut} be a realization of a
stochastic process generated by a random sequence
{wt}. Also, let Ft−1 be the σ-algebra generated by
{es, ws, s ≤ t− 1}. Then, the following assumption ap-
plies for the input signal.

Assumption 2.2 (Input) The sequence {ut} is de-
fined by ut = Fu(q)wt, where Fu(q) is a stable and
inversely stable finite-dimensional filter, with {wt} in-
dependent of {et}, satisfying

E [wt|Ft−1] = 0, E
[
w2
t |Ft−1

]
= σ2

◦, |wt| ≤ C, ∀t
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for some finite positive constant C.

Assumption 2.2 implies that the system is operating in
open loop. Also, Fu can be interpreted as the stable
minimum phase spectral factor of the input spectrum.

For the noise, the following assumption applies.

Assumption 2.3 (Noise) {et} is a stochastic process
that satisfies

E [et|Ft−1] = 0, E
[
e2t |Ft−1

]
= σ2

◦, E
[
|et|10

]
≤ C,∀t

for some positive finite constant C.

The assumption that the expected value of the tenth
moment is bounded is stronger than what is required for
the analysis of PEM [13]. This assumption can be made
weaker for some of our theoretical results (see [14] for
details), but for simplicity we take a sufficiently strong
requirement that will apply for all theoretical results.

3 The Prediction Error Method

The idea of the prediction error method (PEM) is to
minimize a cost function of the prediction errors. In this
section, we discuss how PEM can be used to estimate
a model of the system (2.1). First, we consider a Box-
Jenkins (BJ) model, and then a high-order ARX model.

3.1 Box-Jenkins model

In a Box-Jenkins model, G(q) and H(q) are rational
transfer functions parameterized independently as

yt = G(q, θ)ut +H(q, α)et, (2)

where

G(q, θ) =
L(q, θ)

F (q, θ)
=

l1q
−1 + · · ·+ lmlq

−ml

1 + f1q−1 + · · ·+ fmf q
−mf

,

H(q, α) =
C(q, α)

D(q, α)
=

1 + c1q
−1 + · · ·+ cmcq

−mc

1 + d1q−1 + · · ·+ dmdq
−md

,

with parameter vectors θ = [f1 . . . fmf l1 . . . lml ]
> and

α = [c1 . . . cmc d1 . . . dmd ]>. We assume that H◦(q) is
in the model set defined by H(q, α) (i.e., mc ≥ m◦c and
md ≥ m◦d). Moreover, the order of the polynomials of
G◦(q) are assumed known (i.e.,mf = m◦f andml = m◦l ).
For notational simplicity, we let m := mf = ml.

The one step ahead prediction errors of the BJ model (2)
are given by [13]

εt(θ, α) =
D(q, α)

C(q, α)

[
yt −

L(q, θ)

F (q, θ)
ut

]
.

The parameter estimates using PEM with a quadratic
cost function are determined by minimizing

VN (θ, α) =
1

N

N∑
t=1

ε2t (θ, α), (3)

where N is the number of data samples. We denote

by θ̂PEM
N the estimate of θ obtained by minimizing (3).

Moreover, θ◦ corresponds to the vector θ evaluated at
the coefficients of F ◦(q) and L◦(q). The cost function (3)
is non-convex, and may require good intialization points
to converge to the global minimum.

Because the system operates in open loop (Assump-
tion 2.2), it is well known that, when PEM is applied to
the model (2), under weak conditions, the (normalized)
error of the estimated parameters θ̂PEM

N converges to the
Gaussian distribution [13]

√
N
(
θ̂PEM
N − θ◦

)
∈ N

(
0, σ2
◦M
−1
CR

)
, as N →∞,(4)

where (we omit the argument of the transfer functions
for brevity)

MCR =
1

2πσ2
◦

∫ π

−π

[
− G◦

F◦H◦Γm
1

F◦H◦Γm

][
− G◦

F◦H◦Γm
1

F◦H◦Γm

]∗
Φu dω,

with Γm(q) = [ q−1 ... q−m ]
>

and Φu the spectrum of the
input {ut}.

When {et} is Gaussian, PEM with a quadratic cost func-
tion is asymptotically efficient, meaning that M−1CR cor-
responds to the Cramér-Rao lower bound—the smallest
possible asymptotic covariance matrix for a consistent
estimator [13]. Again, we recall that only the orders of
G◦(q) need to be chosen correctly to achieve efficiency,
while H(q, α) only needs to include H◦(q). Thus, if only
a model for G◦(q) is of interest, and the order of H◦(q)
is unknown, mc and md can in principle be chosen ar-
bitrarily large, guaranteeing that H◦(q) is in the model
set. However, this makes the problem numerically more
challenging, as we increase the number of parameters in
the non-convex cost function (3).

3.2 High-order ARX model

To circumvent the limitations of solving a non-convex
optimization problem, we consider the following ap-
proach. Note that the system (1) can be represented as

A◦(q)yt = B◦(q)ut + et, (5)
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where

A◦(q) :=
1

H◦(q)
=: 1 +

∞∑
k=1

a◦kq
−k,

B◦(q) :=
G◦(q)

H◦(q)
=:

∞∑
k=1

b◦kq
−k

are stable transfer functions (by Assumption 2.1).

Consider also the ARX model

A(q, ηn)yt = B(q, ηn)ut + et,

where

A(q, ηn) = 1 +

n∑
k=1

akq
−k, B(q, ηn) =

n∑
k=1

bkq
−k, (6)

and ηn =
[
a1 . . . an b1 . . . bn

]>
. Here, we assumed,

without loss of generality, that A(q) and B(q) are both
modeled with n coefficients. Because {a◦k} and {b◦k} are
exponentially decaying, (6) can model (5) with good ac-
curacy if n is chosen large enough.

An advantage of ARX models is that they are linear in
the model parameters. In particular, the PEM estimate
of ηn is obtained by minimizing the cost function

VN (ηn) =
1

N

N∑
t=1

[A(q, ηn)yt −B(q, ηn)ut]
2
, (7)

which can be done by linear least squares. Thus, the
estimate of ηn is given by

η̂n,lsN := [RnN ]−1rnN , (8)

where

RnN =
1

N

N∑
t=1

ϕnt (ϕnt )>, rnN =
1

N

N∑
t=1

ϕnt yt,

with

ϕnt =
[
−yt−1 . . . −yt−n ut−1 . . . ut−n

]>
. (9)

In the analysis, we will use the slightly modified estimate

η̂nN := [RnN,reg]−1rnN , (10)

where

RnN,reg =

{
RnN if

∥∥[RnN ]−1
∥∥
2
< 2/δ

RnN + δ
2I2n otherwise

,

for some small δ > 0. The reason is that η̂nN is easier
to analyze statistically, while the first and second order
statistical properties of η̂n,lsN and η̂nN are asymptotically
identical [14]. It follows from Assumption 2.2 and As-
sumption 2.3 (see [14] for details) that

η̂nN → η̄n := [R̄n]−1r̄n,

where R̄n and r̄n are the limits of RnN and rnN w.p.1.

To guarantee that the true system (5) is asymptotically
in the model set defined by the ARX model (6), n should
be allowed to grow to infinity. Accordingly, we let the
model order depend on the sample size N . For our the-
oretical results, we use the following assumption.

Assumption 3.1 (ARX-model order) It holds that

n(N)→∞, N →∞
n(N)4+δ/N → 0, N →∞

for some δ > 0.

We define η̂N := η̂
n(N)
N and, for future reference,

ηn◦ :=
[
a◦1 . . . a

◦
n b
◦
1 . . . b

◦
n

]>
, (11)

η◦ :=
[
a◦1 a

◦
2 . . . b

◦
1 b
◦
2 . . .

]>
. (12)

The asymptotic properties of η̂N have been established
in [14]. We will need the following result on the rate of
convergence of the ARX model.

Lemma 3.1 Assume that Assumptions 2.1, 2.2, 2.3 and
3.1 hold. Then, with probability 1,

sup
ω

∥∥∥∥∥
[
A(ejω, η̂N )−A◦(ejω)

B(ejω, η̂N )−B◦(ejω)

]∥∥∥∥∥
2

= O(m(N)),

where

m(N) = n(N)
√

logN/N(1 + d(N)) + d(N),

d(N) :=

∞∑
k=n(N)+1

|a◦k|+ |b◦k| ≤ C̄ρn(N), (13)

for some C̄ <∞ and ρ < 1.

PROOF. See Appendix A.

Lemma 3.1 implies that, asN tends to infinity, the coeffi-
cients ofA(q, η̂N ) converge to those ofA◦(q) = 1/H◦(q),
and the coefficients of B(q, η̂N ) converge to those of
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B◦(q) = G◦(q)/H◦(q). Therefore, B(q, η̂N )/A(q, η̂N )
can be used as a high-order estimate of G◦(q), and
1/A(q, η̂N ) as a high order estimate of H◦(q). We thus
define these high order estimates by

G(q, η̂N ) :=
B(q, η̂N )

A(q, η̂N )
, H(q, η̂N ) :=

1

A(q, η̂N )
. (14)

Despite the simplicity of ARX models, they are not ap-
propriate to model (2.1) for most practical uses: because
the order n may have to be chosen large, the estimated
model will have high variance. Nevertheless, the high-
order ARX model estimate can be used to obtain a model
of low order, reducing the variance. This can be done
efficiently without re-using the data, as long as the or-
der n tends to infinity according to Assumption 3.1: in
this way, the estimate η̂N and its covariance become a
sufficient statistic [12] for our problem as the number of
data samples increases to infinity. Thus, the data could
in principle be disregarded, and η̂N and the respective
covariance be used to obtain an estimate of a lower-order
model that is asymptotically efficient.

4 Model Reduction

Having estimated a high-order ARX model, we are in-
terested in using this estimate to obtain a low order es-
timate G(q, θ). In this section, we discuss available ap-
proaches to do so.

4.1 Maximum Likelihood

Because, as the ARX-model order increases, η̂N and its
covariance approach a sufficient statistic, they can be
used to obtain an estimate of θ that is asymptotically ef-
ficient. This can be done using an exact ML criterion [28].
Let ηn(θ, α) be the truncated parameter vector ηn ob-
tained from θ and α, satisfying the relations

A(q, η) =
1

H(q, α)
, B(q, η) =

G(q, θ)

H(q, α)
. (15)

This procedure consists in minimizing

[η̂N − ηn(θ, α)]
>

[cov (η̂N )]
−1

[η̂N − ηn(θ, α)] , (16)

where cov (η̂N ) denotes the covariance of the estimated
vector η̂N . This cost function can be approximated by
the asymptotic ML criterion∫ 2π

0

∣∣G(eiω, η̂N )−G(eiω, θ)
∣∣2 Φu(eiω)

|H(eiω, η̂N )|2
dω

+
σ̂2

2π

∫ 2π

0

∣∣H(eiω, η̂N )−H(eiω, α)
∣∣2

|H(eiω, η̂N )|2
dω, (17)

where σ̂2 is a consistent estimate of σ2
◦, without chang-

ing the asymptotic statistical properties of the esti-
mate [28]. Moreover, the first term in (17) is only de-
pendent on G(q, θ) and the second term on H(q, α).
Therefore, G(q, θ) can be estimated independently of
H(q, α) by minimizing

VN (θ)=

∫ 2π

0

∣∣G(eiω, η̂nN )−G(eiω, θ)
∣∣2 Φu(eiω)

|H(eiω, η̂N )|2
dω.

(18)

The idea of the ASYM method [37] is to minimize the
time domain equivalent to (18) for finite sample size:

VN (θ) =
1

N

N∑
t=1

[(
B(q, η̂N )

A(q, η̂N )
−G(q, θ)

)
A(q, η̂N )ut

]2
.

(19)
Minimizing (19) is still a non-convex optimization prob-
lem. However, it is pointed out in [37] that this minimiza-
tion problem has an advantage over directly estimating
G(q, θ) using PEM, which makes the method numeri-
cally more reliable: because the output is not used ex-
plicitly in (19), and the noise contribution is only present
indirectly through the high-order estimates, the influ-
ence of the disturbance is reduced.

4.2 BJSM method

The BJSM method can be seen as an extension of the
Steiglitz-McBride algorithm [24]. The latter consists
in using iterative least squares to estimate L(q, θ) and
F (q, θ) when the transfer function H◦(q) = 1. Then,
the idea of BJSM is to extend the applicability of the
Steiglitz-McBride method to other noise spectra, using
a pre-filtering step by a high-order ARX model.

We start by reviewing the Steiglitz-McBride method.
Consider the following three steps. First, an ARX model

F (q, θ)yt = L(q, θ)ut + et (20)

is estimated with least squares, providing an initializa-

tion estimate θ̂0N . Second, the data are filtered by

yft =
1

F (q, θ̂0N )
yt, uft =

1

F (q, θ̂0N )
ut.

Third, least squares is applied to the ARX model

F (q, θ)yft = L(q, θ)uft + et,

providing a new estimate θ̂1N . Then, we can continue to
iterate by repeating Steps 2 and 3.

The motivation for the Steiglitz-McBride algorithm is
the following. Let the estimate obtained at iteration k
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by θ̂kN . At iteration k+ 1, we minimize the cost function

VN (θk+1
N ) =

1

N

N∑
t=1

[
F (q, θk+1)

F (q, θ̂kN )
yt −

L(q, θk+1)

F (q, θ̂kN )
ut

]2
.(21)

If the estimates converge to a consistent estimate of θ◦,
this cost function corresponds to minimizing a quadratic
cost function of prediction errors, as with (3).

Convergence of the Steiglitz-McBride has been studied
in [26], where it is shown that the method is locally con-
vergent when the additive output noise is white. More-
over, it will be globally convergent if the signal-to-noise
ratio is sufficiently large. Assuming convergence, the es-
timates are asymptotically Gaussian distributed. How-
ever, in general, the covariance of the estimated param-
eters does not asymptotically attain the Cramér-Rao
bound M−1CR.

The Box-Jenkins Steiglitz-McBride (BJSM) algo-
rithm [38] consists of an extension of Steiglitz-McBride
that is consistent for colored noise and is asymptotically
efficient for open loop data. The method uses the fol-
lowing procedure. First, a high-order ARX model (6) is
estimated with least squares. Second, the original data
set is pre-filtered by A(q, η̂N ), according to

ypft = A(q, η̂N )yt, upft = A(q, η̂N )ut.

Third, the Steiglitz-McBride algorithm is applied to the
pre-filtered data set.

The motivation for this procedure is that the pre-filtered
data satisfy

ypft =
L◦(q)

F ◦(q)
upft +A(q, η̂N )H◦(q)et, (22)

which asymptotically is according to (Lemma 3.1)

ypft ≈
L◦(q)

F ◦(q)
upft + et. (23)

Because the noise in (23) is white, the Steiglitz-McBride

method is convergent with the data set {ypft , u
pf
t }.

If we were to apply PEM to the pre-filtered data set, we
would minimize, motivated by (23),

VN (θ) =
1

N

N∑
t=1

(
ypft −

L(q, θ)

F (q, θ)
upft

)2

. (24)

To avoid an explicit non-convex minimization problem,
BJSM uses the Steiglitz-McBride method instead.

Although the BJSM method is asymptotically efficient
in open loop [38], not all the information in η̂N is being

used, as the filtering (22) only uses A(q, η̂N ). In other
words, the ARX model is not used as a sufficient statistic
for this problem. For the method to still be asymptoti-
cally efficient, the output data are used when construct-
ing the pre-filtering. This leads to two limitations.

The first is a counter-intuitive result. Suppose that
H◦(q) = 1. Then, we would have that A◦(q) = 1, and
only B(q, ηn) would need to be estimated in order to
model the true system. However, this would maintain
the data set unchanged when applying the filtering (22),
and BJSM would simply be reduced to the Steiglitz-
McBride method, which is not asymptotically efficient.
If, on the other hand, it is not assumed that A◦(q) = 1
and an estimate A(q, η̂N ) is still computed, BJSM will
be asymptotically efficient. Thus, although B(q, ηn)
should be sufficient to model system with additive white
noise (as n increases), it is not possible to make use
of this information when applying the BJSM method,
because it does not use the full statistical properties of
the high-order model.

The second limitation is that, although BJSM avoids
solving a non-convex optimization problem, it requires
the number of Steiglitz-McBride iterations to tend to
infinity in order to provide consistent and asymptotically
efficient estimates [38].

5 Model Order Reduction Steiglitz-McBride

Similarly to a direct minimization of (18) or BJSM, the
objective of our approach is to obtain an estimate of
G(q, θ) from the high-order ARX model estimate with-
out having to estimate H(q, α). However, we would also
like to do so without using a non-convex optimization
method and in a finite number of steps.

We start by re-writing (19), the time-domain approxi-
mation of (18), as

VN (θ) =
1

N

N∑
t=1

[
B(q, η̂N )ut −

L(q, θ)

F (q, θ)
A(q, η̂N )ut

]2
. (25)

Then, we define

ŷpft := B(q, η̂N )ut, upft := A(q, η̂N )ut. (26)

With this definition, (25) has the same form as (24) if

we replace ypft by ŷpft . Thus, similarly to BJSM, we may
apply the Steiglitz-McBride method to an alternative
data set instead of minimizing (25) with a non-convex
optimization algorithm; the difference is that we use the

data set {ŷpft , u
pf
t } instead of {ypft , u

pf
t }

The proposed method is as follows:
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(1) estimate an ARX model using the input-output data
{ut, yt}, t = 1, . . . , N , according to (8);

(2) construct the pre-filtered data {ŷpft , u
pf
t }, according

to (26);

(3) apply the Steiglitz-McBride method with {ŷpft , u
pf
t }

to obtain estimates L(q, θ̂N ) and F (q, θ̂N ) of L◦(q)
and F ◦(q), respectively.

Because this method can be seen as a way of applying
the Steiglitz-McBride algorithm to reduce a high-order
model to a parametric one, we will refer to it as Model
Order Reduction Steiglitz-McBride (MORSM).

In terms of the algorithm, comparing (26) and (22) shows
that the difference between this approach and BJSM
is in the pre-filtered output only: here, the pre-filtered
output is simulated from the input and the ARX-model
estimate, depending on the original output data {yt}
only through the least squares estimate η̂N .

Although the difference between the algorithms is mini-
mal, the methods have different motivations. BJSM fol-
lows from extending the Steiglitz-McBride method to
be consistent with colored noise, using only part of the
high-order ARX model for that purpose. MORSM fol-
lows from observing that the Steiglitz-McBride can be
applied to an asymptotic ML cost function, where all the
information in the high-order ARX model is used. This
provides two advantages with respect to BJSM, which
will be formally proven in the next section, but we in-
troduce in the following paragraphs.

First, the pre-filter (26) uses the complete statistical in-
formation contained in the estimate η̂N . So, if the noise
contribution affecting the true system is white, a high-
order FIR model can be estimated instead of an ARX.
In this case, A(q, η̂N ) = 1. This was not the case with
BJSM, for which A(q, η̂nN ) must always be estimated.

Second, this procedure only requires one iteration to
provide an efficient estimate. To intuitively understand
why this is the case, we recall that the Steiglitz-McBride
is an iterative method that only after successive iter-
ations minimizes (3). By continuing to iterate, it can
be shown that, under the conditions observed in [25],
θ̂kN → θ◦, as k →∞ andN →∞. Concerning the BJSM
method, since the pre-filtered data is according to (22),
it is asymptotically approximately an OE model struc-
ture, and a similar procedure takes place. On the other
hand, the proposed pre-filtered data set, which does not
use the original data, satisfies

ŷpft =
L◦(q)

F ◦(q)
upft +

(
B(q, η̂N )

A(q, η̂N )
− L◦(q)

F ◦(q)

)
upft . (27)

This is a noise-free equation, except for the noisy param-
eters in the ARX model. However, from Lemma 3.1, the
second term in (27) tends to zero asymptotically (in N).

As consequence, the variance of the error sequence be-
ing minimized by the Steiglitz-McBride iterations disap-
pears asymptotically, and only one iteration is required.

5.1 Noise Model

One of the advantages of MORSM is that it does not
require a noise-model order selection. However, if a low-
order noise model is required, it can be estimated inde-
pendently of the plant model using a similar procedure,
starting from the second term in (17). Minimizing this
term is the same as minimizing, in the time domain,

V HN (α) =
1

N

N∑
t=1

[
et −

C(q, α)

D(q, α)
A(q, η̂N )et

]2
. (28)

We recognize that (28) has the same form as (24) if we

replace ypft and upft by

ỹpft := et, ũpft := A(q, η̂N )et, (29)

respectively, and let C(q, α) and D(q, α) play the role of
L(q, θ) and F (q, θ). The difference here is that {et} is
not known. However, it may be replaced by an estimate
based on the high-order model,

êt := A(q, η̂N )yt −B(q, η̂N )ut. (30)

Alternatively, the products eiej in the least-squares
equations may be replaced by a scaling of the expected
value (i.e., E[eiej ] = 0 for i 6= j and E[eiei] = 1).

5.2 Relation to other methods

As discussed in previous sections, the proposed method
builds on a family of methods that use high-order ARX
models and an auxiliary step to obtain the model of
interest; mainly, [28, 37]. Instead of performing model
reduction on the high-order ARX model, this model
can be used to estimate the residuals from which a
low-order model is estimated [2, 9, 15]. The method has
also close similarities with BJSM, which also uses the
Steiglitz-McBride algorithm. In contrast with the pro-
posed method, these approaches keep the original data,
while MORSM does not. Thus, MORSM can be seen as
a model-reduction method using Steiglitz-McBride.

The idea of using Steiglitz-McBride to, in some sense,
perform model order reduction, is not new. Variants of
the Steiglitz-McBride method have been applied to es-
timate rational filters from an impulse response esti-
mate, instead of applying the method directly to data
(e.g., [3,16,19]). Although some of these procedures are
optimal under specific conditions, here we consider a
quite general system identification problem for which
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application of the Steiglitz-McBride algorithm provides
asymptotically efficient estimates in one iteration.

MORSM shares also similarities with the Refined In-
strumental Variables (RIV) method [30–34], as both use
an iterative procedure with filtering according to the
estimate update from the previous iteration. This ob-
servation has already been made in [38] for BJSM, and
most of the similarities and differences observed apply
for MORSM. However, MORSM is a model-reduction
method, while BJSM and RIV are not, although RIV
also computes a simulated output and it has been ap-
plied to reduce high-order dynamic simulation models
with a technique called model emulation [35,36].

The main differences are the following. First, MORSM
uses least squares while RIV uses instrumental variables.
Second, RIV iterates between the plant model estimate
update and the noise model estimate update, while in
MORSM the plant model estimate only depends on the
noise model through the high-order estimate, which is
the same for all iterations. Third, RIV, as mentioned
earlier, computes a simulated output, but only to con-
struct the instrument vector, as the measured output
is still used; MORSM, on the other hand, discards the
measured output and only uses simulated data after the
high-order ARX model has been obtained. Fourth, with
RIV the order of the instrument vector is kept fixed,
while for MORSM the order of the ARX model needs
to tend to infinity for efficiency to be obtained; on the
other hand, RIV (unlike other IV algorithms) exploits a
multiple-iteration procedure to guarantee optimal sta-
tistical properties (see [30] for details on this discussion),
while MORSM is asymptotically efficient in one itera-
tion, as we proceed to show in the following section.

6 Asymptotic Properties

In this section, we analyze convergence and asymptotic
covariance of the proposed method. To derive these re-
sults, we will need a formal expression for the estimate
of θ at iteration k + 1 of the MORSM algorithm.

With this purpose, we start by defining

yt(η, θ) =
B(q, η)

F (q, θ)
ut, yt(η◦, θ) =

B◦(q)

F (q, θ)
ut,

ut(η, θ) =
A(q, η)

F (q, θ)
ut, yt(η◦, θ) =

A◦(q)

F (q, θ)
ut,

and

ξt(η, θ) =
L◦(q)

F ◦(q)

B(q, η)−B◦(q)
B◦(q)

ut(η, θ)

−A(q, η)−A◦(q)
A◦(q)

yt(η, θ),

which also applies to vector valued signals such as (9).
Then, using (26), we have that

ut =
1

B(q, η̂N )
ypft =

L◦(q)A◦(q)

F ◦(q)B◦(q)

1

A(q, η̂N )
upft , (31)

which we filter by

F ◦(q)
A(q, η̂N )B(q, η̂N )

A◦(q)F (q, θ̂kN )
,

where θ̂kN is the estimate obtained at iteration k of the
Steiglitz-McBride algorithm (the step (20) to obtain
the initialization estimate θ̂0N corresponds to setting
F (q, θ) ≡ 1). From here, we write the noise-free equation

F ◦(q)
A(q, η̂N )

A◦(q)
yt(η̂N , θ̂

k
N ) = L◦(q)

B(q, η̂N )

B◦(q)
ut(η̂N , θ̂

k
N )

relating the pre-filtered data. Equivalently,

F ◦(q)yt(η̂N , θ̂
k
N ) = L◦(q)ut(η̂N , θ̂

k
N ) + F ◦(q)ξt(η̂N , θ̂

k
N ),

which can be written in regression form as

yt(η̂N , θ̂
k
N ) = [ϕm(η̂N , θ̂

k
N )]>θ◦ + F ◦(q)ξt(η̂N , θ̂

k
N ). (32)

Given θ̂kN , the next parameter estimate in the Steiglitz-
McBride iterations θ̂k+1

N , is defined as the least-squares
estimate of θ◦ in the linear regression (32):

θ̂k+1
N = [Rm(η̂N , θ̂

k
N )]−1rm(η̂N , θ̂

k
N ), (33)

where

Rm(ηn, θ) =
1

N

N∑
t=m+1

ϕmt (ηn, θ)[ϕmt (ηn, θ)]>,

rm(ηn, θ) =
1

N

N∑
t=m+1

ϕmt (ηn, θ)yt(η
n, θ).

Having written (32) in the regression form (27) will be
instrumental for our analysis, because the error made
in the ARX model appears explicitly and linearly in

ξt(η̂N , θ̂
k
N ), which tends to zero according to Lemma 3.1.

Regarding consistency, we have the following theorem.

Theorem 6.1 Let Assumptions 2.1, 2.2, 2.3, and 3.1
hold. Then,

θ̂kN → θ◦ asN →∞, w.p. 1, for all k ≥ 0

PROOF. See Appendix B.
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Regarding the asymptotic distribution and covariance,
we have the following theorem.

Theorem 6.2 Let Assumptions 2.1, 2.2, 2.3, and 3.1
hold. Then,

lim
N→∞

NE
[
(θ̂kN − θ◦)(θ̂kN − θ◦)>

]
= σ2

◦M
−1
CR,

and
√
N(θ̂kN − θ◦) ∼ AsN (0, σ2

◦M
−1
CR) for k ≥ 1, where

N stands for the normal distribution.

PROOF. See Appendix D.

Theorem 6.1 implies that the initial estimate θ̂0N is a
consistent estimate of θ◦. Moreover, Theorem 6.2 im-
plies that MORSM has the same asymptotic covariance
as PEM with Gaussian noise (4). Therefore, it is asymp-
totically efficient with open loop data, and asymptotic

efficiency is obtained in one iteration, with θ̂1N . This is a
main difference to the BJSM algorithm, for which con-
sistency and asymptotically efficiency have been estab-
lished only for k →∞ [38].

7 Practical Considerations

In the previous section, we showed that MORSM pro-
vides an asymptotically efficient estimate in one itera-
tion if the ARX-model order tends to infinity according
to Assumption 3.1. However, in practice (i.e., for finite
sample size), we need to choose some value for the ARX-
model order, and the estimate may improve by iterating.
We now consider these practical choices.

7.1 ARX-model order

There is a trade-off in the choice of the ARX-model or-
der: the larger the order is, the more accurately the sys-
tem dynamics are captured, but the higher the estima-
tion variance becomes. A too high variance in the high-
order model may have an impact on the estimation vari-
ance of the low-order model.

For practical purposes, the user usually has a rough idea
of how large this order should be chosen for the dynam-
ics of the system to be captured sufficiently accurately,
depending on whether the system has fast or slow dy-
namics. However, the ideal order depends also on the
sample size, as the order should be made larger as more
samples are available.

The following approach can be used to choose the high-
order model order. First, choose a set of orders that may
be appropriate to model the system, following initial
knowledge about the speed of the system. Second, run

MORSM for all these orders separately, obtaining low-
order models corresponding to each of the high-order
models. Third, choose the low-order model that mini-
mizes the prediction-error criterion (3).

Recall that the purpose of MORSM and other similar
methods is to attempt to attain the global minimizer
of (3) without using non-convex methods. Hence, the
choice of using (3) to distinguish between several model
estimates is appropriate. However, it should be taken
into account that MORSM does not necessarily estimate
a low-order noise model to plug in (3). In this case, the
highest-order of the non-parametric estimates can be
used: although this is a very noisy estimate, the noise
introduced will be the same for all the model estimates.

7.2 Iterations

Although MORSM provides an asymptotically efficient
estimate in one iteration, for finite sample size the es-
timate may improve by iterating. Analogously to the
choice of high-order, criterion (3) can also be used to
choose the best estimate among all the iterations.

8 Simulations

In this section, we perform Monte Carlo simulations to
study the performance of the method. First, we illustrate
the advantages with respect to the BJSM algorithm. Sec-
ond, we illustrate how the method can be appropriate
to initialize PEM. Third, we perform comparisons with
other methods using systems where PEM can have dif-
ficulties with local minima.

8.1 Advantages with respect to BJSM

Although using different motivations, the algorithms for
MORSM and BJSM have close similarities. In [38], simu-
lation studies have been performed with examples where
BJSM can be an alternative to PEM when PEM has con-
vergence problems. Here, we illustrate how BJSM and
MORSM typically perform similarly given that the al-
gorithms converge, but that MORSM converges faster.
First, we illustrate how MORSM only requires one itera-
tion for an asymptotically efficient estimate, while this is
not sufficient for BJSM. Second, we illustrate how even
when (for finite sample size) MORSM requires more than
one iteration for convergence, it is still a faster converg-
ing method than BJSM.

8.1.1 Example 1: one iteration scheme

In the first simulation, we illustrate that MORSM, unlike
BJSM, gives an asymptotically efficient estimate in one
iteration. For the simulation, the data are generated by

yt =
q−1 + 0.1q−2

1− 1.2q−1 + 0.6q−2
ut +

1 + 0.7q−1

1− 0.9q−1
et. (34)
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Two hundred Monte Carlo simulations are performed
with eight sample sizes equally spaced between N = 200
and N = 20000 on a logarithmic scale. The input {ut}
is obtained by

ut =
1

1− q−1 + 0.89q−2
wt, (35)

where {wt} and {et} are independent Gaussian white
sequences with unit variance.

We compare PEM, BJSM (one and 100 iterations), and
MORSM (one and 100 iterations). All methods estimate
a plant parameterized with the correct orders, and PEM
also estimates a correctly parameterized noise model.
For BJSM and MORSM, an ARX model of order 50
is estimated in the first step. In the iterative versions,
the estimate obtained in the last iteration is the one
used. As the objective of this simulation is to observe
convergence and asymptotic variance properties, PEM is
started at the true parameters, and all methods assume
known initial conditions.

The results are presented in Figure 1, where the average
root mean square error (RMSE) of the impulse response
is presented for each sample size. The RMSE is given by

RMSE =

√
E
[
‖g◦ − ĝ‖22

]
, (36)

where g◦ is a vector with the first 50 impulse response
coefficients ofG◦(q) and similarly for ĝ for the estimated
plant model. In Figure 1, we observe that MORSM and
BJSM perform similarly with 100 iterations for all the
sample sizes used. MORSM performs slightly worse with
one iteration than with 100 for small sample sizes, but
they have the same performance for larger N . However,
the same is not true for BJSM with one iteration, for
which the RMSE does not even decrease with increasing
sample size. Table 1 compares the parameter estimates
of MORSM with 100 iterations associated with the re-
sults in Figure 1 for two chosen sample sizes. The sample
standard deviation σ agrees with what is predicted by
the asymptotic theory.

In conclusion, if a sufficiently amount of iterations are
performed, both MORSM and BJSM attain the asymp-
totic performance of PEM. However, BJSM theoretically
needs the Steiglitz-McBride iterations to tend to infin-
ity, while MORSM only needs one iteration.

8.1.2 Example 2: convergence speed

In the following simulation, we will compare the perfor-
mance of BJSM and MORSM with randomly generated

103 104
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BJSM1

MORSM1

BJSM100

MORSM100

PEMt

Fig. 1. Example 1: average RMSE as function of sample size
for several methods, obtained from 200 Monte Carlo runs
with a fixed system.

Table 1
Example 1: sample mean, sample standard deviation and
theoretical standard deviation for MORSM with 100 itera-
tions.

N True values -1.200 0.600 1.000 0.100

Sample mean -1.195 0.594 1.000 0.109

200 Sample σ 0.043 0.039 0.063 0.105

Theoretical σ 0.033 0.031 0.050 0.080

Sample mean -1.200 0.600 1.000 0.100

20000 Sample σ 0.003 0.003 0.005 0.008

Theoretical σ 0.003 0.003 0.005 0.008

systems, with structure

yt =
l◦1q
−1 + l◦2q

−2 + l◦3q
−3 + l◦4q

−4

1 + f◦1 q
−1 + f◦2 q

−2 + f◦3 q
−3 + f◦4 q

−4ut

+
1 + c◦1q

−1 + c◦2q
−2 + c◦3q

−3 + c◦4q
−4

1 + d◦1q
−1 + d◦2q

−2 + d◦3q
−3 + d◦4q

−4 et, (37)

where {ut} is given as in the previous simulation, and
{et} is Gaussian white noise with variance chosen to
obtain a signal-to-noise ratio

SNR =

∑N
t=1[G◦(q)ut]

2∑N
t=1[H◦(q)et]2

= 5. (38)

The coefficients of L◦(q) are generated from a uniform
distribution, with values between −1 and 1. The coeffi-
cients of the remaining polynomials are generated such
that F ◦(q), C◦(q), and D◦(q) have all roots inside an
annulus in the unit disc with a radius between 0.7 and
0.9, with positive real part. We do this with the objec-
tive of studying a particular class of systems: namely,
the systems are effectively of fourth order (i.e., no poles
are extremely dominant over others), they can be ap-
proximated by ARX models roughly of orders between
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30 and 100, and they resemble physical systems.

We consider the following methods:

• the prediction error method, initialized at the true
parameters (PEMt);

• the Box-Jenkins Steiglitz-McBride method (BJSM).
• the iterative Model Order Reduction Steiglitz-

McBride method (MORSM);
• the iterative Model Order Reduction Steiglitz-

McBride method, estimating also a noise model
(MORSMh);

• the one-iteration Model Order Reduction Steiglitz-
McBride, estimating also a low-order noise model
(MORSM1h).

All the iterative methods perform a maximum of 1000
iterations. MORSM and BJSM have a stopping crite-
rion of 10−4 as tolerance for the normalized norm of the
last iteration (for PEM, the stopping criterion depends
on the optimization algorithm used by MATLAB, which
is set as automatic). For MORSM, we choose the ARX-
model order from a grid of values between 25 and 125,
spaced with intervals of 25. With PEM, we estimate ini-
tial conditions, and with MORSM and BJSM we trun-
cate them. Although a procedure to estimate initial con-
ditions for this type of methods has been proposed in [7],
it is only applicable if the plant and noise model share
the same poles (e.g., ARMA, ARMAX) or if the noise
model poles are known (e.g., OE), which is not the case
for BJ models.

The performance of each method is evaluated by calcu-
lating the FIT of the impulse response of the plant, given
by, in percent,

FIT = 100

(
1− RMSE

‖g◦ − ḡo‖

)
, (39)

where ḡo is the average of g◦.

The results are presented in Figure 2, with the average
FIT as function of sample size. Unlike in Figure 1, this
more challenging scenario does not allow to observe that
(for this range of sample sizes) one iteration of MORSM
provides an asymptotically efficient estimate. If we con-
tinue to iterate, there is an improvement in the obtained
model estimate, and both MORSM (without low-order
noise-model estimate) and BJSM perform similarly, at-
taining the performance of PEM (initialized at the true
parameters) for this range of sample sizes.

The performance of MORSM also improves for small
sample size if a noise model is estimated in the iterative
version. The estimation ofH(q, α), as pointed out in Sec-
tion 5, is independent of the estimation of G(q, θ). The
improvement observed in the model estimate is because
having an estimate of H(q, α) allows for a more accurate
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Fig. 2. Example 2: average FIT for several methods, obtained
from 100 Monte Carlo runs with random systems.

computation of (3) when choosing the best model over
all the iterations.

The fact that, for finite sample size, both MORSM and
BJSM require more than one iteration for convergence
does not render MORSM useless with respect to BJSM.
In Table 2, we indicate the average number of iterations
required for MORSM and BJSM to converge, for the dif-
ference sample sizes used. From here, we conclude that,
even when MORSM needs more than one iteration to
converge, it still converges faster than BJSM. Moreover,
BJSM needs approximately the same amount of itera-
tions independently of sample size, while the number of
iterations required for MORSM decreases with sample
size. This is in accordance with our theoretical result
that, asymptotically, MORSM provides an efficient esti-
mate in one iteration.

8.2 Example 3: initialization for PEM

Here, we illustrate how MORSM can be an appropriate
method to initialize PEM. For that, we repeat the sim-
ulation in Section 8.1.2 with the following methods:

• the prediction error method, with default MAT-
LAB initialization (PEMd);

• the prediction error method, with MORSM1h as
initialization (PEMm1);

• the prediction error method, with MORSMh as ini-
tialization (PEMm).

The results are presented in Figure 3, where we can com-
pare how PEM performs with the default MATLAB ini-
tialization and with the MORSM initialization, as well as
how much PEM can improve the MORSM estimate. For
easier comparison, we also include PEMt and MORSMh
from the previous simulation.

In Figure 3, we see that the standard MATLAB initial-
ization for PEM is not always accurate enough to find
the global minimum: for all the sample sizes used, there
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Fig. 3. Example 3: average FIT for several methods, obtained
from 100 Monte Carlo runs with random systems.

Table 2
Examples 2 and 3: average number of iterations until con-
vergence for several methods and different sample sizes. For
PEM with different initializations, only the PEM iterations
are counted.

Method\N 400 818 3425 7007 29328 60000

BJSM 46 54 116 111 119 117

MORSM 23 13 8 6 4 3

PEM 18 18 15 16 12 18

PEMt 7 5 3 2 2 2

PEMm 7 4 2 1 1 1

PEMm1 10 6 4 3 2 1

are cases when PEM does not converge to the same pa-
rameters as PEMt, which decreases the average FIT. On
the other hand, there is a considerable improvement for
PEM if it is initialized with MORSM, performing close
to PEM initialized at the true parameters for the small-
est sample sizes and identically otherwise. However, ini-
tializing with one iteration of MORSM or with the iter-
ative version gives identical performance. Therefore, if
MORSM is used to initialize PEM, it may not be needed
to wait for MORSM to converge. Alternatively, the it-
erative version of MORSM with low-order noise model
estimate also performs similar to these: in this case, us-
ing it to initialize PEM showed no improvement. As ini-
tialization for PEM, a few iterations of MORSM might
be a good compromise as the number of PEM iterations
decreases with iterative MORSM compared to only one
MORSM iteration (cf. Table 2).

8.3 Comparison with other methods

For parametric models, when PEM converges to the
global optimum, it provides the best possible estimate in
a maximum-likelihood sense. Hence, upon convergence
to the global optimum, it is not expectable that other
methods that achieve the same statistical properties us-
ing alternative numerical algorithms (e.g., MORSM or
RIV) do better than PEM. The question is how robust

a method is against failures—that is, cases where it con-
verges to low-accuracy estimates that do not correspond
to the global optimum.

In the following simulations, we will use two systems,
each in two different settings, where PEM often con-
verges to a non-global minimum. We will compare with
different methods, with MORSM showing robustness
against failures of the algorithm, while still having a me-
dian performance competitive to other methods with the
same theoretical statistical properties.

The following methods will be compared:

• the prediction error method, with default MAT-
LAB initialization (PEMd);

• subspace method with CVA weighting (SS);
• refined instrumental variable method (RIV);
• the iterative Model Order Reduction Steiglitz-

McBride method (MORSM);
• the prediction error method, initialized at the true

parameters (PEMt).

PEMd, SS and PEMt are according to the implemen-
tation in MATLAB2016b with default settings. RIV is
according to the implementation in the CAPTAIN tool-
box v7.5:11 with default settings. With PEM and RIV,
the plant and noise models always have the correct or-
der. With SS, the state-space model order is chosen as
the maximum order of the plant and noise model. With
MORSM, the plant is estimated with the correct order,
and the noise model is non-parametric. Here, we do not
initialize PEM with MORSM, as we want to make use
of the feature that MORSM does not require estimat-
ing a low-order noise model. However, we include PEM
initialized at the true parameters as benchmark.

8.3.1 System 1: widely separated eigenvalues

The first system we consider is given by

G◦(q) =
0.016 + 0.026q−1 − 0.0375q−2

1− 1.6252q−1 + 0.642q−2
. (40)

This system, with its widely separated eigenvalues, is
problematic for PEM in some conditions if the initial
conditions are not very close to the true parameter val-
ues [30]. Here, we begin by repeating the simulation
in [30], for which RIV does not have the same conver-
gence problems as PEM. In the considered scenario,

H◦(q) =
1 + 0.5q−1

1− 0.85q−1
, (41)

{ut} and {et} are zero-mean Gaussian white-noise se-
quences with variances 8.8 and 0.0009, respectively, and
the sample size is N = 1700. We perform 100 Monte
Carlo simulations.
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Fig. 4. System 1 with true noise model (41): boxplot of FIT
for several methods, obtained from 100 Monte Carlo runs.
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Fig. 5. System 1 with true noise model (42): boxplot of FIT
for several methods, obtained from 100 Monte Carlo runs.

The obtained FITs are shown in Figure 4. Confirm-
ing the results in [30], there is probably a local mini-
mum for the PEM cost function giving a FIT around
85, where the optimization procedure often converges
to with the default initialization in MATLAB. In this
simulation, the subspace method CVA is an appropriate
approach to avoid the local-minimum issue with PEM;
however, the median performance is inferior to PEM.
Also RIV avoids the problematic local minimum of PEM,
and has a median performance superior to subspace. Fi-
nally, MORSM performs similarly to RIV and to PEM
initialized at the true parameters.

We now consider the same simulation settings except for
the noise model, now given by

H◦(q) =
1 + 0.23q−1 + 0.07q−2 + 0.05q−3 + 0.014q−4

1− 3.04q−1 + 3.85q−2 − 2.36q−3 + 0.616q−4
.

(42)
In this case, the results are given in Figure 5. PEM
with the default MATLAB initialization has less poor-
performance estimates than in the previous scenario,
but two cases with negative FIT are still encountered.
Subspace CVA is not competitive, having poor median
performance. Although RIV has a median performance
similar to PEM, it has a considerable amount of low-
performance outliers. Finally, MORSM has a median
performance similar to RIV and PEM, but with no out-
liers. Despite the robustness of MORSM against failures
of the algorithm, the estimates obtained not always cor-
respond to the global minimum of the PEM cost func-
tion, as PEM when initialized at the true parameters
has slightly better performance.

PEMd SS RIV MORSM PEMt

20

40

60

80

100

F
IT

Fig. 6. System 2 with white input: boxplot of FIT for several
methods, obtained from 100 Monte Carlo runs.

8.3.2 System 2: resonance peaks

The second system we consider is a 6th order system
with three resonance peaks, given by

L◦(q) = 0.08q−1 + 0.53q−2 − 0.29q−3

− 0.51q−4 + 0.23q−5 + 0.04q−6

F◦(q) = 1− 1.89q−1 + 2.26q−2 − 1.78q−3

+ 1.63q−4 − 1.09q−5 + 0.56q−6

(43)

The noise model is given by

H◦(q) =
1 + 0.8q−1

1− 0.9q−1
, (44)

and {et} is a Gaussian white-noise sequence with unit
variance, and the sample size is N = 2600. We consider
two scenarios, with different inputs. In the first, {ut} is
a Gaussian white-noise sequence with unit variance.

The FITs obtained from 100 Monte Carlo simulations
are shown in Figure 6. Like the case in Figure 4, there is
a local minimum in the PEM cost function correspond-
ing to FIT between 30 and 40%, to where the optimiza-
tion procedure often converges with the standard MAT-
LAB initialization. The subspace method also provides
a model that gives a FIT around 30–40%. Also like in
Figure 4, RIV and MORSM always avoid the non-global
minimum that PEM sometimes converges to, and both
perform close to PEM initialized at the true parameters.

In the following, we show a scenario where MORSM is
advantageous with respect to the other methods in this
study: compared to subspace, it has better median per-
formance; compared to PEM (default MATLAB initial-
ization) and RIV, it has similar median performance but,
unlike these, shows no algorithm failures. The setting is
the same as before, except for the input. In this case, the
input is given by

ut =

√
0.05

1− 1.85q−1 + 0.87q−2
uwt , (45)

where {uwt } is the input from the previous simulation.
This is a low-pass filter with cut-off frequency 0.1rad/s.
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Fig. 7. System 2 with colored input (45): boxplot of FIT for
several methods, obtained from 100 Monte Carlo runs.

The FITs obtained from 100 Monte Carlo simulations
are shown in Figure 7. Here, PEM with the default MAT-
LAB initialization has a considerable amount of low-
accuracy outliers where the algorithm fails to find the
global optimum. The subspace methods is favored with
this setting compared to the previous one, but the me-
dian performance is still worse than PEM. Like PEM,
the RIV algorithm also fails a considerable number of
times, and the median performance is slightly inferior
to PEM. On the other hand, MORSM has no algorithm
failures, while the median performance is only slightly
inferior to that of PEM and RIV. Despite the robust per-
formance of MORSM, it does not attain the performance
of PEM initialized with the true parameters, meaning
that MORSM is not converging to the global minimum of
PEM, but always finds a model with good performance.

9 Discussion and Conclusion

In this paper, we proposed a least-squares method for
estimation of models with a plant parameterized by a
rational transfer function and a non-parametric noise
model. The method reduces a non-parametric model to
a parametric one based on an asymptotic ML criterion
using the Steiglitz-McBride method. We thus name it
Model Order Reduction Steiglitz-McBride (MORSM).
We show that the method provides consistent and
asymptotically efficient estimates of the plant in one
iteration if data are obtained in open loop.

We also perform simulations to study the performance
of the method. The following results were observed.
First, MORSM is asymptotically efficient in one iter-
ation, while BJSM is not. Second, even when extra
iterations are required for convergence with finite sam-
ple sizes, MORSM still converges in less iterations than
BJSM. Third, MORSM may be competitive with PEM
and other methods; in particular, robustness against
outliers in challenging scenarios was a main advantage
compared with competitive methods.

Several extensions of MORSM to other system struc-
tures are possible. The multi-input multi-output
(MIMO) case with a diagonal noise model is straight-
forward. In this case, each output can be considered
individually, and a set of multi-input single-output
(MISO) systems remain to be estimated. Then, each

of these systems can also be considered individually,
as all but the one of interest can be replaced by their
corresponding high-order estimates. The MIMO case
with fully-parametrized noise model is not as straight-
forward, and will be considered for future work.

Also the closed-loop case can be addressed with a di-
rect estimation (i.e., using {yt, ut} as data) by starting
from the asymptotic maximum likelihood cost function
for closed loop. In this case, the estimation of the plant
model independently of the noise model makes it impos-
sible to attain the CR bound. The asymptotic covariance
attained will correspond to the best possible with a non-
parametric noise model [4]. However, such a theoreti-
cal analysis does not follow straightforwardly from the
open-loop case, and is also considered for future work.

Finally, MORSM has already been applied to estimate
systems embedded in networks, showing promising per-
formance [5]. A theoretical analysis and a more in-depth
simulation study are already under development.

The theoretical analysis and simulation study of
MORSM performed in this paper illustrate the poten-
tial of the method applied in open loop to single-input
single-output (SISO) systems. However, the potential for
extensions also makes the results in this paper essential
for the development and analysis of future extensions.

A Proof of Lemma 3.1

The result follows from Theorem 3.1 in [14]. Next, we
verify the conditions S1, S2, U1, D1 and D3 of that the-
orem. Assumption 2.1 and the finite dimensionality of
G◦ and H◦ imply that

max(|ak|, |bk|) ≤ Cρk (A.1)

for some C < ∞ and 0 < ρ < 1. In turn, this implies
that Condition S1 holds. Furthermore, the bound (A.1)
implies the inequality in (13) for some C̄ <∞. Assump-
tion 2.3 clearly implies Condition S2 (for any p ≤ 5).
Assumption 2.2 clearly implies Condition U1. Assump-
tion 3.1 implies Conditions D1 and D3. Thus all condi-
tions in Theorem 3.1 of [14] have been verified and the
result in the lemma follows from this theorem.

B Proof of Theorem 6.1

Using Parseval’s formula, we have

R̄(θ) =
1

2π

∫ π

−π

[
−B◦Γm
A◦Γm

][
−B◦Γm
A◦Γm

]∗
Φu
|F (θ)|2

dω (B.1)
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We notice that R̄(θ) > 0 whenever θ is in the stability
region for the coefficients of polynomials of degree m

S̄ := {θ : F (z, θ) = 0⇒ |z| < 1} ⊂ R2m (B.2)

We introduce the notation f(N) = O(g(N)) to mean
that f(N) decays to zero with the rate g(N): that is,
that there are some positive constants C and N0 such
that, for all N ≥ N0,

‖f(N)‖ ≤ C|g(N)| as N →∞.

From Lemma 3.1 it follows that

Rm(η̂N , θ)− R̄(θ) = O(m(N)). (B.3)

By standard continuity arguments, with probability 1,
Rm(η̂N , θ) > 0 for large enough N . Hence, for large
enough N , replacing (32) in (33), we have

θ̂k+1
N = θ◦ + [Rm(η̂N , θ

k
N )]−1

· 1

N

N∑
t=m+1

ϕmt (ηn, θkN )F ◦(q)ξt(η̂N , θ̂
k
N ). (B.4)

Now, since {ut} is uniformly bounded and 1/F (q, θ) is
uniformly stable, it follows that

∥∥ϕmt (η̂N , θ
k
N )
∥∥ ≤ C1 for

some C1 < ∞. Furthermore, by Lemma 3.1, it follows
that F ◦(q)ξt(η̂N , θ̂

k
N ) = O(m(N)). Finally, we have that

θ̂k+1
N − θ◦ = O(m(N)) (B.5)

and ∥∥∥θ̂k+1
N − θ◦

∥∥∥→ 0, asN →∞, w.p. 1.

This is valid for any previous estimate θ̂kN within the
above mentioned stability region. In particular, it also
holds for the initialization estimate (i.e., the estimate
obtained in Step 1 of the Steiglitz-McBride algorithm,
when the previous estimate is set to F (q, θ) ≡ 1).

C Auxiliary lemmas

This section includes a few results needed for the proof
of Theorem 6.2 in Section D.

Lemma C.1 Assume that X(q) =
∑n
k=1 xkq

−k and
Z(q) =

∑n
l=1 zlq

−l are stable filters and let v(t) be quasi-
stationary. Then,∥∥∥∥∥ 1

N

N∑
t=m+1

X(q)v(t)Z(q)v(t)

∥∥∥∥∥
2

≤ ‖X‖2 ‖Z‖2 C

for some C <∞.

PROOF.

‖ 1

N

N∑
t=m+1

X(q)v(t)Z(q)v(t)

∥∥∥∥2

=

∥∥∥∥∥ 1

N

N∑
t=m+1

n∑
k=1

xkvt−k

n∑
l=1

zlvt−l

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
k=1

xk

n∑
l=1

zl
1

N

N∑
t=m+1

vt−kvt−l

∥∥∥∥∥
2

≤
n∑
k=1

|xk|2
n∑
l=1

|zl|2
∣∣∣∣∣ 1

N

N∑
t=m+1

vt−kvt−l

∣∣∣∣∣
2

≤
n∑
k=1

|xk|2
n∑
l=1

|zl|2
∣∣RNvv(k − l)∣∣2

≤ ‖X‖22 ‖Z‖
2
2 C

2,

as vt is quasi-stationarity.

Lemma C.2 Let Assumptions 2.1, 2.2, 2.3, and 3.1
hold. In addition, let Υn be an m× 2n deterministic ma-
trix, with m fixed. Then, we have that

√
NΥn(η̂N − η̄n) ∼ AsN (0, P ), (C.1)

where

P = σ2
◦ lim
n→∞

Υn[R̄n]−1(Υn)>, (C.2)

if the limit exists.

PROOF. See [14, Theorem 7.3].

Lemma C.3 Let {xn} be a sequence of random vari-
ables that is asymptotically Gaussian distributed—
{xn} ∼ AsN (0, P ). Let {Mn} be a sequence of random
square matrices that converge in probability to a non-
singular matrix M , and {bn} be a sequence of random
vectors that converges in probability to b. Also, let

yn = Mnxn + bn. (C.3)

Then, yn converges in distribution to N (b,MPM>).

PROOF. See [22, Lemma B.4].

Lemma C.4 Let Sn be the subspace of L2
2 spanned by

the rows of [
−F1F2Γn F3Γn

F2Γn 0

]
, (C.4)
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where

Γn(q) =
[
q−1 . . . q−n

]>
, (C.5)

Fi(q) =

∞∑
k=0

f ikq
−k. (C.6)

Suppose that F1, F2 and F3 are exponentially stable: for
an exponentially stable Fi,

|f ik| ≤ Cλk, for some C <∞, λ < 1, (C.7)

and that there is a causal exponentially stable inverse

F̃2(q) =

∞∑
k=0

f̃2kq
−k, |f̃2k | < Cλk. (C.8)

Let γ = [
∑∞
k=1 dkq

−k 0 ] also be exponentially stable.
Then

‖γ −PSn[γ]‖2 ≤ Cλ
n, for some C <∞, λ < 1. (C.9)

PROOF. We will construct an explicit approximation

of γ that belongs to Sn. Let F̃2γ :=
[∑∞

l=1 βlz
−l 0

]
,

which is exponentially stable since both γ and F̃2 are
exponentially stable. Take as approximation for γ,

γ̂n :=
[∑n

l=1 βlF2(z)z−l 0
]
, which by construction be-

longs to SΨ . Introduce the notation γ = [ γ1 γ2 ]. Then,∥∥γk −PSΨ̃[γ]
∥∥
2
≤ ‖γ − γ̂n‖2

=

∥∥∥∥∥γ1 −
n∑
l=1

βlF2(z)z−l

∥∥∥∥∥
2

=

∥∥∥∥∥F2(z)

(
F̃2(z)γ1 −

n∑
l=1

βlz
−l

)∥∥∥∥∥
2

≤ ‖F2(z)‖2

∥∥∥∥∥
∞∑

l=n+1

βlz
−l

∥∥∥∥∥
2

≤ Cλn,

for some C <∞ and λ < 1, as F2 and F̃2γ are exponen-
tially stable.

D Proof of Theorem 6.2

We start by using (B.4) to write

√
N(θ̂k+1

N − θ◦) = M−1N xN ,

where MN = Rm(η̂N , θ
k
N ) and

xN =
1√
N

N∑
t=m+1

ϕmt (η̂N , θ
k
N )F ◦(q)ξt(η̂N , θ̂

k
N ).

From (B.3) and Theorem 6.1, for k ≥ 1, we have that

MN →MCR, asN →∞,w.p.1.

Assume for now (we will prove it later) that

xN ∼ AsN (0, P ).

Then, using Lemma C.3, we have that

√
N(θ̂k+1

N − θ◦) ∼ AsN (0,M−1CRPM
−1
CR). (D.1)

D.1 xN

We will now establish the asymptotic distribution and
covariance of xN . To this end, we first define

Φm(ηn, θ) :=
1

F (q, θ)

[
−B(q, ηn)Γm

A(q, ηn)Γm

]
,

Ξm(ηn, θ) :=
F ◦(q)

A◦(q)F (q, θ)

·
[
−B◦(q) A◦(q)

] [A(q, ηn)−A◦(q)
B(q, ηn)−B◦(q)

]
.

Then we rewrite ξt(η̂N , θ
k
N ) as

ξt(η̂N , θ
k
N ) = − B(q, η̂N )

A◦(q)F (q, θkN )
(A(q, η̂N )−A◦(q))ut

+
A(q, η̂N )

A◦(q)F (q, θkN )
(B(q, η̂N )−B◦(q))ut

= − B◦(q)

A◦(q)F (q, θkN )
(A(q, η̂N )−A◦(q))ut

+
A◦(q)

A◦(q)F (q, θkN )
(B(q, η̂N )−B◦(q))ut

=
1

F ◦(q)
Ξm(η̂N , θ

k
N )ut.

We can thus express xN as

xN =
1√
N

N∑
t=m+1

Φm(η̂N , θ
k
N )utΞ

m(η̂N , θ
k
N )ut.

We will in the remainder of the proof need some prop-
erties regarding the filters Φm and Ξm that are easily
established using Lemma 3.1:∥∥Ξm(η̂N , θ

k
N )
∥∥ = O(m(N)) (D.2)∥∥Φm(η̂N , θ

k
N )− Φm(η̂N , θ

◦)
∥∥ = O(m(N)) (D.3)

‖Φm(η̂N , θ
◦)− Φm(η◦, θ◦)‖ = O(m(N)) (D.4)∥∥Ξm(η̂N , θ

k
N )− Ξm(η̂N , θ

◦)
∥∥ = O(m2(N)) (D.5)

‖Φm(η◦, θ◦)‖ = O(1) (D.6)
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For future reference, we will establish the limit
of
√
Nm2(N). The dominating term in m(N) is

n(N)
√

logN/N and terms with d(N) will be neglected.
For N large enough, we have

lim
N→∞

√
Nm2(N) = lim

N→∞

√
Nn(N)2

logN

N

= lim
N→∞

(
n(N)4+δ

N

) 2
4+δ logN

N
δ

4+δ

= 0,

where the first term tends to zero by Assumption 3.1.

Using Lemma C.1 and Lemma C.3 with (D.2) and (D.3),
it follows that the difference between xN and

1√
N

N∑
t=m+1

Φm(η̂N , θ◦)utΞ
m(η̂N , θ

k
N )ut (D.7)

tends to zero as N →∞ w.p.1, and therefore they have
the same asymptotic distribution and the same asymp-
totic covariance. We will analyze (D.7) instead. Simi-
larly, using Lemma C.1 and Lemma C.3 with (D.2) and
(D.4), it follows that the difference between (D.7) and

1√
N

N∑
t=m+1

Φm(η◦, θ◦)utΞ
m(η̂N , θ

k
N )ut (D.8)

tends to zero asN →∞w.p.1, and we will analyze (D.8)
instead. Similarly, using Lemma C.1 and Lemma C.3
with (D.5) and (D.6), the difference between (D.8) and

1√
N

N∑
t=m+1

Φm(η◦, θ◦)utΞ
m(η̂N , θ

◦)ut (D.9)

tends to zero asN →∞w.p.1, and we will analyze (D.9)
instead.

We rewrite Ξm(η̂N , θ
◦)ut as

Ξm(η̂N , θ
◦)ut =

1

A◦(q)

[
−B◦(q)utΓn
A◦(q)utΓn

]>
(η̂N − η̄n)

=
1

A◦(q)
ϕnt (η◦, θ

◦)>(η̂N − η̄n). (D.10)

Thus, we have shown that xN has the same distribution
and covariance as

TN := Zn
√
N(η̂N − η̄n), (D.11)

where

Zn =

N∑
t=m+1

ϕmt (η◦, θ◦)
F ◦(q)

A◦(q)
ϕnt (η◦, θ◦)

>, (D.12)

and we will analyze TN instead.

D.2 Asymptotic covariance of TN

Using Lemma C.2, we have that TN ∼ AsN (0, Q),where

Q = σ2
◦ lim
n→∞

Zn[R̄n]−1(Zn)>, (D.13)

provided the right hand side limit exists. This will be
shown next. We start by analyzing

R̄n = E
[
ϕnt (ϕnt )>

]
= 〈Ψ, Ψ〉 , (D.14)

where

〈f, g〉 :=

∫ π

−π
f(ejω)g(ejω)∗ dω,

and with Ψ given by

Ψ =

[
−G◦Γn H◦Γn
Γn 0n×1

]
U◦, U◦ =

[
Fu 0

0 σ◦

]
.

For (D.12), we have that

Zn = E

[
ϕmt (η◦, θ◦)

F ◦(q)

A◦(q)
ϕnt (η◦, θ◦)

>
]

= E

[−B◦

F◦Γmut
A◦

F◦Γmut

][
−G◦Γnut
Γnut

]>
=

〈[
− G◦

F◦H◦Γm 0n×1
1

F◦H◦Γm 0n×1

]
Fu,

[
−G◦Γn 0n×1

Γn 0n×1

]
Fu

〉
= 〈γ, Ψ〉 , (D.15)

with

γ =

[
− G◦

F◦H◦Γm 0m×1
1

F◦H◦Γm 0m×1

]
Fu,

Hence, we can write the asymptotic covariance matrix
of TN as

lim
N→∞

E
[
TNT

>
N

]
= σ2

◦ 〈γ, Ψ〉 〈Ψ, Ψ〉
−1 〈Ψ, γ〉

= σ2
◦ 〈PSΨ[γ],PSΨ[γ]〉 , (D.16)

where SΨ is the subspace in L1×2
2 spanned by the rows

of Ψ . Lemma C.4 gives that, as n→∞, Sγ ⊆ SΨ and

lim
N→∞

E
[
TNT

>
N

]
= σ2

◦ 〈γ, γ〉 = σ2
◦MCR.

D.3 Summing up

Consider TN defined in (D.11). As observed in Sec-
tion D.2, it follows from Lemma C.2 that

TN ∼ AsN (0, σ2
◦MCR). (D.17)
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The asymptotic normality of
√
N(θ̂N − θ̂◦) follows

from (D.1) and (D.17), together with that
√
N(θ̂N − θ̂◦)

has the same asymptotic distribution as TN . From
(D.1) and (D.17), it now follows that

√
N(θ̂kN − θ◦) ∼ AsN (0, σ2

◦M
−1
CR). (D.18)
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