
Universal Instruction Selection

gabriel hjort blindell

Doctoral Thesis in Information and Communication Technology
School of Electrical Engineering and Computer Science

KTH Royal Institute of Technology
Stockholm, Sweden 2018

TRITA-EECS-AVL-2018:11
ISBN: 978-91-7729-683-6

School of Electrical Engineering
and Computer Science

KTH Royal Institute of Technology
SE-164 40 Kista

SWEDEN

Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan fram-
lägges till offentlig granskning för avläggande av teknologie doktorsexamen på
fredagen den 6 april 2018 kl. 13:15 i Sal B, Electrum, Kungliga Tekniska Högskolan,
Kistagången 16, Kista.

© Gabriel Hjort Blindell, April 2018

Printed by Universitetsservice US-AB

I may not have achieved all that I wanted to achieve

but I am proud of what I did achieve

iv

Abstract

In code generation, instruction selection chooses instructions to implement a given
program under compilation, global code motion moves computations from one
part of the program to another, and block ordering places program blocks in a
consecutive sequence. Local instruction selection chooses instructions one program
block at a time while global instruction selection does so for the entire function.
This dissertation introduces a new approach called universal instruction selection that
integrates global instruction selection with global code motion and block ordering.
By doing so, it addresses limitations of existing instruction selection techniques that
fail to exploit many of the instructions provided by modern processors.

To handle the combinatorial nature of these problems, the approach is based
on constraint programming, a combinatorial optimization method. It relies on a
novel model that is simpler and more flexible compared to the techniques used in
modern compilers and that captures crucial features ignored by other combinatorial
approaches. The dissertation also proposes extensions to the model for integrating
instruction scheduling and register allocation, two other important problems of
code generation.

The model is enabled by a novel, graph-based representation that unifies data
and control flow for entire functions. The representation is crucial for integrating
instruction selection with global code motion and for modeling sophisticated
instructions, whose behavior contains both data and control flow, as graphs.

Through experimental evaluation, universal instruction selection is demon-
strated to handle architectures with a rich instruction set and scales up to functions
with hundreds of operations. For these functions, it generates code of equal or
better quality compared to the state of the art. The dissertation also demonstrates
that there is sufficient data parallelism to be exploited through selection of SIMD
instructions and that this exploitation benefits from global code motion. With these
results, it is argued that constraint programming is a flexible, practical, competitive,
and extensible approach for combining global instruction selection, global code
motion, and block ordering.

v

Sammanfattning

Inom kodgenerering väljer instruktionsselektering (eng. instruction selection) instruk-
tioner för att implementera ett givet program under kompilering, global kodförflytt-
ning (eng. global code motion) flyttar beräkningar från en del av programmet till en
annan, och blockläggning (eng. block ordering) placerar programblock i en sekventiell
följd. Lokal instruktionsselektering väljer instruktioner ett programblock i taget
medan global instruktionsselektering gör så för hela funktionen. Denna avhandling
introducerar en ny metod, kallad universell instruktionsselektering, som integrerar
global instruktionsselektering med global kodförflyttning och blockläggning. På så
vis åtgärdar den begränsningar hos befintliga instruktionsselekteringsmetoder som
misslyckas med att utnyttja många av instruktionerna som erbjuds av moderna
processorer.

För att hantera den kombinatoriska naturen av dessa problem tillämpas vill-
korsprogrammering (eng. constraint programming), en teknik för kombinatorisk
optimering. Metoden använder en innovativ model som är enklare och mer flexibel
jämfört med metoderna som används i moderna kompilatorer och som fångar
viktiga särdrag som ignoreras av andra kombinatoriska metoder. Avhandlingen
föreslår också utökningar av modellen för att integrera instruktionsschemaläggning
(eng. instruction scheduling) och registerallokering (eng. register allocation), två andra
viktiga kodgenereringsproblem.

Modellen möjliggörs av en innovativ, grafbaserad representation som förenar
data- och kontrollflöde för hela funktioner. Representationen är avgörande för att
integrera instruktionsselektering med global kodförflyttning och för att modellera
sofistikerade instruktioner, vars beteende omfattar både data- och kontrollflöde,
som grafer.

Genom experimentell utvärdering visas att universell instruktionsselektering
kan hantera arkitekturer med ett rikt instruktionsset och skalar upp till funktioner
med hundratals beräkningar. För dessa funktioner genererar den kod av mot-
svarande eller bättre kvalitet än den senaste tekniken. Avhandlingen visar också
att det finns tillräckligt med dataparallellism att utnyttja genom selektering av
SIMD-instruktioner och att denna exploatering gynnas av global kodförflyttning.
Med dessa resultat argumenteras för att villkorsprogrammering är en flexibel,
praktisk, konkurrenskraftig, och utökningsbar metod för att kombinera global
instruktionsselektering, global kodförflyttning, och blockläggning.

vi

Acknowledgements

First and foremost, I want to thank my main supervisor Christian Schulte for
accepting me as his student and overseeing my studies. Your scholarship and
wisdom has been a respectable source of knowledge and an inspiration, which
has helped me grow both intellectually and personally. In particular, you have
motivated me to persevere. For example, one morning I decided – after having
endured months of great distress – that I would abandon my studies. I went to
your office to inform my decision but, after listening to your enlightening words, I
amended my decision, thinking that I would give it one more go. Had I had any
other mentor at that pivotal moment, this dissertation would undoubtedly not have
seen the light of day.

I want to thank my co-supervisor Mats Carlsson for scrutinizing and improving
my work. Your expertise has been invaluable for putting my ideas into practice,
especially in devising many of the solving techniques. Without your help, my
research would not have matured to the level it is today.

I want to thank my co-supervisor Ingo Sander for giving me a different perspec-
tive on things when I needed a second opinion.

I want to thank Roberto Castañeda Lozano for being my closest colleague during
my studies. It has been a privilege working next to you all these years, and I could
not have asked for a better co-worker to share ideas, problems, nerdy comments,
and laughter with.

I want to thank Prof. Peter van Beek for acting as opponent and Prof. Christoph
Kessler, Prof. Krzysztof Kuchcinski, and Prof. Christine Solnon for acting as PhD
committee on my doctoral defense. I also want to thank Prof. Christoph Kessler
for contributing to my PhD proposal, and I want to thank Prof. Elena Dubrova for
examining my dissertation for internal review and attending my PhD proposal.

I want to thank Frej Drejhammar, Mattias Jansson, and Karl Johansson for setting
up the framework to capture target machines as a high-level, machine-readable
description. I also want to thank Muhammad Waseem Arshad for helping me using
this framework for modeling Hexagon.

I want to thank the Swedish Research Council (VR grant 621-2011-6229) for
funding my research, and RISE SICS for letting me use its facilities. I also want
to thank my colleagues at KTH and RISE SICS for creating a friendly working
environment.

I want to thank everyone at TEX StackExchange (tex.stackexchange.com) for their
help with all LATEX problems I encountered during my studies. Without it, writing
this dissertation would have been a much more arduous task.

I want to thank my parents for their loving support and encouragement.
Last but not least, I want to thank Linda Åkerlund for being my companion in

so many aspects of life: eating buckets of popcorn while watching TV, folding
laundry together, setting up excel sheets for everything, laughing until our cheeks
hurt, crying in each other’s arms, traveling to faraway places, trusting one another
through thick and thin, loving the night away, and dancing for hours on end.

tex.stackexchange.com

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 1
1.1 Thesis Statement . 2
1.2 Motivation . 3
1.3 Contributions . 7
1.4 Publications . 8
1.5 Research Methodology . 10
1.6 Evaluation Methodology . 11
1.7 Outline . 13

2 Existing Instruction Selection Techniques and Representations 15
2.1 Instruction Characteristics . 17
2.2 Macro Expansion . 18
2.3 Tree Covering . 20
2.4 DAG Covering . 27
2.5 Graph Covering . 36
2.6 Limitations of Existing Approaches . 42

3 Constraint Programming 45
3.1 Modeling . 45
3.2 Solving . 50
3.3 Lazy Clause Generation . 56

4 Universal Representation 59
4.1 Design Requirements . 59
4.2 Program Representation . 60
4.3 Instruction Representation . 67
4.4 Pattern Matching . 68
4.5 Comparison with Other Sea-of-Nodes IRs 69
4.6 Summary . 70

5 Constraint Model 71

vii

viii contents

5.1 Modeling Global Instruction Selection 71
5.2 Modeling Global Code Motion . 73
5.3 Modeling Data Copying . 75
5.4 Modeling Value Reuse . 77
5.5 Modeling Block Ordering . 83
5.6 Objective Function . 88
5.7 Limitations . 89
5.8 Summary . 92

6 Solving Techniques 93
6.1 Refining the Define-Before-Use Constraint 93
6.2 Refining the Objective Function . 95
6.3 Implied Constraints . 97
6.4 Symmetry and Dominance Breaking Constraints 100
6.5 Tightening the Cost Bounds . 102
6.6 Branching Strategies . 103
6.7 Presolving . 103
6.8 Experimental Evaluation . 107
6.9 Summary . 121

7 Experimental Evaluation Using the State of the Art 123
7.1 Unison vs. LLVM . 123
7.2 Impact of SIMD instructions . 124

8 Proposed Model Extensions 127
8.1 Integrating Instruction Scheduling . 127
8.2 Integrating Register Allocation . 128

9 Conclusions and Future Work 133
9.1 Conclusions . 133
9.2 Future Work . 134

A Macro Expansion 137
A.1 The Principle . 137
A.2 Naive Macro Expansion . 138
A.3 Improving Code Quality with Peephole Optimization 145
A.4 Limitations of Macro Expansion . 152
A.5 Summary . 152

B Tree Covering 155
B.1 The Principle . 155
B.2 First Techniques to Use Tree-Based Pattern Matching 157
B.3 Using LR Parsing to Cover Trees Bottom-Up 161
B.4 Using Recursion to Cover Trees Top-Down 172

contents ix

B.5 Separating Pattern Matching from Pattern Selection 176
B.6 Other Tree-Based Approaches . 197
B.7 Limitations of Tree Covering . 201
B.8 Summary . 203

C DAG Covering 205
C.1 The Principle . 205
C.2 Optimal Pattern Selection on DAGs Is NP-Complete 206
C.3 Straightforward, Greedy Techniques 209
C.4 Techniques Based on Exhaustive Search 210
C.5 Extending Tree Covering Techniques to DAGs 211
C.6 Modeling Instruction Selection as an M(W)IS Problem 216
C.7 Modeling Instruction Selection as a Unate/Binate Covering Problem219
C.8 Modeling Instruction Selection Using IP 221
C.9 Modeling Instruction Selection Using CP 225
C.10 Other DAG-Based Approaches . 227
C.11 Limitations of DAG Covering . 230
C.12 Summary . 231

D Graph Covering 233
D.1 The Principle . 233
D.2 Sea-of-Nodes IRs . 234
D.3 Extending Tree Covering Techniques to Graphs 236
D.4 Modeling Instruction Selection as a PBQP 236
D.5 Other Graph-Based Approaches . 239
D.6 Summary . 242

E List of Techniques 243

F Graph Definitions 249

G MiniZinc Implementation 253

References 277

Index 303

List of Figures

1.1 Overview of universal instruction selection 2
1.2 Overview of a typical compiler . 3
1.3 Example illustrating the need for new techniques and the interaction

between instruction selection and global code motion 4
1.4 Example illustrating the interaction between instruction selection and

block ordering . 6
1.5 Comparison between two methods for normalizing measurements . 12
1.6 Structure of the dissertation . 14

2.1 Principle timeline diagram . 16
2.2 Example of a macro . 19
2.3 Example of the pattern matching and selection problem 21
2.4 Anatomy of a rule in a machine grammar 22
2.5 Example illustrating the limitation of expression trees 28
2.6 Example of modeling pattern selection as a MIS problem 30
2.7 Anatomy of simple and complex rules in an extended machine grammar 31
2.8 Example illustrating the limitation of block DAGs 35
2.9 Example of an SSA graph . 37
2.10 Example of a Click-Paleczny graph . 38
2.11 Example of modeling instruction selection as a PBQP 39

3.1 Examples illustrating the cumulative constraint 49
3.2 Examples illustrating the no-overlap constraint 49
3.3 Example of a search tree . 52
3.4 Example of a search tree for an optimization problem 53
3.5 Example of dominating solutions . 55
3.6 Overview of a typical LCG-based constraint solver 56
3.7 Example of no-good learning . 57

4.1 Example of function used to describe the program representation . . 61
4.2 Example of a universal function graph 62
4.3 Example illustrating the need for definition edges 64
4.4 Example illustrating how to handle implicit dependencies in UF graphs 66
4.5 Example of edge numbers . 67
4.6 Example of universal pattern graphs 68
4.7 The ϕ-pattern . 68

5.1 Example of cyclic data dependencies 72
5.2 Example of block dominance . 73

xi

xii list of figures

5.3 Example of copy-extending a pattern 77
5.4 Example of value reuse . 78
5.5 Example of match duplication . 79
5.6 Example of alternative values . 80
5.7 Extended ϕ-pattern . 80
5.8 Plot for evaluating match duplication’s and alternative values’ impact

on solving time . 82
5.9 Plot for evaluating value reuse’s impact on code quality 83
5.10 Example that requires additional jump instructions 84
5.11 Example of branch extension . 85
5.12 Example of creating a DTB pattern . 86
5.13 Plot comparing solving times for two constraint models supporting

jump instruction insertion . 87
5.14 Plot comparing optimal solution costs for two constraint models

supporting jump instruction insertion 88
5.15 Example illustrating when recomputation is preferred over value reuse 89
5.16 Example of if-conversions . 90
5.17 Example of implicit sign or zero extensions 91

6.1 Example illustrating the refined define-before-use constraint 94
6.2 Example of match costs distributed over operations 95
6.3 Example of interchangeable data . 101
6.4 Example of dominated matches . 104
6.5 Example of an illegal match . 105
6.6 Example of canonical locations . 107
6.7 Plot for evaluating the operation cost function’s impact on solving time 109
6.8 Plot for evaluating the different objective functions’ impact on finding

optimal solutions . 110
6.9 Plot for evaluating the different objective functions’ impact on code

quality . 111
6.10 Set of plots for evaluating each implied constraint’s impact on solving

time . 113
6.11 Plot for evaluating the impact on solving time made by different

combinations of implied constraints 114
6.12 Set of plots for evaluating each symmetry or dominance breaking

constraint’s impact on solving time . 115
6.13 Plot for evaluating the impact on solving time made by different

combinations of symmetry and dominance breaking constraints . . . 116
6.14 Set of plots for evaluating each presolving technique’s impact on

solving time . 118
6.15 Plot for evaluating the impact on solving time made by different

combinations of presolving techniques 119
6.16 Plot for evaluating the impact on solving time made by different

combinations of all solving techniques 120

list of figures xiii

7.1 Plot for evaluating universal instruction selection’s impact on code
quality in comparison with LLVM . 124

7.2 Plot for evaluating SIMD instructions’ impact on code quality 125

8.1 Example of local register allocation . 129
8.2 Example of global register allocation 130

A.1 Example of a macro . 138
A.2 Example of macro expansion using Simcmp 138
A.3 Example of an expression tree . 139
A.4 A binary addition macro in ICL . 140
A.5 Example of MIML code . 141
A.6 Example of OMML code . 141
A.7 Overview of the Davidson-Fraser approach 148
A.8 Extension of the Davidson-Fraser approach 149
A.9 Example of an instruction expressed in λ-RTL 150

B.1 Example of the pattern matching and selection problem 156
B.2 Example of a function expressed using Wasilew’s IR 158
B.3 Example of a machine description for PCC 159
B.4 Anatomy of a rule in a machine grammar 162
B.5 Example of tree parsing . 164
B.6 Example of a machine grammar . 166
B.7 Example of a state table for a machine grammar 166
B.8 Execution walk-through of the Glanville-Graham approach 167
B.9 Examples illustrating how chain rules can be supported 176
B.10 Example of a string-matching machine 178
B.11 Example of tree pattern matching using Hoffmann-O’Donnell 180
B.12 Examples of grammar rules for Twig 185
B.13 Example of breaking down a pattern into single-node components . 189
B.14 Example of a BURS grammar and an LR graph 193
B.15 Example of state explosion . 194
B.16 Creation of a new state . 196
B.17 Example of Trellis diagram . 202

C.1 Transforming SAT into DAG covering 207
C.2 Example of undagging a block DAG 212
C.3 Example of sharing reduced nonterminals between nodes in a block

DAG . 214
C.4 Example of converting a pattern DAG into partial tree patterns 215
C.5 Example of modeling instruction selection as a MIS problem 217
C.6 Anatomy of simple and complex rules in an extended machine grammar 217
C.7 Example of unate covering . 220
C.8 Example of a CO graph . 230

xiv list of figures

C.9 Example illustrating the limitation of block DAGs 231

D.1 Example of an SSA graph . 235
D.2 Example of a Click-Paleczny graph . 236
D.3 Example of modeling instruction selection as a PBQP 238

F.1 Example of two simple, directed graphs 250

List of Tables

1.1 Contributions per chapter . 8
1.2 Contributions per publication . 9

2.1 Example of grammar rules . 23
2.2 Example of a grammar in normal form 23

3.1 Example of a constraint model . 46
3.2 Example illustrating propagation . 51

A.1 Example of instruction bit strings . 143

B.1 Example of grammar rules . 162
B.2 Example of a grammar in normal form 163
B.3 Example of an instruction set expressed as attribute grammar 170
B.4 Example of string matching without full backtracking 177
B.5 Example of lookup table compression 184
B.6 Example of an OVA . 201

D.1 Time complexities for solving pattern matching and optimal pattern
selection . 234

xv

List of Algorithms

2.1 Algorithm for computing the optimal sequence of rules that reduces
the given expression tree to a particular nonterminal 25

2.2 Algorithm for selecting the optimal sequence of rules 26
2.3 Algorithm for labeling an expression tree for optimal pattern selection 27
2.4 VF2 algorithm . 41

6.1 Algorithm for computing the set of canonical locations 108

B.1 Straightforward algorithm for pattern-matching trees 160
B.2 Hoffmann-O’Donnell tree labeling algorithm 179
B.3 Algorithm for building the subsumption graph used in

Hoffmann-O’Donnell . 182
B.4 Algorithm for generating the lookup tables used in

Hoffmann-O’Donnell . 183
B.5 Algorithm for computing the optimal sequence of rules that reduces

the given expression tree to a particular nonterminal 186
B.6 Algorithm for selecting the optimal sequence of rules 187
B.7 Algorithm for labeling an expression tree using states 191
B.8 Algorithm for selecting the rules for a labeled expression tree 192

xvii

List of Acronyms

ACK Amsterdam Compiler Kit
AMOP abstract machine operation
ASIP application-specific instruction set processor
ASP answer set programming
AST abstract syntax tree
AVX advanced vector extensions
BEG Back End Generator
BURS bottom-up rewriting system
CBC Common Bus Compiler
CGG Code-Generator Generator
CGL Code Generator Language
CGPL Code Generator Preprocessor Language
CI confidence interval
CISC complex instruction-set computer
CNF conjunctive normal form
CO connection operation
CP constraint programming
CV coefficient of variation
DAG directed acyclic graph
DP dynamic programming
DSP digital signal processor
DTB dual-target branch
ERI extended resource information
FBB functional building block
FHC Fortran H Compiler
FRT factorized register transfer
GA genetic algorithm
GCC GNU Compiler Collection
GMI geometric mean improvement
GRiP global resource-constrained percolation
ICL Interpretive Coding Language
ILP integer linear programming
SIMD single-instruction, multiple-data
IP integer programming
IR intermediate representation
ISE instruction set extension
ISFG internal signal-flow graph
JHSC Java Hotspot Server Compiler
JIT just-in-time

xix

xx list of acronyms

LCC Little C Compiler
LCG lazy clause generation
LR local rewrite
MIML Machine-Independent Macro Language
MIMOLA Machine Independent Microprogramming Language
MIS maximal independent set
ML Metalanguage
MWIS maximal/minimal weighted independent set
OMML Object Machine Macro Language
OVA optimal value array
PAS preferred attribute set
PBQP partitioned Boolean quadratic problem
PCC Portable C Compiler
PO Peephole Optimizer
PQCC Production Quality Compiler-Compiler
QAP quadratic assignment problem
RISC reduced instruction-set computer
RT register transfer
RTL register transfer list
SAT Boolean satisfiability
SLM source language machine
SSA static single assignment
SSE streaming SIMD extensions
TEL Template Language
UF universal function
UI uniquely invertable
UP universal pattern
VLIW very long instruction word
VLSI very large scale integration
XL Extensible Language
YC Y Compiler

CHAPTER

1
Introduction

Processors are built to execute a vast range of programs, from tiny Hello, world!

samples to large-scale Earth simulations. Most importantly, the processors are built
to minimize the execution time for these programs. To this end, CPU manufacturers
continuously extend their processors with new, sophisticated instructions that allow
complex computations to be executed using fewer instructions. Such instructions
are especially common in digital signal processors (DSPs) that appear in most
contemporary mobile phones. But while the technology behind modern processors
continues to advance, the techniques for instruction selection – the task of choosing
the instructions for a given program – have not. In fact, the state-of-the-art compilers,
which are tools for translating programs into assembly code, essentially apply the
same instruction selection techniques as were used in the 1980s.

Problem Statement Due to underlying assumptions, many of the instructions
currently available in modern processors cannot be handled by these techniques.
In particular, they rely on representations that are too limited for modeling these
instructions. Instead, compiler developers are forced to implement hand-written
routines for checking whether a specific instruction is applicable and, if so, greedily
selecting it. With over 100 million microprocessors being shipped every quarter [199],
through release cycles that become shorter and shorter, there is a growing need for
new and improved instruction selection techniques.

Furthermore, the set of selectable instructions is highly dependent on other
compiler tasks. One such task is global code motion, which involves moving compu-
tations from one part of the program to another. Integrating global code motion
with instruction selection enables a larger set of combinations of computations,
some of which may be implemented using sophisticated instructions. Another
task is block ordering, which involves placing the program blocks in a consecutive
sequence. Depending on the processor, one set of selected instructions may impact
the possible block sequence and vice versa. Consequently, in order to generate
high-quality code, these tasks must be performed in unison.

1

2 1 introduction

IR
graph
builder

transformations matcher modeler solver
code

emitter

code

machine
description

pattern set
builder

transformations

graph
graph match set constraint

model
solution

pattern set

pattern set
AT COMPILER BUILD TIME

AT PROGRAM COMPILE TIME

Figure 1.1: Overview of universal instruction selection.

Universal Instruction Selection This dissertation introduces universal instruction

selection – a new approach that addresses the problems recently described.1 Outlined
in Fig. 1.1, the approach is the first to combine instruction selection with global
code motion and block ordering. In doing so, the approach alleviates selection of
sophisticated instructions that would otherwise not have been selectable.

To handle the combinatorial nature of these problems, the approach is based on a
combinatorial optimization method called constraint programming. It relies on a novel
combinatorial model that is simpler and more flexible compared to the techniques
currently used by modern compilers. In addition, it captures crucial features that
are ignored by other, existing combinatorial approaches. The dissertation also
proposes extensions for integrating instruction scheduling and register allocation,
which are two other code generation tasks known to impact instruction selection.

The model is enabled by a novel, graph-based representation that unifies data
flow and control flow for entire functions. Not only is this representation crucial for
combining instruction selection with global code motion, it also enables instructions
whose behavior contains both data and control flow to be modeled as graphs. Hence
there is no longer any need for hand-written routines to handle instructions that
violate underlying assumptions about the instruction set.

1.1 Thesis Statement

Constraint programming is a flexible, practical, competitive, and extensible approach

for combining global instruction selection, global code motion, and block ordering.

1The source code is freely available on github.com/unison-code/uni-instr-sel.

github.com/unison-code/uni-instr-sel

1.2 motivation 3

program frontend optimizer backend assembly code

compiler

IR IR

global
code mover

.IR IR

optimizer

instruction
selector

register
allocator

instruction
scheduler

block
ordererIR assembly code

backend

Figure 1.2: Overview of a typical compiler.

By flexible, it means that the approach can handle hardware architectures with a rich
instruction set. By practical, it means that the approach can select instructions for
programs of sufficient complexity and scales to medium-sized functions (measured
in hundreds of operations). By competitive, it means that the approach generates
code of equal or better quality compared to the state of the art. By extensible, it
means that the approach can be extended to integrate other code generation tasks.

1.2 Motivation

A compiler is a tool that takes a program, written in some programming language,
as input and produces equivalent assembly code for a specific processor, called the
target machine, as output. As shown in Fig. 1.2, a compiler typically consists of three
parts: a frontend, an optimizer, and a backend.

The frontend performs syntactic and semantic analysis on the program under
compilation, making sure that the program is syntactically and semantically valid.
After passing all checks, it then transforms the program into an intermediate

representation (IR) and passes the code to the optimizer.
The optimizer (sometimes called middle-end) consists of many target-independent

program optimizations, such as constant folding, dead code elimination, and loop
unrolling. Consequently, it is often the largest component of most compilers. Global
code motion is typically also included in this component, where operations are
moved across block boundaries in order to move expensive operations into blocks
with lower execution frequency. Once optimized, the IR code is then passed to the
backend.

The backend performs code generation, which also consists of many tasks but

4 1 introduction

int i = 0;
while (i < N) {
int a = A[i];
int b = B[i];
int c = a + b;
if (MAX < c) c = MAX;
C[i] = c;
i++;

}

(a) C code.

T

T F

F

i← 0
br b2

t1 ← i ≤ N
c.br t1, b3, end

t2 ← i × 4
t3 ← A + t2
a← load t3
t4 ← B + t2
b← load t4
c← a + b
t5 ← MAX ≤ c
c.br t5, b4, b5

c← MAX
br b5 t6 ← C + t2

store t6, c
i← i + 1
br b2

b1

b2

b3

b4
b5

(b) Corresponding IR and control-flow graph.

Figure 1.3: Example to illustrate the need for new techniques and the interaction
between instruction selection and global code motion. The program computes the
saturated sums of two arrays A and B as a new array C, all of which are assumed
to be of equal length and stored in memory. The variables N and MAX are constants
representing the array length and the upper limit, respectively. An integer is
assumed to be four bytes.

of which three tasks are most prominent: instruction selection, which we are
already familiar with; register allocation, where temporaries are assigned to registers;
and instruction scheduling, where instructions are reordered to increase instruction-
level parallelism and avoid stalls. Among other tasks, the backend then performs
block ordering in order to minimize the number of jump instructions. After these
steps the program has been fully transformed into assembly code, which can then
be translated into machine code to be executed by the target machine.

1.2.1 The Need for New Techniques and Representations

Figure 1.3 shows a program that computes the saturated sums of two integer arrays.
In saturation arithmetic, the result of an arithmetic operation will always stay within
a range fixed by a minimum and maximum value. If the operation would produce
a value outside of this range, then the value is set (“clamped”) to the closest limit,

1.2 motivation 5

thus becoming “saturated”.
Assume that the target machine has an instruction capable of implementing

the saturated-add operation used in the program shown in Fig. 1.3. Hence the
instruction would implement the following five operations: the a + b addition, the
MAX ≤ c comparison, the conditional jump to either of blocks b4 and b5, the c← MAX
assignment, and the unconditional jump to b5. Selecting this instruction can have
tremendous impact on performance. Assume, for example, that each operation
can be implemented using an instruction that takes one cycle to execute. Hence
executing one iteration of the loop takes 16 cycles, and selecting the saturated-add
instruction would reduce the execution time by 25 %.

Existing instruction selection techniques and representations, however, do
not support selection of such instructions. Since the operations above reside in
separate blocks (b3 and b4), making use of the saturated-add instruction requires an
instruction selector that is capable of processing multiple basic blocks simultaneously.
In comparison, traditional instruction selection techniques only consider one basic
block at a time. Moreover, most approaches represent the instructions as graphs.
As the saturated-add instruction contains operations for both data and control flow,
modeling it as a graph requires a representation that captures both data and control
flow. In comparison, existing representations only capture data flow.

1.2.2 For Combining Instruction Selection and Global Code Motion

Assume that the target machine also has a SIMD instruction for addition.2 Revisiting
the example shown in Fig. 1.3, there are four additions in the program (A + t2, B + t2,
C + t2, and i + 1) which are independent from one another and can therefore be
executed in parallel. Assuming again that all instructions take one cycle to execute,
implementing these four additions using a single SIMD instruction would reduce
execution time by almost 19 %. This requires, however, that the two additions in
block b5 be moved to block b4, which is the task of global code motion. Since global
code motion is commonly considered to be a target-independent optimization, this
task is often done before code generation. Consequently, the global code mover
may take decisions which prevent selection of such instructions.

1.2.3 For Taking Cost of Data Copying Into Account

Although selecting SIMD instructions may significantly improve code quality – like
in the previous example – doing so carelessly may also have the opposite effect.
Assume, for example, that the SIMD instruction uses a limited set of registers. If the
other selected instructions cannot directly write to and read from these registers,
then additional instructions must be emitted to copy the values between the general
registers and the SIMD registers. In the case of the program shown in Fig. 1.3, eight

2A single-instruction, multiple-data (SIMD) instruction is an instruction that executes the same operation
over multiple sets of input data.

6 1 introduction

int f() {
int a;
do {
a = g();

} while (a == 0);
return a;

}

(a) C code.

FT

a← call g
t1 ← a � 0
c.br t1, b1, b2

ret a

b1

b2

(b) Corresponding IR and control-flow graph.

b1: call a ← g()
cmp t1 ← a � 0
jmp t1, b1

b2: ret a

(c) Selecting basic jump in-
struction, after block order-
ing. Cycle count: 6.

b1: call a ← g()
jmp a , 0, b2

b2: ret a

(d) Selecting complex jump
instruction, before block or-
dering. Cycle count: 5.

b1: call a ← g()
jmp a , 0, b2
jmp b1

b2: ret a

(e) Selecting complex jump
instruction, after block order-
ing. Cycle count: 8.

Figure 1.4: Example to illustrate the interaction between instruction selection and
block ordering. The function f calls another function g until it returns a non-zero
value, and then returns that value.

such instructions would be needed, which instead increases execution time with
31 %. The task of inserting these copy instructions is known as data copying, and
the instruction selector must be aware of the cost of data copying in order to make
effective use of SIMD instructions.

1.2.4 For Combining Instruction Selection and Block Ordering

Figure 1.4 shows a function that keeps calling another function (with side effects)
until it returns a non-zero value. Assume that the target machine has three
instructions for handling control flow: a jmp p, b instruction, which branches to
block b if the value in register p corresponds the Boolean value true; a jmp r , 0, b
instruction, which branches to block b if the condition r , 0 holds, where r is
a register; and a jmp b instruction, which unconditionally branches to block b.
Assume also that these branch instructions take three cycles compared to the other
instructions in the target machine, which take one cycle.

At first glance it appears that only the first jump instruction is selectable for
implementing the conditional branch (see Fig. 1.4c). Selecting this instruction leads
to a total of six cycles for the entire function. But by flipping the condition and
swapping block labels (conditionally jumping to b2 instead of b1), the more complex
jump instruction becomes selectable (see Fig. 1.4d). Selecting this instruction brings
the cycle count to five cycles, thus reducing the execution time by almost 17 %.
However, although this decision may appear better at the point of instruction

1.3 contributions 7

selection, it requires an additional jump instruction when ordering the blocks
(because block b1 cannot fall-through to the top of itself; see Fig. 1.4e). This
code takes eight cycles to execute, thus increasing execution time with 33 %. The
instruction selector must therefore be aware of additional jump instructions that
may be required when making such decisions.

1.3 Contributions

The dissertation makes six contributions to the areas of code generation and
constraint programming:

C1 It presents a comprehensive and systematic survey that
a. examines over four decades of research on instruction selection, covering

a significantly wider scope and time span compared to existing surveys
[51, 68, 153, 242, 260] which are either too old or incomplete.

The survey identifies
b. four fundamental instruction selection principles – macro expansion,

tree covering, DAG covering, and graph covering –
and

c. five instruction characteristics – single-output, multi-output, disjoint-
output, inter-block, and interdependent –

systematically classifies the techniques along these two dimensions. In
addition, the survey
d. identifies connections between instruction selection and other code

generation problems that have yet to be investigated.
C2 It introduces a novel program and instruction representation that

a. captures both data and control flow for entire functions and instructions,
which enables

b. an unprecedented range of instruction behaviors to be captured and
modeled as graphs.

In addition, the representation is crucial for
c. combining instruction selection and global code motion and solving

these two problems in unison.
C3 It introduces a constraint model and related transformations for universal

instruction selection which, for the first time, enables
a. uniform selection of data and control instructions,

and integration of
b. global instruction selection with
c. global code motion.

In addition, the constraint model integrates
d. data copying,
e. value reuse, and
f. block ordering.

8 1 introduction

chapter C1 C2 C3 C4 C5 C6

2 · · · · ·
4 · · · · ·
5 · · · · ·
6 · · · · ·
7 · · · · ·
8 · · · · ·
A · · · · ·
B · · · · ·
C · · · · ·
D · · · · ·

Table 1.1: Contributions per chapter.

C4 It introduces techniques to improve solving of the constraint model, which
are essential for scalability and making the approach work in practice.

C5 It presents thorough experiments demonstrating that the approach scales to
medium-sized programs and yields equal or better code than the state of the
art.

C6 It describes how the constraint model can be extended to integrate other code
generation tasks, such as instruction scheduling and register allocation.

Tab. 1.1 shows in which part of the dissertation each contribution is manifested.
The material presented in Chap. 6 is based on ideas conceived in collaboration

with Mats Carlsson.

1.4 Publications

This dissertation is based on material presented in the following publications:

Books

P1 G. Hjort Blindell. Instruction Selection: Principles, Methods, and Applications.
Springer, 2016.

Conference Papers

P2 G. Hjort Blindell, R. Castañeda Lozano, M. Carlsson, and C. Schulte. “Model-
ing Universal Instruction Selection”. In: Proceedings of CP’15. Springer, 2015,
pp. 609–626.

Contribution The author of this dissertation designed and implemented
the work presented in the paper, oversaw the writing of the paper, wrote the

1.4 publications 9

publication C1 C2 C3 C4 C5 C6

a b c d f e

P1 · · · · · · · · · ·
P2 · · · ·
P3 · · · · · · ·

Table 1.2: Contributions per publication.

majority of the text, designed the figures, and assisted in experiment data
gathering and analysis.

Articles

P3 G. Hjort Blindell, M. Carlsson, R. Castañeda Lozano, and C. Schulte. “Com-
plete and Practical Univeral Instruction Selection”. In: ACM Transactions on

Embedded Computing Systems 16.5s (2017), 119:1–119:18.

Contribution The author designed and implemented the work presented in
the paper, gathered and analyzed the experiment data, oversaw the writing
of the paper, wrote the majority of the text, and designed the figures.

Tab. 1.2 shows the relation between the contributions and the publications above.
Note that contribution C6 only appears in this dissertation and in none of the
publications.

The author also participated in the following publications not included in the
dissertation:

Book Chapters, Conference Papers, and Workshop Papers

P4 G. Hjort Blindell. Survey on Instruction Selection: An Extensive and Modern

Literature Study. Tech. rep. Stockholm, Sweden: KTH Royal Institute of
Technology, 2013.

P5 R. Castañeda Lozano, G. Hjort Blindell, M. Carlsson, F. Drejhammar, and
C. Schulte. “Constraint-based Code Generation”. In: Proceedings of M-

SCOPES’13. Springer, 2013, pp. 93–95.

Contribution The author assisted in writing the paper.

P6 R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte. “Combi-
natorial Spill Code Optimization and Ultimate Coalescing”. In: Proceedings of

LCTES’14. ACM, 2014, pp. 23–32.

Contribution The author assisted in experiment data gathering and analysis,
and in writing the paper.

10 1 introduction

P7 R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte. “Register
Allocation and Instruction Scheduling in Unison”. In: Proceedings of CC’16.
ACM, 2016, pp. 263–264.

Contribution The author assisted in writing the paper.

P8 G. Hjort Blindell, C. Menne, and I. Sander. “Synthesizing Code for GPGPUs
from Abstract Formal Models”. In: Languages, Design Methods, and Tools for

Electronic System Design. Vol. 361. Lecture Notes in Electrical Engineering.
Springer, 2016, pp. 115–134.

Contribution The author designed and implemented the work presented in
the paper, gathered and analyzed the experiment data, oversaw the writing
of the paper, wrote the majority of the text, and designed the figures.

P4 is excluded as it is subsumed and extended by P1. P5–P7 are excluded as they
are only partially related to the dissertation (they apply constraint programming to
solve register allocation and instruction scheduling without considering instruction
selection). P8 is excluded as it belongs to a different topic entirely (high-level code
generation for graphics processors).

1.5 Research Methodology

We begin with a comprehensive and systematic literature survey to identify the
strengths and limitations of existing instruction selection techniques and common
denominators among them. As part of this survey, four fundamental instruction
selection principles and five instruction characteristics are identified, and the
techniques are systematically classified accordingly. This classification enables us
to recognize that certain classes of instructions are poorly supported by existing
instruction selection techniques. This is in particular due to lack of appropriate
program and instruction representations.

Having established the need for new representations, we identify a set of require-
ments that such a representation must fulfill. We then build a new representation
by unifying two existing, well-established representations – one for capturing data
flow and another for capturing control flow – and then augment the representation
as needed until all requirements are met. As is common, we then apply a traditional
subgraph isomorphism algorithm for performing pattern matching on the new
representation.

With the new representation at hand, we proceed with building the constraint
model. For each task to be integrated, we first identify what constitutes a solution
to this task and then add the necessary variables and constraints to enforce such
solutions. If more than one design choice exists for integrating the task, then we
implement both as separate models and evaluate which is better before proceeding.
This is because the tasks are orthogonal from one another and can therefore be
evaluated in isolation. The evaluation methodology is described in Sect. 1.6.

1.6 evaluation methodology 11

Once all tasks are integrated, we design a range of solving techniques in order to
increase scalability and robustness. Because these techniques influence one another,
we first evaluate the usefulness of each solving technique individually in order to
form groups of solving techniques and then evaluate each group as a whole. This
is to avoid unreasonably long experiment runtimes.

Using the constraint model with the best design choices and solving techniques,
we then evaluate the significance of universal instruction selection by comparing
the code it generates with that generated by the state of the art.

1.6 Evaluation Methodology

1.6.1 Experiment Setup

To evaluate a constraint model, we implement it using MiniZinc 2.1.6 [280], which
is a high-level constraint modeling language. The algorithms for transforming a
given function into a graph, performing pattern matching, and producing the data
to instantiate the constraint model are implemented in Haskell. The presolving
techniques are implemented in Python. The model is solved using Chuffed [76] – a
lazy clause generation-based solver included in MiniZinc – on a Linux machine
with an Intel Xeon W3530 at 2.80 GHz and 16 GB main memory. We invoke Chuffed
with flags -f �rnd-seed 3218642.

To mitigate deviations in the measurements, we run each experiment ten times
and then take the arithmetic average together with the coefficient of variation (CV).
When summarizing ratios, we instead take the geometric mean since this is more
appropriate in such cases [134].

As problem instances, we use the functions provided by MediaBench [241] – a
benchmark suite for embedded systems – and the instructions in Hexagon V5 – a
DSP with a rich instruction set. The MediaBench suite consists of 6313 functions,
which are compiled into LLVM IR code – the intermediate format used by LLVM
– using LLVM 3.8 with optimization flag -O3. Due to insufficient support in the
current tool chain, we remove all functions that operate on non-integer data types
(such as floating point and vector data types). This leaves 3094 functions, on which
further filtering will be performed as needed for the given experiment.

For all experiments in this dissertation, the remaining pool of functions is too
large for all to be included in the experiment as that would lead to unreasonably
long experiment runtimes. We therefore draw a limited number of samples from
this pool. To attain a diverse set of samples, we apply k-means clustering [302] to
divide the functions into twenty clusters based on three features. The first feature
is the application from which the function is derived since, intuitively, functions
from different applications should exhibit different characteristics. The second
feature is the size in number of LLVM IR instructions. This is to evaluate how
the constraint model behaves as the functions grow larger. The third feature is
the number of memory instructions. This is because, due to its many addressing
modes, the memory instructions constitute a large part of the more sophisticated

12 1 introduction

0×

0.5×

1×

1.50×

2×

i ii

2

0.5

(a) Values normalized using
speedup method (Eq. 1.1).

−1]

−0.5]

0]

0.5]

1]

i ii

1

−1

(b) Values normalized using zero-
centered normalization (Eq. 1.2).

Figure 1.5: Comparison between the two methods for normalizing measurements.
The comparison is done for two problem instances: one where the subject is twice
as fast as the baseline (i), and one where the baseline is twice as fast as the subject
(ii).

instructions in the instruction set. Based on these features, from each cluster we
then randomly select one function, giving a total of twenty functions.

1.6.2 Normalizing Measurements

When we are interested in the relative difference between the measurements, we
normalize all values to those obtained from one model which has been chosen as
the baseline. In this context, the other models are called the subjects.

For time measurements, the most typical method for normalization is to calculate
the speedup, which is computed as

tb

ta
(1.1)

where ta and tb denote time measurements obtained for a given problem instance
from subject model a respectively baseline model b. A value greater than 1 means a
is faster than b, a value less than 1 means b is faster than a, and a value of exactly 1
means a and b are equally fast.

This method, however, creates problems when plotting the normalized values
as bar charts. Since the normalized values are centered around 1, when a is twice
as fast as b we intuitively expect the normalized value to be equally far away from 1
as when b is twice as fast as a. With Eq. 1.1, this is not the case. See for example
Fig. 1.5a, illustrating two cases: i, where a is twice as fast as b; and ii, where b is
twice as fast as a. When plotting such values, we therefore normalize the values
using a different method, called zero-centered normalization, which is computed as{

tb−ta
ta

if tb ≥ ta ,
tb−ta

tb
otherwise.

(1.2)

As seen in Fig. 1.5b, this method results in normalized values that are centered
around 0 (hence its name) and, unlike the speedup method, are equally far apart

1.7 outline 13

in the case of i and ii. A normalized value v using zero-centered normalization
corresponds a speedup of v + 1 if v ≥ 0, otherwise 1

1−v . To distinguish between the
two, we suffix speedup and zero-centered values with a × and], respectively (e.g.
3.50× and 2.50]).

Zero-centered normalization is also applied when comparing solution costs as
they represent an estimate of the time it would take to execute the code yielded
by the solutions (the current implementation is not yet able to hook back into the
compiler in order to generate executable code).

When summarizing normalized values, however, we do not use zero-centered
normalization as the geometric mean cannot be computed for such values. Instead
we compute the geometric mean for the values normalized using the speedup
method, which we call the geometric mean improvement (GMI). A result is considered
positive or negative if the GMI is greater than respectively less than 1. In terms
of solving time, for example, a subject model a leads to an overall reduction over
another baseline model b if the GMI is greater than 1.

1.6.3 Attaining Statistically Significant Results

Because we can only run experiments on a small set of functions sampled from
much larger pool, the GMI we attain from the sampled set may not be representative
for the pool as a whole. In other words, the result may not be statistically significant.
Therefore, for the GMI value we also compute the confidence interval (CI) [283],
which is a method of estimating the uncertainty of a value computed from a set of
samples. Every CI is computed with a predefined degree of confidence, typically
written as the Xth CI. This means that if the Xth CI of the GMI value is greater than
or less than 1, then we can statistically conclude with X % confidence that the result
is positive respectively negative. If the CI contains 1, then the result is inconclusive.

For the experiments described in this dissertation, we compute the 95th CI as
is common for most statistical experiments. Since we know nothing about the
underlying distributions for our observations, we compute the CI using percentile
bootstrapping with 100 000 iterations [111].

1.7 Outline

As shown in Fig. 1.6, the dissertation is structured into four parts:

Background Provides necessary background material: Chap. 3 describes constraint
programming; and Ap. F provides exact definitions of graphs and related
terms used throughout the dissertation.

Literature survey Discusses existing instruction selection techniques: Chap. 2 cov-
ers the techniques most relevant for universal instruction selection; Aps. A–D
cover the remaining techniques; and Ap. E lists a summary of all discussed
techniques.

14 1 introduction

F. Graph Definitions

2. Existing Instruction Selection
Techniques and Representations

A. Macro Expansion

B. Tree Covering

C. DAG Covering

D. Graph Covering

E. List of Techniques

4. Universal
Representation

5. Constraint Model

6. Solving Techniques

G. MiniZinc
Implementation

7. Experimental Evaluation
Using the State of the Art

8. Proposed Model
Extensions

9. Conclusions and Future Work

3. Constraint Programming

BACKGROUND

LITERATURE SURVEY

UNIVERSAL INSTRUCTION SELECTION

ENDING

Figure 1.6: Structure of the dissertation.

Universal instruction selection Presents the approach: Chap. 4 introduces the
universal representation; Chap. 5 introduces the constraint model; Chap. 6
introduces the solving techniques; Chap. 7 evaluates the approach using the
state of the art; and Ap. G provides an implementation of the constraint model,
written in MiniZinc.

Ending Closes the dissertation: Chap. 8 proposes model extensions; and Chap. 9
presents conclusions and future work.

CHAPTER

2
Existing Instruction Selection
Techniques and Representations

With the first publications beginning to appear at the end of the 1960s, instruction
selection has been actively researched for over four decades. When surveying these
techniques, it was discovered that essentially all apply one of four fundamental
principles of instruction selection: macro expansion, tree covering, DAG covering,1
and graph covering. The trend of applying these principles over time is shown
in Fig. 2.1. It was also discovered that the capabilities of these techniques can be
compared in terms of handling instructions with five characteristics. The approaches
can thus be systematically classified according to their principle and supported
instruction characteristics.

Since a full survey is not needed in order to understand universal instruction
selection – which apply graph covering – we examine in this chapter only the
techniques most relevant to universal instruction selection. Section 2.1 introduces
the instruction characteristics, and Sects. 2.2, 2.3, 2.4, and 2.5 discusses macro
expansion, tree covering, DAG covering, and graph covering, respectively. The
remaining techniques are discussed in Aps. A–D, and the full survey is also available
in [186]. Lastly, Sect. 2.6 discusses the limitations of these techniques.

Without loss of generality, we henceforth assume that the input to the instruction
selector consists of a single function, which in turn consists of many basic blocks
(henceforth referred to as simply blocks). Of these blocks exactly one represents the
function’s point of entry, called the entry block. Instruction selection can then be
reduced into two subproblems:

1. Finding all instances of instructions that can implement one or more operations
in the function. This problem is called the matching problem.

2. Selecting a subset of these instances such that all operations are implemented.
This problem is called the selection problem.

1DAG stands for directed acyclic graph.

15

16 2 existing instruction selection techniques and representations

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017

MACRO
EXPANSION

TREE
COVERING

DAG
COVERING

GRAPH
COVERING

Figure 2.1: Diagram showing how research on instruction selection with respect
to the fundamental principles has progressed over time. With 197 publications in
total, the width of each bar indicates the number of relative publications for a given
year (represents one publication).

2.1 instruction characteristics 17

Unless the second subproblem is constructed such that it impacts the first – and the
author has yet to come across a situation where this is required – both subproblems
can be solved in isolation without compromising code quality.

2.1 Instruction Characteristics

An instruction can be said to exhibit five characteristics: single-output, multi-
output, disjoint-output, inter-block, and interdependent. The first three characteris-
tics form sets of instructions that are disjoint from one another, whereas the last
two characteristics can be combined as appropriate with each other and with any of
the other characteristics.

Single-Output Instructions The simplest kind of instruction forms the set of
single-output instructions. These produce only a single observable output, in the
sense that “observable” means a value that can be accessed through the assembly
code. This includes all instructions that implement a single operation (such as
addition, multiplication, and bit operations), but it also includes more complicated
instructions that implement several operations (such as memory operations with
complicated addressing modes). As long as the observable output constitutes a
single value, a single-output instruction can be arbitrarily complex.

This class comprises the majority of instructions in most instruction sets, and in
simple reduced instruction-set computers (RISCs), such as MIPS architectures, nearly
all instructions are single-output instructions. Naturally, all instruction selectors
are expected to support this kind of instruction.

Multi-Output Instructions As expected from their name, multi-output instructions

produce more than one observable output from the same input. Examples include
divmod instructions, which compute both the quotient and the remainder of two
input values, as well as arithmetic instructions that, in addition to computing the
result, also set one or more status flags.2 For this reason such instructions are often
said to have side effects, but in reality these bits are nothing else but additional
output values produced by the instruction, and will thus be referred to as multi-
output instructions. Memory load and store instructions, which access a memory
value and then increment the address pointer, are also considered multi-output
instructions.

Many architectures such as X86, ARM, and Hexagon provide instructions of
this class, although they are typically not as common as single-output instructions.

Disjoint-Output Instructions Instructions producing many observable output
values from many different input values are called disjoint-output instructions. These

2A status flag (sometimes also known as a condition flag or a condition code) is a single bit that signifies
additional information about the result of a computation, for example if there was a carry overflow or
the result was equal to 0.

18 2 existing instruction selection techniques and representations

are similar to multi-output instructions with the exception that all output values
in the latter originate from the same input values. Another way to put it is that if
one formed the patterns that correspond to each output – this will be explained in
Sect. 2.3 – then all these patterns would be disjoint from one another. This typically
includes SIMD instructions, which execute the same operations simultaneously on
many distinct input values.

Disjoint-output instructions are common in high-throughput graphics architec-
tures and DSPs, but also appear in X86 as extensions under names like streaming

SIMD extensions (SSE) and advanced vector extensions (AVX) [200]. Recently, certain
ARM processors are also equipped with such extensions [21].

Inter-Block Instructions Instructions whose behavior essentially spreads across
multiple blocks are called inter-block instructions. Examples of such instructions are
those implementing saturation arithmetic3 and hardware loop instructions, which
repeat a fixed sequence of operations a certain number of times.

Instructions with this characteristic typically appear in customized architectures
and DSPs such as ARM’s Cortex-M7 [20] and TI’s TMS320C55x [353]. But because of
their complexity, capturing the behavior of these instructions require sophisticated
techniques that are currently not available for most compilers. Instead, individual
instructions are supported either via customized program optimization routines or
through compiler intrinsics. If no such routine or compiler intrinsic is available,
making use of these instructions requires the program to be written directly in
assembly code.

Interdependent Instructions The last class is the set of interdependent instructions.
This includes instructions exhibiting additional constraints that appear when they
are combined with other instructions in certain ways. An example includes an
add instruction, again from the TMS320C55x instruction set, which cannot be
combined with an rpt instruction if a particular addressing mode is used for the
add instruction.

Interdependent instructions are rare and can typically be found in complex,
heterogeneous architectures such as DSPs. This is another class of instructions that
most instruction selectors struggle with, mainly because these instructions typically
violate the assumptions made by the underlying instruction selection techniques.

2.2 Macro Expansion

The first principle to emerge was macro expansion, with applications starting to
appear in the 1960s. In macro expansion, the instructions are expressed as macros

which consist of two parts: a template to be matched over the function under

3Recently, a request was made to extend the LLVM compiler with compiler intrinsics – a kind of
special IR operations – to facilitate selection of such instructions [49].

2.2 macro expansion 19

expand($3 ← $1 + $2) {
r1 = getRegOf($1);
r2 = getRegOf($2);
r3 = mkNewReg($3);
print "add " + r3 + ", " + r1 + ", " + r2;

}

Figure 2.2: Example of a macro expanding an IR addition into assembly code. The
template to match is given as argument to expand, and the procedure to run upon
expansion is given as expand’s body.

compilation, and an expand procedure to be executed upon the part of the function
that was matched. An example of such a procedure is given in Fig. 2.2. A macro

expander traverses the function and tries to match the templates of the macros, one
after another. Upon a match it executes the corresponding expand procedure and
then resumes the traversal with the next, unmatched part until the entire function
has been expanded. Consequently, matching and selection is combined into a single
task as the first macro matched is also the selected macro.

The main benefit of macro expansion is that it is intuitive and straightforward
to apply. Because the macro expander is implemented separately from the macros,
the former can be kept generic and simple while the latter can be customized as
needed for the target machine. This also allows the macro expander to be void of
any target-specific details, thus requiring only the macros to be rewritten when
retargeting the compiler to another target. To this end, the macros are typically
written in some dedicated language to simplify the retargeting task.

But with its simplicity comes two shortcomings. Depending on the complexity
of the macros, macro expansion could in principle support all kinds of instructions.
In practice, however, macro-expanding instruction selectors are typically limited to
single-output instructions. In addition, they often only expand one IR operation
at at time, resulting in poor code quality. Another disadvantage is that because of
idiosyncrasies of the dedicated language, the macros are often hard to read and
understand, making them difficult to extend and maintain. We call this variant of
the principle naive macro expansion.

To mitigate these problems, macro expansion can be combined with peephole
optimization.4 First, a naive macro expander expands the function under compilation
one IR operation at at time. Once fully expanded, a peephole optimizer runs over
the result and replaces inefficient sequences of instructions with more competent
equivalences. Consequently, the macros can be divided up into those required for
correctness – that is, the simple, single-operation macros, ensuring that code can
always be produced – and those used for efficiency. Consequently, the retargeting

4A peephole optimizer is a program that combines two or more adjacent instructions into a single
instruction. The term peephole come from the narrow window of operation, as a peephole optimizer only
considers a small number of instructions at a time.

20 2 existing instruction selection techniques and representations

task becomes simpler and more incremental. Due to the people who pioneered the
idea, this scheme is known as the Davidson-Fraser approach [93].

Because this principle has little relevance for universal instruction selection, we
will not examine applications of naive macro expansion and the Davidson-Fraser
approach in this chapter.

2.3 Tree Covering

Beginning of 1970s, a principle called tree covering began to emerge. Unlike macro
expansion, tree covering approaches instruction selection as a graph problem and,
in doing so, separates the selection problem from the matching problem. This
gives several advantages over macro expansion. First, capturing the behavior of
instructions becomes simpler. Second, trade-offs in selecting certain combinations
of matches can be considered, which improves code quality. Third, due to ma-
chine grammars (to be described shortly), tree covering can be based on a formal
foundation that enables proof of completeness.

2.3.1 Instruction Selection as a Graph Problem

First, the IR code is transformed into a data-flow graph, where nodes represent
operations and edges represent data dependencies between the operations. Data-
flow graphs built from the function under compilation are called expression trees

if they are limited to single, tree-shaped expressions, block DAGs if they capture
many expressions in a block as a DAG, and function graphs if they capture the data
flow of entire functions. An instruction selector is local if it selects instructions for
expression trees or block DAGs, and global if it does so for function graphs.

Corresponding data-flow graphs are also built to represent the instructions
provided by the target machine. Such data-flow graphs are called either pattern

trees, pattern DAGs, or pattern graphs, depending on whether they are shaped as trees,
DAGs, or graphs, respectively. When the shape is clear from the context, they are
simply called patterns. The set of patterns for a particular target machine constitute
a pattern set.

The matching problem can be reduced to finding all instances where a pattern
from the pattern set is subgraph isomorphic to G, where G denotes a data-flow
graph derived from a function. Each such instance is called a match, and the set of all
matches constitute a match set, denoted by M. Hence, in this context the matching
problem is referred to as pattern matching. Pattern matching can be done in linear
time if both G and all patterns are tree-shaped, otherwise it is an NP-complete
problem [154, 193].

Having found M, the selection problem – which in this context is referred to
as pattern selection – can be reduced to selecting a set of matches that covers G. A
subset M′ ⊆ M covers G if every node in G appears in at least one match in M′. Such
a subset is called a cover. A cover is an exact cover if every node in G appears in

2.3 tree covering 21

x = A[i + 1];

(a) C code.

mv r← var

add r← s + t
mul r← s × t

muladd r← s × t + u
load r← ∗s

maload r← ∗(s × t + u)

(b) Instructions. The ∗s
notation means “get value
at address s in memory”.

+

i 1

×

4

+

A

ld

m1 m2

m3

m4
m5

m6

m7

m8

m9m10

(c) Expression tree and its
matches.

Figure 2.3: Example demonstrating the pattern matching and selection problem for
a program that loads a value from integer array A at offset i + 1. It is assumed that i
is stored in register, that A is stored in memory, and that an integer is four bytes.
Exact covers are {m1 , . . . ,m7 ,m9}, {m1 , . . . ,m5 ,m8 ,m9}, {m1 , . . . ,m5 ,m10}, and
{m1 , . . . ,m5 ,m8 ,m9} (non-exact covers are ignored for brevity). Variable assign-
ments need not be explicitly represented as nodes since this information can be
propagated from the root node after having found a cover.

exactly one match in the cover. Most instruction selection approaches assume exact
coverage. Examples of covers are shown in Fig. 2.3.

For a given function and target machine, there often exists many valid combi-
nations of instructions. In terms of G and M this means there exist many covers
of G, which each may result in code where quality differs significantly. In certain
cases, for example, the performance of two sets of selected instructions may differ
by as much as two orders of magnitude [385]. Consequently, the pattern selection
problem – originally defined to accept any valid cover – is augmented into an
optimization problem called optimal pattern selection, where only covers with least
cover are accepted. The cost of a cover M′ is the sum of the costs for the matches
appearing in M′, where the cost of a match is set to reflect a desired characteristic in
the generated code.

For example, assume that the mv, add, mul, and muladd instructions in Fig. 2.3
all take one cycle to execute whereas the load and amload instructions take five
cycles to execute. Assume further that the compiler should maximize perfor-
mance. The corresponding matches m1 ,m2 , . . . ,m8 ,m9 ,m10 are therefore assigned
costs 0, 1, . . . , 1, 5, 5, respectively (m1 has zero cost since variable i is already in
a register). Then, of the exact covers {m1 , . . . ,m7 ,m9}, {m1 , . . . ,m5 ,m8 ,m9}, and
{m1 , . . . ,m5 ,m10}, only the last cover is considered optimal as it has a total cost

22 2 existing instruction selection techniques and representations

production︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷
result︷︸︸︷
Reg1 →

pattern︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷
+ Reg2 const

cost︷︸︸︷
4

action︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷
emit add $Reg1, $Reg2, #const︸¨̈ ¨̈︷︷¨̈ ¨̈︸

rule

Figure 2.4: Anatomy of a rule in a machine grammar.

of 9 whereas the other two covers have costs 11 and 10, respectively. There is
typically a strong correlation between the size of a cover and its cost – smaller covers
typically lead to less cost and ultimately better code – but this depends heavily on
the properties of the target machine.

For practical reasons, the instruction set of a target machine must be described
in a machine-readable format, which we call machine description. A common method
is to model the instructions as a machine grammar, which we will now describe.

2.3.2 Machine Grammars

Machine grammars (or simply called grammar) are based on context-free grammars [9],
which are typically used for describing language syntax. A grammar consists
of terminals, nonterminals, and rules. In this context, a terminal is a symbol
representing an operation (e.g. +, <, load), and a nonterminal is a symbol representing
an abstract result (e.g. Reg) produced by the instruction. To distinguish between
the two, terminals are written entirely in lower case whereas nonterminals start
with a capital letter and are set in italics.

A rule describes the behavior of an instruction and consists of a production, a
non-negative cost, and an action. Productions describe how to derive nonterminals,
and are written as

α→ βγ . . .

where the left-hand side is a single nonterminal and the right-hand side is a
sequence of terminals and nonterminals. Each instruction gives rise to one or more
productions, where the right-hand side of a production captures a pattern of the
instruction and the left-hand side denotes the result produced by the instruction.
Hence the left-hand and right-hand sides of a rule are referred to as the rule’s result

and pattern, respectively. The action is what to perform when a rule is selected.
Typically this is to emit the corresponding assembly code, but it could also include
other tasks such as bookkeeping. The rule structure is illustrated in Fig. 2.4, and
examples of rules are given in Tab. 2.1.

To avoid the need for parentheses, the productions are typically written in Polish

notation (for example, 1 + (2 + 3) is written as + 1 + 2 3). Similarly, the expression
tree shown in Fig. 2.3c can be expressed as load + × + i 1 4 A.

2.3 tree covering 23

production cost action

1 Reg1→ load + Reg2 const 1 emit load $Reg1, const($Reg2)
2 Reg1→ load + const Reg2 1 emit load $Reg1, const($Reg2)
3 Reg1→ load Reg2 1 emit load $Reg1, 0($Reg2)

Table 2.1: Example of grammar rules corresponding to a load $t, o($s) instruction
that loads a value from memory at the address given in register s, offset by an
immediate value o, and stores the loaded value in register t, in one cycle. The
subscripts are only needed for referencing the right nonterminal in the action.

production cost action

1 Reg→ load A 1 emit load $Reg, A.C.const($A.Reg)
4 A→ + Reg C 0
2 Reg→ load B 1 emit load $Reg, B.C.const($B.Reg)
5 B→ + C Reg 0
6 C→ const 0
3 Reg1→ load Reg2 1 emit load $Reg1, 0($Reg2)

Table 2.2: The grammar from Tab. 2.1 in normal form. Nonterminals A, B and C

and rules 4–6 are introduced in order to transform rules 1 and 2 into base rules.

With a grammar at hand, the pattern selection problem becomes equivalent
to finding a sequence of rule applications, called rule reductions, that reduces the
expression tree to a given nonterminal. A method for finding the sequence with
least cost is described shortly.

Normal Form To simplify pattern matching and pattern selection, a grammar can
be rewritten into normal form [32]. A grammar is in normal form if every rule in the
grammar has a production in one of the following forms:

1. N → op A1 A2 . . .An , where op is a terminal, representing an operation that
takes n arguments, and all Ai are nonterminals. Such rules are called base

rules.
2. N → t, where t is a terminal. Such rules are also called base rules.
3. N → A, where A is a nonterminal. Such rules are called chain rules.

A grammar can be mechanically rewritten into normal form by introducing new
nonterminals and breaking down illegal rules into multiple, smaller rules until the
grammar is in normal form. For example, rewriting the grammar shown in Tab. 2.1
into normal form results in the grammar shown in Tab. 2.2. Note that the new rules
have zero cost and no action as these are only intermediary steps towards enabling
reduction of the original rule.

24 2 existing instruction selection techniques and representations

Since all productions in a grammar have at most one terminal, the pattern
matching problem becomes trivial (simply match the node type against the terminal
in all base rules). Otherwise another bottom-up traversal of the expression tree
would have to be made in order to find all matches, which can be done in linear time
for most reasonable grammars [193]. As we will see, this also simplifies pattern
selection as the patterns on the right-hand side in all productions have uniform
height.

2.3.3 Optimal Pattern Selection on Expression Trees

Aho et al. [8] introduced a method for finding the optimal cover for any given
expression tree in linear time, which is also the most common and well known
technique based on tree covering.

The technique is centered around the following assumption. Given a node n in
an expression tree and a rule r, the cost of applying r on n is the cost of r plus the
costs of reducing all children of n to the appropriate nonterminals appearing on the
right-hand side of r. If r is a chain rule then the cost is computed as the cost of r plus
the cost of reducing n to the nonterminal appearing in the pattern of r. The recursive
nature of these costs can be exploited using dynamic programming, resulting in
the algorithm shown in Alg. 2.1 which computes the least cost of reducing a given
expression tree to a particular nonterminal.

The algorithm works as follows. It first constructs a cost matrix C, where rows
represent nodes in the expression tree and columns represent nonterminals in
the grammar, assumed to be in normal form.5 The cost in each element C[i][j] is
initialized to infinity, indicating that there exists no sequence of rule reductions
that reduces node i to nonterminal j. It then computes the costs by traversing the
expression tree bottom up. At each node n and for each matching base rule r, with
nonterminal s as result, it computes the cost c of applying r at n to produce s
according to the scheme stated above. If c is less than the currently recorded cost
for reducing n to s, then the cost and rule information for n is updated accordingly.
The same is then done for all chain rules until it reaches a fixpoint (which must
eventually be reached as all rule costs are non-negative and an update only occurs
when the cost is strictly less). Since every node is also only processed once, the
algorithm runs in linear time with respect to the size of the expression tree. Having
computed the costs, the optimal order of rule reductions – which is equivalent to
the least-cost cover – can be found using the algorithm shown in Alg. 2.2.

In many cases this technique produces code of sufficient quality. In fact, for
architectures with simple instruction sets, where the rule patterns can naturally be
modeled as trees (such as single-output instructions), it is often optimal or near
optimal. The MIPS instruction set [347], for example, is one such architecture.

5The algorithm can be adapted to accept any grammar by expanding the FindMatchingRules and
ComputeReductionCost functions to handle rules of arbitrary form.

2.3 tree covering 25

function ComputeCosts (expression tree T, normal-form grammar G):
1 S← {s | s is a nonterminal in G}
2 C← matrix of size |T | × |S |, costs initialized to∞
3 ComputeCostsRec (root node of T)
4 return C

5 function ComputeCostsRec (node n):
6 foreach child m of n do
7 ComputeCostsRec (m)

8 foreach base rule r ∈ FindMatchingRules (n) do
9 c← ComputeReductionCost (n, r)

10 l← result of r
11 if c < C[n][l].cost then
12 C[n][l].cost← c
13 C[n][l].rule← r

14 repeat
15 foreach chain rule r ∈ G do
16 c← ComputeReductionCost (n, r)
17 l← result of r
18 if c < C[n][l].cost then
19 C[n][l].cost← c
20 C[n][l].rule← r

21 until no change to C

22 function FindMatchingRules (node n):
23 M←�
24 foreach base rule r ∈ G do
25 if terminal in pattern of r � node type of n then
26 M← M ∪ {r}

27 return M

28 function ComputeReductionCost (node n, rule r):
29 c← cost of r
30 if r is a chain rule then
31 s ← nonterminal in pattern of r
32 c← c + C[n][s].cost // here cost of node itself is taken instead of its children

33 else
34 for i← 1 to number of children for n do
35 m← ith child of n
36 s ← ith nonterminal in pattern of r
37 c← c + C[m][s].cost

38 return c

Algorithm 2.1: Computes the optimal sequence of rules that reduces the given
expression tree to a particular nonterminal.

26 2 existing instruction selection techniques and representations

function SelectRules (expression tree T, goal nonterminal g, cost matrix C):
1 n← root node of T
2 r ← C[n][g].rule
3 if r is a chain rule then
4 s ← result of r
5 SelectRules (T, s, C)
6 else
7 for i← 1 to number of children for n do
8 m← ith child of n
9 s ← ith nonterminal in pattern of r

10 SelectRules (expression tree rooted at m, s, C)

11 execute actions associated with r

Algorithm 2.2: Selects optimal sequence of rules that reduces a given expression
tree to a given nonterminal, based on costs computed by Alg. 2.1.

2.3.4 Precomputing Costs and Rule Decisions

Shortly after Aho et al. published their approach, it was recognized that the costs
computed by Alg. 2.1 could be precomputed for any expression trees. Hence the
ComputeReductionCost call in Alg. 2.2 can be replaced by a constant-time table
lookup. Although this improvement does not affect the asymptotic time complexity
of the algorithm, it still significantly reduce the actual runtime. Although pioneered
by Hatcher and Christopher [179], the idea was first successfully applied by
Pelegrı-Llopart and Graham [298], which was later improved and simplified by
Balachandran et al. [32] and Proebsting [306].

The idea is as follows. The expression tree is traversed bottom up and labeled with
a state. For a given labeled node n, the state essentially holds enough information to
optimally reduce the expression tree rooted at n to any nonterminal. At first glance
it would seem that this requires an infinite number of states as expression trees can
be of arbitrary size, but this only applies if the full cost of the entire expression tree
is taken into account. When considering the relative cost differences between rules
for any given node in the expression tree, it is sufficient with a finite number of
states. The algorithm for labeling an expression tree is shown in Alg. 2.3. To derive
the rule selection algorithm, one only needs to adapt line 2 in Alg. 2.2 to perform
the appropriate table lookups.

The idea for computing the states – which will only be described briefly –
works as follows. For each terminal representing a k-argument operation, an
k-dimensional matrix is maintained. This is called the terminal’s state table, which
indicates the state to assign such nodes given the labels of its children. First the
states for all leaf nodes are built, considering only base rules with a single terminals
on the right-hand side in the production. The costs and rule decisions are computed

2.4 dag covering 27

function LabelTree (expression tree T, list L of state tables):
1 n← root node of T
2 k← number of children for n
3 for i← 1 to k do
4 mi ← ith child of n
5 LabelTree (expression tree rooted at mi , L)

6 S← L[terminal corresponding to n]
7 n.label← S[m1.label, . . . ,mk .label]

Algorithm 2.3: Labels an expression tree for optimal pattern selection.

using the same logic as in Alg. 2.1, lines 8–21. The leaf state are then pushed onto a
queue. Each popped state is used as the ith child to all base rules with a non-leaf
terminals in combination with all other existing states. If any combination gives
rise to a new set of costs and rule decisions, then a new state is created and pushed
onto the queue after having updated the state tables. This process continues until
the queue is empty, whereupon all necessary states have been built.

2.3.5 Limitations of Tree Covering

The main disadvantage of operating on expression trees is that common subex-
pressions have to be either split along the edges or duplicated when building
the IR. These transformations are referred to as edge splitting and node duplication,
respectively. Depending on the instruction set, these decisions can prevent selection
of instructions that would lead to better code quality.

An example illustrating this effect is shown in Fig. 2.5. If the IR is represented as
trees, where the common subexpression for computing t has its own expression
tree (Fig. 2.5c), then matches m1 , . . . ,m7, and m9 must be selected, which results in
a total cost of 0 + · · · + 0 + 2 + 3 + 5 � 10. If represented as a block DAG (Fig. 2.5d),
then it becomes possible of selecting matches m8 and m10, resulting in a total cost of
0 + · · · + 0 + 4 + 5 � 9. Duplicating the nodes of the common subexpression would,
in this case, yield the same covers, but would have resulted in suboptimal code in
cases where the addmul and addload instructions are not available.

2.4 DAG Covering

By replacing the expression trees used in tree covering with block DAGs, and
allowing instructions to be modeled either as pattern trees or pattern DAGs, we
attain the more general principle called DAG covering.

DAG covering has several advantages of tree covering. First, the block DAG
does not need to be decomposed into expression trees, which compromises code

28 2 existing instruction selection techniques and representations

t = a + b;
x = c * t;
y = *((int*) t);

(a) C code.

instruction cost

add r← s + t 2
mul r← s × t 3

addmul r← (s + t) × u 4
load r← ∗s 5

addload r← ∗(s + t) 5

(b) Instructions. The ∗s notation
means “get value at address s in
memory”.

m1 m2 m3 m4 m5

m6 m7
m9

+

a b c

×

t t

ld

(c) Expression trees after edge splitting.

+

a b

× ld

c

m1 m2

m3 m6

m7

m8

m9

m10

(d) Block DAG.

Figure 2.5: Example illustrating that using block DAGs results in better code
compared to using expression trees. It is assumed variables a, b, c, and t are stored
in registers.

quality. Second, it supports use of pattern DAGs, which are needed for modeling
multi-output instructions.

But unlike tree covering, which can be solved optimally in linear time, finding
the least-cost cover of a block DAG is NP-complete [224, 305]. The proof is also
available in Ap. C on p. 206. Consequently, DAG covering started to gain traction
in the beginning of the 1990s after exponential increase in computing power
and significant progress made in the field of combinatorial optimization enabled
such methods to become practical for instruction selection. Most combinatorial
approaches support DAG-shaped patterns, but finding matches for such patterns
can no longer be done in linear time. Such approaches therefore typically apply
generic subgraph-isomorphism algorithms when pattern matching.

2.4.1 Pattern Matching as a Subgraph Isomorphism Problem

The subgraph isomorphism problem is to find instances where a graph Gp � (Np , Ep)
is isomorphic to a subgraph in another graph Gf � (Nf , Ef). Gp is isomorphic to
Gf if and only if there exists a mapping m : Np → Nf such that (n , o) ∈ Ep implies
(f (n), f (o)) ∈ Ef. In the context of instruction selection, Gp denotes a pattern, Gf

2.4 dag covering 29

denotes a graph derived from a function, and m denotes a match.
The subgraph isomorphism problem, which is known to be NP-complete [85],

appears in many other fields. Consequently, much research has been devoted to
this problem (see for example [86, 123, 124, 146, 172, 185, 228, 272, 342, 354]). Due
to its simplicity, however, most combinatorial approaches apply the VF2 algorithm,
which is described in Sect. 2.5.4.

2.4.2 Maximum Munch

The most common approach for greedy pattern selection on block DAGs is called
maximum munch (coined by Cattell [69]). The idea is to traverse the block DAG
top down, select the largest pattern that matches the current node, and repeat the
process for remaining, uncovered parts of the block DAG. The approach – which
is used in for example LLVM [235] – works well for architectures with a regular
instruction set and where there is a strong correlation between the effectiveness of
the instruction and the size of its pattern. In addition to being non-optimal, however,
it also suffers from the same drawback as expression trees regarding whether to
select covers that effectively split or duplicate the common subexpressions.

2.4.3 Approaches for Balancing Splitting and Duplication

Several approaches have been made in attempting to balance edge splitting and
node duplication. Fauth et al. [129] designed an heuristic algorithm that rewrites
the block DAG into expression trees before instruction selection. Using a rough
estimate of the cover cost, the algorithm first favors node duplication and resorts to
edge splitting when the former becomes too costly. Once rewritten, the expression
trees are covered using an improved variant of Alg. 2.1.

Ertl [121] showed that, for certain grammars, Alg. 2.1 can be adapted to produce
optimal covers for block DAGs. The idea is to first compute the costs for each node
as if the block DAG had been rewritten into a expression tree using node duplication.
Then, if several rules reduce the same node to the same nonterminal N, then N can
be shared between the rules whose patterns all contain N. Ertl also introduced an
algorithm for checking whether optimal pattern selection is guaranteed for a given
grammar.

Koes and Goldstein [224] combined the ideas by Fauth et al. and Ertl by
introducing a design that first uses Alg. 2.1 to compute the costs for a duplicated
expression tree. Then, at each node n where several patterns in the optimal cover
overlap in the block DAG, two costs are estimated: the cost incurred by allowing
overlap, and the cost incurred by splitting the edges. If the latter is cheaper then
n is marked as fixed, meaning it can only be covered by patterns where n is their
root node. Once all such nodes have been processed, another pass is performed to
recompute the costs, this time forbidding overlap at fixed nodes.

30 2 existing instruction selection techniques and representations

+

a b

× ld

c

m1 m2

m3 m4

m5

m6

m7

m8

(a) Block DAG with matches.

m1 m2 m3 m4

m5

m6

m7

m8

(b) Interference graph.

Figure 2.6: Example of modeling pattern selection as a MIS problem. Maximal inde-
pendent sets of the interference graph are {m1 , . . . ,m5 ,m7}, {m1 ,m2 ,m3 ,m5 ,m8},
and {m1 ,m2 ,m3 ,m6 ,m7}, which correspond to exact covers of the block DAG.

2.4.4 MIS- and MWIS-based Approaches

Another approach to modeling instruction selection is to model it as a problem of
finding independent sets. Given a graph G � (N, E), a set S ⊆ N is an independent

set if no pairs of nodes m, n ∈ S are adjacent in G. An independent set is called
a maximal independent set (MIS) if no more nodes can be added and still be an
independent set. If each node in the graph has a weight, then a maximal/minimal

weighted independent set (MWIS) is a MIS that maximizes/minimizes
∑

n weight(n).
In general, finding a MIS or MWIS is NP-complete [154].

Modeling instruction selection as either a MIS or MWIS problem is done as
follows. After pattern matching, an interference graph is constructed where a node
represents a match and an edge represents overlapping between two matches. If
all operations in the block DAG or function graph can be covered by at least one
match, then a MIS of the interference graph corresponds to a cover. Likewise, a
MWIS corresponds to a least-cost cover. An example is shown in Fig. 2.6.

Applications Scharwaechter et al. [329] appears to have pioneered the modeling
of instruction selection as a MWIS problem, although the main contribution of their
paper is the extension of machine grammars to handle multi-output instructions.
The idea is to model such instructions using complex rules, which each consists of
multiple productions – one for each result. In this dissertation, such productions
and their patterns are called proxy rules6 and proxy patterns, respectively, whereas
rules with a single production and their patterns are called simple rules and simple

patterns, respectively. The rule structure is also illustrated in Fig. 2.7.
The proxy patterns are matched individually together with the simple patterns.

After pattern matching, matches derived from proxy patterns are then either
combined – indicating use of the complex rule – or kept – indicating use of rules

6In the original paper, they are called split rules.

2.4 dag covering 31

A →

simple
pattern︷︸︸︷
op . . . cost action︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸

simple rule

〈A , B , . . .〉 →

complex pattern︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷
〈

proxy
pattern︷︸︸︷
op . . .,

proxy
pattern︷︸︸︷
op . . ., . . . 〉 cost action︸¨̈ ¨̈︷︷¨̈ ¨̈︸

complex rule

Figure 2.7: Anatomy of simple and complex rules in an extended machine grammar.

that only produce a single result. This is done according to a heuristic that estimates
the cost saved by using the complex rule versus the cost incurred by having to
duplicate nodes in common subexpressions. Once these decisions have been taken,
the interference graph is built and the MWIS found using a greedy heuristic [325].

The approach was later extended by Ahn et al. [3] to include scheduling depen-
dency conflicts between complex patterns in order to facilitate register allocation. In
both designs, however, the complex rules can only consist of disconnected patterns,
hence forbidding sharing of values across the proxy patterns. This shortcoming
was addressed by Youn et al. [377] by introducing the use of index subscripts for
nodes representing the input arguments.

2.4.5 IP-based Approaches

Several approaches model instruction selection using integer programming (IP) –
often also referred to as integer linear programming (ILP) – which is a method for
solving combinatorial optimization problems (see [370] for an overview). Formally,
an IP problem is defined as follows.

Definition 2.1 – IP Let ®c and ®b be integer vectors, A be an integer matrix, and ®x be a
vector of integer decision variables. Then

maximize or minimize ®cT®x
subject to A®x ≤ ®b ,

A®x ∈ Zn×n,
and ®x ∈ Nn.

Such problems are NP-complete in general, but extensive research in the field
has made IP a practical tool for solving problems containing tens of thousands of
variables.

In most IP-based approaches, pattern selection is modeled as

∀n ∈ N :
∑

m ∈M s.t.
n ∈ covers(m)

®x[m] ≥ 1, (2.1)

32 2 existing instruction selection techniques and representations

where N denotes the set of nodes in a block DAG, M denotes the match set, covers(m)
denotes the set of nodes covered by match m, and ®x[m] is a Boolean ({0, 1}) decision

variable indicating whether match m is selected. For exact coverage, the inequality
is replaced with equality. When there is no risk of confusion, we refer to decision
variables simply as variables.

Applications Although mostly known for their work in integrated code generation

– meaning instruction selection, instruction scheduling and register allocation is
solved in unison – Wilson et al. [368] also pioneered the use of IP for modeling
instruction selection. Their design performs global instruction selection on a
function graph that has been augmented with additional copy operations to
represent potential register spills.7 In most cases, not all copies are needed and
therefore not all operations must be covered. Consequently, Wilson et al. model
pattern selection as

∑
m ®x[m] ≤ 1.

Another approach for integrated code generation was made by Bednarski and
Kessler [38], whose design was later reused by Eriksson et al. [119, 120]. Unlike
all other instruction selection approaches, Bednarski and Kessler combine pattern
matching and pattern selection. Consequently, in addition to the variables that
decide which matches are selected, their IP model also has variables that, for each
match, maps nodes and edges in the block DAG to nodes and edges in a pattern.
An upper bound on the number of needed matches is computed beforehand using
a heuristic.

An IP-based approach for selecting multi-output instruction was introduced
by Leupers and Marwedel [245, 249]. Each DAG-shaped pattern of a multi-output
instruction is first decomposed into trees, which are used for covering an expression
tree. After having found a least-cost cover using Alg. 2.3, the expression tree is
collapsed into a tree of super nodes, where each super node represents a set of
nodes in the expression tree covered by the same pattern. The problem is then to
try to merge super nodes such that the combination can be implemented using a
multi-output instruction. This is often called instruction compaction. As there is an
abundance of overlap between such combinations, Leupers and Marwedel solve
this problem using IP.

Leupers [243] later introduced another IP-based approach for selecting disjoint-
output instructions like SIMD instructions. Like before, each DAG-shaped pattern
of a SIMD instruction is first decomposed into trees, but now the trees are used for
covering a block DAG that has been transformed into expression trees through edge
splitting. The potential of using disjoint-output instructions can be increased by
allowing them to cover nodes from multiple expression trees, but covering each tree
individually often leads to suboptimal code. To address this problem, Leupers first
extended a machine grammar with additional nonterminals to indicate whether a
SIMD instruction is used in covering a particular node and then modified Alg. 2.3
to compute all optimal covers instead returning a single solution. Once all least-cost

7
Spilling is the act of temporarily storing a register value to memory in order to free up the register.

2.4 dag covering 33

covers have been found for all expression trees in a block, an IP model is built to
decide how to make the best use of SIMD instructions for this block. Leupers’s
model was later extended by Tanaka et al. [348] to take data copying into account
by extending the block DAG with additional copy nodes, which is needed for
architectures with irregular instruction sets.

The last IP-based approach to be discussed is that of Gebotys [155], who applied
to the theory of Horn clauses to code generation. A Horn clause is a disjunctive
Boolean formula that contains at most one positive (non-negated) literal. IP models
built using Horn clauses can be solved in linear time [194], and Gebotys exploited
this fact in developing an IP model where Horn clauses are applied to model register
allocation instruction compaction. Pattern selection, however, is still modeled as in
Eq. 2.1.

2.4.6 CP-based Approaches

Constraint programming (CP) is another method for solving combinatorial optimiza-
tion problems, which is discussed in detail in Chap. 3. Therefore, only a brief
introduction will be given here.

Like IP, a model in CP consists of a set of variables, a set of constraints over
the variables, and typically also an objective function to be either minimized or
maximized. A crucial difference, however, is that constraints are not limited to
linear equations. Instead, relations among multiple variables are modeled using
global constraints, which simplifies modeling and improves solving.

Modeling Pattern Selection Using Global Constraints Pattern selection can be
modeled using a global constraint called the global cardinality constraint. The
constraint, referred to as gcc, constrains the number of variables assigned a
particular value (which may also be a variable). Given a set v1 , . . . , vk of values
and two sets x1 , . . . , xn and c1 , . . . , ck of variables, the constraint holds if, for each
i � 1, . . . , k, exactly ci variables in the set x1 , . . . , xn are assigned value vi (see
also Def. 3.2 on p. 47). For example, gcc(〈5, c1 � 0〉, 〈3, c2 � 1〉, x1 � 2, x2 � 3) holds
because no x variable is assigned value 5 and exactly one x variable is assigned
value 3. Similarly, gcc(〈3, c1 ∈ {0, 2}〉, x1 � 2, x2 � 3) does not holds because either
none or both x variables must be assigned value 3.

To model exact pattern selection using gcc, two new sets of variables are
needed. Assume that N denotes the set of nodes to be covered, M denotes the
match set, and covers(m) denotes the set of nodes covered by match m. Then,
variable matchn ∈ {m | m ∈ M, n ∈ covers(m)} decides which match covers node n,
and variable countm ∈ {0, | covers(m)|} decides how many nodes are covered by
match m. Hence each match covers either no nodes or all nodes in its pattern. With
these variables, pattern selection can be modeled as

gcc(∪m ∈M 〈m, countm〉,∪n ∈N matchn), (2.2)

34 2 existing instruction selection techniques and representations

which, according to Floch et al. [135], offers stronger propagation than Eq. 2.1 and
thus reduces solving time.

Applications The use of CP-based instruction selection appears to have been
pioneered by Bashford and Leupers [36]. To generate code for highly irregular
DSPs, Bashford and Leupers used CP to model the interactions between instruction
selection and the use of processor resources, such as functional units and registers.
Consequently, the approach essentially integrates instruction selection with a form
of register allocation. Glossing over the details, the approach works as follows. For
each operation, a so-called factorized register transfer (FRT) is built which encodes
the resource requirements for the operands and the result as well as the cost of
every instruction that may be used to implement such operations. Taking a block
DAG as input, the problem is to cover all nodes using FRTs such that all resource
requirements are fulfilled. Special resources are available for instructions that cover
multiple nodes, allowing adjacent nodes to be covered by the same instruction.
Bashford and Leupers used CP to solve this problem.

Martin et al. [266, 267] developed a model that integrates instruction selection
and instruction scheduling. Because they target application-specific instruction set

processors (ASIPs), the patterns are not predefined but must be found prior to
instruction selection. This is known as the instruction set extension (ISE) problem,
which has been widely researched (see for example [11, 17, 28, 29, 37, 44, 50, 55,
80, 198, 210, 278, 279, 285, 381], and see [147] for a survey). For this task Martin
et al. applied a CP-based pattern-matching algorithm, described in [369]. Pattern
selection is modeled as Eq. 2.1 in another model, which was later improved by Floch
et al. [135] who replaced the pattern selection constraints with Eq. 2.2. The approach
was also extended by Arslan and Kuchcinski [26] for targeting VLIW processors8
with SIMD instructions. Selection of such instructions is done by first splitting the
patterns into multiple tree-shaped patterns, which are matched individually, and
then enforcing that two selected matches belonging to the same instruction must be
scheduled in the same cycle.

Beg [40] developed a constraint model that, unlike the approaches above,
only concerns instruction selection. Both pattern matching and pattern selection
are integrated into the same constraint model, and Beg also applied Alg. 2.1 in
computing an upper bound on the cost in order to improve solving.

2.4.7 Limitations of DAG Covering

Although DAG coverings addresses the issue of whether to split or duplicate
common subexpressions within a block, the problem still remains for expressions
that are spread across multiple blocks. To fully address this problem, one must
resort to graph covering.

8A very long instruction word (VLIW) processor is a processor that executes multiple instructions in
parallel, where the schedule has been computed by the compiler and is part of the assembly code.

2.4 dag covering 35

int f(int* A, int* B, int N) {
int s = 0;
for (int i = 0; i < N; i++) {
s = s + A[i] * B[i];

}
return s;

}

(a) C code.

a

×

b

+

s

0 s

ret

(b) Block graphs involving variable s. For
brevity, the subtrees concerning A[i] and
B[i] are not included.

rules

Reg→ const SReg→× Reg Reg

SReg→ const Null→ ret Reg

Reg→ + Reg Reg Reg→ SReg (r � 1)
SReg→ + SReg SReg SReg→ Reg (r � 1)

(c) Rules. Null is a dummy nonterminal since ret does not return anything, yet all productions
must have a result. All rules are assumed to have equal cost. For brevity, the actions are not
included.

Figure 2.8: Example illustrating the limitation of block DAGs.

This also applies to other situations where decisions made for one block can
inhibit subsequent decisions for other blocks, such as enforcing specific storage
locations or value modes. For example, Fig. 2.8 shows a function that multiplies
the elements of two arrays and adds the results. Assume that the arrays consist
of fixed-point values. For efficiency, a common idiosyncrasy in many DSPs is that
multiplication of two fixed-point values return a value that is shifted one bit to
the left. For such target machines, both the value 0 and the accumulator variable s
should be in shifted mode throughout the entire function, and only restored into
normal mode before returning from the function. Otherwise the accumulated
value would be needlessly shifted back and forth within the loop. Achieving this,
however, is difficult when limited to covering only a single block DAG at a time.
Assume for example that the function had no multiplication. In that case, deciding
to load value 0 in shifted mode would instead lower code quality as the value
would needlessly have to be shifted back before returning, which takes an extra
instruction.

Lastly, most of these approaches are restricted to tree-shaped patterns, meaning
they only support single-output instructions. Many instruction sets, however,
contain multi-output instructions which must be modeled as pattern DAGs.

36 2 existing instruction selection techniques and representations

2.5 Graph Covering

The most general principle is called graph covering, where entire functions are
modeled as function graphs and instructions are allowed to be modeled using
any shape of patterns. Unfortunately, compared to the other principles there exist
relatively few applications of graph covering, the most well known appearing in
the 2000s.

The main advantage is that graph covering support selection of inter-block
instructions, whose behavior entail both control and data flow and must therefore
be captured as pattern graphs. The representations typically used, however, only
model data flow, thus stressing the need for new representations in order to
handle the instructions of modern and forthcoming processors which are growing
increasingly complex.

First we will look at a few representations for capturing entire functions as
graphs. Because they result in relatively high nodes counts, such representations
are colloquially referred to as sea-of-nodes IRs.

2.5.1 Sea-of-Nodes IRs

In the context of instruction selection, there are two sea-of-nodes IRs that are of
interest. The first captures the data flow for entire functions, and the second is an
extension of the first in order to also capture control flow.

Capturing Data Flow of Entire Functions In order to simply many compiler
tasks, Cytron et al. [91] introduced a function representation called static single

assignment (SSA) form.
A function is said to be in SSA form if every variable is defined exactly once. For

example, the function shown in Fig. 2.9a is not in SSA form as variables f and n
are redefined within the loop. By introducing new variables and connecting these
using ϕ-functions where the value depends on control flow, the function can be
rewritten into SSA form, as shown in Fig. 2.9b.

From an SSA-based function, we can construct a data-flow graph called the SSA

graph [159]. Like in data-flow graphs, each operation in the function (including the
ϕ-functions) is represented as a node. These nodes are connected using data-flow
edges, ignoring the fact that the operations may belong to different blocks. For the
example above, this results in the SSA graph shown in Fig. 2.9c. Since operations
are not pre-assigned to specific blocks, the same IR can be used for performing
global code motion.

Capturing Both Data And Control Flow Click and Paleczny [81] introduced a
sea-of-nodes IR that captures both data and control flow. The data flow is modeled
exactly as in the SSA graph, and the control flow is captured using nodes to represent
the blocks in the function and edges to represent jumps between blocks. To capture
dependencies between the data and control flow – for example, when the target of

2.5 graph covering 37

int factorial(int n) {
entry:
int f = 1;

head:
if (n <= 1) goto end;

body:
f = f * n;
n = n - 1;
goto head;

end:
return f;

}

(a) C implementation of factorial.

int factorial(int n1) {
entry:
int f1 = 1;

head:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
if (n2 <= 1) goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

(b) Code in SSA form.

n1

ϕ

≤

1

−

1

1

ϕ

× ret

(c) SSA graph.

Figure 2.9: Example of an SSA graph.

a jump depends on a Boolean value – such jumps flow through special if nodes.
For lack of a better name we will call this the Click-Paleczny graph, and an example is
shown in Fig. 2.10.

2.5.2 Pattern Selection on the Click-Paleczny Graph

Paleczny et al. [295] introduced an approach for performing instruction selection
based on the Click-Paleczny graph.

The approach first divides the function graph into a set of possibly overlapping
expression trees. This is done by labeling certain nodes in the function graph as tree
roots. Root candidates are nodes representing operations whose result are shared
or operations with side effects and may therefore not be duplicated. The selection
of roots is geared towards duplicating address computations and other expressions
that can be subsumed into a single instruction. Once labeled, each expression tree
is covered using a variant of Alg. 2.3. The instructions are then emitted and placed
in blocks using a method described in [82].

Although the function is represented as a function graph, the instructions must
still be modeled as pattern trees. Consequently, only single-output instructions can
be selected using this approach.

38 2 existing instruction selection techniques and representations

F T

n1

ϕ

≤

1

−

1

1

ϕ

× ret

head

entry

if

body end

Figure 2.10: Example of a Click-Paleczny graph, corresponding to the function
shown in Fig. 2.9. Thin-lined nodes and edges denote data operations and data flow.
Thick-lined nodes and edges denote control operations and control flow. Dashed
edges indicate to which block an operation belongs.

2.5.3 PBQP-based Approaches

Similar to IP-based approaches, another method of modeling instruction selection
is to model it as a partitioned Boolean quadratic problem (PBQP). First introduced
by Scholz and Eckstein [330] to perform register allocation, PBQP is a variant
of the quadratic assignment problem (QAP), which is a fundamental combinatorial
optimization problem in the field of operations research (see [254] for a survey).
Although both problems are NP-complete in general, a subclass of PBQP can be
solved in linear time which inspired Scholz and Eckstein in developing a greedy,
linear-time solver.

Formally, a PBQP is defined as follows.

Definition 2.2 – PBQP Let ®c1 , . . . , ®cn be integer vectors, and let C1,1 ,C1,2 , . . . ,C1,n ,
C2,2 , . . . ,Cn ,n be integer matrices of size |ci | × |c j | for i � 1, . . . , n and j � i , . . . , n.
Let also ®x1 , . . . , ®xn be vectors of integer variables, where xi ∈ {0, 1} |ci | for i � 1, . . . , n.
Then

minimize
∑

1≤i< j≤n

®xT
i Ci j ®x j +

∑
1≤i≤n

®cT
i ®xi ,

subject to ∀1 ≤ i ≤ n : ®1T®xi � 1.

Intuitively, one can interpret this definition as follows. Assume that a problem
consists of n decisions, each with k choices. Then ®xi is a decision variable with
k elements, where ®xi[j] � 1 means that choice j has been selected for decision i.
For each variable, the condition ®1T®xi � 1 ensures that exactly one choice is selected.
The cost of selecting a particular choice for decision i is represented through a cost
vector ®ci , and the cost of combining two decisions i and j are represented through a
cost matrix Ci j .

2.5 graph covering 39

rules cost

Reg→ var 0
Reg→ + Reg Reg 1
Reg→ load Addr 3
Reg→ load + Reg Reg 5

Addr→ Reg 2

(a) Rules. For brevity, the actions are not included.

+

a b

ld

m1 m2

m3

m4

m5

(b) SSA graph.

®xa ∈ {0, 1}
®xb ∈ {0, 1}
®x+ ∈ {0, 1}2

®xload ∈ {0, 1}2

®ca �
[
0
]

m1

®cb �
[
0
]

m2

®c+ �

[
1
5

]
m3

m5

®cload �
[

3
5

]
m4

m5

Ca+ �
[
0

m3

0
m5]

m1

Cb+ �
[
0

m3

0
m5]

m2

C+load �

[
2

m4

∞
m5

∞ 0

]
m3

m5

(c) PBQP instance. The rows and columns in the cost vectors and
matrices are labeled with the matches they represent. Cost matrices
for uninteresting combinations are assumed to consist of 0s.

Figure 2.11: Example of modeling instruction selection as a PBQP.

In this context, ®xi decides whether to select a particular match to cover node i,
®ci contains the cost for each such match, and Ci j contains the cost of additional
instructions that may need to be selected due to certain combinations of matches.
For example, assume two nodes i and j where j depends on i. Assume further that
the instructions are represented as a normal-form machine grammar, and that i
and j can be covered using two rules ri and r j , with productions A → op

i
A A and

B → op
j
B B, respectively. Since the result of ri does not match the operands of r j ,

this rule combination requires a chain rule – or a combination of these, if necessary
– that derives B from A. Illegal combinations are prevented by assigning infinite
cost. An example of a PBQP instance is shown in Fig. 2.11.

Handling Patterns DAG The PBQP model above assumes that all patterns are
shaped as trees. To handle pattern DAGs, the model must be extended. First assume
an extended grammar where multi-output instructions are described using complex
rules (described on p. 30, see also Fig. 2.7). For each combination of matches derived
from proxy rules that can be combined into an instance of a complex rule, a complex

match is created. Each complex match i in turn introduces a variable ®xi ∈ {0, 1}2 to
decide whether i is selected. Because of the ®1T®xi � 1 condition, every such variable
has exactly two elements (one representing on and the other off). Like with the

40 2 existing instruction selection techniques and representations

simple rules, the costs of selecting a complex rule and interactions between these –
for example, two complex matches are not allowed to overlap or cause cyclic data
dependencies – are represented through the cost vectors and matrices.

In order to select a complex rule, all of its proxy rules must also be selected. This
is achieved by first extending, for each node i, the domain of its variable ®xi with
matches derived from proxy rules. Then a new set of cost matrices Di j is created
such that, for a node i and complex match j, the costs are 0 if ®x j � off or ®xi is set
to a proxy rule associated with j. Otherwise the costs are ∞. Consequently, if a
complex match covering some node n is selected, then the only choice for ®xn with
non-infinite cost is an associated proxy rule. The PBQP model is thus augmented
with another sum ∑

i ∈N, j ∈Mc

®xT
i Di j ®x j (2.3)

where N denotes the set of nodes in the SSA graph and Mc denotes the set of
complex matches.

This alone, however, allows solutions where all proxy rules but none of the
complex rules are selected. This is resolved by assigning an artificially large cost K
to the selection of proxy rules, which is offset when selecting the corresponding
complex rule. For example, if a complex rule r with cost 2 consists of three proxy
rules, then the new cost of selecting r is 2 − 3K.

Applications Eckstein et al. [109] were first with modeling instruction selection
as a PBQP, and Ebner et al. [108] extended their approach to support DAG-shaped
patterns. Buchwald and Zwinkau [60] reused the PBQP model but replaced the
use of machine grammars with rewrite rules based on algebraic graph transforma-
tions [258].

2.5.4 The VF2 Algorithm

For pattern matching, most combinatorial approaches apply the VF2 algorithm [86].
The algorithm, given in Alg. 2.4, recursively checks every node-mapping candidate
and applies a set of rules for checking whether the current mapping yields a match.
The rules are categorized into syntactic and semantic rules. The syntactic rules check
that the graph structure is preserved, and the semantic rules check that node and
edge attributes are compatible. In the worst case, O(N!N) mappings need to be
checked.

Computing the Mapping Candidate Set The set of mapping candidates under
consideration to be added to s is called the mapping candidate set, denoted P(s). The
set is computed as follows.

Definition 2.3 – Mapping Candidate Set Let Gf � (Nf , Ef) and Gp � (Np , Ep) be a func-
tion graph respectively a pattern graph, and s be a set of mappings from nodes

2.5 graph covering 41

function FindMatches (function graph Gf � (Nf , Ef), pattern graph Gp � (Np , Ep)):
1 M←�
2 FindMatchRec (�)
3 return M
4 function FindMatchRec (set s of mappings):
5 if |s | � |Np | then // if match found

6 M← M ∪ {s}
7 else
8 compute mapping candidate set P(s) // see Def. 2.3

9 foreach (n ,m) ∈ P(s) do
10 if Rsyn(s , n ,m) ∧ Rsem(s , n ,m) then // see Defs. 2.4–2.5

11 FindMatchRec (s ∪ {(n ,m)})

Algorithm 2.4: VF2 algorithm.

in Gf to nodes in Gp. Let Nf(s) and Np(s) denote the sets of nodes in Gf and Gp,
respectively, that appear in s. Also let Tout

f and Tout
p denote the set of nodes in Gf

and Gp, respectively, that are targets of edges from nodes appearing in s. Likewise,
let T in

f and T in
p denote the set of nodes in Gf and Gp, respectively, that are sources

of edges to nodes appearing in s. Then

P(s) ≡

{(n ,m) | n ∈ Tout

f ,m ∈ Tout
p } if Tout

f , � ∧ Tout
p , �,

{(n ,m) | n ∈ T in
f ,m ∈ T in

p } if T in
f , � ∧ T in

p , �,
{(n ,m) | n ∈ Nf \ Nf(s),m ∈ Np \ Np(s)} otherwise.

The last clause is needed when Gf or Gp consists of disconnected subgraphs.

Syntactic Rules The syntactic rules check five properties:

Rsyn(s, n,m) ≡ Rpred(. . .) ∧ Rsucc(. . .) ∧ Rin(. . .) ∧ Rout(. . .) ∧ Rnew(. . .). (2.4)

The first two rules, Rpred and Rsucc, check the consistency of the partial match
obtained when the candidate (n ,m) is added to s. Intuitively, if there exists an edge
between two mapped nodes in the pattern graph, then a corresponding edge must
also exist in the function graph.9 The next two rules, Rin and Rout, are 1-look-ahead
rules that check whether there exists a sufficient number of unmapped nodes
adjacent to n in the function graph for mapping the remaining nodes adjacent to m

9In the paper [86], Rpred and Rsucc also check the inverse – that is, an edge between two mapped
nodes in the function graph must have a corresponding edge in the pattern graph – thus requiring that
Gp is an induced subgraph of Gf. In the context of instruction selection, however, it is sufficient to only
maintain the structure of Gp. Hence the condition above has been removed from Def. 2.4.

42 2 existing instruction selection techniques and representations

in the pattern graph. The last rule, Rnew, is similar to Rin and Rout but perform a
2-look-ahead check. Formally, the rules are defined as follows.

Definition 2.4 – Syntactic Rules Let pred(G, n) and succ(G, n) denote the sets of
predecessor and successor nodes, respectively, to node n in graph G. Also let
Tf � T in

f ∪ Tout
f and Nf � Nf \ Nf(s) \ Tf, with similar definitions for Tp and Np.

Then
Rpred(s, n,m) ≡ ∀m′ ∈ Np(s) ∩ pred(Gp ,m), ∃n′ ∈ Nf(s) : (n′,m′) ∈ s ,

Rsucc(s, n,m) ≡ ∀m′ ∈ Np(s) ∩ succ(Gp ,m), ∃n′ ∈ Nf(s) : (n′,m′) ∈ s ,

Rin(s, n,m) ≡ | succ(Nf , n) ∩ T in
f | ≥ | succ(Np , n) ∩ T in

p | ∧
| pred(Nf , n) ∩ T in

f | ≥ | pred(Np , n) ∩ T in
p |,

Rout(s, n,m) ≡ | succ(Nf , n) ∩ Tout
f | ≥ | succ(Np , n) ∩ Tout

p | ∧
| pred(Nf , n) ∩ Tout

f | ≥ | pred(Np , n) ∩ Tout
p |,

Rnew(s, n,m) ≡ |Nf ∩ pred(Gf , n)| ≥ |Np ∩ pred(Gp ,m)| ∧
|Nf ∩ succ(Gf , n)| ≥ |Np ∩ succ(Gp ,m)|.

Semantic Rules The semantic rules check two properties:

Rsem(s, n,m) ≡ Rnode(. . .) ∧ Redge(. . .). (2.5)

The first rule checks that the node types are compatible, while the second rule
checks compatibility between edges. Formally, the rules are defined as follows.

Definition 2.5 – Semantic Rules Let w represent a binary relation for comparing the
compatibility between nodes and edges. Also let Ef(s) and Ep(s) denote the sets of
edges in Gf and Gp, respectively, for all pairs of nodes appearing in s. Then

Rnode(s, n,m) ≡ n w m ,

Redge(s, n,m) ≡
(∀(n′,m′) ∈ Ef(s) : (n , n′) ∈ Ef ⇒ (n , n′) w (m ,m′)

)
∧(∀(n′,m′) ∈ Ef(s) : (n′, n) ∈ Ef ⇒ (n′, n) w (m′,m)

)
.

2.6 Limitations of Existing Approaches

To solve the problems described in Chap. 1 on p. 3, none of the approaches discussed
in this chapter can be applied directly. The greedy approaches are only concerned
with pattern selection, making it unclear how to extend these to integrate other
code generation tasks. The combinatorial approaches show more promise in that
regards as they apply generic solving techniques, but instead the models of these
approaches are too limited.

First, while many combinatorial approaches combine instruction selection with
instruction scheduling, none combines instruction selection with global code motion.
For most of these, it is not clear how to extend the model to integrate this task.

2.6 limitations of existing approaches 43

Second, all combinatorial approaches only handle tree- and DAG-shaped pat-
terns. This excludes support for inter-block instructions which extend over multiple
blocks and must therefore be modeled as pattern graphs (one such example is given
in Chap. 1 on p. 4).

Third, with the exception of Tanaka et al. [348], no combinatorial approach takes
the cost of data copying into account. Failing to consider this cost could lead to
greedy use of SIMD instructions, which in turn degrades code quality.

Fourth and last, all combinatorial approaches only deal with data flow. Problems
concerning control flow, such as selection of branch instructions and block ordering,
must be handled separately, which could potentially result in suboptimal code.

To summarize, we need a more general combinatorial model that integrates the
problems described in Chap. 1. To that end, we also need a more powerful means
of representing functions and instructions.

CHAPTER

3
Constraint Programming

This chapter describes constraint programming (CP), which is a method for solving
combinatorial problems. Like similar methods such as integer programming (IP)

and Boolean satisfiability (SAT), in CP we first model the problem and then we solve

the model. The modeling and solving aspects are described in Sects. 3.1 and 3.2,
respectively. Comprehensive overviews of CP, IP, and SAT are given in [321], [370],
and [46], respectively. In Sect. 3.3 we briefly describe lazy clause generation, which
is a solving technique that Chuffed – the constraint solver used in the experiments
– is based.

In terms of modeling, CP offers a higher level of abstraction compared to other
methods. For example, CP provides dedicated constraints for capturing many
recurring problem structures that must be decomposed and reformulated in IP or
SAT. This makes CP particularly suited for modeling the problems introduced in
Chap. 1.

3.1 Modeling

To solve a problem using CP, it must first be formulated as a constraint model.
Modeling strategies are discussed in detail by Smith [339].

A constraint model (or just model) consists of two components: a set of variables,
and a set of constraints. Variables represent problem decisions and take their values
from a finite domain. The domain of a variable x, denoted D(x), is typically is a set
of integers, but it can also consist of real numbers and complex structures such as
string, sets, and graphs [160]. A variable x is assigned if |D(x)| � 1, and we abbreviate
a variable assignment x ∈ {v} to x � v.

Constraints express relations between variables and forbid assignments that are
illegal in the problem. Given a set of variables x1 , . . . , xk and a constraint C, an
assignment to x1 , . . . , xk is a solution to C if C(x1 , . . . , xk) holds. An assignment to

45

46 3 constraint programming

variables constraints

x ∈ {1, 2} x , y
y ∈ {1, 2} x , z
z ∈ {1, 2, 3, 4} y , z

(a) Constraint model.

x y z

1 2 3
2 1 3
1 2 4
2 1 4

(b) Solutions.

Table 3.1: Example of a constraint model, corresponding to a problem where three
variables must be assigned values which are different from one another.

all variables fulfilling all constraints in a model M is a solution to M. An example of
a constraint model and its solutions is shown in Tab. 3.1.

The use of variables and constraints results in constraint models that are
compositional, meaning they can easily be extended to capture additional problems
to be solved in unison.

3.1.1 Global Constraints

If a binary constraint is a constraint involving two variables, then a global constraint is
a constraint over an arbitrary number of variables [192]. Global constraints capture
recurring problem structures and improve solving compared to relations modeled
using multiple binary constraints.

The All-Different Constraint Arguably, the most well-known global constraint is
the all-different constraint [236] (see [191] for a survey), which enforces all variables
in a given set to take distinct values. We refer to this constraint as alldifferent,
which is defined as follows.

Definition 3.1 – ALLDIFFERENT Let x1 , . . . , xk be a list of variables. Then

alldifferent(x1 , . . . , xk) ≡
∧

1≤ i < j ≤ k

xi , x j .

Hence the constraints in Tab. 3.1 can be replaced by alldifferent(x, y, z).

The Global Cardinality Constraint In Chap. 2 we saw another global constraint –
the global cardinality constraint [293] – and how it can be used to model the pattern
selection problem (see Eq. 2.2 on p. 33). This constraint is a generalization of the
all-different constraint, and for completeness we give here the its formal definition.

Definition 3.2 – GCC Let v1 , . . . , vk be a list of values, and let x1 , . . . , xn and c1 , . . . , ck
be lists of variables. Then

gcc(〈v1 , c1〉, . . . , 〈vk , ck〉, x1 , . . . , xn) ≡
∧

1≤ i ≤ k

��{x j | ∀1 ≤ j ≤ n : x j � vi}
�� � ci .

3.1 modeling 47

For example, gcc(〈5, c1 � 0〉, 〈3, c2 � 1〉, x1 � 2, x2 � 3) holds because no x vari-
able is assigned value 5 and exactly one x variable is assigned value 3. Similarly,
gcc(〈3, c1 ∈ {0, 2}〉, x1 � 2, x2 � 3) does not holds because either none or both x vari-
ables must be assigned value 3.

The Circuit Constraint Another relevant example is the circuit constraint [236],
which enforces that the variables representing adjacency forms a Hamiltonian cycle.
We refer to this constraint as circuit, which is defined as follows.

Definition 3.3 – CIRCUIT Let x1 , . . . , xk be a list of variables, and let P � d1 , . . . , dk be
a permutation of domain values such that di ∈ D(xi) for all i � 1, . . . , k. Given P,
form a graph G � (N, E) such that there is exactly one node ni ∈ N and exactly one
edge ni → ndi for all i � 1, . . . , k. P is considered cyclic if and only if G contains a
Hamiltonian cycle. Then

circuit(x1 , . . . , xk) ≡ x1 , . . . , xk is cyclic.

For example, circuit(x1 ∈ {2}, x2 ∈ {4}, x3 ∈ {1}, x4 ∈ {3}) holds because the
assignment forms the following cycle:

x1 x2

x3 x4

However, circuit(x1 ∈ {2}, x2 ∈ {1}, x3 ∈ {4}, x4 ∈ {3}) does not hold because the
assignment forms two non-Hamiltonian cycles:

x1 x2

x3 x4

Circuit is used in Chap. 5 to model block ordering.

The Table Constraint The table constraint constrains a list of variables such that the
values appear as a row in a given matrix. By encoding legal variable assignments
into the matrix, any relation can be expressed using a table constraint, thus belonging
to a group of so-called extensional constraints [339, Sect. 11.5.4]. We refer to this
constraint as table, which is defined as follows.

Definition 3.4 – TABLE Let x1 , . . . , xk be a list of variables, and let T be an m × k
matrix, where m ∈ N. Then

table(〈x1 , . . . , xk〉, T) ≡ 〈x1 , . . . , xk〉 ∈ T.

48 3 constraint programming

For example, assume we are given a matrix

A �

[
1 1
2 4

]
.

Then table(x1 � 2, x2 � 4,A) holds because the tuple 〈2, 4〉 appears as a row in A.
Similarly, table(x1 � 3, x2 � 3,A) does not hold because the tuple 〈3, 3〉 appears as
a row in A.

Table is used in Chap. 6 to refine the model and to model several of the solving
techniques.

The Value-Precede-Chain Constraint The value-precede-chain constraint [237] re-
quires a list of variables to be sorted according to a given chain of values. We refer
to this constraint as vpc, which is defined as follows.

Definition 3.5 – VPC Let c1 , . . . , cn be a list of values and x1 , . . . , xk be a list of
variables. Then

vpc(c1 , . . . , cn , x1 , . . . , xk) ≡
∧

1≤ i ≤ k,
1≤ j < n

xi � c j+1 ⇒ (∃l < j : xl � c j).

For example, vpc(6, 5, 4, x1 � 6, x2 � 1, x3 � 5, x4 � 4) holds because the 4 is
preceded by a 5, which in turn is preceded by a 6, in the list of x variables. Likewise,
vpc(5, 4, x1 � 5, x2 � 1) also holds because 4 does not appear among the x variables
(the fact that 5 appears in the list does not matter). However, vpc(5, 4, x1 � 1, x2 � 4)
does not hold because the 4 is not preceded by a 5.

Vpc is used in Chap. 6 to implement a dominance breaking constraint.

The Cumulative Constraint The cumulative constraint [2] is used in scheduling to
constrains the scheduling times for a given set of tasks such that the capacity of a
given resource is not exceeded. We refer to this constraint as cumulative, which is
defined as follows.

Definition 3.6 – CUMULATIVE Let c ∈ N represent the capacity of a resource to be used
by k optional tasks. For each task i � 1, . . . , k, let si ∈ N be a variable representing
the time at which i is scheduled to start, and bi ∈ {0, 1} be a variable representing
whether i is scheduled. Let also li ∈ N represent task i’s duration, and ui ∈ N
represent the amount of resource required by i, Lastly, let tmax � max(∪1≤ j ≤ k D(s j)).
Then

cumulative(c, 〈s1, l1, u1, b1〉, . . . , 〈sk, lk, uk, bk〉) ≡
∧

0≤ t < tmax

∑
1≤ i ≤ k s.t.

si ≤ t < si + li

bi × ui ≤ c.

3.1 modeling 49
ca

pa
ci

ty

time

limit

t1

t2
t3

t4

(a) A solution.

ca
pa

ci
ty

time

limit

t1

t2
t3

t4

t5

(b) Not a solution; the capacity is exceeded.

Figure 3.1: Examples illustrating the cumulative constraint. Each box represents a
task.

(a) A solution. (b) Not a solution.

Figure 3.2: Examples illustrating the no-overlap constraint.

For example, the schedule shown in Fig. 3.1a is a solution to this constraint
because at no time is the capacity exceeded. Likewise, the schedule shown in
Fig. 3.1b is not a solution because tasks t4 and t5 exceed the capacity when scheduled
in parallel.

Cumulative is used in Chap. 8 to model instruction scheduling.

The No-Overlap Constraint The last global constraint we will look at is the no-

overlap constraint (often also called the diffn constraint [42]), which is used in rectangle
packing problems to enforce that no two rectangles may overlap. We refer to this
constraint as nooverlap, which is defined as follows.

Definition 3.7 – NOOVERLAP For each rectangle i, let xli , xri , yli , yui ∈ N be variables
representing the rectangle’s left, right, lower, respectively upper boundary. Then

nooverlap(〈xl1, xr1, yl1, yu1〉, . . . , 〈xlk, xrk, ylk, yuk〉) ≡∧
1≤ i < j ≤ k

xri ≤ xl j ∨ xr j ≤ xli ∨ yui ≤ yl j ∨ yu j ≤ yli.

For example, Fig. 3.2a is a solution to this constraint because the two squares do
not overlap. Likewise, Fig. 3.2b is a not solution because the squares do overlap.

Nooverlap is used in Chap. 8 to model register allocation.

50 3 constraint programming

3.1.2 Optimization

An optimization problem is modeled by maximizing or minimizing a variable c
whose value is constrained according to an objective function. For example, if
xm ∈ {0, 1} is variable representing whether a match m is selected and cm denotes
the cost of selecting m, then a CP idiom for modeling optimal pattern selection is

minimize c
subject to c �

∑
m

cmxm (3.1)

In this context, c is called a cost variable. Note that the objective function is orthogonal
to the rest of the model, thus allowing it to be easily customized to fit the desired
optimization criterion.

3.2 Solving

A constraint solver (or just solver) finds solutions to a constraint model by interleaving
propagation and search. Propagation removes domain values that are known to be in
conflict with a constraint, and search attempts several alternatives when propagation
alone is insufficient for finding a solution.

In practice, however, this alone is often not enough for many problem instances
as the search space is simply too large. In such cases, the search space can be
further reduced by extending the constraint model with additional constraints to
strengthen propagation and remove uninteresting solutions and by performing
presolving.

3.2.1 Propagation

Performing propagation requires an array of domain-pruning algorithms and a
system that allows these algorithms to interact. Propagation theory is discussed
in detail by Bessiere [45], and constraint programming systems are thoroughly
discussed by Schulte and Carlsson [331].

Constraint solver typically keep track of variables and their domains using
constraint stores. A constraint store (or just store) is a data structure that maps a set
of variables to sets of domains. A store S1 is stronger than another store S2, denoted
S1 ≤ S2, if D1(x) ⊆ D2(x) for all variables x, where Di(x) denotes the domain of
variable x in store Si .

A function that takes a constraint store as input and produces another store is
called a propagator (or filtering algorithm). A propagator implements a constraint if it
does not remove any solutions to the constraint and only keeps variable assignments
that are part of a solution. For solving to be well-behaved, propagators are also
expected to be decreasing – it does not add any values, hence p(S) ≤ S – and monotonic

– if S1 ≤ S2, then p(S1) ≤ p(S2). A propagator for which p(S) � S holds is said to be
at fixpoint, and a store is at fixpoint if all propagators are at fixpoint for that store. A

3.2 solving 51

event store

x y z

Initial store {1, 2} {1, 2} {1, 2, 3, 4}
Propagate until fixpoint {1, 2} {1, 2} {1, 2, 3, 4}
Search by attempting z � 1 {1, 2} {1, 2} {1 }
Propagate y , z {1, 2} { 2} {1 }
Propagate x , z { 2} { 2} {1 }
Propagate x , y { } { 2} {1 }
Failure reached; backtrack {1, 2} {1, 2} { 2, 3, 4}
...

(a) Solving with value-consistent inequality constraints.

event store

x y z

Initial store {1, 2} {1, 2} {1, 2, 3, 4}
Propagate alldifferent(x, y, z) {1, 2} {1, 2} { 3, 4}
...

(b) Solving with domain-consistent all-different constraint.

Table 3.2: Example illustrating propagation for two versions of the model given
in Tab. 3.1, one using the all-different constraint and the other using a binary
decomposition.

propagator that returns a store with at least one empty domain has failed, meaning
there are no solutions in that part of the search space.

Propagators implementing the same constraint can differ in the amount of
propagation they perform. A propagator is value-consistent if it only propagates
when one of its variables becomes assigned, bounds-consistent if it only reduces
the bounds of a domain, and domain-consistent if it removes all values that do not
appear in any solution to the constraint. For example, Tab. 3.2 shows solving of
two versions of the model given in Tab. 3.1, one using alldifferent and another
using inequality constraints. Because only value consistency can be achieved for
inequality constraints, they cannot propagate anything until at least one variable
becomes assigned (Tab. 3.2a). As all propagators are already at fixpoint, the solver
must resort to search. In this case, the solver makes a wrong guess and is forced
to backtrack. In comparison, a domain-consistent propagator for the all-different
constraint can remove values 1 and 2 from the domain of variable z as these values
do not appear in any solutions (Tab. 3.2b). As the search space grows exponentially
with the number of variables and size of the domains, maximizing propagation is
key in making solving tractable.

As to be expected, stronger propagation comes at a price of greater complex-

52 3 constraint programming

x ∈ {1}
y ∈ {2}
z ∈ {3}

x ∈ {1}
y ∈ {2}
z ∈ {4}

x ∈ {2}
y ∈ {1}
z ∈ {3}

x ∈ {2}
y ∈ {1}
z ∈ {4}

x ∈ {1}
y ∈ {2}

z ∈ {3, 4}

x ∈ {2}
y ∈ {1}

z ∈ {3, 4}

x ∈ {1, 2}
y ∈ {1, 2}
z ∈ {3, 4}x � 1 x , 1

z � 3 z , 3 z � 3 z , 3

Figure 3.3: Example of a search tree for the model given in Tab. 3.1. Diamond-shaped
nodes represent solutions.

ity. For the all-different constraint, there exist bounds and domain-consistent
propagators with worst-case time complexities O(n log n) [255] and O(n2.5) [317],
respectively, where n denotes the number of variables. The same can be achieved
for the global cardinality constraint at similar cost [309, 318].

Domain consistency for circuit constraint cannot be achieved in polynomial
time as it involves finding Hamiltonian cycles, which is NP-complete [154]. An
incomplete, polynomial-time filtering algorithm is given in [211].

Several domain-consistent propagator exist for the table [96, 238, 239, 240,
263, 300], cumulative [35], and no-overlap constraint [41, 184], but these exhibit
exponential worst-case time complexity. For the value-precede-chain constraint,
there exist domain-consistent propagators with linear time complexity [237].

3.2.2 Search

When no more propagation can be performed – that is, when all propagators are at
fixpoint – the solver resorts to search. This is discussed in detail by Van Beek [39].

In exploring the search space, two decisions need to be made repeatedly: (i) select
a variable on which to branch, and (ii) select one or more values (but not all) from
its domain. These decisions constitute a branching strategy. The branching strategy
arranges the search space into a search tree, where each node represents a store at
fixpoint (see Fig. 3.3 for an example). Since the solutions (and failures) appear at
the leaf nodes, the search tree is typically explored depth-first.

For search to be well-behaved, a branching strategy must preserve all solutions
in the search space and must not duplicate any solution. A common strategy in
choosing a variable, called the first-fail principle, is to select the variable most likely to
cause a failure [176]. Other strategies involve selecting the variable with the smallest
or largest value in its domain, or selecting a random variable. Similar strategies

3.2 solving 53

x ∈ {1}
y ∈ {2}
z ∈ {3}

x ∈ {1}
y ∈ {2}
z ∈ {4}

x ∈ {2}
y ∈ {1}
z ∈ {3}

x ∈ {2}
y ∈ {1}
z ∈ {4}

x ∈ {1}
y ∈ {2}

z ∈ {3, 4}

x ∈ {2}
y ∈ {1}
z ∈ {}

x ∈ {1, 2}
y ∈ {1, 2}
z ∈ {3, 4}x � 1 x , 1

z � 3 z , 3

posting z > 3 posting z > 4

Figure 3.4: Example of a search tree for the model given in Tab. 3.1 with the
additional requirement that the value of z should be maximized. The search tree is
explored depth first, left to right. Diamond-shaped nodes represent solutions and
square-shaped nodes represent failures.

are applied in value selection, which is typically done by posting constraint when
branching. Most common is to post unary constraint that divides a domain into
an assigned part an a non-assigned part. For example, at the root node in Fig. 3.3,
search branches on variable x by posting x � 1 in one branch and x , 1 in the
other. Another strategy is to split the domain by posting inequality constraints (for
example, x ≤ 3 in one branch and x > 3 in the other), which is useful for solving
models with arithmetic constraints. More than one branching strategy can be used
for the same model and, if needed, they can be customized by the user, making it a
key strength of CP.

Branch and Bound Solutions to optimization problems are found using a method
called branch and bound [231]. During search, the best solution found so far is kept
and a constraint is added to enforce all subsequent solutions to have strictly less (or
greater) cost. Hence time can be traded for quality on a continuous time scale. When
the entire search space has been explored, the last found solution is guaranteed to
be optimal. An example of shown in Fig. 3.4. Assuming the search tree is explored
depth first, left to right, the first solution to be found is S1 � 〈x � 1, y � 2, z � 3〉.
Since the value of z is to be maximized, this causes the constraint z > 3 to be posted.
The next solution to be found is S2 � 〈x � 1, y � 2, z � 4〉, which is clearly better
than S1, causing the constraint z > 4 to be posted. Since the domain of z has no
value greater than 4, the constraint z > 4 causes a failure when the exploring the
other branch at the root. At this point the entire search space has been explored,
making S2 the optimal solution.

54 3 constraint programming

3.2.3 Solving Techniques

Solving can be improved by applying various solving techniques, which can be
divided into two categories. The first category involves additional constraints that
are added to the model in order to increase propagation and also reduce the search
space. These constraints can be divided into three categories – implied, symmetry
breaking, and dominance breaking – which are discussed in detail by Smith [339],
Gent et al. [158], and Chu and Stuckey [77], respectively.

The second category – presolving – involves applying methods that reduce the
number of variables or shrink the variable domains, thereby reducing the search
space.

Implied Constraints An implied constraint is a constraint that strengthens prop-
agation without removing any solutions. For example, assume a naive model
for solving the magic sequence problem, which is defined as finding a sequence
x0 , . . . , xn−1 of integers such that for all 0 ≤ i < n, the number i appears exactly xi
times in the sequence. Using the global cardinality constraint and n variables, this
can be modeled as

gcc(∪0≤ i < n 〈i , xi〉, x0 , . . . , xn−1). (3.2)

While this constraint is sufficient in capturing the problem, propagation can be
increased by adding the following implied constraint:∑

0≤ i < n

xi � n. (3.3)

This always holds because the sum of all occurrences – that is, the number of items
in the sequence – must always be equal to the length of the sequence.

Symmetry Breaking Constraints A symmetry breaking constraint is a constraint
that removes solutions considered to be symmetric to one another. For example,
assume a model for solving a problem of packing n squares of sizes 1, . . . , n inside
another, larger square. Given a solution to this problem, more solutions can found
by rotating, flipping, and mirroring the initial solution. As these solutions are
essentially the same, only one of them should be kept in the search space. A simple
method of removing most (but not all) symmetric solutions is to force one of the
squares to be packed into one of the quadrants of the enclosing square.

Dominance Breaking Constraints A dominance breaking constraint is a constraint
that removes solutions known to be dominated by another solution. Dominance
breaking is therefore a generalization of symmetry breaking. For an example, let
us revisit the model capturing the square packing problem and assume the two
partial solutions shown in Fig. 3.5. In the left-most solution, the positioning of the
two squares form an empty 2 × 3 rectangle in the corner. If this is extended to a
complete solution, another solution can be found by sliding the 3 × 3 square all the

3.2 solving 55

4

3

2 1 43

2 1

Figure 3.5: Example of two partial solutions to the square packing problem, where
the left-most solution is dominated by the right-most solution [225].

way up and moving any squares packed above into the space created below. Hence
the left-most solution is dominated by the right-most solution. We can remove
such dominated solutions from the search space by forbidding each k × k square
from being placed a certain distance away from the edge of the enclosing square
such that the k × k square and the edge forms a rectangle large enough to pack all
smaller squares inside it.

The benefit of a given implied, symmetry breaking, or dominance breaking
constraint depends on the amount of search space it prunes and the cost of
propagating the constraint. For example, if a constraint is expensive to run and
only has marginal effect on the variable domain, then adding it to a model will
increase solving time instead of decreasing it. In addition, it is well known that such
constraints often have synergy effects among each other, meaning a constraint may
not be useful on its own but may have a positive effect when combined with another
constraint. Consequently, the decision of whether to add a implied, symmetry
breaking, or dominance breaking constraint to a model must be based on careful
and thorough experimental evaluation.

Presolving Presolving is the process of applying problem-specific algorithms to
reduce the number of variables or to shrink the variable domains before solving.
Fewer variable and smaller domains means smaller constraint models, which means
shorter solving times.

When dealing with optimization problems, a common presolving technique
is to precompute lower and upper bounds on the cost variable. A lower bound
can be found by solving a relaxed, and hence simpler, version of the constraint
model, which enables pruning of parts in the search space that contain no solutions.
An upper bound can be found by solving the problem using a greedy but fast
heuristic, which enables pruning of parts in the search space that only contain
inferior solutions. If applying the upper bound yields a search space with no
solutions, then we know that the heuristic has already found the optimal solution.

In the context of instruction selection, another presolving technique is to remove
matches that we know cannot participate in any solution. Several such techniques
are introduced in Chap. 6.

56 3 constraint programming

Boolean variables

clauses

unit propagators

implication graph

clause learning,
backtracking

SAT region

integer variables

constraints

CP region

Figure 3.6: Overview of a typical LCG-based constraint solver.

3.3 Lazy Clause Generation

Lazy clause generation (LCG) is a solving technique where the constraint solver, when
reaching a failure during search, learns new constraints in order to avoid repeating
the same mistakes. The technique originates from SAT [265] but has been adapted
to constraint programming by adding CP techniques on top of SAT solving [292].
An overview of a typical LCG-based constraint solver is shown in Fig. 3.6.1

To begin with, every variable has two dual representations: one based on
Boolean values; and one based on integers, which is the domain typically used in
CP. Every integer variable x ∈ [l , . . . , u] results in two sets [x � l], . . . , [x � u] and
[x ≤ l], . . . , [x ≤ u − 1] of Boolean variables, where [e] denotes a Boolean variable
representing whether the expression e holds. For example, x ∈ [1, 2, 3] results in
[x � 1], [x � 2], [x � 3], [x ≤ 1], and [x ≤ 2]. These Boolean variables are sufficient
for capturing any constraint since x < k, x > k, and x ≥ k are equivalent to [x ≤ k − 1],
¬[x ≤ k − 1], and ¬[x ≤ k − 1].

Constraints are applied over the integer variables as before, but during propa-
gation the constraints do not directly shrink the domain of the integer variables.
Instead they generate clauses consisting of disjunctions of literals, where a literal is
a Boolean variables that may optionally be negated. For example, if alldifferent
propagates that two variables x, y ∈ {1, 2, 3} cannot be assigned value 2, then it will
produce two clauses ¬[x � 2] ∨ [y � 1] ∨ [y � 3] and ¬[y � 2] ∨ [x � 1] ∨ [x � 3]
(these are equivalent to x � 2⇒ y ∈ {1, 3} and y � 2⇒ x ∈ {1, 3}, respectively).
Hence the Boolean dual model is built lazily as solving proceeds.

If a clause consist of one unassigned Boolean variable v and all other literals
resolve to false, then in order for the clause to hold v must be assigned such that

1Feydy and Stuckey [133] describe how to re-engineer the original implementation by embedding a
SAT solver inside a constraint solver instead of vice versa.

3.3 lazy clause generation 57

[z � 4]

[x � 2]

fail

1: T

2: T

(a) Search tree.

constraint

c1 [z ≤ 3] ∨ [x � 2] ∨ [y � 2]
c2 ¬[z � 4] ∨ ¬[z ≤ 3]
c3 ¬[x � 2] ∨ ¬[y � 2]
c4 ¬[z � 4] ∨ ¬[x � 2] ∨ [y � 2]

(b) Constraints.

[z � 4] ¬[z ≤ 3]

[x � 2] ¬[y � 2] fail

1:

2:

c2

c3 c4

c4

c4

(c) Implication graph.

¬[z � 4] ∨ ¬[x � 2]
(d) No-good.

Figure 3.7: Example of no-good learning. First [z � 4] is assigned to true (T)
through search. This triggers unit propagation of constraint c2, which assigns
¬[z ≤ 3] � T. Since no further propagation can be done, search is resumed by
assigning [z � 4] � T. This triggers unit propagation of constraint c3, which assigns
¬[y � 2] � T. This in turn causes constraint c4 to fail. By choosing the literals closest
to the failure node such that all decisions flow through those literals, we learn the
no-good ¬[z � 4] ∨ ¬[x � 2].

the literal becomes true. This is called unit propagation [92]. For example, if we are
given a clause [x � 1] ∨ ¬[y � 4] and x � 2, then the Boolean variable [y � 4]must
be assigned false, meaning y , 4.

When these unit propagations are caused by assignments that were made during
search, we can use this information to build an implication graph. In this directed
graph, each node represents a literal that resolves to true and each edge between
two literals l1 and l2 represents the fact that l1 causes l2 to become true. When
failure is reached, we can then use the implication graph to derive an explanation
for why a constraint failed. This explanation can be captured as a clause, called
no-good, to be added to the existing body of clauses. The no-good prevents the
solver from making the same mistake again, thus effectively cutting away those
parts of the search space. An example is given in Fig. 3.7. For more details, see [265].

It is well known that the effectiveness of LCG is heavily impacted by how the
problem is modeled as that affects which no-goods can be learned [78, 332, 333]. For
the same reason, LCG is also influenced by the implied, symmetry breaking, and
dominance breaking constraints that have been added to the model. Consequently,
due to LCG there may arise strong synergy effects between such constraints that
would not have appeared when using a non-LCG constraint solver.

CHAPTER

4
Universal Representation

This chapter introduces a new representation used for modeling functions and
instructions. Based on the conclusions drawn in Chap. 2, we begin in Sect. 4.1
with listing the design requirements that must be fulfilled by a graph-based repre-
sentation. From these requirements, in Sect. 4.2 we design such a representation,
called universal representation, and describe how it is used for modeling functions.
We then do the same for instructions in Sect. 4.3. In Sect. 4.4, we describe how
to perform pattern matching using the universal representation. In Sect. 4.5, we
compare universal representation with other, existing sea-of-nodes IRs. Lastly, a
summary is given in Sect. 4.6.

4.1 Design Requirements

As discussed in Chap. 2, in order to address the limitations of existing approaches
we need a constraint model capable of capturing the problems described in Chap. 1.
To this end, we need a graph-based representation that fulfills the following
requirements:

R1 It must capture the data and control flow of an entire function. This is needed for
modeling global instruction selection, which demands access to the entire
function under compilation. This is also needed for uniform selection of data
and control instructions, which requires that both data and control flow be
captured in a single graph.

R2 Blocks must be explicitly represented as nodes. This is needed for pattern matching,
where we must not be allowed to match patterns whose control flow is
inconsistent with the function graph. For example, assume that the pattern is
derived from a saturated addition instruction. Such a pattern will consist of
three blocks b1, b2, and b3, where b1 represents the instruction’s point of entry,
b2 represents the part where clamping is performed, and b3 represents the

59

60 4 universal representation

instruction’s point of exit. The control flow in this pattern will be such that
there are two conditional jumps from b1 to either b2 or b3, and an unconditional
jump from b2 to b3. To be matched, part of the function graph must exhibit
the same control flow structure. This is also useful for modeling global code
motion as each such node will correspond to a variable in the constraint
model.

R3 Data and control operations must be explicitly represented as nodes. This is to
retain the notion of coverage and to treat instructions uniformly regardless of
whether they operate on data or control flow.

R4 Values produced and used by the operations must be explicitly represented as nodes.

This is useful for modeling global code motion and data copying as every
such node will introduce a variable in the constraint model.

R5 In a function graph, every node representing a value must have exactly one inbound

data-flow edge. This ensures that every value has exactly one match defining
that value, which is useful when modeling global code motion.

R6 The block in which a particular operation in the function is to be performed must not

be fixed. Without this, global code motion is not possible.

R7 Data operations must not be placed in blocks that will break program semantics. This
is needed to ensure correctness when performing global code motion.

R8 The representation must be based on SSA. This is needed in modeling global code
motion as it explicitly states which values must be defined in which blocks in
order to preserve program semantics. This is also useful for practical reasons
as most IRs used in modern compilers are already based on SSA.

While there exist many graph-based representations (see [345] for a survey), most
fulfill only some of the requirements but not all. Consequently, a new representation
has to be designed.

4.2 Program Representation

The universal representation is essentially a combination of two existing representa-
tions – the SSA graph and the control-flow graph1 – which are extended to fulfill
the missing requirements and then merged into a single graph. This makes for a
simple construction process as the control-flow and SSA graphs are already used
inside principally all modern compilers.

Capturing Control Flow We start with the control-flow graph. As it captures
the control flow for an entire function, R1 is already partially fulfilled. R2 is also

1A control-flow graph is a graph where each node represents a block in the function and each edge
represents a jump from one block to another. Edges representing conditional jumps are labeled with a
Boolean value indicating under which conditions the jump is taken. An example is given in Fig. 4.1b.

4.2 program representation 61

int factorial(int n1) {
entry:
int f1 = 1;

head:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
bool b = n2 <= 1;
if b goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

(a) Function in SSA form.

F T

entry

head

body end

(b) Control-flow graph.

n1

ϕ

≤

1

−

1

1

ϕ

× ret

(c) SSA graph.

Figure 4.1: Running example of a function and its corresponding control-flow and
SSA graph, which will be used in describing the program representation.

fulfilled since blocks in the control-flow graph are already represented as nodes,
which we call block nodes. In contexts where is no risk of confusion, the terms blocks

and block nodes can be used interchangeably.
To partially achieve R3, we insert control nodes to represent operations that change

the control flow from on block to another. We also redirect the edges such that
control flows through these nodes. For example, in the control-flow graph shown
in Fig. 4.1b, control nodes representing unconditional branches are inserted along
the edges between the entry and head nodes and between the body and head nodes.
For the conditional control flow originating from the head block, a control node
representing a conditional branch is inserted and connected to the head node, and
the labeled edges are redirected to the new node. Lastly, a control node representing
a function return is inserted and connected to the end node. This results in the
graph shown in Fig. 4.2a.

An invariant here is that each control node has exactly one edge flowing from a
block node, and each block node has exactly one edge flowing to a control node.
In other words, every control operation belongs to exactly one block, and every

62 4 universal representation

F T

entry

br

head

c.br

body end

br ret

(a) Extended control-flow graph.

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

×

f3

(b) Extended SSA graph.

F T

entry

br

head

c.br

body end

br ret

n1

ϕ

n2

≤

b

1

−

1

n3

1

ϕ

f2

×

f3

(c) Universal function graph.

Figure 4.2: Example of a universal function graph, built from the function shown
in Fig. 4.1. Thick-lined diamonds, boxes, and arrows represent control nodes,
block nodes, and control-flow edges, respectively. Thin-lined circles, boxes, and
arrows represent computation nodes, value nodes, and data-flow edges, respectively.
Dotted lines represent definition edges.

4.2 program representation 63

block has exactly one point where changes in control occur. This also means that
the extended control-flow graph forms a bipartite graph, with block nodes on one
end and control nodes on the other.

Capturing Data Flow We continue with the SSA graph. As it captures the data
flow for an entire function and represents data operations as nodes – we call these
computation nodes – the remaining parts of R1 and R3 are fulfilled. R8 is inherently
fulfilled as the SSA graph requires the function to be in SSA form.

To achieve R4, we insert value nodes to represent the entities produced and
used by the data operations. We also redirect the edges in same fashion as when
extending the control-flow graph. Nodes representing function returns are removed
as these are already represented in the extended control-flow graph. Using the SSA
graph shown in Fig. 4.1c as example, this results in the graph shown in Fig. 4.2b.

Note that at this point the invariant specified in R5 that every value node has
exactly one inbound data-flow edge is broken, but this will be addressed shortly.

Combining The Graphs We now connect the two extended graphs together. First,
data-flow edges are inserted to connect control operations with the values used by
these operations. In the case of our running example, such edges are added from
values b and f2 to the c.br and ret operations, respectively.

To achieve the invariant specified in R5, data-flow edges are also inserted from
the entry block node to each value node representing constants and function
arguments. Intuitively, this means that such values are produced at the point of
entry to the function. Like with the extended control-flow graph, the extended SSA
graph also forms a bipartite graph, with value nodes on one end and computation
nodes on the other.

Since there are no edges connecting computation nodes with block nodes, the
assignment of data operations to blocks is free, thus fulfilling R6. This alone, however,
permits operations to be moved to blocks that will break program semantics. For
example, assume the code snippet and corresponding, extended control-flow and
SSA graphs shown in Fig. 4.3. In the original code, the addition should be performed
in the inc block while the subtraction should be performed in the dec block. But
according to the graph, swapping the placement of these operations would be
considered a valid move, which clearly results in a different program. We recognize
that such problems occur exactly in situations where a value is expected to be
produced in a particular block, which are precisely the constraints captured by the
ϕ-functions. Consequently, for each value-block pair (v, b) appearing as argument
to a ϕ-function, we add a definition edge between the corresponding value and block
node. This forces v to be produced in b, which in turn prevents the operation
producing v from being moved out of b. Hence R7 is achieved.

Lastly, for convenience we prevent ϕ-functions from being moved by inserting
a definition edge between the value produced by the ϕ-function and the block

64 4 universal representation

. . .
int x1 = . . .;

check:
bool b = . . .;
if b goto dec;

inc:
int x2 = x1 + 1;
goto merge;

dec:
int x3 = x1 - 1;

join:
int x4 = ϕ(x2:inc, x3:dec);

(a) Code snippet.

T F

check

c.br

inc dec

br br

join

1

+

x1

x2

−

x3

ϕ

x4

b

(b) UF subgraph.

Figure 4.3: Example illustrating the need for definition edges to prevent certain
operations from being moved into blocks that will break program semantics.

wherein the ϕ-function originally resides in the function. This results in the graph
shown in Fig. 4.2c,2 which is called universal function (UF) graph.

Refining the Notion of Coverage Since new nodes have been introduced, we must
refine the definition of coverage to apply for UF graphs. If an operation denotes
either a computation or control node in a UF graph G, then a subset M′ ⊆ M, where
M is a match set, covers G if every operation in G appears in at least one match in M′.
Similarly, exact coverage is also redefined as above.

4.2.1 Representing Constants As Single Or Multiple Nodes

Duplicated constants may either be represented using individual value nodes (as
in Fig. 4.2c) or through a single value node (as in Fig. 4.3b). The former is simpler
from a code generation perspective, but may result in redundant instructions where
the same constant is needlessly reloaded. This can be avoided by using the latter
together with a technique to be described in Sect. 5.4 in the next chapter, but this also
requires the UF graph to be transformed and extended with additional operations
in order to guarantee correctness. For example, assume a function containing two
ϕ-functions ϕ(. . ., 1:a, . . .) and ϕ(. . ., 1:b, . . .). If the constant 1 is represented
using a single value node, then the value node will have two definition edges, one
from block a and another from block b. Since a value cannot be defined in two block
simultaneously, there exist no solution for this UF graph. This problem is fixed by
applying copy extension, which will be described in Chap. 5.

2In this case, the definition edges from the entry node to the n1 and 1 nodes are redundant since the
data-flow edges are sufficient to force these values to be produced in the entry block.

4.2 program representation 65

4.2.2 Data Types of Values

Both programs and instructions expect their argument values to be represented
in a specific format. For example, in integer arithmetic the values are typically
represented using signed or unsigned two’s complement values of a certain width.
It is also common that the result is given using the same format as the argument
values. As this could lead to overflow, mechanisms are often in place to detect
such occurrences. However, if the selected instruction produces results of wider bit
width than specified in the function graph, the expected overflow may not occur.
Consequently, for both function and pattern graphs the data type of a value is also
specified in the corresponding value node. For integers this entails the value’s bit
width, and two values are compatible if they have the same bit width. Value nodes
representing constants also have a value range, which is a singleton for constants
appearing in the UF graph. A constant c is compatible with another constant d if
the value range of d is a subset of the value range of c. Note that this relation is not
necessarily commutative.

4.2.3 Common Subexpression Elimination

Common subexpressions may appear as part of legalizing the function before pass-
ing it to the instruction selector. For example, in LLVM there is an operation called
getelementptr which takes care of computing the address when accessing an array
element or object field. To construct the corresponding UF graph, these operations
first need to be lowered into a series of additions and multiplications. However,
if two or more getelementptrs compute the same address then these expressions
will be duplicated, thus resulting in redundant instructions. Consequently, such
common subexpressions should be eliminated after having performed legalization
but before constructing the UF graph.

4.2.4 Handling Implicit Dependencies

The representation described thus far is sufficient for handling simple operations,
such as arithmetic computations. Certain Operations, such as memory operations
and function calls, require additional graph structures as they may implicitly
depend on one another. Consequently, if these dependencies are not taken into
account for global code motion, then such operations can be moved in a way that
breaks program semantics.

We capture implicit dependencies using state nodes. In addition to its normal
value arguments, an operation that may implicitly depend on another operation
takes exactly one state node as input and produces another state node. Hence, if
an operation o1 implicitly depends on another operation o2, then o1 takes as input
the state node produced by o2. For each block in the function, a new state node is
created and remembered as the last state node. When a computation node with
potential for implicit dependencies is created, a state-flow edge is also inserted

66 4 universal representation

block:
. . .
store p, . . .
call foo, p
store p, . . .

(a) Code snippet.

st

p

foo st

block

(b) UF subgraph. Gray boxes represent state nodes,
and dashed lines represent state-flow edges.

Figure 4.4: Example illustrating how to handle implicit dependencies in UF graphs.

from the last state node to the currently last state node. Afterwards a new state
node is created and set as last, and another state-flow edge is inserted from the
computation node to the just-created state node. Once all operations in the block
has been processed, the first and last state nodes are connected to the block node
through a state-flow edge and a definition edge, respectively. Because the first and
the last state node must both be defined within the block, this effectively forbids
operations with implicit dependencies from being moved out of the block, which
could break program semantics. An example is shown in Fig. 4.4.

Note that, unlike with value nodes, the state-flow edge must not be drawn from
the entry block node. Hence the same invariant for value nodes also apply for state
nodes.

4.2.5 Edge Numbers

During graph construction, every edge is given two edge numbers which allows the
edges to be ordered w.r.t. to a given node. This is needed for pattern matching,
which will be described in Sect. 4.4. For a given edge e � n1 → n2 of type t, where
t represents either control flow, data flow, or state flow, the inbound edge number,
denoted in(e) � i, indicates that e is the ith ingoing edge of type t connected to n2.
Similarly, the outbound edge number, denoted out(e) � i, indicates that e is the ith
outgoing edge of type t connected to n1. Consequently, all edges which are of
the same type and have the same source node must be given distinct outbound
edge numbers such that they form a contiguous sequence. Similarly, the same also
applies for the inbound edge numbers of all edges with the same type and target
node.

An example is given in Fig. 4.5. Note that the definition edges in the example are
oriented and labeled with the same edge numbers as the data-flow edges connected
to the same value node. This is to be able to identify which definition edge belongs
to which data-flow edge when there exist multiple such edges, which is needed
when performing copy extension (to be described in Chap. 5). In terms of restricting
the definition placements, however, the orientation of the definition edges does not
matter and is thus skipped in cases where this information is not needed.

4.3 instruction representation 67

0

0

0

0

0

0

0

0

T
1

0

F

0 0

0

1

check

c.br

inc dec

br br

join

1

+

x1

x2

−

x3

ϕ

x4

b 0 0
0

1

0

0

1 0

0

0

0 0 0
1

0

0

1

1
0

0

0

0

0

0

0
0

Figure 4.5: Example of edge numbers. The inbound and outbound edge numbers
are attached to the edges’ heads and tails, respectively.

4.3 Instruction Representation

Modeling instructions as patterns is identical to modeling functions with two
exceptions. First, the control-flow graph becomes empty if the output is not
dependent on control flow. Hence a pattern has either none or exactly one entry
block. Second, no additional data-flow edges are added for value nodes representing
constants and instruction input. In other words, the invariant specified in R5 that
every value node has exactly one inbound data-flow edge does not need to (and
should not) hold for such values. This results in a graph called universal pattern (UP)

graph, for which two examples are given in Fig. 4.6.

For the Haskell prototype used in the experiments, the UP graphs are gener-
ated from a proprietary machine description format where the behavior of each
instruction is captured as LLVM IR code.

4.3.1 Covering ϕ-Nodes

Since covering of a UF graph also includes the nodes representing ϕ-functions –
we call these ϕ-nodes, which typically do not correspond to any instruction on the
target machine – we need a special pattern for covering such nodes. Consequently,
we assume that the pattern set always includes a ϕ-pattern, which is illustrated in
Fig. 4.7. The ϕ-pattern has a variable number of input values since a ϕ-function may
take an arbitrary number of arguments. In our experiments, it proved sufficient
to duplicate the ϕ-pattern for k � 2, . . . , 15. A match derived from a ϕ-pattern is
called a ϕ-match, which has zero cost and emits nothing if selected.

68 4 universal representation

int add(int s, int t) {
entry:
int d = s + t;
return d;

}

(a) Semantic behavior of an
add $d, $s, $t instruction.

s

+

t

d

(b) UP graph of add.

int satadd(int s, int t) {
entry:
int d1 = s + t;
if (d1 > MAX) goto clamp;

clamp:
int d2 = MAX;

end:
int d3 = ϕ(d3:entry, d2:clamp);
return d3;

}

(c) Semantic behavior of a satadd $d, $s, $t
instruction.

T
F

entry

c.br clamp

br

end

s

+

t

d1

ϕ<

MAX MAX

d3

(d) UP graph of satadd.

Figure 4.6: Example of universal pattern graphs.

ϕ

i1 ik. . .

Figure 4.7: The ϕ-pattern.

4.4 Pattern Matching

Because neither UF nor UP graphs are necessarily tree-shaped, a subgraph iso-
morphism algorithm is needed for performing pattern matching. The prototype
applies the VF2 algorithm [86] due to its simplicity and ease of implementation.3
The algorithm is described in detail in Chap. 2 on p. 40.

To adapt it for the universal representation, we need to customize the semantic
rules (see Def. 2.5 on p. 42). For two nodes n and m, n w m holds if n and m
are of the same type. That is, the nodes must either be two block nodes, two

3In his dissertation, McCreesh [272] cautions against using VF2 after showing that, for a large body
of problem instances, it exhibits considerably worse performance compared to two other subgraph
isomorphism algorithms (LAD [341] and Glasgow [273]). In case of instruction selection, however, the
problem instances are typically small enough that the time to find all matches is negligible compared to
the time to solve the constraint model.

4.5 comparison with other sea-of-nodes irs 69

computation nodes, two value nodes, etc. For value nodes, their data types must
also be compatible (as described in Sect. 4.2.2).

The same applies for two edges e and d, with the additional condition that,
for certain nodes, the order of compatible edges must also match. Consequently,
in a match where e and d are connected to nodes representing non-commutative
operations – such as subtraction and division, but also memory stores and function
calls – the inbound edge numbers of e and d must be identical. This prevents the
arguments of such instructions from being swapped, which would obviously break
program semantics. Similarly, in a match where e and d are connected to nodes with
multiple outgoing edge of the same type – such as conditional jump operations –
the outbound edge numbers of e and d must be identical, thus preventing swapping
of target labels.

4.4.1 Matching SIMD Instructions Efficiently

Although the VF2 algorithm supports matching of patterns derived from disjoint-
output instructions, doing so directly will result in many redundant matches. For
example, if a SIMD pattern consists of k identical operations and the function
contains n such operations, then this pattern alone will result in n!/(n − k)! matches.
However, since all SIMD instructions consist of disjoint patterns that are symmetric
to one another, the order in which the pattern nodes are mapped to function nodes
does not matter. Hence at most

(n
k

)
matches should be produced.

To this end, instead of matching the full SIMD pattern over the UF graph, we
do so only for one of the disjoint subgraphs in the pattern. After having found all
matches for the subgraph, we then compute all combinations of these matches and
construct for each combination a match of the full SIMD pattern. We also ignore
combinations that will lead to cyclic data dependencies by applying a variant of the
method to be described in Sect. 5.1.2 in the next chapter.

To further reduce the number of matches, we remove all SIMD matches where
at least one of its arguments is a constant value. This is because such values will
typically always require the SIMD instruction to be preceded by a copy instruction,
which would typically nullify the benefit of the SIMD instruction.

4.5 Comparison with Other Sea-of-Nodes IRs

The UF graph is similar to the Click-Paleczny graph (compare for example Fig. 4.2c
on p. 62 with Fig. 2.10 on p. 38). Both are combinations of control-flow and SSA
graphs, they represent (some) of the control operations as nodes, and they can
restrict the placement of operations to blocks through auxiliary edges. However,
the Click-Paleczny graph does not completely fulfill R3 as unconditional branches
are not represented as nodes, nor does it fulfill R5.

Bruan et al. [58] introduced another graph-based IR, called Firm, but because
it is based on the Click-Paleczny graph Firm also does not fulfill R3. Moreover, it
fulfills neither R4 nor R8.

70 4 universal representation

4.6 Summary

In this chapter, we have introduced a novel graph-based representation, called
universal representation, that models both data and control flow on a global scope.
This means that entire function can be captured as a single graph and that complex
instructions, with or without control flow, can be modeled as patterns. The universal
representation also provides enough freedom to move computations from one block
to another without breaking program semantics. These features jointly enable the
problems of global instruction selection, global code motion, and data copying to
be modeled as a constraint model, which is introduced in the next chapter.

CHAPTER

5
Constraint Model

This chapter introduces the constraint model for universal instruction selection. We
build the model by integrating one task a time. To this end, Sects. 5.1–5.5 describe
the variables and constraints for modeling global instruction selection, global code
motion, data copying, value reuse, and block ordering, respectively. We then add
the objective function, which is described in Sect. 5.6. With all crucial components
in place, we discuss the limitations of the model in Sect. 5.7. Lastly, a summary is
given in Sect. 5.8.

5.1 Modeling Global Instruction Selection

Modeling global instruction selection entails that all operations are covered and all
data are defined. This could, however, lead to situations resulting in cyclic data
dependencies, which must be prevented.

5.1.1 Covering Operations and Defining Data

In global instruction selection, a set of matches must be selected such that every
operation in a given UF graph is covered. We model exact coverage since it enables
use of many solving techniques that are essential for curbing solving time and
increasing scalability. Similarly, we model that every value and state must be
produced by exactly one selected match. If a datum d denotes either a state or
value node in the UF graph, then we say that a match m defines d if there exists an
inbound state-flow or data-flow edge to d in the UP graph from which m is derived.
Likewise, m uses d if there exists an outbound state-flow or data-flow edge to d in
the UP graph.

Variables Given a UF graph G and a set M of matches, the set of variables
sel[m] ∈ {0, 1} models whether match m ∈ M is selected. Hence m is selected if

71

72 5 constraint model

. . .
p2 ← p1 + 4
storeq1 , p2
q2 ← q1 + 4
storep1 , q2

(a) IR.

q1

+

q2

st

+

p1

p2

st

4

m1 m2

(b) UF graph, covered by two matches derived
from an auto-increment store instruction. For
brevity, the state nodes are not included.

m1 m2

(c) Dependency graph.

Figure 5.1: Example of cyclic data dependencies.

sel[m] � 1, abbreviated sel[m], and not selected if sel[m] � 0, abbreviated ¬sel[m].
The set of variables omatch[o] ∈ Mo models which selected match covers opera-

tion o ∈ O, where O denotes the set of operations in G and Mo ⊆ M denotes the
set of matches covering o. Similarly, the set of variables dmatch[d] ∈ Md models
which selected match defines datum d ∈ D, where D denotes the set of data in G
and Md ⊆ M denotes the set of matches defining d.

Constraints The constraint that every operation must be covered is modeled as

∀o ∈ O, ∀m ∈ Mo : omatch[o] � m ⇔ sel[m]. (5.1)

This constraint gives equally strong propagation as Eq. 2.2, making it redundant to
add the latter as an implied constraint to the model.

Likewise, the constraint that every datum must be defined is modeled as

∀d ∈ D, ∀m ∈ Md : dmatch[d] � m ⇔ sel[m]. (5.2)

We assume that the pattern set has been extended with a special null-def pattern, with
graph structure b → d where b is a entry block and d is a datum, that defines d at
zero cost. This pattern is needed for defining data representing function arguments
and constants since these are not produced by any operation.

5.1.2 Preventing Cyclic Data Dependencies

In certain cases, selecting matches of instructions that produce multiple results
could lead to cyclic data dependencies [108]. For example, many modern processors
provide memory instructions that load or store a value while also incrementing or
decrementing the address. An example of such a situation is given in Fig. 5.1. If
both matches are selected, then either value p2 or value q2 will be used before it
is available (depending on the instruction order), thus resulting in incorrect code.

5.2 modeling global code motion 73

entry

A

B C

D

E

(a) Control-flow graph.

block dominates

entry {entry, A, B, C, D, E}
A {A, B, C, D}
B {B}
C {C}
D {D}
E {E}

(b) Dominance.

Figure 5.2: Example of block dominance.

Such combinations, which could involve more than two matches, must therefore be
identified and prevented.

We detect such combinations by first constructing a dependency graph, where each
node represents a match and each edge n → m indicates that match m uses data
produced by match n. ϕ-matches are not taken into consideration as they do not
incur true cyclic data dependencies. A cycle in the dependency graph corresponds
a combination of matches which will lead to a cyclic data dependency if all matches
are selected. For each cycle in the dependency graph, we add a constraint to the
constraint model that forbids selection of all matches appearing in the cycle. The
cycles can be found using any cycle-finding algorithm (see for example [202]).

Constraints Given a set F ⊆ 2M of cycles found for the dependency graph built
from a UF graph and match set M, the constraint forbidding cyclic data dependencies
is modeled as

∀ f ∈ F :
∑
m∈ f

sel[m] < | f |. (5.3)

5.2 Modeling Global Code Motion

The global code motion problem entails that data are placed in blocks such that
each definition of a datum d precedes all uses of d. This condition can be expressed
in terms of block dominance. Given a function f, a block b in f dominates another
block c in f if b appears on every control-flow path from f ’s entry block to c. By
definition, a block always dominates itself (see Fig. 5.2 for an example).

Hence a placement of matches into blocks is a solution to the global code motion
problem if each datum d is defined by some selected match placed in a block b, and
every non-ϕ-match using d is placed in a block dominated by b. The ϕ-matches
must be excluded since, due to the definition edges, at least one datum used by
such matches must be defined in a block that does not dominate the block wherein
the ϕ-match must be placed.

74 5 constraint model

Variables The set of variables oplace[o] ∈ B models in which block operation o
is placed, where B denotes the set of blocks in G. Likewise, the set of variables
dplace[d] ∈ B models in which block the definition of datum d is placed.

Constraints Intuitively, all operations covered by a match m must be placed in
the same block wherein m itself is placed. Hence, if covers(m) ⊆ O denotes the set
of operations covered by match m, then this constraint is modeled as

∀m ∈ M, ∀o1, o2 ∈ covers(m) : sel[m] ⇒ oplace[o1] � oplace[o2]. (5.4)

This also enables the placement of m to be deduced from any of the corresponding
oplace variables.

We prevent control-flow operations from being moved to another block – which
in all likelihood would break program semantics – by forcing selected matches
with control flow to be placed in the block matched by the UP graph’s entry block.
Hence, if entry(m) ⊆ B returns either the empty set or a set containing only the
entry block of match m (when the UP graph has such a node), then this constraint
is modeled as

∀m ∈ M, ∀o ∈ covers(m), ∀b ∈ entry(m) : sel[m] ⇒ oplace[o] � b. (5.5)

As stated previously, each datum d must be defined in some block b ∈ B such
that b dominates every block wherein d is used, excluding uses made by the
ϕ-matches. To this end, let defines(m) ⊆ D and uses(m) ⊆ D denote the set of
data defined respectively used by match m. Let also dom(b) ⊆ B denote the set of
blocks dominated by block b. With these definitions together with the fact that
the placement of a match is deduced from its oplace variables, the constraint can
naively be modeled as

∀m ∈ Mϕ , ∀d ∈ uses(m), ∀o ∈ covers(m) : dplace[d] ∈ dom(oplace[o]), (5.6)

where Mϕ ⊆ M denotes the match set without the ϕ-matches. This implementation
has a number of flaws that will be explained and addressed in Chap. 6. We therefore
only use Eq. 5.6 for sake of describing the model, keeping in mind that a refined
version is applied in practice.

Next, we need to constrain the dplace variables to depend on where a selected
match is placed. Intuitively, every datum defined by a match m should be placed in
the same block as m together with all operations covered by m. This alone, however,
could result in an over-constrained model that prevents selection of certain matches.
For example, assume a match m of the UP graph shown in Fig. 4.6b on p. 68, where
the block nodes entry, clamp, and end are matched to blocks in G labeled A, B, and C,
respectively. Because of Eq. 5.5, m must be placed in the A block. But because of
Eq. 5.9, one of its value nodes must be placed in the B block.

Consequently, to allow such situations we relax the constraint as follows. First,
we say that a match spans the blocks matched by the UP graph’s block nodes (hence

5.3 modeling data copying 75

m spans blocks A, B, and C). We also say that a match consumes any matched blocks
where the corresponding block node has both inbound and outbound control-flow
edges in the UP graph (hence m consumes block B). Using these definitions, we
now enforce that every datum d defined by a match m must be placed in the same
block as m only if m spans no blocks. Otherwise d may be defined in any of the
blocks spanned by m (one of which is equal to oplace[m]). If spans(m) ⊆ B denotes
the set of blocks spanned by match m, then this constraint is modeled as

∀m ∈ M, ∀d ∈ defines(m), ∀o ∈ covers(m) :
sel[m] ⇒ dplace[d] ∈ {oplace[o]} ∪ spans(m). (5.7)

If a match consumes some block, then it means that the corresponding instruction
assumes full control of the control flow to and from that block. Consequently,
no operations covered by other matches can be placed in that block. Hence,
if consumes(m) ⊆ B denotes the set of blocks consumed by match m, then this
constraint is modeled as

∀m ∈ M, ∀o ∈ O \ covers(m), ∀b ∈ consumes(m) :
sel[m] ⇒ oplace[o] , b. (5.8)

Lastly, the restrictions imposed by the definition edges are modeled as

∀d → b ∈ E : dplace[d] � b, (5.9)

where E denotes the set of definition edges in G. It is assumed that the edges in E
have been reoriented such that all sources are either state or value nodes and all
targets are block nodes.

5.3 Modeling Data Copying

The cost of data copying is taken into account by keeping track of the storage
requirements for the data used and produced by the selected matches. The idea
is as follows. For each value v in the UF graph, let a variable x decide in which
location on the target machine v is stored. In this context a location is an abstract
representation, typically representing a register but it could also indicate that the
value is for example stored in memory. A match m that either uses or defines v and
requires v to be in one of a set L of locations can then enforce that x ∈ L.

Variables The set of variables loc[d] ∈ L ∪ {lint}models in which location datum d
is available, where L denotes the location set provided by the target machine and lint
denotes a special location for values that cannot be reused across instructions. The
special location is used for intermediate values, which are values produced within
an instruction and can only be accessed by this very instruction. For example, the
address computed by a memory load instruction with a sophisticated addressing
mode is produced within the pipeline and therefore cannot be reused by other
instructions. A value which is not an intermediate value is called an exterior value,
meaning it can be accessed by other instructions.

76 5 constraint model

Constraints Every datum must be made available in a location that is compatible
for all selected matches. Let stores(m, d) ⊆ L ∪ {lint} denote the set of compatible
locations (including the special location for intermediate values) for a datum d
defined or used by a match m. With this definition, the constraint is modeled as

∀m ∈ M, ∀d ∈ defines(m) ∪ uses(m) : sel[m] ⇒ loc[d] ∈ stores(m , d). (5.10)

As expected, ϕ-matches require all of its data to be stored in the same location.
This is modeled as

∀m ∈ Mϕ, ∀d1, d2 ∈ defines(m) ∪ uses(m) : sel[m] ⇒ loc[d1] � loc[d2]. (5.11)

5.3.1 Copy Extension

Depending on the target machine, Eq. 5.10 can result in an over-constrained model.
For example, in many target machines the SIMD instructions use a different set of
registers than the other, general instructions. In such situations, the matches
derived from the SIMD instructions and the matches derived from the gen-
eral instructions will have non-overlapping locations on the same data (that is,
stores(m1 , d) ∩ stores(m2 , d) � �). Hence selection of such matches is prevented.

Since non-overlapping locations entail the need for copy instructions, we extend
the UF graph with copy nodes through a process called copy extension. For each
data-flow edge v → o, where v is a value node and o is an operation, we remove
this edge and insert a new copy node c, a new value node v′, and new data-flow
edges such that v → c → v′→ o. If o is a ϕ-node then the corresponding definition
edge connected to v – this is the edge with the same outbound edge number as the
data-flow edge – is also moved to v′. This is to ensure that the placement restrictions
are applied only on the data actually used by the ϕ-functions (that is, the copied
value and not the original value).

We also extend the pattern set with a special null-copy pattern, with graph
structure v → c → v′, that covers c at zero cost provided that loc[v] � loc[v′].
Matches covering exactly one copy node are called copy matches, and matches
derived from the null-copy pattern are also called null-copy matches. Obviously,
null-copy patterns emit nothing if selected. If the null-copy match cannot be selected
for covering a particular copy node, then this means an appropriate copy instruction
must be emitted whose cost will be accounted for.

In order to retain pattern matching, we also need to perform copy extension on
every UP graph in the pattern set. See for example Fig. 5.3. The UP graph captures
the behavior of an instruction that adds two values r and s and then shifts the result
by one bit to the right (Fig. 5.3a). Since we want to preserve the ability of selecting
copy instructions for moving data between instructions, we only copy-extend the
values in a UP graph which are both defined and used by the pattern. We also
copy-extend any constant values since these obviously do not require a separate
copy instruction to be used by the pattern. The resulting UP graph will now yield
the same matches as before copy extension (Fig. 5.3b).

5.4 modeling value reuse 77

+

r s

x

�

1

t

(a) Original UP graph.

+

r s

x

cp

�

t

cp

1

(b) After copy extension.

Figure 5.3: Example of copy-extending a pattern.

5.3.2 Handling Calling Conventions

The data copying method can also be used for handling calling conventions of the
specific target machine.1 Constraints that callee arguments must reside in a specific
location are modeled as

∀d ∈ A : loc[d] ∈ argLoc(d). (5.12)

where A ⊆ D denotes the set of function arguments in G and argLoc(d) ⊆ L denotes
the set of locations in which argument d resides. Constraints that certain arguments
must reside on the stack can be captured by introducing another special location
representing memory. Hence, if an instruction requires the argument to reside in a
register, then the copy node must be covered by a copy match that emits a memory
load instruction.

Locations for caller arguments can be enforced either through Eq. 5.12 or through
Eq. 5.10. If the calling convention depends on the instruction selected – which is an
unlikely scenario – then the former is needed. Otherwise the latter is more suitable
as the restrictions can be enforced before a match is selected.2

5.4 Modeling Value Reuse

Code quality can be increased if instructions are allowed to reuse copies of values,
which is a crucial feature to be expected in the code generated by any modern

1A calling convention is an implementation scheme that defines how arguments and return values are
passed and received when making a function call. The function from which the call is made is typically
called the caller, and the function to which the call is made is called the callee. A calling convention is
specific for the target machine and may therefore differ from one target to another.

2If exactly one match m can cover a given function call node, then both constraints provide the same
amount of propagation as sel[m] � 1 will always hold for the implication in Eq. 5.10.

78 5 constraint model

v

m1 m2

(a) A UF graph with two matches.

v

cp cp

v1 v2

m1 m2

(b) UF graph after copy extension.

v

cp cp

v1 v2

m1 m2

(c) Redundant copying of values.

v

cp cp

v1 v2

m1
m2

(d) Reuse of copied value.

Figure 5.4: Example of value reuse.

instruction selector. See for example Fig. 5.4. Originally, the UF graph has a value v
which is used by two operations coverable by matches m1 and m2 (Fig. 5.4a). After
copy extension, m1 and m2 use their own private copy of v – v1 and v2, respectively
(Fig. 5.4b). Assume that both m1 and m2 require its copy of v to reside in a location
different from v – for example, v may reside on the stack – which means that
selection of m1 or m2 also entails emission of a copy instruction. With the model
introduced thus far, two copy instructions will be emitted if both m1 and m2 are
selected (Fig. 5.4c). However, if v1 and v2 could reside in the same location then
either of the values could be reused by either match, thus requiring only one copy
instruction (Fig. 5.4d). We call this notion value reuse.

In this dissertation we consider two methods for reusing values: match
duplication and alternative values. We first introduce each in turn and then present
experiments showing that one is superior to the other.

5.4.1 Match Duplication

The idea behind match duplication is to duplicate appropriate matches in the match
set where value reuse is possible. We first say that two values v1 and v2 are
copy-related if and only if they are copies of the same value and v1 and v2 have the
same data type. The second clause is necessary as copies of constants may be of
different data types and are therefore not interchangeable. Then, for each match m
we create a new match for each permutation of data that are copy-related with the

5.4 modeling value reuse 79

v

cp cp

v1 v2

m

(a) Original match set.

v

cp cp

v1 v2

m
m′

(b) After match duplication.

Figure 5.5: Example of match duplication.

input data in m, where an input datum is a datum used but not defined by m. See
for example Fig. 5.5. The match set contains a match m that uses value v1, which
is copy-related with value v2 (Fig. 5.5a). Because v1 is an input datum in m, we
duplicate m to instead use v2, resulting in match m′ (Fig. 5.5b).

The main advantage of match duplication is that no changes need to be done
for the constraint model; the decision of which value to use (and reuse) depends
entirely on the selection of matches. However, this comes at a cost of inflating the
match set, which in turn inflates the search space. If a match has k input data, each
with n copy-related values, then O(nk) new matches will be created. Although
the decision of value reuse is intuitively orthogonal to the decisions of selecting
a match and placing it into a block, these decisions must be remade for each new
match. Consequently, the search space is enlarged with many symmetric solutions.

5.4.2 Alternative Values

Instead of expanding the match set (like in match duplication), we can postpone
the decision of which input datum to use for a particular match and integrate it as
part of the constraint model. The idea is as follows. For each match m, let every
input data d in m be mapped to any datum that is copy-related to d. In other words,
unlike before when a match was 1-to-1 mapping between nodes in the UP graph
and nodes in the UF graph, we now allow certain mappings to be a 1-to-n mapping.
See for example Fig. 5.6. Again, the match set contains a match m that uses value v1,
which is copy-related with value v2 (Fig. 5.6a). Because v1 is an input datum in m,
we extend the mapping from n to v1 to include v2, where n is the corresponding
value node in the UP graph of m (Fig. 5.6b). In this context, v1 and v2 are said to be
alternative values to m. For convenience, we assume that the set of alternative values
for each non-input datum d in a match contains only the state or value node to
which d is already mapped.

Special care must be taken to matches derived from the ϕ-pattern. Assume, for
example, that the match m using value v1 in Fig. 5.6a is a ϕ-match. This means that
v1 will participate in a definition edge, forcing v1 to be defined in some block. If m is
extended as in Fig. 5.6b, then m is allowed to make use of value v2, which does not

80 5 constraint model

v

cp cp

v1 v2

m

(a) Original match set.

v

cp cp

v1 v2

m

(b) With alternative values.

Figure 5.6: Example of alternative values.

ϕ

i1 ik

b1 bk

. . .

. . .

Figure 5.7: Extended ϕ-pattern.

participate in the definition edge and hence could break program semantics. There
are two approaches to fixing this problem: (i) either all ϕ-matches are excluded
from being extended with alternative values; or (ii) the ϕ-pattern is extended with
block nodes and definition edges to allow the value placement restrictions to be
captured as part of the match. The former is simpler but interferes with an implied
constraint to be introduced in Chap. 6 (Eq. 6.33), which may remove potentially
optimal solutions. Consequently we apply the latter, as shown in Fig. 5.7. The
extended ϕ-pattern assumes that no value is used more than once by the same
ϕ-node, and that no pair of values used by the same ϕ-node have definition edges
to the same block. These invariants can be achieved by transforming the function
as needed before pattern matching.

After having extended the match set with alternative values, the next step is
to extend the constraint model with an another level of indirection wherever a
constraint refers to a datum.

Variables Assume first that each definition or usage of data within each match
introduces a unique operand. Instead of defining and using data, we now assume
that all matches define and use operands. The set of variables alt[p] ∈ Dp models to
which datum operand p ∈ P is mapped, where Dp ⊆ D denotes the set of alternative
values for p and P denotes the set of operands introduced by M.

5.4 modeling value reuse 81

Constraints As stated previously, the aim is to add another level of indirection
whenever a constraint refers to a datum. To this end, let defines(m) ⊆ P and
uses(m) ⊆ P now denote the set of operands (instead of data) defined respectively
used by match m. With these definitions, Eqs. 5.6, 5.7, 5.10, and 5.11 are adjusted
accordingly (the changes are highlighted in gray):

∀m ∈ Mϕ , ∀p ∈ uses(m), ∀o ∈ covers(m) : dplace[alt[p]] ∈ dom(oplace[o]), (5.13)

∀m ∈ M, ∀p ∈ defines(m), ∀o ∈ covers(m) :
sel[m] ⇒ dplace[alt[p]] ∈ {oplace[o]} ∪ spans(m), (5.14)

∀m ∈ M, ∀p ∈ defines(m) ∪ uses(m) : sel[m] ⇒ loc[alt[p]] ∈ stores(m , p), (5.15)

∀m ∈ Mϕ , ∀p1, p2 ∈ defines(m) ∪ uses(m) :
sel[m] ⇒ loc[alt[p1]] � loc[alt[p2]]. (5.16)

Due to these changes, there may be data that is not used by any match. However,
Eq. 5.2 still requires that every datum must be defined by some match. We address
this by extending the pattern set with a kill pattern with graph structure v → c → v′,
where v and v′ are value nodes and c is a copy node. Matches derived from this
pattern are called kill matches, which have zero cost and emit nothing if selected. A
datum is said to be killed if and only if it is defined by a kill match, and non-kill
matches are only allowed to make use of non-killed data.

To model whether a datum is killed, we extend the location set with a special
location lkilled and require that a kill match m is selected if and only if the location
of the datum defined by m is lkilled. This is modeled as

∀m ∈ M× , ∀p ∈ defines(m) : sel[m] ⇔ loc[alt[p]] � lkilled , (5.17)

where M× ⊆ M denotes the set of kill matches.
Lastly, we need to enforce the value placements appearing in the ϕ-matches.

Let EM denote this set of value placements, encoded as a tuple 〈m, b, p〉 for each
definition edge between a block b and an operand p appearing in match m. These
constraints are then modeled as

∀〈m , b , p〉 ∈ EM : sel[m] ⇒ dplace[alt[p]] � b. (5.18)

5.4.3 Experimental Evaluation

We first evaluate the two different methods for value reuse. Based on the results,
we then evaluate the impact of value reuse using the superior method.

When filtering, we remove all functions that have fewer than ten LLVM IR
instructions and more than 50 instructions. Anything smaller will most likely not be
benefited by value reuse, and anything larger will lead to unreasonably long solving
times. This leaves a pool of 453 functions, from which we then draw 20 samples.

82 5 constraint model

0]
5]

10]
15]
20]
25]
30]
35]
40]
45]
50]

bi_reverse

device_color_en.

dict_put_string

ecSub
FORD1

free_tree_nodes

gl_flip_bytes

gluNextContour

gx_color_frac_m.

hash_initial

jinit_huff_deco.

jinit_phuff_dec.

jpeg_alloc_quan.

jpeg_has_multip.

mp_quo_digit

name_ref_sub_ta.

putACfirst

putpicthdr

putseqdispext

reg2rsaref

0.625 0.229 1.64 2.43 2.10 1.26 2.80 1.80 1.46

13.9

4.08 5.52

1.01 1.76 1.50 0.25 1.50 1.06 0.171

46.9

Figure 5.8: Normalized solving times (incl. presolving time) for two constraint
models supporting value reuse: one based on match duplication (baseline), and one
based on alternative values (subject). GMI: 3.35×, CI [2.24, 4.70]×.

Match Duplication vs. Alternative Values We evaluate the different methods of
value reuse by comparing the solving time exhibited by two models: (i) one based on
match duplication; and (ii) one based on alternative values. Since match duplication
yields an exponential increase in number of matches compared to alternative values,
we expect model ii to perform better than model i.

Figure 5.8 shows the normalized solving times (including presolving time) for
the two constraint models described above, with model i as baseline and model ii as
subject. All functions are solved to optimality. The solving times range from 0.010 s
to 1.95 s with a CV of 0.11. The GMI is 3.35×with CI [2.24, 4.70]×.

We see clearly that model ii results in considerably shorter solving times than
model i. For one function (reg2rsaref), the solving time is improved by 46.9]. This
is due to a high rate of copy-related values for which alternative values results in only
94 matches whereas match duplication results in 537 matches. Hence alternative
values is a better design choice over match duplication when implementing value
reuse.

Impact of Value Reuse We evaluate the impact of value reuse by comparing the
cost (that is, the total number of cycles as described in Sect. 5.6) of the optimal
solutions produced by two models: (i) one without value reuse support; and (ii) one
with this support (based on alternative values). Since value reuse reduces the
number of selected copy instructions, we expect model ii to produce solutions with
less cost compared with model i.

Figure 5.9 shows the normalized solution costs for the two constraint models
describe above, with model i as baseline and model ii as subject. All functions are
solved to optimality. The costs range from 56 cycles to 4476 cycles. The GMI is
1.04×with CI [1.019, 1.07]×.

We see clearly that model ii produces solutions with significantly less cost than
those produced by model i. For one function (putseqdispext), the cycle count is
reduced from 256 cycles to 208 cycles (an improvement of 0.231]). This is because
two constants are frequently used as arguments to function call instructions and

5.5 modeling block ordering 83

0]

0.05]

0.1]

0.15]

0.2]

0.25]

bi_reverse

device_color_en.

dict_put_string

ecSub
FORD1

free_tree_nodes

gl_flip_bytes

gluNextContour

gx_color_frac_m.

hash_initial

jinit_huff_deco.

jinit_phuff_dec.

jpeg_alloc_quan.

jpeg_has_multip.

mp_quo_digit

name_ref_sub_ta.

putACfirst

putpicthdr

putseqdispext

reg2rsaref

0 0

0.103 0.111

0.002

0.038

0 0 0 0 0
0.02

0.143

0

0.091

0 0

0.097

0.231

0.077

Figure 5.9: Normalized optimal solution costs for two constraint models: one
without value reuse support (baseline), and one with such support (subject).
GMI: 1.04×, CI: [1.019, 1.07]×.

thus cannot be loaded as immediates. Hence value reuse is essential for reducing
the number of copy instructions and, subsequently, lowering cost.

Conclusions From the results for these experiments, we conclude: (i) that alterna-
tive values are superior to match duplication; and (ii) that value reuse significantly
improves code quality.

5.5 Modeling Block Ordering

Ordering the blocks in a function entails finding a sequence s such that each block
appears exactly once in s. Depending on the control-flow instructions selected,
some blocks may need to be adjacent. For example, assume a block b that branches
to either of two blocks c and d depending on whether a condition holds. Assume
also that the conditional branching in b is implemented using an instruction that
branches to c if the condition holds, otherwise it continues the execution with
the next instruction in the assembly code. This method of branching is called
fall-through, and due to this d must be placed immediately after b in s.

For some combinations of functions and target machines with fall-through
instructions, there exists no valid block sequence without inserting one or more
additional jump instructions. See for example Fig. 5.10. Blocks A and B both
contain control-flow instructions that branch to the beginning of B if the condition
holds, otherwise they branch to block C (Fig. 5.10a). Because of the fall-through
constraint, A and B cannot both have C as its successor block. Hence an additional
jump instruction that directly branches to Cmust be inserted after the control-flow
instruction in either A or B (Fig. 5.10b).

In this dissertation we consider two methods for inserting jump instructions
when required: branch extension and dual-target branch patterns. We first intro-
duce the variables and constraints for modeling block ordering before introducing
each method in turn, and then present experiments showing that one is superior to
the other.

84 5 constraint model

T

F

F

T

br x, B

br y, B

A

B

C

(a) Control-flow graph.

br x, B
br C

br y, B

A

B

C

br y, B
br C

br x, B

B

A

C

(b) Valid block sequences, after jump insertion.

Figure 5.10: Example that requires additional jump instructions. It is assumed that
the conditional br instruction falls through to the next instruction if the condition is
false.

Variables The set of variables succ[b] ∈ B models the successor of block b. For
example, if succ[b] � b′, then block b′ appears immediately after block b in the
block ordering sequence.

Constraints A solution to the block ordering problem is a sequence of block
successors such that they form a Hamiltonian cycle. Using the circuit constraint
defined in Chap. 3 on p. 47, this constraint is modeled as

circuit(succ[b1], . . . , succ[bn]), (5.19)

where b1 , . . . , bn � B.
If a match m with an entry block is derived from an instruction that per-

forms a fall-through to block b, then the constraint can naively be modeled as
sel[m] ⇒ succ[entry(m)] � b. However, this constraint is too limiting as it disallows
empty blocks to be placed between entry(m) and b, thus forcing redundant jump
instructions to be emitted. A block b is considered empty if either no matches are
placed in b or every match in b is a null match, which is a match that emits nothing
if selected. As empty blocks are not uncommon to appear in the function under
compilation – especially when having performed global code motion – this may
have a significant impact on code quality.

Hence we extend the naive implementation above into a disjunction, where
the second clause models fall-throughs via single empty blocks. Let J denote a
set of pairs (m, b), where m is a match and b is a block through which m will fall
if selected, and let M⊥ denote the set of null matches. With these definitions, the
fall-through constraint is modeled as

∀(m , b) ∈ J : sel[m] ⇒ succ[entry(m)] � b ∨(
succ[succ[entry(m)]] � b ∧ isEmpty(succ[entry(m)])

)
,

(5.20)

where
isEmpty(b) ≡

∧
o ∈O

(oplace[o] , b ∨ omatch[o] ∈ M⊥). (5.21)

5.5 modeling block ordering 85

T F

entry

c.br

true false

(a) Original UF subgraph.

T F

entry

c.br

br br

true false

(b) After branch extension.

Figure 5.11: Example of branch extension.

If a block b unconditionally branches to another block b′ and b′ appears
immediately after b in the block sequence, then a jump instruction is redundant. To
prevent emission of such jump instructions, we extend the pattern set with a special
null-jump pattern, with graph structure b → c → b′, that covers a control node c at
zero cost provided that succ[b] � b′.

Fall-throughs to or via the function’s entry block is never allowed since that
block must always be placed first in the block sequence. If bf denotes the function’s
entry block, then this constraint is modeled as

∀(m , ·) ∈ J : sel[m] ⇒ succ[entry(m)] , bf. (5.22)

5.5.1 Branch Extension

One method of inserting jump instructions is to extend the UF graph with additional
block and control nodes. The idea, called branch extension, is as follows. For each
control-flow edge (c , b), where c is a control node representing a conditional branch
and b is a block node, we remove this edge and insert a new block node b′, a
newcontrol node c′, and new control-flow edges such that c → b′→ c′→ b. An
example is shown in Fig. 5.11. If the new control node is indeed redundant, then
it can be covered by a match derived from the null-jump pattern. This in turn
causes the new blocks to become empty and appear immediately before the target
block. Like with copy extension, to retain pattern matching we also perform branch
extension on each UF graph in the pattern set.

The disadvantage of branch extension is that it inflates the search space. The
number of block and control nodes both increase by O(nk), where n is the number
of blocks before branch extension and k is the highest number of outbound control-
flow edges from a control node in the UF graph. This leads to more operations to be
covered and more blocks wherein an operation may be placed. In addition, as the
majority of the new blocks will be empty, situations often arise where a control-flow

86 5 constraint model

T F

entry

c.br

true false

emit cost

br b, true 2

(a) A pattern that falls through to the false block.

T F

entry

c.br

true false

emit cost

br b, true 2 + cost(pjmp)
emits(pjmp)

(b) New pattern, without fall-through.

Figure 5.12: Example of creating a DTB pattern.

instruction could successfully fall through more than one block. Because of Eq. 5.20,
however, it can only fall through at most one empty block, causing emission of
redundant jump instructions that would not have been emitted had branch extension
not been performed.

5.5.2 Dual-target Branch Patterns

Another method is to extend the pattern set with so-called dual-target branch (DTB)

patterns. Given a pattern set S, first find a pattern pjmp ∈ S corresponding to an
unconditional jump instruction that directly branches to a given label (it is reasonable
to assume such a pattern always exist for any given target machine). Let cost(p)
and emits(p) denote the cost of pattern p respectively the sequence of instructions
emitted by p if selected. Then, for each pattern p ∈ S corresponding to a conditional
jump instruction that falls through to a given block b, we add a new pattern to S.
This new pattern is a copy of p but has no fall-through constraint, it emits emits(p)
followed by emits(pjmp), and it has cost cost(p) + cost(pjmp). An example is shown
in Fig. 5.12. Because a DTB pattern has no fall-through constraint, it essentially
models a conditional jump instruction capable of directly branching to two blocks
(hence the name).

Consequently, if a pattern set contains k patterns with fall-through constraints
and a UF graph contains n control nodes representing conditional jumps, then
using DTB patterns will enlarge the match set by O(nk)matches. Unlike branch
extension, however, the UF graph does not need to be extended with additional
blocks wherein operations may be placed, which results in a significantly smaller
search space.

5.5 modeling block ordering 87

0]
2]
4]
6]
8]

10]
12]
14]
16]
18]
20]

g72x_init_state

gl_Normal3fv

jinit_huff_enco.

predictor_pole

gs_reversepath

jpeg_has_multip.

rsaref2reg

gluNextContour

inflateEnd

internal_transp.

is_tempfile

mp_dmul

gl_swap2

trueRandEvent

finish_pass_mas.

test_nurbs_curv.

gluEndPolygon

nextkeypacket

−0.001 −0.049 −0.01 −0.006 0.098 0.045 0.051
0.934 1.38

0.579

2.39 1.73 2.22
0.5

4.31 4.93

19.7

5.12

Figure 5.13: Normalized solving times (incl. presolving time) for two constraint
models supporting jump insertion: one based on branch extension (baseline),
and one based on DTB patterns (subject). GMI: 2.43×, CI [1.57, 3.23]×.

5.5.3 Experimental Evaluation

We evaluate the different methods for inserting jump instructions by comparing
the solving times exhibited and the cost of the optimal solutions produced by two
versions of the constraint model: (i) one based on branch extension; and (ii) one
based on DTB patterns. Since branch extension yields a larger number of blocks
compared to DTB patterns, we expect model ii to outperform model i. Moreover,
many of the blocks introduced by branch extension will most likely be empty and
thereby cause emission of redundant jump instructions. Consequently, we also
expect model ii to yield better code quality than model i.

When filtering, we remove all functions that have fewer than 20 LLVM IR
instructions and more than 100 instructions. Anything smaller will most likely
not require any additional jump instructions, and anything larger will lead to
unreasonably long experiment runtimes. This leaves a pool of 413 functions, from
which we then draw 20 samples.

When clustering, we replace the number of memory instructions as feature with
the number of blocks. This is to evaluate how the methods behave as the number of
blocks grow larger.

Impact on Solving Time Figure 5.13 shows the normalized solving times (includ-
ing presolving time) for the two constraint models described above, with model i
as baseline and model ii as subject. All functions are solved to optimality and
arranged in increasing order of number of conditional jump instructions. The
solving times range from 0.020 s to 50.9 s with a CV of 0.14. The GMI is 2.43× with
CI [1.57, 3.23]×.

We see clearly that model ii results in considerably shorter solving times than
model i. For one function (gluEndPolygon), the solving time is improved by 19.7].
We also observe that, as expected, when the number of conditional jump instructions
increases – up to 13, in the case of nextkeypacket – the search space for model i
grows faster than for model ii. Hence, in terms of solving time DTB patterns is a

88 5 constraint model

0]

0.1]

0.2]

0.3]

0.4]

0.5]

g72x_init_state

gl_Normal3fv

jinit_huff_enco.

predictor_pole

gs_reversepath

jpeg_has_multip.

rsaref2reg

gluNextContour

inflateEnd

internal_transp.

is_tempfile

mp_dmul

gl_swap2

trueRandEvent

finish_pass_mas.

test_nurbs_curv.

gluEndPolygon

nextkeypacket

0 0 0 0 0 0 0 0.015
0.044

0
0.043

0 0.002 0
0.021

0 0.01
0.032

Figure 5.14: Normalized optimal solution costs for two constraint models supporting
jump insertion: one based on branch extension (baseline), and one based on DTB
patterns (subject). GMI: 1.01×, CI [1.003, 1.02]×.

better design choice over branch extension when implementing insertion of jump
instructions.

Impact on Code Quality Figure 5.14 shows the normalized solution costs for the
two constraint models described above, with model i as baseline and model ii as
subject. All functions are solved to optimality and arranged in increasing order
of number of conditional jump instructions. The costs range from 56 cycles to
17 991 cycles. The GMI is 1.01×with CI [1.003, 1.02]×.

We see clearly that model ii produces optimal solutions with slightly lower cost
compared those produced by model i (up to 0.0437] improvement). Hence, in
terms of code quality DTB patterns is a better design choice over branch extension
when implementing insertion of jump instructions.

Conclusions From the results for these experiments, we conclude that DTB pat-
terns are superior to branch extension, both in terms of solving time and code
quality.

5.6 Objective Function

During instruction selection, most compilers optimize for performance by using
execution latencies of the instructions as match costs. In addition, they factor in
the execution frequency of the block in which the selected matches are placed.
The intuition is that the instructions selected for “hot” blocks – for example, those
belonging to a loop with many iterations – will have greater impact than those
selected for scarcely executed blocks. In this chapter we introduce a straightforward
but naive implementation of the objective function, which is refined in the next
chapter.

Variables The cost variable cost ∈ Nmodels the total cost of the selected matches.
It is assumed the total cost can never be negative.

5.7 limitations 89

a ← x + y
store a, . . .
. . .
store a, . . .

(a) Code snippet.

+

x y

a

st st

(b) UF subgraph, covered by two matches derived from
a store instruction with base-plus-index addressing
mode. For brevity, the state nodes are not included.

Figure 5.15: Example illustrating when recomputation is preferred over value reuse.

Constraints A straightforward implementation of the objective function described
above can be modeled as

cost �
∑

m∈M

sel[m] × cost(m) × freq(blockOf (m)), (5.23)

where cost(m) ∈ N denotes the cost of match m, freq(b) ∈ N denotes the execution
frequency of block b,3 and

blockOf (m) ≡
{

oplace[min(covers(m))] if covers(m) , �,
dplace[alt[min(defines(m))]] otherwise. (5.24)

5.7 Limitations

The constraint model described in this chapter has several limitations that affect
code quality. The first limitation concerns recomputation of values, the second
concerns if-conversion, and the third concerns implicit sign and zero extensions
and truncations. Consequently, a solution that is considered optimal with respect
to this model may still be inferior to the code produced by an instruction selector
without these limitations.

Recomputation For some combinations of functions and target machines, it may
be beneficial to recompute values appearing in common subexpressions instead
of reusing them. See for example Fig. 5.15. The function performs two memory
stores using the same address value a (Fig. 5.15a). If the target machine provides a
memory instruction with base-plus-index addressing mode (that is, the address
to be used is the sum of the values appearing in a base and an index register),
then no add instruction is needed for computing a. In the context of instruction

3In order to curb the size of the domain of the cost variable, the execution frequencies must often be
scaled down. In our experiments, limiting the execution frequencies to 1000 proved sufficient.

90 5 constraint model

entry:
. . .
if p goto body
else goto end;

body:
a ← x + y
b ← v + w

end:
. . .

(a) Code snippet.

entry:
. . .
if (p) add a, x, y
if (p) add b, v, w
. . .

(b) Assembly code with
predicated instructions.

T F

entry

c.br

body

br

end

p

a

+

x y

ϕ

b

+

v w

ϕ

m1 m2

(c) UF subgraph, covered by two matches derived
predicated add instructions.

Figure 5.16: Example of if-conversions.

selection, this means letting the operation representing the addition to be covered
by more than one match (Fig. 5.15b). However, Eqs. 5.1 and 5.2 require that every
operation and datum is covered respectively defined by exactly one selected match,
thus preventing such solutions. Although these constraints can be relaxed to allow
operations and data to be covered respectively defined by at least one selected
match, many of the solving techniques introduced in this dissertation rely on exact
coverage.

If-Conversions In most target machines, performing a branch incurs a performance
penalty. Some architectures therefore allow the instructions to be predicated with
a Boolean flag for optional execution, which allows functions with if-then-else
structures to be transformed into linear code. This process is called if-conversion.

Although the universal representation enables predicated versions of the instruc-
tions to be captured as patterns, selection of such patterns is typically prevented by
the constraint model. See for example Fig. 5.16. Assume that a function contains
two sums, a and b, which are conditionally computed given a certain predicate p
(Fig. 5.16a). Because this constitutes an if-then-else structure, this code snippet
is eligible for if-conversion (Fig. 5.16b). Representing the predicated versions of
add instructions as patterns gives rise to two matches, m1 and m2, which can
collectively cover the computation and control nodes in the corresponding UF graph
(Fig. 5.16c). However, since m1 and m2 both cover the same control nodes, only
one of the matches can be selected (due to Eqs. 5.1 and 5.2). But because both
matches consume the body block, no other operations may be placed in body if either
is selected (due to Eq. 5.8). This means that either both or none of the matches must

5.7 limitations 91

�

a b

c

foo ld

m1 m2

m3

Figure 5.17: Example of implicit sign or zero extensions.

be selected. Together with the constraint of exact coverage, in all solutions neither
of m1 or m2 is selected. This problem can be fixed by relaxing the constraint of exact
coverage, but – as in the case of recomputation – this inhibits many of the solving
techniques introduced in this dissertation.

Implicit Sign or Zero Extensions Depending on the hardware, the constraint
model may produce code with redundant instructions in cases where the function
contains sign or zero extensions. See for example Fig. 5.17, which depicts a
UF subgraph coverable by matches m1, m2, and m3. Assume that foo represents a
function call and that a, b, and c represent 8-bit values stored in 32-bit registers. As
is common, m3 is derived from an instruction that checks whether the full contents
of two registers are equal. Consequently, as a precaution the upper bytes of the
registers need to be zero-extended (that is, those bits are all set to 0) before doing
the comparison. Since nothing can be assumed about the value returned by foo,
this is certainly necessary for the register of a. However, it may be redundant for the
register of b. For example, m2 may be derived from a single-byte load instruction
that clears the entire register before loading the value. But since this information
is lost in the constraint model, m3 must assume that both registers need to be
zero-extended.

One solution to this problem is to extend the pattern set with additional patterns
that capture these situations. For example, merging the patterns of m2 and m3
results in a match which, if selected, emits the instruction of m2 followed by the
instructions of m3 without the redundant zero extension of b. Depending on the
instruction set, however, this may result in an exponential number of patterns. If the
instruction set contains n instructions with implicit extensions and m instructions
that each takes k values which must first be sign- or zero-extended, then this will
result in O(nk m) additional patterns.

Another solution is to apply the same mechanism used in copy extension. In
the same manner as with copy nodes, the UF graph is first extended with extension

nodes. Hence, for each data-flow edge v → o, where v is a value node and o is an
operation, we remove this edge and insert a new extension node e, a newvalue
node v′, and new data-flow edges such that v → e → v′→ o. Then the constraint

92 5 constraint model

model is extended with two sets of variables, sext[d] ∈ {0, 1} and zext[d] ∈ {0, 1},
denoting whether a value has been sign- respectively zero-extended. We also extend
the pattern set with a special null-extend pattern, with graph structure v → e → v′,
that covers e at zero cost provided that (sext[v] ∨ ¬sext[v′]) ∧ (zext[v] ∨ ¬zext[v′])
holds. Obviously, a match derived from the null-extend pattern emits nothing if
selected. If the null-extend pattern cannot be selected for covering a particular
extension node, then this means an appropriate extension instruction must be
emitted.

5.8 Summary

In this chapter, we have introduced a constraint model that integrates the problems
of global instruction selection, global code motion, data copying, value reuse,
and block ordering. When multiple design choice exist for a given task, we have
performed a thorough evaluation to decide which design choice is better. We have
also discussed the limitations of this model and how these affect the assembly code
that can be produced. A full implementation of the model, written in MiniZinc, is
available in Ap. G.

CHAPTER

6
Solving Techniques

This chapter introduces the techniques applied for improving solving of the con-
straint model introduced in the previous chapter. We begin in Sects. 6.1 and 6.2
with refining the constraint model to strengthen propagation. We continue to
augment the model in Sects. 6.3 and 6.4 by adding implied, symmetry breaking,
and dominance breaking constraints. We then describe techniques for tightening
the cost bounds in Sect. 6.5 and describe branching strategies in Sect. 6.6. In Sect. 6.7,
we describe presolving techniques for removing matches that, for one reason or
another, can be removed before instantiating the model. With all solving techniques
in place, we then evaluate the impact of these techniques, both individually and as
groups, in Sect. 6.8. Lastly, a summary is given in Sect. 6.9.

6.1 Refining the Define-Before-Use Constraint

In Chap. 5 on p. 81, a simple but naive implementation is used for implementing
the constraint that all data must be defined before used (Eq. 5.13). To begin with, it
requires the use of set variables,1 which are expensive to use and not necessarily
supported by all constraint solvers. This is for example the case of the constraint
solver used in the experiments, thus preventing us from evaluating the impact of
the naive implementation. In addition, if we know in which blocks a datum is used,
then many implied constraints can be applied to strengthen propagation.

We first eliminate the set variables by capturing the information in the dom func-
tion as a dominance relation matrix[

〈b1 , b2〉 b1 , b2 ∈ B, b1 ∈ dom(b2)
]

(6.1)

where each row denotes the fact that a block b1 is dominated by another block b2.
Next, we introduce the variables needed for capturing uses of data.

1This is because the dplace variables need to be members of the dom function, which is implemented
as an array into which the oplace variables are used as indices.

93

94 6 solving techniques

o2

d

o1

m1

m2

dom
inates

b1

b2

m1

{
oplace[o1] � b1
dplace[d] � b1

m2

alt[p] � d
uplace[p] � b2
oplace[o2] � b2

Figure 6.1: Example illustrating the refined define-before-use constraint. The
assignments on the right-hand side show how these variables should be set if the
two matches m1 and m2 are placed in blocks b1 respectively b2, where b1 is assumed
to dominate b2.

Variables The set of variables uplace[p] ∈ B models in which block the datum
connected to operand p is used. Note that unlike the dplace variables, which are
indexed using a datum, the uplace variables are indexed using an operand.

Constraints Obviously, every use of data must be dominated by its definition.
This constraint is modeled as

∀p ∈ Pϕ : table(〈uplace[p], dplace[alt[p]]〉,R), (6.2)

where Pϕ ⊆ P denotes the set of operands not appearing in any ϕ-match and R is
the dominance relation matrix computed using Eq. 6.1. We exclude such operands
for the same reasons ϕ-matches are excluded in Eq. 5.6.

Next, if a match m is selected and placed in block b, then all uses of data made
by m must also occur in b. This is modeled as

∀m ∈ Mϕ , ∀o ∈ covers(m), ∀p ∈ uses(m) : sel[m] ⇒ oplace[o] � uplace[p]. (6.3)

An example illustrating the interaction between Eq. 6.2 and Eq. 6.3 is shown in
Fig. 6.1.

Due to Eq. 6.3, the assignment to the uplace variables for non-selected matches
does not matter as long as Eq. 6.2 is satisfied. This gives rise to symmetric solutions.
To break these symmetries, we fix the assignments in such cases to the block wherein
the datum is defined as a block always dominates itself. This is modeled as

∀m ∈ Mϕ , ∀p ∈ uses(m) : ¬sel[m] ⇒ uplace[p] � dplace[alt[p]], (6.4)

where Mϕ ⊆ M denotes the set of matches without the ϕ-matches.
Since neither of the above constraints apply to operands belonging to ϕ-matches,

the assignment to their uplace variables does not matter, again giving rise to

6.2 refining the objective function 95

o2

o1

m1

m2

m3

(a) UF graph.

o1
op

m1
match

b1
block

4 × 10
opcost

� 40
o1 m1 b2 4 × 1 � 4
o1 m3 b1 3 × 10 � 30
o1 m3 b2 3 × 1 � 3
o2 m2 b1 1 × 10 � 10
o2 m2 b2 1 × 1 � 1
o2 m3 b1 2 × 10 � 20
o2 m3 b2 2 × 1 � 2

(b) Cost matrix.

Figure 6.2: Example of match costs distributed over operations. It is assumed
that matches m1, m2, and m3 have costs 4, 1, and 5, respectively, and that they can
be placed in one of two blocks, b1 and b2, with execution frequencies 10 and 1,
respectively. The cost of m3 distributed over o1 and o2 is 3 and 2, respectively.

symmetric solutions. We therefore fix the assignment in such cases, which is
modeled as

∀p ∈ Pϕ : uplace[p] � min(B). (6.5)

6.2 Refining the Objective Function

The straightforward implementation of the objective function (Eq. 5.23) is naive
because it fails to reason on how cost is distributed across the operations that need
to be covered. This in turn results in poor propagation. See for example Fig. 6.2.
Assume that a UF graph can be covered by three matches m1, m2, and m3 with costs 4,
1, and 5, respectively (Fig. 6.2a). Assume further that these matches can be placed
in one of two blocks, b1 and b2, with execution frequencies 10 and 1, respectively.
Because Eq. 5.23 is modeled as a summation, it can only propagate the bounds of the
cost variable. Consequently, any match m for which sel[m] is still undecided incurs
a cost between zero (if not selected) and cost(m) ×max(∪b ∈ B freq(b)) (if selected and
placed in the block with highest execution frequency). In the example above, this
means the cost variable is initially bounded as 0 ≤ cost ≤ 100. These are very weak
bounds as we know that either both m1 and m2 are selected and placed in b2, or m3
is selected and placed in b2, resulting in a cost of at least 5. Also, in the worst case
all selected matches are placed in b1, resulting in a cost of at most 50.

Instead of reasoning about the cost incurred by the matches – which may or may
not be selected – a better approach is to deduce the cost incurred on the operations
– which must always be covered. The idea is as follows. First, for each match m,
evenly divide the cost of m over each operation o covered by m. If a strict partial
order < exists over the set of operations, and covers(m) returns an ordered list that

96 6 solving techniques

can be indexed starting from 1, then the cost can be computed as

cost(m, o) �
{

q + 1 if o < covers(m)[r + 1],
q otherwise, (6.6)

where q � bcost(m)/|covers(m)|c and r � cost(m) mod |covers(m)|. Consequently,
for any match m, cost(m) � ∑

o ∈ covers(m) cost(m, o). Then, for each block b we multiply
cost(m, o) with the execution frequency of b. This information can be represented as
a cost matrix[

o,m, b,
(
cost(m , o) × freq(b)

)
m ∈ M, o ∈ covers(m), b ∈ B

]
(6.7)

where each row denotes the cost of an operation o if covered by a match m and
placed in a block b. From the cost matrix given in Fig. 6.2b, we can deduce that the
cost of covering operations o1 and o2 is between 3 and 40 and between 1 and 20,
respectively. Hence the total cost can be bounded as 4 ≤ cost ≤ 60, which is a much
tighter bound compared to that achieved using the naive objective function.

An alternative method for computing the cost is to first multiply the match cost
with the execution frequency and then evenly divide the product over the covered
operations. We call the first method the divide-then-multiply method, and the second
method the multiply-then-divide method. For the latter, the cost matrix is computed as[

〈o,m, b, cost(m, o, b)〉 m ∈ M, o ∈ covers(m), b ∈ B
]

(6.8)

where
cost(m, o, b) �

{
q + 1 if o < covers(m)[r + 1],
q otherwise, (6.9)

where q � bd/|covers(m)|c, r � d mod |covers(m)|, and d � cost(m) × freq(b). Conse-
quently, for any match m and block b, cost(m, o) × freq(b) � ∑

o ∈ covers(m) cost(m, o, b).
At first glace this design decision would appear to make no difference, but they

unexpectedly exhibit significantly different solving time characteristics, as will be
seen later in the experimental evaluation.

Variables The set of variables ocost[o] ∈ Nmodels the cost incurred by covering
operation o. It is assumed the domain is the same as for the cost variable.

Constraints For each operation o, the combination o, omatch[o], oplace[o], ocost[o]
must appear as a row in the cost matrix. Given a cost matrix C computed using
either Eq. 6.7 or 6.8, this constraint is modeled as

∀o ∈ O : table(〈o, omatch[o], oplace[o], ocost[o]〉,C). (6.10)

The total cost is then modeled as

cost �
∑
o∈O

ocost[o]. (6.11)

6.3 implied constraints 97

Note that the cost computed by Eq. 6.11 is exactly the same as that computed
by Eq. 5.23. The proof is as follows. Because every operation must be covered
by exactly one selected match, there is a one-to-one correspondence between a
selected match m and the set Q of operations covered by m. Consequently, the
total cost incurred by m – which is cost(m) × freq(b), where b is the block wherein
m is placed – should be exactly the same as that incurred by the operations in Q.
Due to Eq. 6.11, the total cost incurred by the operations in Q is

∑
o ∈Q ocost[o].

Due to Eqs. 6.7 and 6.10, we know that for each o ∈ Q, ocost[o] � cost(m, o) × freq b.
Since cost(m) � ∑

o ∈ covers(m) cost(m, o), the total cost incurred by operations in Q is
cost(m) × freq(b). �

6.3 Implied Constraints

As explained in Chap. 3, implied constraints are constraints that strengthen the
propagation while preserving all solutions. Stronger propagation leads to less
search, which in turn leads to shorter solving times. In this section, we introduce
such constraints that are relevant for the model.

6.3.1 Implied Operation and Data Placements

Due to Eqs. 5.6 and 5.7, if a selected match defines some datum d1 and uses some
other datum d2, then the block wherein d2 is defined must dominate the block
wherein d1 is defined. From this observation, we can infer that if all matches
covering a non-ϕ-node operation o do not span any blocks, define some datum d1,
and use some datum d2, then the block wherein d2 is defined must dominate the
block wherein d1 is defined. In addition, o must be placed in the same block wherein
d1 is defined. This is modeled as

∀o ∈ {o′ | o′ ∈ Oϕ ,m ∈ Mo′ s.t. consumes(m) � �},
∀d1 ∈ {d | d ∈ dataOf (o, defines),m ∈ Mo, ∃p ∈ defines(m) : Dp � {d}},
∀d2 ∈ {d | d ∈ dataOf (o, uses),m ∈ Mo, ∃p ∈ uses(m) : Dp � {d}} :

table(〈dplace[d1], dplace[d2]〉,R) ∧ oplace[o] � dplace[d1].
(6.12)

where
dataOf (o, f) ≡

⋃
m ∈Mo, p ∈ f(m) s.t.

covers(m)� {o}

Dp (6.13)

From the same observation, we can also infer that if all matches covering the
same non-ϕ-node operation span a set S of blocks and define some datum d, then d
must be defined in one of the blocks in S. This is modeled as

∀S ∈ 2B, ∀d ∈ D, ∀o ∈
{

o′
o′ ∈ Oϕ ,m ∈ Mo′, ∃p ∈ defines(m) :
spans(m) � S ∧ Dp � {d}

}
:

dplace[d] ∈ S.
(6.14)

98 6 solving techniques

From Eq. 5.5, we can infer that if all non-ϕ-matches covering operation o have
entry block b, then o must for sure be placed in b. This is modeled as

∀b ∈ B, ∀o ∈ {o′ | o′ ∈ O ,m ∈ Mo′ \Mϕ s.t. entry(m) � {b}} :
oplace[o] � b. (6.15)

From the same constraint, we can also infer that if the matches covering the same
non-ϕ-node operation all have identical entry blocks, say b, and make use of some
datum d, then the block wherein d is defined must dominate b. This is modeled as

∀b ∈ B, ∀d ∈
{

d′
o′ ∈ Oϕ ,m ∈ Md′, ∃p ∈ uses(m) :
entry(m) � {b} ∧ Dp � {d}

}
:

table(〈b, dplace[d]〉,R).
(6.16)

From Eq. 5.9, we can infer that if a datum d appears in a definition edge d → b
and is defined by ϕ-matches only, then the operation covered by these matches
must be placed b. This is modeled as

∀d → b ∈ E, ∀o ∈ {o′ | m ∈ Md ∩Mϕ , o′ ∈ covers(m)} : oplace[o] � b. (6.17)

It is assumed that the edges in E have been reoriented such that all sources are
either state or value nodes and all targets are block nodes.

6.3.2 Implied Constraints Due to the Define-Before-Use Refinement

From Eqs. 6.2–6.5, we can infer the following implied constraints.
If a non-ϕ-match m spanning no blocks is selected, then all data used and

defined by m must take place in the same block. This is modeled as

∀m ∈ {m′ | m ∈ Mϕ, spans(m) � �}, ∀p1 , p2 ∈ uses(m) s.t. p1 < p2 :
sel[m] ⇒ uplace[p1] � uplace[p2], (6.18)

∀m ∈ {m′ | m ∈ Mϕ, spans(m) � �}, ∀p1 , p2 ∈ defines(m) s.t. p1 < p2 :
sel[m] ⇒ dplace[alt[p1]] � dplace[alt[p2]], (6.19)

∀m ∈ {m′ | m ∈ Mϕ, spans(m) � �}, ∀p1 ∈ uses(m) \ defines(m),
∀p2 ∈ defines(m) : sel[m] ⇒ uplace[p1] � dplace[alt[p2]]. (6.20)

In addition, if a non-ϕ-match spanning some blocks is selected, then all uses of
its input data must occur in the same block. This is modeled as

∀m ∈ {m′ | m ∈ Mϕ, spans(m) , �},
∀p1 , p2 ∈ uses(m) \ defines(m) s.t. p1 < p2 :

sel[m] ⇒ uplace[p1] � uplace[p2].
(6.21)

6.3 implied constraints 99

6.3.3 Implied Data Locations

From Eq. 5.10, we can infer several implied constraints.
If all non-kill matches covering some operation require some non-state datum d

as input, then d cannot be an intermediate value nor be killed. Such data is said to
be available, meaning they cannot be located in either lint or lkilled. If the input can
be one of several values (due to alternative values), then at least one of those values
must be made available. This is modeled as

∀S ∈ 2D�, ∀o ∈ {o′ | o′ ∈ O,m ∈ Mo′, ∃p ∈ uses(m) \ defines(m) : Dp � S},
∃d ∈ S : loc[d] < {lint , lkilled}, (6.22)

where D� ⊆ D denotes the set of data without the state nodes.
If all non-kill matches defining a non-state datum d have d as an exterior value,

then d must be made available. This is modeled as

∀d ∈
{

d′
d′ ∈ D� ,m ∈ Md′ \M× , ∃p ∈ defines(m) :
Dp � {d′} ∧ isExt(m , p)

}
,

loc[d] < {lint , lkilled},
(6.23)

where isExt(m , p) denotes whether an operand p in a match m represents an exterior
value.

We can always constrain the locations of a non-state datum d to those locations
where the definers can put d. The intuition here is to take the union of all those
locations, which is modeled as

∀d ∈ D� , ∀S ∈ 2L∪ {lint ,lkilled} s.t.
S � {l | m ∈ Dd \M× , p ∈ defines(m), l ∈ stores(m , p) s.t. d ∈ Dp} :

loc[d] ∈ S.
(6.24)

Likewise, we can always constrain the locations of a non-state datum d to those
locations where the users can access d. Assuming there is always at least one match
making use of d), this is similarly modeled as

∀d ∈ D� , ∀S ∈ 2L∪ {lint ,lkilled} s.t.
S � {l | m ∈ M× , p ∈ uses(m), l ∈ stores(m , p) s.t. d ∈ Dp} ∧ S , � :

loc[d] ∈ S.
(6.25)

6.3.4 Implied Fall-Throughs

Due to Eq. 5.20, if for any two blocks b1 and b2 there exists a match requiring b2
to follow b1 but there are no matches requiring any other block to follow b1 nor
requiring b2 to follow any other block, then it is always safe to force b2 to follow b1.
This is modeled as

∀b1 , b2 ∈ B s.t. {entry(m) | (m , b2) ∈ J} � {b1} ∧
{b | (m , b) ∈ J s.t. entry(m) � {b1}} � {b2} : succ[b1] � b2.

(6.26)

100 6 solving techniques

6.4 Symmetry and Dominance Breaking Constraints

As explained in Chap. 3, symmetry and dominance breaking constraints are con-
straints that remove solutions from the search space that are either symmetric to one
another or dominated by some other solution. Since this leads to a smaller search
space, the solving time is reduced. In this section, we introduce such constraints
that are relevant for the model.

6.4.1 Location of State Nodes

Since data also includes the state nodes, a loc variable will be introduced for every
state node. However, since state nodes are abstract entities used only to capture
implicit dependencies between certain operation, the assignment to these variables
has no impact on code quality. Hence many symmetric solutions arise. We remove
these symmetries by always fixing the location for each state node, which is modeled
as

∀d ∈ D� : loc[d] � lint , (6.27)

where D� ⊆ D denotes the set of state nodes.

6.4.2 Operands of Non-Selected Matches

The alt variables of matches that are not selected still need to be assigned a value.
Since this assignment has no impact on code quality, it gives rise to many symmetric
solutions. We therefore fix the alt assignments in such cases, which is modeled as

∀m ∈ M, ∀p ∈ defines(m) ∪ uses(m) : ¬sel[m] ⇒ alt[p] � min(Dp). (6.28)

The symmetry breaking constraint above also implies that if an operand rep-
resenting input with multiple data does not take its minimum value, then the
corresponding match must be selected. In addition, the corresponding datum must
be made available. This is modeled as

∀m ∈ M, ∀p ∈ uses(m) \ defines(m) s.t. |Dp | > 1 :
alt[p] , min(Dp) ⇒ alt[p] < {lint , lkilled}. (6.29)

6.4.3 Interchangeable Data

As described in Chap. 5 on p. 77, data in the UF graph that are copies of the same
value are copy-related and therefore interchangeable. This is another source for
symmetric solutions, which is illustrated in Fig. 6.3.

Assume that a UF graph contains two copy-related values, v1 and v2, which may
both be connected to two operands p1 and p2 (Fig. 6.3a). We say that a set of values
constitute a chain of interchangeable data if they can be swapped in a solution without
affecting the program semantics. This is the case if the values are all copy-related
and none are both defined and used by some match. In the above example, v1

6.4 symmetry and dominance breaking constraints 101

ch
ai

n
cp cp

v1 v2

alt[p1] alt[p2]

+ +

(a) UF graph, where the values v1 and v2
constitute a chain of interchangeable data.cp cp

v1 v2

alt[p1] alt[p2]

cp cp

v1 v2

alt[p1] alt[p2]

(b) Symmetries due to how data can be
connected to operands.

ac
tu

al
co

py nullcopy

cp cp

v1 v2

alt[p1] alt[p2]

nu
ll

co
py

actualcopy

cp cp

v1 v2

alt[p1] alt[p2](c) Symmetries due to how null-copy
matches can be selected.

cp cp

v1 v2

alt[p1] alt[p2]

cp cp

v1 v2

alt[p1] alt[p2]

(d) Symmetries due to how kill matches
can be selected.

Figure 6.3: Example of interchangeable data and how these give rise to symmetries.

and v2 constitute such a chain and can therefore be swapped for p1 and p2, giving
rise to unwanted symmetric solutions (Fig. 6.3b). The intuition here is to prevent
solutions containing “cross-over” connections between the values in a chain and the
alt variables. As a precaution, however, we exclude operands used by ϕ-matches
which may require such cross-over connections due to the definition edges.

If we assume that there exists a partial order ≤ for D, then we can remove these
symmetries by enforcing an order of the values assigned to the alt variables. To this
end, we use the value-precede-chain constraint introduced in Chap. 3 on p. 48. Let
I denote the set of chains of interchangeable data and P[ϕ] ⊆ P denote the set of
operands not used by ϕ-matches. With these definitions, this constraint is modeled
as

∀c ∈ I , ∀p1 , . . . , pk ∈ P[ϕ] s.t. p1 , · · · , pk ∧ (∀1 ≤ i ≤ k : Dpi � c) :
vpc(c , alt[p1], . . . , alt[pk]).

(6.30)

Additional symmetries may appear due to null-copy matches. Returning to the
example above, if one of the two copy nodes needs to be covered using a copy match
derived from actual copy instruction, then we are free to decide which. Intuitively,
we want to prevent solutions where selected null-copy matches “appear to the left”
of a non-null-copy match. Let I◦ denote the set of chains of data that can only
be defined by copy matches, M◦⊥ ⊆ M denote the set of null-copy matches, and

102 6 solving techniques

Md ⊆ M denote the set of matches that can define a datum d. Assuming there exists
exactly one null-copy match to cover each copy node, this is modeled as

∀c ∈ I◦ , ∀1 ≤ i < k , ∃mi ∈ Mc[i] ∩M◦⊥ :
increasing(sel[m1], . . . , sel[mk]), (6.31)

where
increasing(x1 , . . . , xk) ≡

∧
1≤ i < k

xi ≤ xi+1 (6.32)

Similarly to null-copy matches, symmetries can also arise due to kill matches.
Intuitively, we want to prevent solutions where killed data “appear to the right” of
non-killed data. Assuming there exists exactly one kill match to cover each copy
node, this is modeled as

∀c ∈ I◦ , ∀1 ≤ i < k , ∃mi ∈ Mc[i] ∩M× :
increasing(sel[m1], . . . , sel[mk]), (6.33)

where M× denotes the set of kill matches.

6.5 Tightening the Cost Bounds

As explained in Chap. 3, in CP optimization problems are solved using branch
and bound. In other words, when a solution is found a constraint is added to the
model, forcing any subsequently found solutions to be strictly better. For this to be
effective, however, the cost bounds must be tight. A tight upper bound enables the
constraint solver to prune away parts of the search space that only contains inferior
solutions. This is most useful for proving whether a particular solution is optimal.
Likewise, a tight lower bound enables the constraint solver to prune away parts of
the search space that contains no solutions. This is partially achieved by the refined
objective function introduced in Sect. 6.2, but the bounds can be further tightened
using complementary mechanisms.

The upper bound can be further tightened by solving the same problem using a
greedy but fast heuristic. To this end, any modern compiler can be used. The lower
bound can be further tightened by solving a relaxed – and thereby simpler – version
of the constraint model. In this context, a relaxed version corresponds to a model
that only integrates global instruction selection and block ordering. Hence the
relaxed model consists of only the omatch, opcosts, sel, succ, and cost variables,
Eq. 5.1, relaxed versions of Eqs. 5.19 and 5.20 that allow fall-throughs via non-empty
blocks, and modified versions of Eqs. 6.6, 6.7, and 6.11 that are optimistic about the
execution frequencies.

If Crlx and Cheur denote the cost computed from the relaxation and by the
heuristic, respectively, then the cost variable is bounded as

Crlx ≤ cost < Cheur. (6.34)

6.6 branching strategies 103

6.6 Branching Strategies

As explained in Chap. 3, the branching strategy decides how to explore the search
space. Following the first-fail principle (see Sect. 3.2.2 on p. 52), we first branch on
the ocost variables. When branching on these variables, we select the variable v
with largest difference between the two smallest values in its domain – this is
typically called the maximum regret [334] – and the smallest value in the domain
of v. The intuition here is that, because the objective function strives to minimize
the total cost, we wish to minimize the cost incurred per operation. Hence we try
to cover the operations for which the cost of bad decisions is largest, and we try
to do so at least cost.2 Note that this branching strategy is only possible due to
the refined objective function introduced in Sect. 6.2. Remaining decisions are left
to the constraint solver’s discretion; in the experiments, we use free search which
alternates between user-specified and activity-based search when search is restarted
(set to 100).

To improve solving, we make sure to arrange the matches in order of increasing
cost. If there is a tie between two matches, and either of them is a kill match, then the
kill match comes first. Otherwise, the match covering more operations comes first
(hence mimicking the scheme of maximum munch). This is because the constraint
solver will most likely attempt to select matches in the order given to the model. In
such a setting, it is generally a good approach to first try a kill match – which incurs
no cost and encourages value reuse – and then try the match incurring the least cost.

6.7 Presolving

As explained in Chap. 3, presolving is the process of applying problem-specific
algorithms to reduce the number of variables or to shrink the variable domains
before solving.3 In this section, presolving is used to remove matches which can
be safely removed without compromising code quality. This directly translates to
fewer alt, sel, and uplace variables, smaller dplace and oplace domains, as well as
fewer constraints that need to be managed by the constraint solver.

6.7.1 Dominated Matches

If two matches are equal in all respects except cost, then the match with greater cost
is dominated and can thus safely be removed from the match set. A match m1 is
dominated if there exists another match m2 such that

m1 has greater than or equal cost to m2,
both cover the same operations,
both have the same entry blocks (if any),

2In the field of decision theory, this is known as the minimax approach [327].
3In this sense, the bound tightening technique described in Sect. 6.5 is a form of presolving.

104 6 solving techniques

o2

v3 v4

v5

o1

v1 v2

m1

m2

m3

match v1 v2 v3 v4 v5

m1 l1 . . . l4 l1 . . . l4 l1 . . . l4
m2 l3 . . . l4 l3 . . . l4 l3 . . . l6
m3 l1 . . . l6 l1 . . . l6 lint l1 . . . l6 l1 . . . l6

Figure 6.4: Example where matches m1 and m2 are jointly dominated by match m3
and can therefore safely be removed (provided that no other match uses value v3).
The table contains the location restrictions enforced by each match.

both span the same blocks (if any),
both have the same definition edges (if any),
m1 has at least as strong location requirements on its data as m2 – that is,
∀p1 ∈ uses(m1) ∪ defines(m1) : ∃p2 ∈ uses(m2) ∪ defines(m2) : Dp1 ⊆ Dp2 ∧
stores(m1 , p1) ⊆ stores(m2 , p2) – and
both apply the same additional constraints (if any) when selected.

As a precaution, we assume that null matches, ϕ-matches, and matches with
fall-through conditions can never be dominated.

The method above can be generalized to letting combinations of matches to be
jointly dominated by another match. Intuitively, if the combination of matches can
be selected, then the solution can always be improved by replacing them with the
single match. The idea is to combine the matches into a single match m, and then
check whether the above conditions for dominance apply with the additional check
that none of intermediate values of m are used by other matches. An example is
shown in Fig. 6.4.

6.7.2 Illegal Matches

Depending on the instruction set, the match set may contain matches that will – for
one reason or another – never participate in any solution. Such matches are said to
be illegal.

One set of illegal matches are those which would leave some operation uncover-
able if selected. In Fig. 6.5, for example, selecting match m1 would leave operation o2
uncovered since it can only be covered by match m2. However, selection of m2 is
inhibited if m1 is selected. Hence this set of illegal matches is computed as

{m | m ∈ M, o1 , o2 ∈ O s.t. Mo1 ⊂ Mo2 ∧ m ∈ Mo2}. (6.35)

6.7 presolving 105

o1

o2

m1

m2

Mo1 � {m1 ,m2}
Mo2 � {m2}

Figure 6.5: Example of an illegal match, where selecting match m1 would leave
operation o2 uncovered.

Likewise, a match is illegal if selecting it would leave some datum undefined.
With similar reasoning, this set of illegal matches is computed as

{m | m ∈ M, d1 , d2 ∈ D s.t. Md1 ⊂ Md2 ∧ m ∈ Md2}. (6.36)

If a kill match m defines a datum d and every match using d has no alternatives
but d, then m is illegal as d must be defined by a non-kill match. This set of illegal
matches is computed as{

m1
m1 ∈ M× , p1 ∈ defines(m1), d ∈ Dp1 ,
m2 ∈ M× , p2 ∈ uses(m2) s.t. d ∈ Dp2 ⇒ Dp2 � {d}

}
. (6.37)

If a match m is not a kill match and defines a datum d in a location that cannot
be accessed by any of the matches using of d, then m is illegal. This set of illegal
matches is computed asm

m ∈ M× , p ∈ defines(m), d ∈ Dp s.t.
isExt(m , p) ∧ cupUseLocsOf (d) , � ∧
stores(m , p) ∩ cupUseLocsOf (d) � �

, (6.38)

where
cupUseLocsOf (d) ≡

⋃
m ∈Md\M× ,

p ∈ uses(m) s.t. d ∈Dp

stores(m , p). (6.39)

Note that if cupUseLocsOf (d) � � holds, then the matches using datum d have
themselves conflicting location requirements. In such cases, we cannot infer
whether a match defining d is illegal.

Similarly, if a match m is not a kill match and uses a datum d from a location
that cannot be written to by any of the matches defining d, then m can never be

106 6 solving techniques

selected and is thus illegal. This set of illegal matches is computed as{
m

m ∈ M× , p ∈ uses(m) \ defines(m), d ∈ Dp s.t.
cupDefLocsOf (d) , � ∧ stores(m , p) ∩ cupDefLocsOf (d) � �

}
, (6.40)

where
cupDefLocsOf (d) ≡

⋃
m ∈Md\M× ,

p ∈ defines(m) s.t. d ∈Dp

stores(m , p). (6.41)

6.7.3 Redundant Matches

In certain circumstances a match can safely be removed without compromising
code quality. Such matches are said to be redundant.

For example, if there exists a null-copy match to cover a copy node c, then the
kill match covering c is redundant since it is always safe to select the null-copy
match over the kill match. Consequently, all kill matches covering copy nodes that
take a non-constant value as input – which can never be covered using a null-copy
match – are redundant. This makes sense as the kill matches are added to the match
set as a consequence of alternative values, which are used to handle cases where
loaded constants could be reused among matches. Hence this set of redundant
matches is computed as

{m | m ∈ M× , o ∈ covers(m) s.t. Mo ∩M◦⊥ , �}. (6.42)

Another case concerns non-null matches that cover a copy node. Assume a copy
chain v1 → c → v2, where c is a copy node and v1 and v2 are value nodes. If every
match defining v1 writes the value to a location that can be used by all matches
using v2, then all non-null matches covering c are redundant since a null-copy
match can always be selected to cover c. We exclude, however, copy nodes that
take a constant value as input since such nodes can never be covered by a null-copy
match. We also exclude copy nodes whose defined datum is used by some ϕ-match
since an actual copy may be needed to satisfy Eq. 5.11. Let M◦ ⊆ M denote the set
of copy matches and D ⊆ D denote the set of data representing constant values.
Let also capUseLocsOf (d) ⊆ L and capDefLocsOf (d) ⊆ L denote the intersection of
all locations for all match where a datum d is used respectively defined. Using
these definitions, this set of redundant matches is computed asm

m ∈ M◦ \M⊥ , d1 ∈ uses(m), d2 ∈ defines(m)
s.t. Dd1 ∩Mϕ � � ∧ Dd2 ∩Mϕ � � ∧ d1 < D
∧ capUseLocsOf (d1) ∩ capDefLocsOf (d2) , �

. (6.43)

As can be deduced from their name, capUseLocsOf and capDefLocsOf are defined
similarly to cupUseLocsOf and cupDefLocsOf (see Eqs. 6.39 and 6.41), with the
exception that locations known to violate Eq. 5.11 are removed from these sets.

6.8 experimental evaluation 107

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

r1 r5 r6 r7 r9

locations

stores(m1 , p1)
stores(m1 , p2)
stores(m1 , p3)
stores(m2 , p4)

canonical locations

1
2
3
4

ta
gs

Figure 6.6: Example of canonical locations for a location set with ten registers.

6.7.4 Canonical Locations

For most architectures, its instructions read from and write to the same set of
registers. This gives rise to many symmetric solutions as the exact location assigned
to a value often does not matter. We can remove these symmetries by removing
locations which are considered symmetric to one another.

The idea is to select a location as a representative for each distinct intersection
made by the storage requirements. See for example Fig. 6.6. For sake of discussion,
each storage requirement has been labeled with a tag. Given the location set and
storage requirements shown in the figure, they give rise to five intersections with
respect to the locations: {r1 , . . . , r4} due to tags 1 and 2, {r5} due to tag 1, {r6} due
to tag 1 and 3, {r7 , r8} due to tags 3 and 4, and {r9} due to tag 4. From each of
these intersections we select a representative, and the union of these representative
locations constitute the set of canonical locations. An algorithm for computing this
set based on the intuition above is shown in Alg. 6.1.

Once computed, we substitute all locations appearing in the storage requirements
with their canonical representative and then replace the original location set with
the canonical set, thus shrinking the domains of the loc variables.

6.8 Experimental Evaluation

Excluding the refinement described in Sect. 6.1, whose naive equivalence cannot be
implemented on our experimental setup and therefore not be evaluated, we now
evaluate the impact of the solving techniques introduced in this chapter.

When filtering, we remove all functions that have fewer than 50 LLVM IR
instructions and more than 150 instructions. Anything smaller will most likely not
show the impact of the given solving technique, and anything larger will lead to
unreasonably long experiment runtimes. This leaves a pool of 284 functions, from
which we then draw 20 samples.

To curb experiment runtimes, we apply a time limit of 600 s to the constraint
solver. For any given function, the last solution found is considered optimal if and
only if the solver has finished its execution within the time limit. When using an
upper cost bound, we take the cost for the solution computed by LLVM 3.8 for the
given function.

108 6 solving techniques

function CanonicalizeLocs (location set L, match set M):
1 T ← vector with |L | elements initialized to �
2 t ← 1
3 for m ∈ M do // assign tags

4 for p ∈ uses(m) ∪ defines(m) do
5 for l ∈ stores(m , p) do
6 T[l] ← T[l] ∪ {t}
7 t ← t + 1

8 G← {T[l] | l ∈ L} // find all groups of tags

9 Lc←�
10 for g ∈ G do
11 lc← min({l | l ∈ L s.t. T[l] � g}) // find representative for this group of tags

12 Lc← Lc ∪ {lc}
13 return Lc

Algorithm 6.1: Computes the canonical locations from a given location set. If
location restrictions for some data are already enforced by the function, then these
are also tagged and processed accordingly.

6.8.1 Objective Function Refinements and Cost Bounding

We first evaluate the different methods for computing the cost matrix. Based on
the results, we then use the superior method to evaluate the impact that different
implementations of the objective function, coupled with cost bounding, have on
solving time and code quality.

Multiply-then-Divide vs. Divide-then-Multiply We evaluate the different methods
for computing the cost matrix by comparing the solving times exhibited by two
versions of the constraint model: (i) one based on the multiply-then-divide method
(Eqs. 6.6 and 6.7); and (ii) one based on divide-then-multiply methods (Eqs. 6.8
and 6.9). No hypothesis is attempted on which model is better.

Figure 6.7 shows the normalized solving times (including presolving time) for
the two constraint models described above in the first experiment, with model i as
baseline and model ii as subject. The solving times range from 0.633 s to 636 s4 with
a CV of 0.01. The GMI is 3.34×with CI [1.82, 5.12]×.

We see clearly that model ii results in considerably shorter solving times
than model i, thus underscoring the fact that seemingly trivial changes to a
constraint model may have considerable impact on solving time. For one function
(build_ycc_rgb_t) the solving time is improved by 84.2], and for no function is
solving time degraded. Hence the divide-then-multiply method is a better design

4The solving time given here greater than the time limit because it also includes the presolving time
while the time limit is only applied on the constraint solver.

6.8 experimental evaluation 109

0]
10]
20]
30]
40]
50]
60]
70]
80]
90]

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

1.88 4.12

84.2

6.48
2.41 0.057 0.001 1.57 1.81 0.384

5.10
1.28 0.064 0.347 0 3.03 0.014

41.9

0.265 0.48

Figure 6.7: Normalized solving times (incl. presolving time) for two constraint
models using different operation cost functions: one based on the multiply-then-
divide method (baseline), and one based on the divide-then-multiply method
(subject). GMI: 3.34×, CI: [1.82, 5.12]×.

choice over multiply-then-divide method when implementing the refined objective
function.

One possible explanation is that they yield different bounds. For the example
given in Fig. 6.2 on p. 95, the multiply-then-divide method bounds the total cost as
4 ≤ cost ≤ 65, whereas the divide-then-multiply method bounds it to 4 ≤ cost ≤ 60.
However, this does not always hold as the divide-then-multiply method may yield
a tighter bound than the multiply-then-divide method for other problem instances.
Another possible explanation is that the divide-then-multiply method results in
operation costs that are even multiples of the execution frequencies. In comparison,
the multiply-then-divide method could potentially result in arbitrary cost values
that in turn would lead to larger domains for the cost variable.

Impact on Solving Time We evaluate the impact that the refined objective function
together with cost bounding have on solving by comparing the number of functions
that can be solved optimally by six versions of the constraint model: (i) one based on
the naive implementation of the objective function (Eq. 5.23), without cost bounds;
(ii) another naive model but with lower and upper bound; (iii) one based on the
refined implementation (Eqs. 6.10 and 6.11) using the divide-then-multiply method,
without bounds; (iv) another refined model but with lower bound; (v) another
refined model but with upper bound; and (vi) another refined model but with both
bounds.

Since the refined objective function enables tighter bounds to be derived for
the cost variable, we expect models iii, iv, v, and vi to find a greater number of
optimal solutions compared with models i and ii. Due to further tightening of the
cost bounds, we expect model ii to outperform model i, models iv, v, and vi to
outperform model iii, and model vi to outperform models iv and v.

Figure 6.8 shows the percentage of optimal solutions found over time for the
five constraint models described above in the second experiment. The solving times
range from 0.319 s to 608 s with a CV of 0.04.

110 6 solving techniques

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

1 s 10 s 100 s 1000 s

i

ii

iii

iv

v vi

Figure 6.8: Percentage of optimal solutions found over time for six constraint models:
(i) one based on the naive implementation of the objective function without cost
bounds; (ii) another naive model but with lower and upper bound; (iii) one based
on the refined implementation without bounds; (iv) another refined model but with
lower bound; (v) another refined model but with upper bound; and (vi) another
refined model but with both bounds.

We see that models iii, iv, v, and vi clearly outperform models i and ii. We
see also that applying an upper cost bound has a positive effect for both objective
functions, although the benefit is greater for the refined objective function. This
gain is due to the fact that, for some functions, the solution computed by LLVM
is already optimal with respect to the model. Consequently, the solver need only
prove that there exists no better solution instead of exploring the entire search space.
Hence, in terms of solving time the refined objective function coupled with an
upper cost bound is a better design choice over naive objective function. Moreover,
this decision is crucial for scalability.

Applying a lower cost bound, however, does not appear to be equally beneficial.
In fact, using a lower bound causes models iv and vi to fail to find the optimal
solution for two functions whereas models iii and v manages to find the optimal
solution for all functions but one. A possible explanation is that the lower bound
computed by the relaxed constraint model is too weak to be lead to any propagation
and instead only interferes with Chuffed’s LCG engine (see Chap. 3 on p. 56 for a
description of LCG).

Impact on Code Quality We evaluate the impact on code quality by comparing
the cost of the best solution found within the time limit by models ii (naive model
with bounds) and vi (refined model with bounds). For the same reason as in the
impact-on-solving-time experiment, we expect the solutions produced by model vi
to be of significantly better quality compared with those produced by model ii.

Figure 6.9 shows the normalized solution costs for the two constraint models

6.8 experimental evaluation 111

0]

0.05]

0.1]

0.15]

0.2]

0.25]

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

∗ ∗ ∗ ∗∗ ∗ ∗ ∗ 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗∗ ∗ ∗ ∗

0.201

∗∗ ∗ ∗ ∗ 0

0.033

∗ ∗ ∗ 0.002

Figure 6.9: Normalized best solution costs for two constraint models: one imple-
menting the naive objective function (baseline), and one implementing the refined
objective function (subject). GMI: 1.03×, CI: [1.0003, 1.09]×. Both models use lower
and upper cost bounds. Functions marked with ∗∗ are those for which the naive
objective function fails to produce any solution, and functions marked with ∗ ∗ ∗ are
those where the solution produced by LLVM is already optimal w.r.t. the model.

described above in the third experiment, with model ii as baseline and model v as
subject. The costs range from 1162 cycles to 28 668 cycles with a CV of 0.00. The
GMI is 1.03×with CI [1.0003, 1.09]×.

We see clearly that the models based on the refined objective function yield better
code quality than those based on the naive objective function. For one function
(gpk_open), the code quality is improved by 0.201], and for no function is code
quality degraded. Hence, in terms of code quality the refined objective function
coupled with an upper cost bound is a better design choice over naive objective
function.

Conclusions From the results for these experiments, we conclude: (i) that the
divide-then-multiply method is superior to the multiply-then-divide method;
(ii) that the refined implementation of the objective function is superior to the naive
implementation; and (iii) that using the refined objective function together with an
upper cost bound is crucial for scalability.

6.8.2 Implied Constraints

We first evaluate the implied constraints individually. Based on the results, we then
arrange them into groups to find the best combination of implied constraints. To
curb experiment runtimes, we include all other solving techniques in the models
because, without them, a very long time limit would have to be applied to discover
the impact on solving time.

Impact of a Single Constraint We evaluate the impact of each implied constraint
(Eqs. 6.12–6.26) by comparing the solving times exhibited by two versions of the
constraint model: (i) one without a particular implied constraint; and (ii) one with
all constraints.

112 6 solving techniques

Because the pattern set used in these experiments contains only patterns that
do not span any blocks, we expect Eqs. 6.14 and 6.21 to have no impact on solving
time. For the rest, we expect some constraints to lead to an overall solving time
improvement while others may degrade solving time. As described in Chap. 3, this
is because some constraints may be too expensive to execute compared with the
amount of propagation they provide.

Figure 6.10 shows the normalized solving times (including presolving time) for
the two constraint models described above in the first experiment, with model i as
baseline and model ii as subject. The solving times range from 0.625 s to 636 s
with a CV of 0.06. The GMIs and CIs are given in Fig. 6.10.

We see that Eqs. 6.12 and 6.16 lead to an overall solving time improvement, and
that Eqs. 6.14, 6.17, and 6.21 have no impact on solving time. For Eqs. 6.15, 6.18, 6.19,
6.20, 6.22, 6.23, 6.24, 6.25, and 6.26, the results are inconclusive.

Impact of Groups of Constraints We find the best combination of implied con-
straints by arranging them into groups and evaluating the impact of each such
group. Because a full evaluation would require us to test every combination of
constraints – which would result in an unreasonably large number of experiments –
we limit ourselves to only comparing the solving times exhibited by three versions
of the model: (i) one with no implied constraints; (ii) one with only those who
individually lead to an overall solving time improvement; and (iii) one with all
constraints. We expect models ii and iii to all perform better than model i. No
hypothesis is attempted regarding the relative performance between models ii
and iii.

Figure 6.11 shows the normalized solving times (including presolving time)
for three of the constraint models described above, with model i as baseline and
models ii and iii as subjects. The solving times range from 0.725 s to 635 s with a
CV of 0.02.

To begin with, we observe that the GMI for model ii over model i is 1.43×
with CI [1.06, 1.72]× (Fig. 6.11a). Hence combining Eqs. 6.12 and 6.16 yields a
greater overall solving time improvement than when picked individually (up
to 5.37]). However, we note that this combination yields a non-negligible solving
time degradation for one function (down to −2.43]).

In comparison, we observe that the GMI for model iii over model i is 1.53×
with CI [1.23, 1.84]× (Fig. 6.11b), which is a greater improvement compared to
model ii. Although the maximum improvement is less than for model ii (up to
4.82]), this combination yields no considerable degradation for any function (down
to at most −0.111]). Hence it is most beneficial to include all implied constraints in
the model.

Conclusions From the results for these experiments, we conclude: (i) that some
of the implied constraints have individually a positive impact on solving time; but
(ii) it is most beneficial to include all implied constraints in the model.

6.8 experimental evaluation 113

−0.4]
−0.2]

0]
0.2]
0.4]
0.6]
0.8]

1]
1.20]
1.40]

−0.269

1.34

−0.015

0.553

0.114

0.994

0
0.077 0.13

0.28
0.35 0.386

0.078

0.343

0

0.502

0.071 0.076
0.008 −0.037

(a) Eq. 6.12. GMI: 1.23×, CI: [1.09, 1.36]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0 0.001 0.014 0.006 0.002 −0.003 0 −0.004−0.008−0.005 0.002 −0.002 0.002 0.002 0 0.01 −0.001 0.001 −0.004 0

(b) Eq. 6.14. GMI: 1.00×, CI: [1.00, 1.00]×.

−3]
−2.50]
−2]

−1.50]
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

−2.52 0.045 −0.12 −0.046−0.077

2.30

0 0.031 −0.002 0 0.027

0.66

−0.001 0.148 0 0.114 0.21

1.28

−0.001 0.047

(c) Eq. 6.15. GMI: 1.13×, CI: [0.89, 1.31]×.

0]
1]
2]
3]
4]
5]
6]
7]
8]

0.484
−0.023

0.26 0.202

7.76

−0.029 0 −0.015 0.133 0.025 0.022 0.124 0.006 −0.007 0 0.031 −0.019 −0.151 0.011 −0.124

(d) Eq. 6.16. GMI: 1.21×, CI: [1.004, 1.47]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0.002 0.001 0.012 0.001 0.001 0.001 0 −0.002−0.003−0.008 0.002 −0.002 0.004 0.002 0 0.012 −0.004 0 0.001 0

(e) Eq. 6.17. GMI: 1.00×, CI: [1.00, 1.00]×.

0]

1]

2]

3]

4]

5]

6]

−0.389 0.074 −0.08 0.015

5.91

−0.083 −0.001 0.014 −0.015 −0.021 −0.01

0.533

−0.004 0.167 0 −0.053 0 −0.19 −0.011 −0.207

(f) Eq. 6.18. GMI: 1.13×, CI: [0.94, 1.36]×.

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]
3.50]

4]

−0.564 0.074 −0.246−0.035

3.63

−0.022−0.001−0.037 −0.02 −0.013 0.001

0.41

0.005
0.343

−0.047 0.049 −0.007

0.571

−0.005 −0.06

(g) Eq. 6.19. GMI: 1.13×, CI: [0.96, 1.32]×.

0]

1]

2]

3]

4]

5]

6]

7]

−0.276 0.086 −0.257 −0.035

6.46

−0.029 −0.001 −0.017 −0.04 −0.026 −0.01

0.679

−0.008
0.343

−0.024 0.1 −0.01 −0.063 −0.012 0.084

(h) Eq. 6.20. GMI: 1.17×, CI: [0.97, 1.42]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0 0.001 0.008 0.004 −0.001−0.001 0 0 −0.004−0.009 0 −0.003 0.001 0 0 0.013 −0.003−0.001 0 0.005

(i) Eq. 6.21. GMI: 1.00×, CI: [1.00, 1.00]×.
−1.50]
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

−1.40 0.022 −0.208 0.001 0.024 0.101 0 −0.031 0.002 −0.003 0.003

2.16

0.004 −0.142 0 0.007 0.006

1.44

−0.005−0.184

(j) Eq. 6.22. GMI: 1.08×, CI: [0.89, 1.24]×.

Figure 6.10: Normalized solving times (incl. presolving time) for two constraint
models: one without a particular implied constraint (baseline), and one with all
constraints (subject).

114 6 solving techniques

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]

−0.98 0.066 0.05 0.066

2.52

−0.006 0 0.072 0.027 −0.003 0.023

0.413

0.013
0.28

0 0.091 0.016
0.264

0.041
0.256

(k) Eq. 6.23. GMI: 1.14×, CI: [0.97, 1.30]×.
−2]
−1]

0]
1]
2]
3]
4]
5]
6]

−1.96
0.312

−0.178 0.055

5.24

−0.043 0 −0.033 0.01 −0.023 0.019

0.78

0.023 0.001 0 0.189 −0.006

0.861

0.035 0.081

(l) Eq. 6.24. GMI: 1.19×, CI: [0.91, 1.43]×.

−1]

−0.8]

−0.6]

−0.4]

−0.2]

0]

0.2]

0.4]

−0.579−0.567−0.262−0.009
0.06

−0.046−0.003

0.257

0.004 −0.013 0.014

0.37

−0.003−0.949 0 −0.041−0.011−0.368−0.009−0.008

(m) Eq. 6.25. GMI: 0.93×, CI: [0.83, 1.01]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0.6]

0.8]

1]

0.002 0.001 −0.217−0.079 0.021

0.269

−0.001−0.002−0.005−0.011 0.007

0.947

0.003 0.004 0
0.069

0.197

−0.001−0.001−0.032

(n) Eq. 6.26. GMI: 1.05×, CI: [0.98, 1.13]×.

Normalized solving times (incl. presolving time) for two constraint models: one
without a particular implied constraint (baseline), and one with all constraints
(subject).

−3]
−2]
−1]

0]
1]
2]
3]
4]
5]
6]

1.02 0.988
0.35

1.03

−2.43 0.222 0.001 0.064 0.075 0.301 0.476

5.37

0.05
0.44

0 −0.04
0.542

0.927
0.482

0.165

(a) Model i vs. ii. GMI: 1.43×, CI: [1.06, 1.72]×.

0]

1]

2]

3]

4]

5]

−0.111

1.22

0.103

0.877

0.097

4.83

0 0.111 0.058
0.237

0.47

2.84

0.041
0.343

0

0.841 0.757
0.448 0.48

0.125

(b) Model i vs. iii. GMI: 1.53×, CI: [1.23, 1.84]×.

Figure 6.11: Normalized solving times (incl. presolving time) for three constraint
models: (i) one with no implied constraints (baseline); (ii) one with only those
who individually lead to an overall solving time improvement (Eqs. 6.12 and 6.16;
subject); and (iii) one with all constraints (subject).

6.8.3 Symmetry and Dominance Breaking Constraints

Like in Sect. 6.8.2, we first evaluate the symmetry and dominance breaking con-
straints individually. Based on the results, we then arrange them into groups to
find the best combination of symmetry and dominance breaking constraints. To
curb experiment runtimes, we include all other solving techniques in the models
because, without them, a very long time limit would have to be applied to discover
the impact on solving time.

Impact of a Single Constraint We evaluate the impact of each symmetry and
dominance breaking constraint (Eqs. 6.27–6.33) by comparing the solving times
exhibited by two versions of the constraint model: (i) one without a particular

6.8 experimental evaluation 115

−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]

−0.67
0.139

−0.033−0.034

2.73

0.011 0 0.021 0.044 −0.007 0.006

1.72

0.034

0.343

0 0.021 0.015 0.012 0.014 −0.196

(a) Eq. 6.27. GMI: 1.15×, CI: [0.96, 1.34]×.
−0.6]
−0.4]
−0.2]

0]
0.2]
0.4]
0.6]
0.8]

1]

−0.23 −0.246

0.191

−0.005

0.962
0.868

−0.001
0.094

0.013 −0.023 0.042 −0.152−0.001−0.511 0 0.038

0.702

−0.089
0.077

−0.321

(b) Eq. 6.28. GMI: 1.06×, CI: [0.93, 1.19]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0.001 −0.002 0.013 0.008 0.004 −0.003 0 −0.002−0.007−0.005 0.004 −0.002 0.002 −0.004 0 0.013 0.001 0 −0.005 0.002

(c) Eq. 6.29. GMI: 1.00×, CI: [1.00, 1.00]×.
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

3]
3.50]

−0.562

0.589

−0.147 0.016

3.49

1.26

−0.001 0.132 0.011 −0.006 0.005

1.53

0.011
0.343

0 0.021 −0.002

1.29

−0.01 0.103

(d) Eq. 6.30. GMI: 1.31×, CI: [1.05, 1.55]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0.001 0 0.009 0.003 0.011 −0.001 0 −0.004−0.007−0.009 0.002 −0.002 0.002 −0.002 0 0.01 0.008 0.001 0.001 −0.001

(e) Eq. 6.31. GMI: 1.00×, CI: [1.00, 1.00]×.

−0.4]

−0.2]

0]

0.2]

0.4]

−0.005

0.081

−0.211−0.003 0.01

0.13

0 0 −0.008−0.006 0.006 −0.008 0.015 −0.005 0 0 −0.004 0 −0.001−0.006

(f) Eq. 6.33. GMI: 1.00×, CI: [0.97, 1.02]×.

Figure 6.12: Normalized solving times (incl. presolving time) for two constraint
models: one without a particular symmetry or dominance breaking constraint
(baseline), and one with all constraints (subject).

symmetry or dominance breaking constraint; and (ii) one with all constraints. For
the same reason as with the implied constraints, we expect some constraints to lead
to an overall solving time improvement while others may degrade solving time.

Figure 6.12 shows the normalized solving times (including presolving time)
for two constraint models described above in the first experiment, with model i as
baseline and model ii as subject. The solving times range from 0.634 s to 635 s with
a CV of 0.03. The GMIs and CIs are given in Fig. 6.12.

We observe that Eq. 6.30 leads to an overall solving time improvement and that
Eq. 6.29 has no impact on solving time. For Eqs. 6.27, 6.28, 6.31, and 6.33, the results
are inconclusive.

Impact of Groups of Constraints We find the best combination of symmetry and
dominance breaking constraints by arranging them into groups and evaluating
the impact of each such group. Again, for practicality we limit ourselves to only
comparing the solving times exhibited by three versions of the model: (i) one with
no symmetry or dominance breaking constraints; (ii) one with only those who
individually lead to an overall solving time improvement; and (iii) one with all

116 6 solving techniques

−2]
−1]

0]
1]
2]
3]
4]
5]
6]

−0.553

5.43

−0.034 0.008 −1.28
0.518

0.002
0.266 0.034 0.126 −0.005 −0.521 0.025

0.662

0
0.287

−0.004
0.246 −0.014

0.434

(a) Model i vs. ii. GMI: 1.18×, CI: [0.92, 1.42]×.
0]

2]

4]

6]

8]

10]

12]

−0.442

4.11

0.165 −0.061
0.916

12.0

−0.001 0.366 0.034 0.109 0.041 0.294 0.033 0.343 0 0.311
0.743

−0.069 0.083 0.055

(b) Model i vs. iii. GMI: 1.49×, CI: [1.09, 1.90]×.

Figure 6.13: Normalized solving times (incl. presolving time) for three constraint
models: (i) one with no symmetry or dominance breaking constraints (baseline);
(ii) one with only those who individually lead to an overall solving time improvement
(Eq. 6.30; subject); and (iii) one with all constraints (subject).

constraints. We expect models ii and iii to all perform better than model i. No
hypothesis is attempted regarding the relative performance between models ii
and iii.

Figure 6.13 shows the normalized solving times (including presolving time) for
the three constraint models described, with model i as baseline and models ii and iii
as subjects. The solving times range from 1.02 s to 635 s with a CV of 0.04.

To begin with, we observe that the GMI for model ii over model i is 1.18×
with CI [0.92, 1.42]× (Fig. 6.13a). This means that combining only the symmetry
or dominance breaking constraints that individually have a positive impact on
solving time is not sufficient. Although solving time is improved considerably for
one function (up to 5.43]), this combination also degrades solving time for several
functions (down to −1.28]).

In comparison, we observe that the GMI for model iii over model i is 1.49×with
CI [1.09, 1.90]× (Fig. 6.13b), which is a statistically significant, positive impact. In
addition, the maximum improvement is greater than for model ii (up to 12.0]),
and this combination yields no considerable degradation for any function (down to
at most −0.442]). Hence it is most beneficial to include all such constraints in the
model.

Conclusions From the results for these experiments, we conclude: (i) that some
of the symmetry and dominance breaking constraints have individually a positive
impact on solving time; but (ii) it is most beneficial to include all symmetry and
dominance breaking constraints in the model.

6.8.4 Presolving

Like in Sects. 6.8.2 and 6.8.3, we first evaluate the presolving techniques individually.
Based on the results, we then arrange them into groups to find the best combination
of presolving techniques. To curb experiment runtimes, we include all other solving
techniques in the models because, without them, a very long time limit would have
to be applied to discover the impact on solving time.

6.8 experimental evaluation 117

Impact of a Single Technique We evaluate the impact of each presolving technique
(Sect. 6.7.1, Eqs. 6.35–6.43, and Sect. 6.7.4) by comparing the solving times exhibited
by two versions of the constraint model: (i) one without a particular presolving
technique; and (ii) one with all techniques. For the same reason as with the implied,
symmetry breaking, dominance breaking constraints, we expect some techniques
to lead to an overall solving time improvement while others may degrade solving
time.

Figure 6.14 shows the normalized solving times (including presolving time) for
the two constraint models described above in the first experiment, with model i as
baseline and model ii as subject. The solving times range from 0.599 s to 635 s with
a CV of 0.07. The GMIs and CIs are given in Fig. 6.14.

We observe that Eqs. 6.42 and 6.43, and canonical locations lead to an overall
solving time improvement, that Eqs. 6.38 and 6.40 lead to an overall solving time
degradation, and that Eq. 6.35 has no impact on solving time. For dominated
matches and Eqs. 6.36 and 6.37, the results are inconclusive.

Equations 6.38 and 6.40 degrade solving time in this experiment because they are
expensive to compute and only identify redundant matches that appear for target
machines with irregular instruction sets (meaning the instructions access different
sets of registers). Since Hexagon has a regular instruction set, these presolving
techniques identify too few redundant matches to offset the cost in finding them.

Impact of Groups of Techniques We find the best combination of presolving
techniques by arranging them into groups and evaluating the impact of each such
group. Again, for practicality we limit ourselves to only comparing the solving
times exhibited by four versions of the model: (i) one with no presolving techniques
implied constraints; (ii) one with only those who individually lead to an overall
solving time improvement; (iii) one without those who individually lead to an
overall solving time degradation; and (iv) one with all techniques. We expect
models ii, iii, and iv to all perform better than model i. This is because many of
these presolving techniques require computations that are expensive to execute
but whose result can be shared among the techniques, allowing this cost to be
amortized when the techniques are executed in unison. No hypothesis is attempted
regarding the relative performance between models ii, iii, and iv.

Figure 6.15 shows the normalized solving times (including presolving time) for
the four constraint models described above in the second experiment, with model i
as baseline and models ii, iii, and iv as subjects. The solving times range from
0.581 s to 628 s with a CV of 0.67.

To begin with, we observe that the GMI for model ii over model i is 1.77× with
CI [1.22, 2.38]× (Fig. 6.15a), which is a statistically significant, positive impact. But
although the improvement is considerable for some functions (up to 28.2]), we
note that this combination yields a considerable degradation for others (down
to −0.647]).

118 6 solving techniques

−2]
−1.50]
−1]
−0.5]

0]
0.5]

1]
1.50]

2]
2.50]

−1.73
0.236 0.219

−0.137

2.03

0.021 −0.01
0.156

0.357 0.458

−0.114

1.44

0.025
0.342

−0.001

0.657
0.489

−0.031 0.063 0.146

(a) Dominated
matches. GMI: 1.23×,

CI: [0.99, 1.41]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0 0 0.006 −0.003 0.001 −0.002 0 0.002 −0.003−0.012−0.002−0.001−0.003−0.002 0 0.009 −0.006 0.001 −0.001 0.007

(b) Eq. 6.35. GMI: 1.00×, CI: [1.00, 1.00]×.

0]

2]

4]

6]

8]

10]

0.318 −0.019 −0.215 0.04

9.91

−0.003 0 0.078 −0.014 −0.002 −0.005
0.419

0.008 0.157 0 0.051 −0.007 −0.136 −0.01 0.006

(c) Eq. 6.36. GMI: 1.22×, CI: [0.99, 1.51]×.
−0.8]
−0.6]
−0.4]
−0.2]

0]
0.2]
0.4]
0.6]
0.8]

−0.736

0.187

−0.023−0.044 0.024
0.1

−0.001

0.728

0.055 0.01 0.017

0.283

0.016 −0.299−0.174 0.025 0.013

0.459

−0.011−0.203

(d) Eq. 6.37. GMI: 1.03×, CI: [0.92, 1.12]×.

−0.4]

−0.2]

0]

0.2]

0.4]

−0.001−0.001−0.052 −0.05 −0.019−0.025−0.007−0.023−0.018−0.026−0.052−0.004−0.093−0.004−0.001−0.022−0.062−0.011−0.079−0.002

(e) Eq. 6.38. GMI: 0.97×, CI: [0.96, 0.98]×.

−0.4]

−0.2]

0]

0.2]

0.4]

0.003 0 −0.029−0.022−0.011−0.016−0.004−0.009−0.018−0.025−0.025−0.004−0.043−0.001 0 −0.008−0.036−0.003−0.043 0.008

(f) Eq. 6.40. GMI: 0.99×, CI: [0.98, 0.99]×.

0]

2]

4]

6]

8]

10]

12]

−0.247 −0.018 0.135 −0.071

11.0

−0.001 −0.001 0.084 0.043 0.026 0.056 0.395 0.077 0.305 0.001 −0.023 0.307 0.376 0.144 0.352

(g) Eq. 6.42. GMI: 1.30×, CI: [1.04, 1.61]×.

0]

1]

2]

3]

4]

5]

6]

0.982
0.534

−0.153 0.124

3.58

0.071 −0.008 0.073 0.108 0.014 0.129

5.41

0.074
0.344

0 0.147 0.133

1.96

0.125
0.479

(h) Eq. 6.43. GMI: 1.50×, CI: [1.16, 1.83]×.

−0.5]

0]

0.5]

1]

1.50]

2]

2.50]

−0.073
0.107

−0.147 0.066

0.626

0.008 −0.001 0.062

0.464 0.509

2.11

0.423
0.21 0.131

0 0.056
0.183 0.18

0.057 0.083

(i) Canonical locations. GMI: 1.22×, CI: [1.08, 1.37]×.

Figure 6.14: Normalized solving times (incl. presolving time) for two constraint
models: one without a particular presolving technique (baseline), and one with all
techniques (subject).

6.8 experimental evaluation 119

−5]

0]

5]

10]

15]

20]

25]

30]

3.19

0.476 0.283 0.883 −0.647 0.34 −0.008 0.635 0.02 0.99

28.2

1.31 0.392 0.073 0 −0.14 0.526 0.252 0.841 0.33

(a) Model i vs. ii. GMI: 1.77×, CI: [1.22, 2.38]×.
0]

5]

10]

15]

20]

25]

30]

1.98
0.244 0.815

2.92

0.534 0.51 −0.024
0.904 0.478 1.26

28.3

2.77
1.39

0.35 −0.001
1.20

2.26
0.859 0.885 0.512

(b) Model i vs. iii. GMI: 2.30×, CI: [1.66, 3.07]×.

0]

5]

10]

15]

20]

25]

30]

1.96
0.663 0.639

2.56
0.492 0.452 −0.036 0.833 0.408 1.17

25.7

2.68
1.10 0.342 −0.002

1.07
1.98

0.823 0.688 0.478

(c) Model i vs. iv. GMI: 2.22×, CI: [1.62, 2.93]×.

Figure 6.15: Normalized solving times (incl. presolving time) for four constraint
models: (i) one with no presolving techniques (baseline); (ii) one with only those
who individually lead to an overall solving time improvement (Eqs. 6.42 and 6.43,
and canonical locations; subject); (iii) one without those who individually lead to
an overall solving time degradation (Eqs. 6.38 and 6.40; subject); and (iv) one with
all techniques (subject).

In comparison, we observe that the GMI for model iii over model i is 2.30×with
CI [1.66, 3.07]× (Fig. 6.15b), which is a greater solving time improvement compared
to model ii. In addition, the maximum improvement is greater than for model ii (up
to 28.3]), and this combination yields no considerable degradation for any function
(down to at most −0.0239]).

Lastly, we observe that the GMI for model iv over model i is 2.22× with
CI [1.62, 2.93]× (Fig. 6.15c), which is still better than model ii but worse than
model iii. In addition, the maximum improvement is less than for model iii (up to
at most 25.7]). Hence, in this experiment it is most beneficial to exclude Eqs. 6.38
and 6.40 from the model. However, for target machines with irregular instruction
sets it may be beneficial to keep them in the model.

Conclusions From the results for these experiments, we conclude: (i) that some
of the presolving techniques have a positive impact on solving time while others
have a negative impact; and (ii) that it is most beneficial to exclude the techniques
that have a negative impact from the model.

6.8.5 Impact of All Solving Techniques

We now evaluate the solving-time impact made by different collections of solving
techniques by comparing the solving times exhibited by four versions of the

120 6 solving techniques

0]

10]

20]

30]

40]

50]

60]

70]

3.84 4.08

63.8

1.23 1.01

9.65

∗∗
6.54

3.22 1.70

7.83

1.35

17.2

∗∗ 0 0.405

6.00

34.6

3.71
0.012

(a) Model i vs. ii. GMI: 4.79×, CI: [2.61, 7.24]×.
0]

20]

40]

60]

80]

100]

120]

140]

1.15 2.80

58.1

3.47 1.42

137

∗∗
7.03 3.62 2.18

6.44 5.57
15.2

∗∗ −0.001 3.67
13.1

34.4

4.54 0.516

(b) Model i vs. iii. GMI: 6.43×, CI: [3.36, 10.4]×.

0]

20]

40]

60]

80]

100]

120]

140]

1.14 4.11

52.1

3.06 1.36

132

∗∗
6.70 3.41 2.03 5.80 5.40

13.2

∗∗ −0.002 3.42
11.8

34.2

3.91 0.482

(c) Model i vs. iv. GMI: 6.21×, CI: [3.29, 10.0]×.

Figure 6.16: Normalized solving times (incl. presolving time) for four constraint
models: (i) one with no solving techniques (baseline); (ii) one with only those who
individually lead to an overall solving time improvement (subject) (Eqs. 6.12, 6.16,
6.30, 6.42, and 6.43, and canonical locations; subject); (iii) one without those who
individually lead to an overall solving time degradation (Eqs. 6.38 and 6.40; subject);
and (iv) one with all techniques (subject). Functions marked with ∗∗ are those for
which model i fails to produce any solution.

constraint model: (i) one with no solving techniques; (ii) one with only those who
individually lead to an overall solving time improvement; (iii) one with only those
who individually lead to an overall solving time degradation; and (iv) one with all
techniques. We expect models ii, iii, and iv to all perform better than model i. No
hypothesis is attempted regarding the relative performance between models ii, iii,
and iv.

Figure 6.16 shows the normalized solving times (including presolving time) for
the four constraint models described above, with model i as baseline and models ii,
iii, and iv as subjects. The solving times range from 0.578 s to 628 s with a CV of
0.05. The GMIs and CIs are given in Fig. 6.16.

To begin with, we see clearly that all models significantly improve solving time
over model i. For several functions, the improvement is considerable (up to 137]),
and no combination yields considerable degradation for any function (down to at
most 1×). In fact, for two functions model i is not even able to produce a solution
within the time limit. Hence the solving techniques are crucial for scalability.

Next, we observe that model iii yields the largest GMI over model i (6.43×
with CI [3.36, 10.4]×), closely followed by model iv (6.21× with CI [3.29, 10.0]×),
which in turn considerably outperforms model ii (4.79× with CI [2.61, 7.24]×).
We also note that the maximum improvement for model iii is greater than for
model iv (up to 137] vs. up to 132]). Hence, only picking solving techniques

6.9 summary 121

that have a statistically significant, positive effect on solving time when evaluated
individually is too conservative. Also, rejecting the presolving techniques that have
an overall negative effect on solving time when evaluated individually yields, in this
experiment, the constraint model with best performance. Keep in mind, however,
that for target machines with irregular instruction sets it may be beneficial to keep
them in the model.

Conclusions From the results for these experiments, we conclude: (i) that the
solving techniques introduced in this chapter are crucial for scalability; (ii) that
picking only solving techniques that have a statistically significant, positive effect
on solving time when evaluated individually is too conservative; and (iii) that
rejecting Eqs. 6.38 and 6.40 gives the constraint model with best performance for
target machines with regular instruction sets.

6.9 Summary

In this chapter, we have introduced a wide range of techniques for improving solving
of the constraint model introduced in the previous chapter. Through experimental
evaluation, the techniques were demonstrated to be crucial for scalability; for one
function, the solving time was improved by 132]. Rejecting presolving techniques
Eqs. 6.38 and 6.40 increased the improvement further to 137] since the target
machine is fairly regular (meaning its instructions can access the same set of
registers). If the target machine has an irregular instruction set, however, then it
may be worthwhile to keep these presolving techniques.

CHAPTER

7
Experimental Evaluation
Using the State of the Art

This chapter evaluates how universal instruction selection compares against a
state-of-the-art compiler. This is done in Sect. 7.1. Since the approach is able to
leverage selection of SIMD instructions, we also evaluate this impact in Sect. 7.2.

7.1 Unison vs. LLVM

We evaluate the impact of the approach by comparing the cost (that is, the total
number of cycles, as described in Chap. 5 on p. 88) of solutions produced by the
approach with the solutions produced by LLVM 3.8 – a state-of-the-art compiler.

Setup When filtering, we remove all functions that have fewer than 50 LLVM IR
instructions and more than 200 instructions. Anything smaller will most likely not
show any gain using the approach, and anything larger will lead to unreasonably
long experiment runtimes. This leaves a pool of 284 functions up to medium size,
from which we then draw 20 samples.

To curb experiment runtimes, we apply a time limit of 600 s to the constraint
solver. For any given function, the last solution found is considered optimal if and
only if the solver has finished its execution within the time limit. When using an
upper cost bound, we take the cost for the solution computed by LLVM for the
given function.

Results Figure 7.1 shows the normalized solution costs, with LLVM as baseline
and universal instruction selection as subject. The size of the UF graphs range
from 189 to 1524 nodes. The costs range from 1129 cycles to 26 670 cycles, with a
maximum coefficient of variation of 0.00. The solving times range from 0.590 s to
636 s with a CV of 0.01. The GMI is 1.03×with CI [1.01, 1.06]×.

123

124 7 experimental evaluation using the state of the art

0]
0.02]
0.04]
0.06]
0.08]
0.1]

0.12]
0.14]
0.16]
0.18]
0.2]

alloc_name_is_s.

alloc_save_spac.

build_ycc_rgb_t.

checksum

debug_dump_byte.

gl_EnableClient.

gl_init_lists

gl_save_Color4u.

gl_save_EvalPoi.

gl_save_PushMat.

gl_swap4

gl_TexImage3DEX.

gp_enumerate_fi.

gpk_open

gs_interp_init

jinit_forward_d.

jpeg_read_heade.

trueRandAccum

write_file_trai.

zero

∗ ∗ ∗

0.111

∗ ∗ ∗ 0.006 0.012 0.017
∗ ∗ ∗ 0.007 0.007 0.008 0.002 0.001

0.078

0.181

0.024

∗ ∗ ∗ 0.006

0.057

∗ ∗ ∗ 0.005

:

Figure 7.1: Solution costs produced by universal instruction selection, normalized
to those produced by LLVM. GMI: 1.03×, CI: [1.01, 1.06]×. Functions whose bars
are marked with two dots are those for which the subject does not find the optimal
solution, and functions marked with ∗ ∗ ∗ are those where the solution produced by
LLVM is already optimal w.r.t. the model.

We see that universal instruction selection produces solutions with significantly
less cost than those produced by LLVM (up to 0.181] improvement). This is
predominantly due to the combination of global instruction selection, global code
motion, and block ordering. In three cases (alloc_save_spac, gp_enumerate_fi, and
gpk_open), for example, the approach is able to reduce cost by lifting computations,
in particular constant loads, out of blocks with high execution frequency into blocks
with lower frequency. In alloc_save_spac, the approach is also able to move an
addition and memory operation into the same block and implement both using a
single auto-increment memory instruction, whereas LLVM must implement these
computations using two instructions. Such improvements are only possible when
integrating global instruction selection with global code motion.

In three other cases (jpeg_read_header, gl_TexImage3DEX, and gl_EnableClient),
the approach is able to reorder the blocks to remove one to two jump instructions.
Such improvements are only possible when integrating global instruction selection
with block ordering.

Conclusions From the results for these experiments, we conclude that universal
instruction selection generates code of equal or better quality compared to the state
of the art for up to medium-sized functions.

7.2 Impact of SIMD instructions

We evaluate the impact of selecting SIMD instructions by comparing the cost of
solutions produced from two pattern sets derived from Hexagon: (i) one with no
SIMD instructions; and (ii) one with 2- and 4-way add, sub, and, and or instructions.

Setup When filtering, we again all functions that have fewer than 50 LLVM IR
instructions and more than 150 instructions. Anything smaller will most likely

7.2 impact of simd instructions 125

0]

0.02]

0.04]

0.06]

0.08]

0.1]

0.12]

color_cmyk_to_r.

debug_print_str.

delete_contours

fill_input_buff.

free_new_ctrl

gl_read_alpha_s.

gluBeginPolygon

gx_curve_cursor.

inflate_block

is_compromised

jinit_inverse_d.

jpeg_finish_out.

jpeg_stdio_src

motion_vector

mp_dmul

mp_shortmod

pack_tree_iter

pbm_getint

post_process_pr.

zero

0

0.026

0 0 0

0.035

0

0.048

0 0 0 0 0 0

0.118

0 0 0 0

0.101

:

Figure 7.2: Normalized solution costs for two pattern sets: one without SIMD
instructions (baseline), and one with such instruction (subject). GMI: 1.02×,
CI: [1.003, 1.03]×. Functions whose bars are marked with two dots are those
for which the subject does not find the optimal solution.

not have enough data parallelism for selection of SIMD instructions, and anything
larger will lead to unreasonably long experiment runtimes. To increase the chance
of data parallelism, we also remove all functions not containing at least two
addition, subtraction, logical-and, or logical-or instructions. This leaves a pool of
221 functions, from which we then draw 20 samples.

In this experiment we do not apply an upper bound in this case as that may
prevent interesting solution that make use of SIMD instruction. Note that no loop
unrolling1 is performed on any of the functions prior to instruction selection.

Results Figure 7.2 shows the normalized solution costs for the two pattern sets
describe above, with pattern set i as baseline and pattern set ii as subject. The costs
range from 390 cycles to 18 963 cycles, with a CV of 0.00. The solving times from
0.642 s to 609 s, with a CV of 0.02. The GMI is 1.02×with CI [1.003, 1.03]×.

We see that the pattern set ii yields solutions with significantly less cost than
those yielded by pattern set i (up to 0.118] improvement). The five cases with
less cost (debug_print_str, gl_read_alpha_s, gx_curve_cursor, mp_dmul, and zero),
universal instruction selection is able to combine pairs of additions or subtractions
into 2-way SIMD instructions. In addition, in one of these cases (gl_read_alpha_s)
the additions originally reside in different blocks, but due to global code motion
the approach is able to move the computations to the same block and implement
these using a single instruction.

Conclusions From the results for these experiments, we conclude that there is
sufficient data parallelism to be exploited through selection of SIMD instructions
without having to resort to loop unrolling. In addition, this exploitation benefits
from global code motion as that allows computations to be gathered from different
blocks and implemented using a single SIMD instruction.

1
Loop unrolling is the task of duplicating the body of a loop in order to increase data parallelism at

the cost of increasing code size.

CHAPTER

8
Proposed Model Extensions

In this chapter, we discuss how the constraint model can be extended to integrate
other problems related to code generation. In Sect. 8.1 we propose an extension for
integrating instruction scheduling. Based on this idea, we propose in Sect. 8.2 an
extension for integrating register allocation.

8.1 Integrating Instruction Scheduling

As described in Chap. 1, apart from instruction selection the other two main
problems of code generation are instruction scheduling and register allocation.
More importantly, it is well known that these three problems interact with one
another. For example, when discussing the experiments in Chap. 6 we observed that
the constraint model pushes loading of constants into blocks with low execution
frequencies to decrease cost. Such moves, however, may result in code where the
definition and uses of a value are spread far apart, resulting in high register pressure.
This in turn could force the register allocator to perform lots of spilling, which is
potentially much more expensive than the cost saved by moving the loads. To take
this cost into account, the constraint model introduced in Chap. 5 must be extended
to integrate these problems.

In this context, the instruction scheduling problem can be defined as follows.
Assume that we are given a set M′ of selected matches, all placed in a block b.
Let lat(m) denote the instruction latency of a match m ∈ M′. Then instruction
scheduling problem is to assign to each match m ∈ M′ an issue cycle cm such that
cm+ lat(m) ≤ cm′ holds for every match m′ ∈ M′, m , m′, that uses data defined
by m. To model this problem, we introduce two new variables.

Variables The set of variables cycle[m] ∈ N models at which cycle a match m
is scheduled, and the set of variables sched[m, b] ∈ {0, 1} models whether m is
scheduled in block b.

127

128 8 proposed model extensions

Constraints To begin with, a match m must be scheduled in block b if and only if
m is selected and placed in b. This can be modeled as

∀b ∈ B, ∀m ∈ M : sched[m , b] ⇔ sel[m] ∧ blockOf (m) � b. (8.1)

Next, if a selected match m1 defines a datum d which is used by another selected
match m2, and m1 and m2 are both placed in the same block, then m1 must be
scheduled before m2. This can be modeled as

∀m1,m2 ∈ M s.t. m1 , m2 , ∀p1 ∈ defines(m1), ∀p2 ∈ uses(m2) \ defines(m2) :(
sched[m1 , b] ∧ sched[m2 , b] ∧ alt[p1] � alt[p2]

)
⇒ cycle[m1] + lat(m1) ≤ cycle[m2].

(8.2)

For instructions with latency greater than 1, we must make sure that the result is
not used before it is produced. To model these restrictions, we will apply the same
approach as in [64] by using the cumulative constraint introduced in Chap. 3 on
p. 48. Let cap(r) ∈ N denote the capacity of a resource r ∈ R, where R denotes the
set of resources in the target machine. In this case, we assume there is a resource r
used by all instructions for which cap(r) � 1, thus preventing the durations of the
instructions from overlapping. Let also lat(m) ∈ N denote the instruction latency
of a match m, and req(m , r) ∈ N denote the amount of resource r used by match m.
With these definitions, this constraint can be modeled as

∀r ∈ R, ∀b ∈ B :
cumulative

(
cap(r),∪m∈M 〈cycle[m], lat(m), req(m, r), sched[m, b]〉

)
.

(8.3)

Note that Eq. 8.3 supports modeling of VLIW architecture,1 as the number
of instructions that can be run in parallel, and the functional units used by the
instructions, can be modeled as additional resources.

8.2 Integrating Register Allocation

In this context, register allocation can be described as the problem of assigning
a location to each datum d such that the value in the location is preserved until
the last use of d. Like with instruction selection, this problem can be considered
either at local or global scope. In local register allocation, registers are allocated to the
variables in the function one block at a time, whereas global register allocation does
so for the entire function. We begin by modeling the local problem and then extend
it into the global problem.

8.2.1 Local Register Allocation

We will describe the problem using the example is shown in Fig. 8.1. Assume
1A very long instruction word (VLIW) architecture is a processor where multiple instructions can be

executed in parallel. The schedule is static and thus computed by the compiler.

8.2 integrating register allocation 129

cy
cl

es

1 b← . . .

2 c← . . . a . . .

3 d← . . . a, b . . .
...

(a) Scheduled instructions.

1

2

3
...

a
b

c
d

(b) Live ranges.

registers
r1 r2 r3 · · ·

1

2

3
...

a
b

c
d

(c) Rectangle packing problem.

Figure 8.1: Example of local register allocation. It is assumed that variables a, c, and
d each fit inside a single register whereas variable b requires two adjacent registers.

that a set of instructions in a given block have already been scheduled (Fig. 8.1a).
From the schedule a live range is computed for each variable, which is the point in
time where the variable is defined until the point where it is last used (Fig. 8.1b).
If two variables have overlapping live ranges, then they cannot be assigned the
same register as one of the values would be overwritten before its last use. By
representing each variable by a rectangle, the problem of assigning registers can
be modeled as a rectangle packing problem [310] (Fig. 8.1c). The height of each
rectangle corresponds to variable’s live range, and the width corresponds to the
size of the value (that is, the number of registers it requires).

For simplicity, let us assume for now that we only consider functions containing
a single block as this removes the need of having to deal with live ranges spanning
multiple blocks. Since the live ranges depend on instruction scheduling, we build
upon the constraint model proposed in Sect. 8.1.

Variables The two sets of variables start[d] ∈ N and end[d] ∈ Nmodel the start
respectively end of the live range for a datum d. In addition, the set of variables
alive[d] ∈ {0, 1} models whether d is alive (in other words, d is not killed), and the
set of variables using[m, d] ∈ {0, 1} models whether match m uses datum d. The
register to which d is assigned is already modeled by the loc variables.

Constraints First, we constrain the alive variables according to the definition of
what it means for data to be killed. This can be modeled as

∀d ∈ D : alive[d] ⇔ loc[d] � lkilled. (8.4)

Now, if a datum d is not killed, then the start of a live range for a datum d is
determined by the match defining d. Otherwise, the start is set to zero. This can be
modeled as

∀d ∈ D, ∀m ∈ Md : alive[d] ⇒ start[d] � cycle[dmatch[m]], (8.5)

∀d ∈ D : ¬alive[d] ⇒ start[d] � 0. (8.6)

130 8 proposed model extensions

A: x← . . .
c.br ..., B, C

B: . . .
br D

C: . . .
br D

D: . . .
y← . . . x . . .

(a) Scheduled instructions.

A

D

B C

x

x x

x

(b) Live ranges of x.

Figure 8.2: Example of global register allocation.

Similarly, the end of a live range for a live datum d is determined by the match
making the last use of d. If there is no use of d, then end[d] is set to start[d] to not
affect register allocation and instruction scheduling for other data. This can jointly
be modeled as

∀d ∈ D : end[d] � max

(
∪m ∈ usersOf (d) cycle[m] × using[m, d] ∪ {start[d]}

)
, (8.7)

where
usersOf (d) ≡ {m | m ∈ M, ∃p ∈ uses(m) : d ∈ Dp}. (8.8)

A match m uses a datum d if and only if m is selected and one of its operands is
connected to d. This can be modeled as

∀d ∈ D, ∀m ∈ M, ∀p ∈ uses(m) : using[m, d] ⇔ sel[m] ∧ alt[p] � d. (8.9)

To model the rectangle packing problem, we use the no-overlap constraint
introduced in Chap. 3 on p. 49. Thus the rectangle packing problem can be modeled
as

nooverlap
(
∪d ∈D 〈start[d], end[d], loc[d], loc[d] + widthOf (d)〉

)
, (8.10)

where widthOf (d) ∈ N denotes the number of registers required for datum d.

8.2.2 Global Register Allocation

The main problem of extending local register allocation to global scope is that
placements of matches to blocks need to be taken into consideration. Furthermore,
the live ranges are no longer necessarily limited within a single block but may
span multiple blocks. An example is shown in Fig. 8.2. Assume a function where
a variable x is defined in one block A and used in another block D (Fig. 8.2a).
Consequently, x must be live to the end of A, through all blocks between A and D
(that is, blocks B and C), and until the last use in D (Fig. 8.2b).

8.2 integrating register allocation 131

We extend the constraint model proposed for local register allocation by first
introducing start and end variables for each block in the function, together with an
additional set of variables, and then extending the constraints to handle multiple
blocks.

Variables The two sets of variables start[d, b] ∈ N and end[d, b] ∈ N model the
start respectively end of the live range for a datum d in block b. In addition, given a
datum d and a block b the set of variables useafter[d, b] ∈ {0, 1} models whether
there exists some selected match using d in some blocks that can be reached from b
through one or more jumps.

Constraints Even with multiple blocks, the start of a live range is still determined
by the match defining the datum. Moreover, the constraint that no two rectangles
belonging to the same block may overlap still applies. Hence Eqs. 8.5, 8.6, and 8.10
are adjusted accordingly (the changes are highlighted in gray):

∀d ∈ D, ∀b ∈ B, ∀m ∈ Md :
(alive[d] ∧ dplace[d] � b) ⇒ start[d, b] � cycle[dmatch[m]], (8.11)

∀d ∈ D, ∀b ∈ B : (¬alive[d] ∨ dplace[d] , b) ⇒ start[d, b] � 0, (8.12)

∀b ∈ B :
nooverlap

(
∪d ∈D 〈start[d, b], end[d, b], loc[d], loc[d] + widthOf (d)〉

)
.

(8.13)

We now constrain the useafter variables according to the definition above. This
can be modeled as

∀d ∈ D, ∀b1, b2 ∈ B s.t. b2 ∈ branches(b1) :
useafter[d, b1] ⇔

(
g∃m ∈ M : using[m, d] ∧ sched[m, b2]

)
∨ useafter[d, b2],

(8.14)
where branches(b) ⊆ B gives the set of blocks that can be reached from block b
through a single branch.

Intuitively, given a datum d and a block b, if d is used in some block that can be
reached from b, then the live range of d must extend until the end of the schedule
for b. This can be modeled as

∀d ∈ D, ∀b ∈ B :
useafter[d, b] ⇒ end[d, b] � max(∪d′ ∈D s.t. d′,d end[d′, b]) ∪ {0}. (8.15)

Moreover, for every block b, either d is not used in b or the last use of d occurs
in b. This can jointly be modeled as

∀d ∈ D, ∀b ∈ B : ¬useafter[d, b] ⇒

end[d, b] � max

(
{start[d, b]} ∪

∪m ∈ usersOf (d) cycle[m] × sched[m, b] × using[m, d]

)
(8.16)

132 8 proposed model extensions

Lastly, Eqs. 8.15 and 8.16 implicitly assume that ϕ-matches are always scheduled
first.2 This can be ensured by

∀m ∈ Mϕ : cycle[m] � 0. (8.17)

2This is because data defined and used within loops must be live across the entire loop, meaning
the live ranges must start at the beginning of the block. Since the ϕ-matches define the data to be used
within the loop, these must appear first in the schedule.

CHAPTER

9
Conclusions and Future Work

This chapter closes the dissertation by presenting conclusions in Sect. 9.1 and future
work in Sect. 9.2.

9.1 Conclusions

This dissertation has introduced universal instruction selection – a new approach that,
for the first time, integrates instruction selection, global code motion, and block
ordering.1

By doing so, it addresses several limitations of existing instruction selection
techniques that have been identified through a comprehensive and systematic
literature survey. First, none of these can readily be extended for integrating global
code motion or block ordering. Second, all existing combinatorial approaches are
restricted to tree- and DAG-shaped patterns. Third, with the exception of Tanaka
et al. [348], no combinatorial approach takes the cost of data copying into account.
Fourth, all combinatorial approaches only deal with data flow. Consequently, the
existing approaches fail to exploit many of the instructions provided by modern
processors, thereby sacrificing code quality.

To handle the combinatorial nature of these problems, the approach is based on
constraint programming. It relies on a novel combinatorial model that is simpler and
more flexible compared to the techniques currently used in modern compilers. In
addition to integrating instruction selection, global code motion, and block ordering,
the model also integrates data copying and value reuse. Data copying takes the
cost of moving data into account, which is crucial for avoiding greedy use of SIMD
instructions. This feature is currently ignored by nearly all existing combinatorial
approaches. Value reuse enables copies of values to be shared among instructions,
which is crucial for code quality. The dissertation has also proposed extensions to

1The source code is freely available on github.com/unison-code/uni-instr-sel.

133

github.com/unison-code/uni-instr-sel

134 9 conclusions and future work

the model for integrating instruction scheduling and register allocation, which are
two other important tasks of code generation.

The model is enabled by the universal representation – a novel, graph-based
representation that unifies data flow and control flow for entire functions. Not
only is the universal representation crucial for combining instruction selection
with global code motion, it also enables instructions whose behavior contains both
data and control flow to be modeled as graphs. Hence there is no longer need for
hand-written routines to handle instructions that violate underlying assumptions
about the instruction set.

To make the approach work in practice, numerous solving techniques have
been introduced. Through experimental evaluation, it has been shown that these
techniques collectively improve solving time up to 132], with a GMI of 6.21×.
Hence these solving techniques are crucial for scalability and enable the approach
to scale up to medium-sized functions.

The approach has been experimentally evaluated in comparing the code quality
it produces for Hexagon – a DSP with a rich instruction set – with that produced by
LLVM – a existing, state-of-the-art compiler. In these experiments, the approach
improves the estimated execution time of functions by up to 0.181], with a GMI of
1.03×. Hence the approach can handle hardware architectures with rich instruction
sets and generates code of equal or better quality compared to the state of the art.

Experiments have also been performed to evaluate the impact of SIMD instruction
selection. The results show that the approach can improve code quality when
such instructions are available. In one case the computations originally reside in
different blocks, but due to global code motion the approach is able to move the
computations to the same block and implement these using a single instruction.
Hence there is sufficient data parallelism to be exploited through selection of SIMD
instructions without having to resort to loop unrolling Moreover, this exploitation
benefits from global code motion.

With these results, the dissertation has shown that constraint programming
is a flexible, practical, competitive, and extensible approach for combining global
instruction selection, global code motion, and block ordering.

9.2 Future Work

Generating Executable Code So far the quality of the code generated using
universal instruction selection has only been statically estimated. For a more
accurate evaluation – and for putting the approach into practical use – the generated
code must be hooked into the post-instruction selection step of an existing compiler.
While this is primarily an engineering task, it is also a method for evaluating its
applicability.

Selecting Instructions for X86 Since X86 is extremely common among today’s
processors, it is of great interest to evaluate universal instruction selection for

9.2 future work 135

this architecture. Like Hexagon, X86 has a rich instruction set that is especially
geared towards SIMD instructions, with AVX-512 as its latest extension [200].
The instruction set also has many instructions, such as hardware loops, whose
behavior contains control flow and can therefore not be modeled using standard
representations. In addition, most modern compilers are highly optimized for
generating code for this architecture, which means that even a minor gain in code
quality is considered a significant improvement.

Integrating Recomputation As discussed in Chap. 5, the constraint model does
not support recomputation (the task of recomputing values appearing in common
subexpressions instead of reusing them), which can have negative impact on code
quality. Moreover, recomputation is essential for supporting if-conversion (the task
of converting if-then-else statements into straight-line assembly code), which can
improve code quality.

Adapting the constraint model to integrate recomputation is a complex un-
dertaking as many of the solving techniques rely on the fact that every operation
and datum is covered respectively defined exactly once. Hence further research is
needed for either reformulating the solving techniques or redesigning the model.

Integrating Instruction Scheduling and Register Allocation It is well known that
the three main problems of code generation – instruction selection, instruction
scheduling, and register allocation – are interconnected with one another. Therefore,
in order to generate truly optimal code one must solve all these problems in unison.

Such extensions of the constraint model have already been proposed, but they
lack the necessary model refinements and solving techniques that are crucial for
making the model scale beyond anything larger but the smallest of functions. Hence
further research is needed for making such an approach work in practice.

APPENDIX

A
Macro Expansion

This appendix considers techniques based on macro expansion. First, we introduce
the principle in Sect. A.1. We then describe early applications in Sect. A.2, moving
on to more sophisticated techniques in Sect. A.3. We discuss limitations of this
principle in Sect. A.4 and then summarize in Sect. A.5.

The appendix is based on material presented in [186, Chap. 2] that has been
adapted for this dissertation. To not disturb the flow of reading, material already
presented in Chap. 2 is duplicated in this appendix. The techniques described here
includes all those covered in earlier surveys by Cattell [68] and Ganapathi et al.
[153], several of which are also discussed in depth by Lunell [260]. In [153] this
principle is called interpretative code generation.

A.1 The Principle

The first principle to emerge was macro expansion, with applications starting to
appear in the 1960s. In macro expansion, the instructions are expressed as macros

which consist of two parts: a template to be matched over the function under
compilation, and an expand procedure to be executed upon the part of the function
that was matched. An example of such a procedure is given in Fig. A.1. A macro

expander traverses the function and tries to match the templates of the macros,
typically in the order they are declared in the machine description. Upon a match it
executes the corresponding expand procedure and then resumes the traversal with
the next, unmatched part until the entire function has been expanded. Consequently,
the matching and selection problems are combined into a single task as the first
macro matched is also the selected macro.

The main benefit of macro expansion is that it is intuitive and straightforward to
apply. Because the macro expander is implemented separately from the macros, the
former can be kept generic and simple while the latter can be made as customized
as needed for the target machine. This also allows the macro expander to be void

137

138 a macro expansion

expand($3 ← $1 + $2) {
r1 = getRegOf($1);
r2 = getRegOf($2);
r3 = mkNewReg($3);
print "add " + r3 + ", " + r1 + ", " + r2;

}

Figure A.1: Example of a macro expanding an IR addition into assembly code. The
template to match is given as argument to expand, and the procedure to run upon
expansion is given as expand’s body.

* = CAR.*.
I = CDR(’21)
CDR(’11) = CAR(I).

.X

(a) A macro definition.

A = CAR B.

(b) String that matches
the template.

I = CDR(38)
CDR(36) = CAR(I)

(c) After macro expansion.

Figure A.2: Example of macro expansion using Simcmp [294].

of any target-specific details, thus requiring only the macros to be rewritten when
retargeting the compiler to another machine. To this end, the macros are typically
written in some dedicated language in order to simplify this task by raising the
level of abstraction.

A.2 Naive Macro Expansion

A.2.1 Early Applications

We will refer to instruction selectors that directly apply the principle just described
as naive macro expanders, for reasons that will soon become apparent. In the first
such implementations, the macros were either written by hand – like in the Pascal
compiler developed by Ammann et al. [12, 13] – or generated automatically from a
machine description, typically written in some dedicated language. Consequently,
many such languages and related tools have appeared – and then disappeared –
over the years (see for example [57] for an early survey).

One such example is Simcmp, a macro expander developed in 1969 by Orgass
and Waite [294]. Designed to facilitate bootstrapping,1 Simcmp read its input line by
line, compared the line against the templates of the available macros (see Fig. A.2
for an example), and then executed the first macro that matched.

Another example is the GCL, developed by Elson and Rake [112], which was used
in a PL/1 compiler for generating assembly code from abstract syntax trees (ASTs),

1
Bootstrapping is the process of writing a compiler in the programming language it is intended to

compile.

a.2 naive macro expansion 139

tt = a + b
c = t1 * 2

(a) IR code.

×

+ 2

a b

(b) Expression tree.

Figure A.3: Example of an expression tree.

which are graph-based representations of the source code that are always shaped
like trees. The most important feature of these trees is that only a syntactically valid
function can be transformed into an AST, which simplifies the task of the instruction
selector. However, the basic principle of macro expansion remains the same.

A.2.2 Using IR Instead of ASTs

Performing instruction selection directly on the source code, either in its textual
form or on the AST, carries the disadvantage of tightly coupling the backend to a
particular programming language. Most compiler infrastructures therefore rely
on some lower-level, machine-independent intermediate representation (IR) which
isolates the subsequent target-independent optimizations and the backend from
the details of the programming language. The IR code is often represented as an
expression tree, which is a tree-shaped data-flow graph (see Fig. A.3). It is common
to omit any intermediate variables from the expression tree and only keep those
signifying the input and output values of the expression, as shown in the example.
This also means that an expression tree can only represent a set of computations
performed within the same block, which thus may contain more than one expression
tree. Since these representations only capture data flow, the function’s control flow
is represented separately as a control-flow graph.

One of the first IR-based schemes was developed by Wilcox [367]. Implemented
in a PL/C compiler, the AST is first transformed into machine-independent code
consisting of source language machine (SLM) instructions. The instruction selector
then maps each SLM instruction into one or more target-specific instructions using
macros defined in a language called Interpretive Coding Language (ICL) (see Fig. A.4
for an example). In practice, these macros turned out to be tedious and difficult
to write. Many details, such as addressing modes and data locations, had to be
dealt with manually from within the macros. In the case of ICL, the macro writer
also had to keep track of which variables were part of the final assembly code, and
which variables were auxiliary and only used to aid the code generation process. In
an attempt to simplify this task, Young [378] proposed (but never implemented) a
higher-level language called Template Language (TEL) that would abstract away some
of the implementation-oriented details. The idea was to first express the macros as
TEL code and then to automatically generate the lower-level ICL macros from the

140 a macro expansion

ADDB BR A,ADDB1 If A is in a register, jump to ADDB1
BR B,ADDB2 If B is in a register, jump to ADDB2
LGPR A Generate code to load A into register

ADDB1 BR B,ADDB3 If B is in a register, jump to ADDB3
GRX A,A,B Generate A+B
B ADDB4 Merge

ADDB3 GRR AR,A,B Generate A+B
ADDB4 FREE B Release resources assigned to B
ADDB5 POP 1 Remove B descriptor from stack

EXIT

ADDB2 GRI A,B,A Generate A+B
FREE A Release resources assigned to A
SET A,B A now designates result location
B ADDB5 Merge

Figure A.4: A binary addition macro in ICL [367].

machine description.

A.2.3 Generating the Macros from a Machine Description

As with Wilcox’s design, many of the early macro-expanding instruction selectors
depended on macros that were intricate and difficult to write. In addition, many
compiler developers often incorporated register allocation into these macros, which
further exacerbated the problem. For example, if the target machine exhibits
multiple sets of registers, called register classes, and has special instructions to move
data from one class to another, a record must be kept of which value reside in
which register. Then, depending on the register assignment, the instruction selector
needs to emit the appropriate data-transfer instructions in addition to the rest
of the assembly code. Due to the exponential number of possible situations, the
complexity that the macro designer has to manage can be immense.

Automatically Inferring Necessary Data Transfers The first attempt to address
this problem was made by Miller [275]. In his master’s thesis from 1971, Miller
introduces a code generation system called Dmacs that automatically infers the
necessary data transfers between memory and different register classes. By encap-
sulating this information in a separate machine description, Dmacs was also the
first system to allow the details of the target machine to be declared separately
instead of being implicitly embedded into the macros.

Dmacs relies on two proprietary languages. The first language, Machine-

Independent Macro Language (MIML), declares a set of procedural two-argument
commands that serves as the IR format (see Fig. A.5 for an example). The second
language, Object Machine Macro Language (OMML), is a declarative language used for

a.2 naive macro expansion 141

1: SS C,J
2: IMUL 1,D
3: IADD 2,B
4: SS A,I
5: ASSG 4,3

Figure A.5: An example on how an arithmetic expression A[I] = B + C[J] * D
is represented using MIML commands [275]. The SS command is used for data
referencing and the ASSG command assigns a value to a variable. The arguments to
the MIML commands are referred to either by a variable symbol or by line number.

rclass REG:r2,r3,r4,r5,r6
rclass FREG:fr0,fr2,fr4,fr6
...
rpath WORD->REG: L REG,WORD
rpath REG->WORD: ST REG,WORD
rpath FREG-WORD: LE FREG,WORD
rpath WORD->FREG: STE FREG,WORD
...
ISUB s1,s2
from REG(s1),REG(s2) emit SR s1,s2 result REG(s1)
from REG(s1),WORD(s2) emit S s1,s2 result REG(s2)

FMUL m1,m2 (commutative)
from FREG(m1),FREG(m2) emit MER m1,m2 result FREG(m1)
from FREG(m1),WORD(m2) emit ME m1,m2 result FREG(m1)

Figure A.6: Partial machine description for IBM-360 in OMML [275]. The rclass
command declares a register class, and the rpath command declares a permissible
transfer between a register class and memory (or vice versa) along with the
instruction that implements the transfer.

implementing the macros that will transform each MIML command into assembly
code. So far this scheme is similar to the one applied by Wilcox.

When adding support for a new target machine, a macro designer first specifies
the set of available register classes (including memory) as well as the permissible
transfer paths between these classes. The macro designer then defines the OMML
macros by providing, for each macro, a list of instructions that implements the
corresponding MIML command on the target machine. If necessary, a sequence of
instructions can be given to emulate the effect of a single MIML command. Lastly,
constraints are added that force the input and output data to reside in the locations
expected of the instruction. Figure A.6 shows excerpts of an OMML specification
for an IBM machine.

Dmacs uses this information to generate a collection of finite state automata
(or state machines, as they are also called) to determine how a given set of input
values can be transferred into locations that are permissible for a given OMML
macro. Each state machine consists of a directed graph where a node represents a

142 a macro expansion

specific configuration of register classes and memory, some of which are marked as
permissible. The edges indicate how to transition from one state to another, and are
labeled with the machine instruction that will enable the transition when executed
on a particular input value. During compilation the instruction selector consults
the appropriate state machine as it traverses from one MIML command to the next,
using the input values of the former to initialize the state machine. As the state
machine transitions from one state to another, the machine instructions appearing
on the edges are emitted until the state machine reaches a permissible state.

The work by Miller was pioneering but limited: Dmacs only handled arithmetic
expressions consisting of integer and floating-point values, its addressing mode
support was limited, and it could not model other target machine classes such as
stack-based architectures. In his 1973 doctoral dissertation, Donegan [104] extended
Miller’s ideas by proposing a new language called Code Generator Preprocessor

Language (CGPL). Donegan’s proposal was put to the test in the 1978 master’s thesis
by Maltz [264], and was later extended by Donegan et al. [103]. Similar techniques
have also been developed by Tirrell [350] and Simoneaux [338]. Ganapathi et al.
[153] also describe in their survey another state machine-based compiler called
Ugen, which was derived from a virtual machine called U-Code [301].

Further Improvements In 1975, Snyder [340] implemented one of the first fully
operational and portable C compilers, where the target machine-dependent parts
could be automatically generated from a machine description. The design is similar
to Miller’s in that the frontend first transforms the function into an equivalent
representation for an abstract machine. In Snyder’s design this representation
consists of abstract machine operations (AMOPs), which are then expanded into target-
specific instructions via macros. The abstract machine and macros are specified
in a machine description language which is also similar to Miller’s, but handles
more complex data types, addressing modes, alignment, as well as branching and
function calls. If needed, more complicated macros can be defined as customized
C functions. We mention Snyder’s work primarily because it was later adapted by
Johnson [203] in his implementation of PCC, which we will discuss in Ap. B.

Fraser [143, 144] also recognized the need for human knowledge to guide the
code generation process, and implemented a system with the aim of facilitating
the addition of handwritten rules when these are required. First the function
is transformed into a representation based on a programming language called
Extensible Language (XL), which is akin to high-level assembly code. For example, XL
provides primitives for array accesses and for loops. As in the cases of Miller and
Snyder, the instructions are provided via a separate description that maps directly
to a distinct XL primitive. If some portion of the function cannot be implemented by
any of the available instructions, the instruction selector will invoke a set of rules to
rewrite the XL code until a solution is found. For example, array accesses are broken
down into simpler primitives, and the same rule base can also be used to improve
the code quality of the generated assembly code. Since these rules are provided as

a.2 naive macro expansion 143

instruction bit string

L B2, D(0, BD) XXXXXXXX00000000

LH B2, D(0, B2) 0000111100000000

LR R1, R2 0000110100001101

Table A.1: Example of instruction bit strings [259]. An Xmeans that it will always
match any bit in a given bit string.

a separate machine description, they can be customized and augmented as needed
to fit a particular target machine.

As we will see, this idea of “massaging” the function until a solution can be
found has been applied, in one form or another, by many instruction selectors
that both predate and succeed Fraser’s design. Although they represent a popular
approach, a significant drawback of such schemes is that the instruction selector
may get stuck in an infinite loop if the set of rules is incomplete for a particular
target machine, and determining if this is the case is often far from trivial. Moreover,
such rules tend to be hard to reuse for other target machines.

A.2.4 Reducing Compilation Time with Tables

Despite their already simplistic nature, macro-expanding instruction selectors can
be made even more so by representing the 1-to-1 or 1-to-n mappings as sets of
tables. This further emphasizes the separation between the machine-independent
core of the instruction selector from the machine-dependent mappings, as well as
allows for denser implementations that require less memory and potentially reduce
the compilation time.

Instruction Selection Using Bit Strings In 1969 Lowry and Medlock [259] intro-
duced one of the first table-driven methods for code generation.

In their implementation of the Fortran H Compiler (FHC), Lowry and Medlock
essentially perform instruction selection after register allocation depending on
the status of the operands to a computation. These statuses are represented as
bit strings, which are then matched against the corresponding bit strings for the
instructions (see Tab. A.1 for examples). The bits represent restrictions applied by
the instructions, for example that the first operand must be fetched from memory,
the second operand must reside in a register whose content will be erased because
the result will be placed in the same register.

The main disadvantage of Lowry and Medlock’s design was that the tables
could only be used for the most basic of instructions, and had to be written by
hand in the case of FHC. More extensive designs were later developed by Tirrell
[350] and Donegan [104], but these also suffered from similar disadvantages of
making too many assumptions about the target machine, thus hindering compiler
retargetability.

144 a macro expansion

Expanding Macros Top-Down Later Krumme and Ackley [229] introduced a table-
driven design which, unlike the earlier techniques, exhaustively enumerates all
valid combinations of selectable instructions, schedules, and register allocations for
a given expression tree. Implemented in a C compiler targeting DEC-10 machines,
the technique also allows code size to be factored in as an optimization goal,
which was an uncommon feature at the time. Krumme and Ackley’s backend
applies a recursive algorithm that begins by selecting instructions for the root in
the expression tree, and then working its way down. In comparison, the bottom-up
techniques we have examined so far all start at the leaves and then traverse upwards.
We settle with this distinction for now as we will resume and deepen the discussion
of bottom-up vs. top-down instruction selection in Ap. B.

Enumerating all valid combinations in code generation leads to a combinatorial
explosion, thus making it impossible to actually produce and check each and every
one of them. To curb this immense complexity, Krumme and Ackley applied a
variant of branch and bound as search strategy (see Chap. 3 on p. 53).2 The problem is
how to prove that a given branch in the search space will definitely lead to solutions
that are worse than what we already have (and can thus be skipped). Krumme
and Ackley only partially tackled this problem by pruning away branches that for
sure will eventually lead to failure and thus yield no solution whatsoever. Without
going into too much detail, this is done by using not just a single instruction table
but several – one for each so-called mode – which are constructed in a hierarchical
manner. In this context, a mode is oriented around the result of an expression,
for example whether it is to be stored in a register or in memory. Using these
tables, the instruction selector can look ahead and detect whether the current set of
already-selected instructions will lead to a dead end. With this as the only method
of branch pruning, however, the instruction selector will make many needless
revisits in the search space, and consequently does not scale to larger expression
trees.

A.2.5 Falling Out of Fashion

Despite the improvements we have just discussed, they still do not resolve the main
disadvantage of macro-expanding instruction selectors – namely, that they can
only handle macros that expand a single AST or IR node at a time. The limitation
can be somewhat circumvented by allowing information about the visited nodes
to be forwarded from one macro to the next, thereby postponing assembly code
emission in the hopes that more efficient instructions can be used. However, if done
manually – which was often the case – this quickly becomes an unmanageable task
for the macro writer, in particular if backtracking becomes necessary due to faulty
decisions made in prior macro invocations.

2In their paper, Krumme and Ackley actually call this α-β pruning, which is an entirely different
search strategy, but their description of it fits more the branch and bound approach. Both are well
explained in [323].

a.3 improving code quality with peephole optimization 145

Thus naive macro expanders are effectively limited to supporting only single-
output instructions.3 This has a detrimental effect on code quality for target
machines exhibiting more complicated features, such as multi-output instructions
Consequently, instruction selectors based solely on naive macro expansion were
quickly replaced by newer, more powerful techniques that started to appear in the
late 1970s. One of these we will discuss later in this appendix.

Rekindled Application in the First Dynamic Code Generation Systems Having
fallen out of fashion, naively macro-expanding instruction selectors later made a
brief reappearance in the first dynamic code generation systems that were developed
in the 1980s and 1990s. In such systems the function is first compiled into byte code,
which is a kind of target-independent machine code that can be interpreted by an
underlying runtime environment. By providing an identical environment on every
target machine, the same byte code can be executed on multiple systems without
having to be recompiled.

The cost of this portability is that running a function in interpretive mode is
typically much slower than executing native machine code. This performance
loss can be mitigated by incorporating a compiler into the runtime environment.
First, the byte code is profiled as it is executed. Frequently executed segments,
such as inner loops, are then compiled into native machine code. Since the code
segments are compiled at runtime, this scheme is called just-in-time (JIT) compilation,
which allows performance to be increased while retaining the benefits of the
byte code. If the performance gap between running byte code instead of native
machine code is large, then the compiler can afford to produce assembly code of
low quality in order to decrease the overhead in the runtime environment. This
was of great importance for the earliest dynamic runtime systems where hardware
resources were typically scarce, which made macro-expanding instruction selection
a reasonable option. A few examples include interpreters for Smalltalk-80 [99] and
Omniware [1] (a predecessor to Java). More examples include code generation
systems such as VCode [117], GBurg [142] (used inside a small virtual machine),
and Gnu Lightning [15] (a code generation library inspired by VCode).

As technology progressed, however, dynamic code generation systems also
began to transition to more powerful techniques for instruction selection such as
tree covering, which will be described in Ap. B.

A.3 Improving Code Quality with Peephole Optimization

An early but still applied method of improving the quality of generated assembly
code is to perform a subsequent program optimization step that attempts to combine
and replace several instructions with shorter, more efficient alternatives. These

3This is a truth with modification. A macro expander can emit multi-output instructions, but only
one of its output values will be retained in the assembly code.

146 a macro expansion

routines are known as peephole optimizers for reasons which will soon become
apparent.

A.3.1 What Is Peephole Optimization?

In 1965, McKeeman [274] advocated the use of a simple but often neglected program
optimization procedure known as peephole optimization. As a post-step to code
generation, peephole optimization inspects a small sequence of instructions in
the assembly code and attempts to combine two or more adjacent instructions
with a single instruction. The name is thus derived from its narrow window of
observation, and similar ideas were also suggested by Lowry and Medlock [259]
around the same time. Doing this reduces code size and improves performance
as using complex instructions is often more efficient than using several simpler
instructions to implement the same functionality.4

Modeling Instructions with Register Transfer Lists Since this kind of optimiza-
tion is tailored for a particular target machine, the earliest implementations were
(and still often are) done ad hoc and by hand. For example, in 2002, Krishnaswamy
and Gupta [227] wrote a peephole optimizer by hand which reduces code size by
replacing known patterns of ARM code with smaller equivalents. Recognizing the
need for automation, Fraser [139] introduced in 1979 the first technique that allowed
peephole optimizers to be generated from a formal description. The technique is
also described in a longer article by Davidson and Fraser [95].

Like Miller, Fraser described the semantics of the instructions separately in a
symbolic machine description. The machine description describes the observable
effects that each instruction has on the target machine’s registers. Fraser called these
effects register transfers (RTs), and each instruction thus has a corresponding register

transfer list (RTL). For example, assume that we have a three-address add instruction
which adds an immediate value imm to the value in register rs, stores the result in
register rd, and sets a zero flag Z. For this instruction, the corresponding RTL would
be expressed as

RTL(add) �
{
rd ← rs + imm
Z ← rs + imm � 0

}
.

The RTLs are then fed to a program called Peephole Optimizer (PO), which
produces a program optimization routine that makes two passes over the generated
assembly code. The first pass runs backwards across the assembly code to determine
the observable effects (that is, the RTL) of each instruction in the assembly code.
This allows effects that have no impact on the function’s observable behavior to be
removed. For example, if the value of a status flag is not read by any subsequent
instruction, it is considered to be unobservable and can thus be ignored. The second
pass then checks whether the combined RTLs of two adjacent instructions are equal

4This idea was applied by Cho et al. [74] for reselecting instructions in order to improve iterative
modulo schedules for DSPs.

a.3 improving code quality with peephole optimization 147

to that of some other instruction (in PO this check is done via a series of string
comparisons). If such an instruction is found, the pair is replaced and the routine
backs up one instruction in order to check the combination of the new instruction
with the following instruction in the assembly code. This way replacements can be
cascaded and many instructions reduced into a single equivalent, provided there
exists an appropriate instruction for each intermediate step.

Pioneering as it was, PO also had several limitations. The main drawbacks were
that it only supported combinations of two instructions at a time, and that these had
to be lexicographically adjacent in the assembly code. The instructions were also
not allowed to cross block boundaries, meaning that they had to belong to the same
block. Davidson and Fraser [93] later removed the limitation of lexicographical
adjacency by making use of data-flow graphs instead of operating directly on the
assembly code. In addition, they extended the size of the instruction window from
pairs to triples.

Further Developments Much research has been dedicated to improving auto-
mated approaches to peephole optimization. In 1983, Giegerich [161] proposed a
formal design that eliminates the need for a fixed-size instruction window. Shortly
after, Kessler [215] introduced a method where RTL combinations and comparisons
can be precomputed as the compiler is built, thus decreasing compilation time.
Kessler [214] later expanded his work to incorporate an n-size instruction window,
similar to that of Giegerich, although at an exponential cost.

Another scheme was developed by Massalin [271] who implemented a system
called the Superoptimizer, and similar systems have subsequently been referred to
as superoptimizers. The Superoptimizer accepts small functions written in assembly
code, and then exhaustively combines sequences of instructions to find shorter
implementations that exhibit the same behavior as the original function.5 Granlund
and Kenner [170] later adapted Massalin’s ideas into a method that minimizes
the number of branches. Both implementations, however, were implemented by
hand and customized for a particular target machine. Moreover, neither makes
any guarantees on correctness. A technique for automatically generating peephole
optimization-based superoptimizers was developed by Bansal and Aiken [34],
where the superoptimizer learns to optimize short sequences of instructions from a
set of training functions. A couple of designs that guarantee correctness have been
developed by Joshi et al. [205, 206] and Crick et al. [90], who applied automatic
theorem proving and answer set programming (ASP) (see [171] for an overview of
ASP), respectively. Recently, a similar technique based on quantifier-free bit-vector
logic formulas was introduced by Srinivasan and Reps [343].

5The same idea has also been applied by El-Khalil and Keromytis [217] and Anckaert et al. [14],
where the assembly code of compiled functions is modified in order to support steganography (the covert
insertion of secret messages). For example, Anckaert et al. used this technique on nine functions from
the SPECint 2000 benchmark suite in order to embed and extract William Shakespeare’s play King Lear.

148 a macro expansion

expander combiner
IR RTLs assembly

code

Figure A.7: Overview of the Davidson-Fraser approach.

A.3.2 Combining Naive Macro Expansion with Peephole Optimization

Up to this point peephole optimizers had mainly been used to improve already-
generated assembly code – in other words, after instruction selection had been
performed. In 1984, however, Davidson and Fraser [93] developed an instruction
selection technique that incorporates the power of peephole optimization with the
simplicity of macro expansion. Similar yet unsuccessful strategies had already
been proposed earlier by Auslander and Hopkins [30] and Harrison [177], but
Davidson and Fraser struck the right balance between compiler retargetability and
code quality which made it a viable option for production-quality compilers. This
scheme has hence become known as the Davidson-Fraser approach, and variants
of it have been used in several compilers, such as the Y Compiler (YC) [94], the
ZephyrVPO system [16], the Amsterdam Compiler Kit (ACK) [349], and – most
famously – the GNU Compiler Collection (GCC) [218, 344].

The Davidson-Fraser Approach In the Davidson-Fraser approach the instruction
selector consists of two parts: an expander and a combiner (see Fig. A.7). The task of
the expander is to transform the function into a series of RTLs. The transformation
is done by executing simple macros that expand every node in the expression
tree (assuming the function is represented as such) into a corresponding RTL that
describes the effects of that node. Unlike the previous macro expanders we have
discussed, these macros do not incorporate register allocation. Instead the expander
assigns each result to a virtual storage location called a temporary, of which it is
assumed there exists an infinite amount. A subsequent register allocator then
assigns each temporary to a register, potentially inserting additional code that saves
some values to memory for later retrieval when the number of available registers is
not enough (this is called spilling). After expansion, but before register allocation,
the combiner is run. Using the same technique as that behind PO, the combiner
tries to improve code quality by combining several RTLs in the function into a single,
larger RTL that corresponds to some instruction on the target machine. For this
to work, both the expander and the combiner must at every step adhere to a rule,
called the machine invariant, which dictates that every RTL in the function must be
implementable by a single instruction.

By using a subsequent peephole optimizer to combine the effects of multiple
RTLs, the instruction selector can effectively extend over multiple nodes in the AST
or expression tree, potentially across block boundaries. The instruction support in
Davidson and Fraser’s design is therefore in theory only restricted by the number
of instructions that the peephole optimizer can compare at a time. For example,

a.3 improving code quality with peephole optimization 149

expander optimizations

recognizer

IR RTLs assembly
code

Figure A.8: Overview of Dias and Ramsey’s design.

opportunities to replace three instructions by a single instruction will be missed if
the peephole optimizer only checks pair combinations. But increasing the window
size typically incurs an exponential cost in terms of added complexity, thus making
it difficult to handle complicated instructions that require large instruction windows.

Further Improvements Fraser and Wendt [138] later expanded the work by David-
son and Fraser. In a paper from 1988, Fraser and Wendt describe a method where
the expander and combiner are effectively fused together into a single component.
The idea is to generate the instruction selector in two steps. The first step produces a
naive macro expander that is capable of expanding a single IR node at a time. Unlike
Davidson and Fraser, who implemented the expander by hand, Fraser and Wendt
devised a design that can be automatically generated from a machine description.
The design relies on an elaborate scheme consisting of a series of switch and goto
statements, which effectively implement a state machine. Once produced, the
macro expander is executed on a carefully designed training set. Using function
calls embedded into the instruction selector, a retargetable peephole optimizer
is executed in tandem which discovers and gathers statistics on target-specific
optimizations that can be done on the generated assembly code. Based on these
results, the beneficial optimization decisions are then selected and incorporated
directly into the macro expander. This effectively enables the macro expander to
expand multiple IR nodes at a time, thus removing the need for a separate peephole
optimizer in the final compiler. Fraser and Wendt argued that as the instruction
selector only implements the optimization decisions that are deemed to be “useful,”
the code quality is improved with minimal overhead. Wendt [364] later improved
the technique by providing a more powerful machine description format, also based
on RTLs, which subsequently evolved into a compact standalone language used for
implementing code generators (see Fraser [137]).

Enforcing the Machine Invariant with a Recognizer The Davidson-Fraser ap-
proach was also extended by Dias and Ramsey [101]. Instead of requiring each
separate RTL-oriented optimization routine to abide by the machine invariant, Dias
and Ramsey’s design employs a recognizer to determine whether an optimization
decision violates the aforementioned restriction (see Fig. A.8). The idea is that, by

150 a macro expansion

default attribute
add(rd, rs1, rs2) is $r[rd] := $rs[rs1] + $r[rs2]

Figure A.9: An add instruction from the PowerPC instruction set, specified using
λ-RTL [100].

doing so, the optimization routines can be simplified and generated automatically
as they no longer need to internalize the machine invariant.

In a paper from 2006, Dias and Ramsey demonstrate how the recognizer can
be produced from a declarative machine description written in λ-RTL. Originally
developed by Ramsey and Davidson [313], λ-RTL is a high-level functional language
based on Metalanguage (ML) and raises the level of abstraction for writing RTLs
(see Fig. A.9 for an example). In their paper, Dias and Ramsey claim that λ-
RTL-based machine descriptions are more concise and simpler to write compared
to those of many other designs, including GCC. In particular, λ-RTL is precise
and unambiguous, which makes it suitable for automated tool generation and
verification. The latter has been explored by Fernández and Ramsey [132] and
Bailey and Davidson [31].

The recognizer checks whether an RTL in the function fulfills the machine
invariant by performing a syntactic comparison between that RTL and the RTLs of
the instructions. However, if a given RTL in the function has n operations, and a
given λ-RTL description contains m instructions whose RTL contains l operations,
then a naive implementation would take O(nml) time to check a single RTL. Instead,
using techniques to be discussed in Ap. B, Dias and Ramsey automatically generate
the recognizer as a finite state automaton that can compare a given RTL against all
RTLs in the λ-RTL description with a single check.

“One Program to Expand Them All” In 2010, Dias and Ramsey [100, 314] intro-
duced a scheme where the macro expander only needs to be implemented once per
every distinct architecture family instead of once per every distinct instruction set. For
example, register-based and stack-based machines are two separate architecture
families, whereas X86, PowerPC, and Sparc are three different instruction sets. In
other words, if two target machines belong to the same architecture family, then the
same expander can be used despite the differing details in their instruction sets.
This is useful because the correctness of the expander only needs to be proven once,
which is a difficult and time-consuming process if it is written by hand.

The idea is to have a predefined set of tiles that are specific for a particular
architecture family. A tile represents a simple operation which is required for any
target machine belonging to that architecture family. For example, stack-based
machines require tiles for push and pop operations, which are not necessary on
register-based machines. Then, instead of expanding each IR node in the function
into a sequence of RTLs, the expander expands it into a sequence of tiles. Since the
set of tiles is identical for all target machines within the same architecture family,

a.3 improving code quality with peephole optimization 151

the expander only needs to be implemented once. After macro expansion the tiles
are replaced by the instructions used to implement each tile, and the resulting
assembly code can then be improved by the combiner.

A remaining problem is how to find instructions to implement a given tile for a
particular target machine. In the same papers, Dias and Ramsey describe a scheme
for doing this automatically. By expressing both the tiles and the instructions as
λ-RTL, Dias and Ramsey developed a technique where the RTLs of the instructions
are combined such that the effects equal that of a tile. In broad outline, the algorithm
maintains a pool of RTLs which initially contains those of the instructions found
in the machine description. Using algebraic laws and combining existing RTLs
to produce new RTLs, the pool is grown iteratively until either all tiles have been
implemented, or some termination criterion is reached. The latter is necessary, as
Dias and Ramsey proved that the general problem of finding implementations for
arbitrary tiles is undecidable.

Although the primary aim of Dias and Ramsey’s design is to facilitate compiler
retargetability, some experiments suggest that it potentially also yields better
code quality than the original Davidson-Fraser approach. When a prototype was
compared against the default instruction selector in GCC, the results favored the
former. However, this was seen only when all target-independent optimizations
were disabled; when they were reactivated, GCC still produced better results.

A.3.3 Running Peephole Optimization Before Instruction Selection

In the techniques just discussed, the peephole optimizer runs after code generation.
But in a scheme developed in 1989 by Genin et al. [157], a similar routine is executed
before code generation. Targeting DSPs, their compiler first transforms the function
into an internal signal-flow graph (ISFG), and then executes a routine – Genin et al.
called it a pattern matcher – which attempts to find several low-level operations in the
ISFG that can be merged into single nodes.6 Code generation is then done following
the conventional macro expansion approach. For each node the instruction selector
invokes a rule along with the information about the current context. The invoked
rule produces the assembly code appropriate for the given context, and can also
insert new nodes to offload decisions that are deemed better handled by the rules
corresponding to the inserted nodes.

According to Genin et al., experiments show that their compiler generated
assembly code that was five to 50 times faster than that produced by other, contem-
porary DSP compilers, and comparable with manually optimized assembly code. A
disadvantage of this design is that it is limited to functions where prior knowledge
about the application area – in this case digital signal processing – can be encoded
into specific optimization routines, which most likely has to be done manually.

6The paper is not clear on how this is done exactly, but presumably Genin et al. implemented the
routine as a handwritten peephole optimizer since the intermediate format is fixed and does not change
from one target machine to another.

152 a macro expansion

A.3.4 Interactive Code Generation

The aforementioned techniques yield peephole optimizers which are static once they
have been generated, meaning they will only recognize and optimize assembly code
for a fixed set of patterns. A method to overcome this issue has been designed by
Kulkarni et al. [230], which is also the first and only one to the author’s knowledge.

In a paper from 2006, Kulkarni et al. describe a compiler system called Vista,
which is an interactive compilation environment where the user is given greater
control over the compiler. Among other things, the user can alter RTLs derived
from the function’s source code and add new customized peephole optimization
patterns. Hence optimization privileges which normally are limited to low-level
assembly code programmers are also granted to higher-level programming language
users. In addition, Kulkarni et al. employed genetic algorithms – these will be
explained in Ap. B – in an attempt to automatically derive a combination of user-
provided optimization guidelines to improve the code quality of a particular
function. Experiments show that this scheme reduced code size on average by 4 %
and up to 12 % for a selected set of functions.

A.4 Limitations of Macro Expansion

Because macro-expanding instruction selectors only visit and execute macros one
IR node at a time, they require a 1-to-1 or 1-to-n mapping between the IR nodes and
the instructions in order to generate efficient assembly code. The limitation can be
mitigated by incorporating additional logic and bookkeeping into the macros, but
this quickly becomes an unmanageable task for the macro writer if done manually.
Consequently, the code quality yielded by such techniques will typically be low.
Moreover, as instructions are often emitted one at a time, it also becomes difficult to
make use of instructions that can have unintended effects on other instructions.

The Davidson-Fraser approach is therefore a more robust approach, where the
instruction selector is augmented with a peephole optimizer. Peephole optimization
is inherently only limited by the size of its window of observation and can in
theory support instructions of arbitrary complexity. Because of this versatility, the
Davidson-Fraser approach remains one of the most powerful instruction selection
techniques to date. For example, a variant is still applied in GCC as of version 4.8.2.

A.5 Summary

In this appendix we have discussed techniques and designs based on a principle
known as macro expansion, which was the first approach to perform instruction
selection. The idea behind the principle is to expand the nodes in the AST or
IR code into one or more target-specific instructions. The expansion is done via
template matching and macro invocation, which yields instruction selectors that are
resource-effective and straightforward to implement. Early techniques, however,

a.5 summary 153

applied this principle naively, yielding poor code quality. Later designs, based
on the Davidson-Fraser approach, mitigate this problem by combining instruction
selection with peephole optimization, and such techniques are still popular today.

In Ap. B we will explore another principle of instruction selection, which solves
the problem of implementing several AST or IR nodes using a single instruction in
a more direct fashion.

APPENDIX

B
Tree Covering

This appendix considers techniques based on tree covering, which is the most
common principle of techniques found in the current literature. First, we introduce
the principle in Sect. B.1. We then describe the first tree-based approaches in Sect. B.2.
In Sect. B.3 we describe parser-based approaches, where methods typically used for
syntactic analysis is reinstrumented for instruction selection. The techniques thus far
are all bottom-up-oriented, and in Sect. B.4 we describe the first top-down-oriented
approaches. In Sect. B.5 we describe the first techniques that separate the matching
and selection problems, allowing the latter to be solved optimally. In Sect. B.6
we describe other tree-based approaches that do not fit into any of the sections
above. Limitations of this principle are discussed in Sect. B.7, and we summarize in
Sect. B.8.

The appendix is based on material presented in [186, Chap. 3] that has been
adapted for this dissertation. To not disturb the flow of reading, material already
presented in Chap. 2 is duplicated in this appendix.

B.1 The Principle

As we saw in Ap. A on p. 152, the main limitation of most instruction selectors based
on macro expansion is that the scope of expansion is restricted to a single AST or IR
node. Hence exploitation of many instructions is excluded, resulting in low code
quality. Another problem is that macro-expanding instruction selectors typically
combine matching and selection into a single step, thus making it very difficult to
consider combinations of instructions and then pick the one that yields the best
assembly code. These problems can be addressed by employing tree covering.

First, the IR code is transformed into an expression tree, as we saw in Ap. A (see
Sect. A.2.2 on p. 139). Corresponding data-flow graphs, called pattern trees, are also
built to represent the instruction provided by the target machine. When the shape

155

156 b tree covering

x = A[i + 1];

(a) C code.

mv r← var

add r← s + t
mul r← s × t

muladd r← s × t + u
load r← ∗s

maload r← ∗(s × t + u)

(b) Instructions. The ∗s
notation means “get value
at address s in memory”.

+

i 1

×

4

+

A

ld

m1 m2

m3

m4
m5

m6

m7

m8

m9m10

(c) Expression tree and its
matches.

Figure B.1: Example demonstrating the pattern matching and selection prob-
lem for a function that loads a value from integer array A at offset i + 1. It is
assumed that i is stored in register, that A is stored in memory, and that an
integer is four bytes. Exact covers are {m1 , . . . ,m7 ,m9}, {m1 , . . . ,m5 ,m8 ,m9},
{m1 , . . . ,m5 ,m10}, {m1 , . . . ,m5 ,m8 ,m9} (for brevity, non-exact covers are ignored).
Variable assignments need not be explicitly represented as nodes since this informa-
tion can be propagated from the root node after having found a cover.

is clear from the context, they are simply called patterns. The set of patterns for a
particular target machine constitute a pattern set.

The matching problem can be reduced to finding all instances where a pattern
from the pattern set is subgraph isomorphic to the expression tree. Each such
instance is called a match, and the set of all matches constitute a match set. Hence,
in this context the matching problem is referred to as pattern matching. In many
contexts, matches and patterns can be used interchangeably.

Having found the match set, the selection problem – which in this context is
referred to as pattern selection – can be reduced to selecting a set of matches that
covers the expression tree. A subset M′ ⊆ M, where M is a match set, covers a
data-flow graph G, derived from a function, if every node in G appears in at least
one match in M′. Such a subset is called a cover. A cover is an exact cover if every
node in G appears in exactly one match in the cover. Most instruction selection
approaches assume exact coverage. Examples of covers are shown in Fig. B.1.

For most target machines there will be a tremendous amount of overlap among
the patterns, meaning that one pattern may match (either partially or fully) the
nodes matched by another pattern in the expression tree. Typically we want to use
as few patterns as possible to cover the expression tree. This is for two reasons:

Striving for the smallest number of patterns means favoring larger patterns

b.2 first techniques to use tree-based pattern matching 157

over smaller ones. This in turn leads to the use of more complex instructions
which typically yield higher code quality.
The amount of overlap between the selected patterns is limited, which
means that the same values will be computed multiple times only when
necessary. Keeping redundant work to a minimum is another crucial factor
for performance as well as for reducing code size.

In general, an optimal solution to the pattern selection problem is not defined as
the one that minimizes the number of selected patterns, but as the one that minimizes
the total cost of the selected patterns. This allows the pattern costs to be chosen such
that they fit the desired optimization criteria, although there is usually a strong
correlation between the number of patterns and the total cost. Note, however, that
an optimal solution to the pattern selection problem need not necessarily be an
optimal solution for the final assembly code.

Finding the optimal solution to a pattern selection problem is not a trivial task,
and it becomes even less so if only certain combinations of patterns are allowed. To
be sure, most would be hard-pressed just to come up with an efficient method that
finds all valid matches of the entire pattern set. We therefore begin by exploring
the first methods that address the pattern matching problem, but do not necessarily
address the pattern selection problem, and then gradually transition to those that
do.

B.2 First Techniques to Use Tree-Based Pattern Matching

In 1972 and 1973, the first code generation techniques known to use tree-based
pattern matching were introduced by Wasilew [361] and Weingart [362], respectively.
Unfortunately only Weingart’s work appears to be recognized by other literature,
even though Wasilew’s ideas have more in common with later tree-based instruction
selection techniques. We will briefly cover both in this dissertation, as described by
Lunell [260], who gives a more detailed account in his doctoral dissertation.

Wasilew’s Design To begin with, Wasilew devised an intermediate representation
where the functions are represented using postfix notation (or reverse Polish notation as
this is also called; we will discuss more on Polish notation in Sect. B.3.2). An example
is shown in Fig. B.2. Wasilew also developed his own programming language,
which is transformed into IR code as part of compilation. The instructions of the
target machine are described in a table, where each instruction comprises execution
time and code size information, a string constituting the assembly code, and the
pattern to be matched against the function. For each line in the function, pattern
matching is done starting at a leaf in the tree corresponding to the current line.
For this subtree, all matches are found by comparing it against all patterns in the
pattern set. The subtree is then grown to include its parent, and the new subtree
is again compared against the patterns. This continues until no new matches are
found. Once the largest match has been found, the subtree is replaced with the

158 b tree covering

AWAY m YHPASS assign
K AMA m PMFI 7 - assign
Z K AMA m ANS assign assign
X 8 + m HEAD X 6 + m I1 + m X 6 + m I2 + m assign
X Y FR AA transfer assign
X INC if-AZ BB transfer
OR m MAJ 4FCOID 4FCOIN if-equal2 1 J + transfer

Figure B.2: Example of a function expressed using Wasilew’s IR [260].

result of the pattern, and the process is repeated for the remaining parts in the tree.
If multiple largest matches are found for any subtree, the process is repeated for
each such match. This results in an exhaustive search that finds all combinations
of patterns for a given tree. Once all combinations have been found, the cheapest
combination – whose cost is based on the instructions’ execution time and code size
– is selected.

Compared to the early macro-expanding instruction selectors (at least those prior
to Davidson-Fraser), Wasilew’s design had a more extensive instruction support as
it could include patterns that extend over multipleIR nodes. However, its exhaustive
nature makes it considerably more expensive in terms of compilation time. In
addition, the notations used by Wasilew are difficult to read and write.

Weingart’s Design In comparison to Wasilew, Weingart’s design is centered
around a single tree of patterns – Weingart called this a discrimination net – which
is automatically derived from a declarative machine description. Using a single
tree of patterns, Weingart argued, allows for a compact and efficient means of
representing the pattern set. The process of building the AST is then extended to
simultaneously push each new AST node onto a stack. In tandem, the discrimination
net is progressively traversed by comparing the nodes on the stack against the
children of the current node in the net. A match is found when the process reaches
a leaf in the discrimination net, whereupon the instruction associated with the
match is emitted.

Like Wasilew’s design, Weingart’s had a more extensive instruction support
compared to the contemporary techniques as it could include patterns extending
over multiple AST nodes. However, when applied in practice, the design suffered
from several problems. First, structuring the discrimination net to support efficient
pattern matching proved difficult for certain target machines; it is known that
Weingart struggled in particular with the PDP-11. Second, the design assumes
that there exists at least one instruction on the target machine that corresponds
to a particular node type of the AST, which turned out to not always be the case.
Weingart partly addressed this problem by introducing conversion patterns, which
could transform mismatched parts of the AST into another form that hopefully
would be matched by some pattern at a later stage. However, these had to be added
manually and could potentially cause the compiler to get stuck in an infinite loop.

b.2 first techniques to use tree-based pattern matching 159

ASG PLUS, INAREG,
SAREG, TINT,
SNAME, TINT,

0, RLEFT,
" add AL,AR\n",

...
ASG OPSIM, INAREG|FORCC,

SAREG, TINT|TUNSIGNED|TPOINT,
SAREG|SNAME|SOREG|SCON, TINT|TUNSIGNED|TPOINT,

0, RLEFT|RESCC
" OI AL,AR\n"

Figure B.3: A machine description sample for PCC, consisting of two patterns [204].
The first line specifies the node type of the root (+=, for the first pattern) together
with its cookie (“result must appear in an A-type register”). The second and third
lines specify the left and right descendants, respectively, of the root. The left subtree
of the first pattern must be an int allocated in an A-type register, and the right
subtree must be a NAME node, also of type int. The fourth line indicates that no
registers or temporaries are required and that the matched part in the expression
tree is to be replaced by the left descendant of the pattern’s root. The fifth and last
line declares the assembly string, where lowercase letters are output verbatim and
uppercase words indicate a macro invocation – AL stands for “Address form of Left
operand”, and likewise for AR – whose result is then put into the assembly string.
In the second pattern we see that multiple restrictions can be or’ed together, thus
allowing multiple patterns to be expressed in a more concise manner.

Third, like its macro-expanding predecessors, the process immediately selects a
pattern as soon as a match is found.

PCC Another early pattern matching technique was developed by Johnson [203],
which was implemented in the Portable C Compiler (PCC) – a renowned system that
was the first standard C compiler to be shipped with Unix. Johnson based his design
on the earlier work by Snyder [340] (which we discussed in Sect. A.2.3), but replaced
the use of macro expansion with a method that performs tree rewriting. For each
instruction, a expression tree is formed together with a rewrite rule, subgoals,
resource requirements, and an assembly string which is emitted verbatim. This
information is given in a machine description format that allows multiple, similar
patterns to be condensed into a single declaration. An example is shown in Fig. B.3.

The pattern matching process is then relatively straightforward. For a given
node in the expression tree, the node is compared against the root of each pattern.
If these match, a similar check is done for each corresponding subtree in the pattern.
Once all leaves in the pattern are reached, a match has been found. As this algorithm
– whose pseudo-code is given in Alg. B.1 – exhibits quadratic time complexity, it is
desirable to minimize the number of redundant checks. This is done by maintaining
a set of code generation goals which are encoded into the instruction selector as an

160 b tree covering

function FindMatchSet (expression tree T, pattern set P):
1 M← array of size |T |, initialized to �
2 foreach node nT ∈ T do
3 foreach pattern p ∈ P do
4 nP ← root node of P
5 if Matches (n, nP) then
6 M[nT] ← M[nT] ∪ {p}

7 return M

8 function IsMatch (expression tree rooted at node nT , pattern tree rooted at node nP):
9 |nT | ← number of children for nT

10 |nP | ← number of children for nP
11 if nT w nP and |nT | � |nP | then
12 foreach child n′T , n

′
P of nT , nP do

13 if not IsMatch (n′T , n′P) then
14 return false

15 return true

16 else
17 return false

Algorithm B.1: A straightforward algorithm for pattern-matching trees. The
algorithm has O(n2p) time complexity, where n is the number of nodes in the
expression tree and p is the number patterns in the pattern set. The relation n1 w n2
holds for two nodes n1 and n2 if both are of the same type.

integer. For historical reasons this integer is called a cookie, and each pattern has a
corresponding cookie indicating the situations in which the pattern may be useful.
If both the cookies and the pattern match, an attempt is made to allocate whatever
resources are demanded by the pattern (for example, a pattern may require a certain
number of registers). If successful, the corresponding assembly string is emitted,
and the matched subtree in the expression tree is replaced by a single node as
specified by the rewrite rule. This process of matching and rewriting repeats until
the expression tree consists of only a single node, meaning that the entire expression
tree has been successfully converted into assembly code. If no pattern matches, the
instruction selector enters a heuristic mode where the expression tree is partially
rewritten until a match is found. For example, to match an a = reg + b pattern,
an a += b expression could first be rewritten into a = a + b and then another rule
could try to force operand a into a register.

Although successful for its time, PCC had several disadvantages. Like Weingart,
Johnson used heuristic rewrite rules to handle mismatching situations. Without
formal methods of verification there was always the risk that the current set of rules

b.3 using lr parsing to cover trees bottom-up 161

would be inadequate and potentially cause the compiler to never terminate for
certain functions. Reiser [319] also noted that the investigated version of PCC only
supported unary and binary patterns with a maximum height of 1, thus excluding
many instructions, such as those with complex addressing modes. Lastly, PCC – and
all other techniques discussed so far – still adhered to the first-matched-first-served

approach when selecting patterns.

B.3 Using LR Parsing to Cover Trees Bottom-Up

As already noted, a common flaw among the first designs is that they apply the
greediest form of pattern selection, and typically lack a formal methodology. In
contrast, syntactic analysis – which is the task of parsing the source code – is arguably
the best understood area of compilation, and its methods also produce completely
table-driven parsers that are very fast and resource-efficient.

In 1978, Glanville and Graham [163] presented a seminal paper that describes
how techniques of syntactic analysis can be adapted to instruction selection.1 Due
to its pioneers, we refer to this as the Glanville-Graham approach. We first describe
grammars, which is the representation used by Glanville and Graham for modeling
the instructions.

B.3.1 Modeling Instructions as Machine Grammars

×

+ 2

a b

⇓
× + a b 2

To begin with, a well-known method of removing the need for
parentheses in arithmetic expressions without making them
ambiguous is to use Polish notation. For example, 1 + (2 + 3) can
be written as + 1 + 2 3 and still represent the same expression.
Glanville and Graham recognized that by using this form the
instructions can be expressed as a context-free grammar. This
concept is already well described in most compiler textbooks
(see for example [9]), so we will proceed with only a brief
introduction.

A context-free grammar (or simply grammar) consists of terminals, nonterminals,
and rules. In this context, a terminal is a symbol representing an operation (e.g. +,
<, load), and a nonterminal is a symbol representing an abstract result (e.g. Reg)
produced by the instruction. To distinguish between the two, terminals are written
entirely in lower case whereas nonterminals start with a capital letter and are set in
italics. A rule describes the behavior of an instruction and consists of a production,
a non-negative cost, and an action. Productions describe how to derive nonterminals,
and are written as

α→ βγ . . .
where the left-hand side is a single nonterminal and the right-hand side is a sequence
of terminals and nonterminals. Each instruction therefore gives rise to one or more

1This had also been vaguely hinted at ten years earlier in an article by Feldman and Gries [130].

162 b tree covering

production︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷
result︷︸︸︷
Reg1 →

pattern︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨︷
+ Reg2 const

cost︷︸︸︷
4

action︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷
emit add $Reg1, $Reg2, #const︸¨̈ ¨̈︷︷¨̈ ¨̈︸

rule

Figure B.4: Anatomy of a rule in a machine grammar.

production cost action

1 Reg1→ load + Reg2 const 1 emit load $Reg1, const($Reg2)
2 Reg1→ load + const Reg2 1 emit load $Reg1, const($Reg2)
3 Reg1→ load Reg2 1 emit load $Reg1, 0($Reg2)

Table B.1: Example of grammar rules corresponding to a load $t, o($s) instruction
that loads a value from memory at the address given in register s, offset by an
immediate value o, and stores the loaded value in register t, in one cycle. The
subscripts are only needed for referencing the right nonterminal in the action.

productions, where the right-hand side of a production captures a pattern of the
instruction and the left-hand side denotes the result produced by the instruction.
Hence the left-hand and right-hand sides of a rule are referred to as the rule’s result

and pattern, respectively. The cost should be self-explanatory at this point, and the
action is the activity to perform when the rule is selected (typically, this is to emit a
string of assembly code). The rule structure is also illustrated in Fig. B.4, and an
example of a few rules is given in Tab. B.1. The collection of rules for a particular
target machine is called the machine grammar of that machine.

In most literature, rules and patterns usually have the same connotations. In
this dissertation, however, in the context of grammars a rule refers to a tuple of
production, cost, and action, and a pattern refers to the right-hand side of the
production appearing in a rule.

Not shown in the example, a machine grammar also consists of a goal symbol,
whose purpose will be explained shortly.

Normal Form To simplify pattern matching and pattern selection, a grammar can
be rewritten into normal form [32]. A grammar is in normal form if every rule in the
grammar has a production in one of the following forms:

1. N → op A1 A2 . . .An , where op is a terminal, representing an operation that
takes n arguments, and all Ai are nonterminals. Such rules are called base

rules.
2. N → t, where t is a terminal. Such rules are also called base rules.
3. N → A, where A is a nonterminal. Such rules are called chain rules.

b.3 using lr parsing to cover trees bottom-up 163

production cost action

1 Reg→ load A 1 emit load $Reg, A.C.const($A.Reg)
4 A→ + Reg C 0
2 Reg→ load B 1 emit load $Reg, B.C.const($B.Reg)
5 B→ + C Reg 0
6 C→ const 0
3 Reg1→ load Reg2 1 emit load $Reg1, 0($Reg2)

Table B.2: The grammar from Tab. 2.1 in normal form. Nonterminals A, B and C

and rules 4–6 are introduced in order to transform rules 1 and 2 into base rules.

A grammar can be mechanically rewritten into normal form by introducing new
nonterminals and breaking down illegal rules into multiple, smaller rules until the
grammar is in normal form. For example, rewriting the grammar shown in Tab. 2.1
into normal form results in the grammar shown in Tab. B.2. Note that the new rules
have zero cost and no action as these are only intermediary steps towards enabling
reduction of the original rule.

Since all productions in a grammar have at most one terminal, the pattern
matching problem becomes trivial (simply match the node type against the terminal
in all base rules). Otherwise another bottom-up traversal of the expression tree
would have to be made in order to find all matches, which can be done in linear time
for most reasonable grammars [193]. As we will see, this also simplifies pattern
selection as the patterns on the right-hand side in all productions have uniform
height.

B.3.2 The Glanville-Graham Approach

The machine grammar provides us with a formal methodology for modeling
instructions, but it does not address the problems of pattern matching and pattern
selection. For that, Glanville and Graham applied an already-known technique
called LR parsing [220]. Because this technique is mostly associated with syntactic
analysis, the same application on trees is commonly referred to as tree parsing. An
extremely deep and thorough account of the theory and practice of this approach is
given by Henry [183].

Tree Parsing As an example, let us use the machine grammar given in Fig. B.5a
to generate assembly code for the expression tree given in Fig. B.5b such that the
result ends up in a register. We assume that a and b are variables already stored in
registers and that 2 is an integer constant. Hence each node in the expression tree is
either of type +, ×, reg, or const. These will be our terminals. Because the result
should be end up in a register, we say that Reg is our goal symbol.

After transforming the expression tree into a sequence of terminals (as in
Fig. B.5c), we traverse the sequence from left to right. When doing so, we either

164 b tree covering

production cost action

1 Reg1→ + Reg2 Reg3 1 emit add $Reg1, $Reg2, $Reg3
2 Reg1→× Reg2 Reg3 1 emit mul $Reg1, $Reg2, $Reg3
3 Reg → const 1 emit mv $Reg, #const
4 Reg → reg 1

(a) Machine grammar.

+ a × b 2

(b) Expression tree.

+ rega × regb const2

(c) Sequence of terminals.

s s r4 s s r4 s r3 r2 r1

(d) Sequence of shifts and rule reductions.

Regy

Rega+ Regx

rega Regb× Reg2

regb int2

(1)

(3) (2)

(3) (3)

(e) Parse tree. The rule numbers are shown
in parentheses. The subscripts denote book
keeping data.

mv $Reg2, #2
mul $Regx, $Regb, $Reg2
add $Regy, $Rega, $Regx

(f) Assembly code.

Figure B.5: Example of tree parsing.

shift the just-traversed symbol onto a stack, or replace symbols currently on the
stack via a rule reduction. We denote a shift by s and a rule reduction by rx , where x
is the number of the reduced rule. A rule reduction consists of two steps. First, the
symbols are popped according to those that appear on the pattern of the rule. The
number and order of symbols popped must match exactly for a valid rule reduction.
Once popped, the nonterminal appearing on the left-hand side is pushed onto the
stack. When the last rule reduction has been performed, the stack must contain only
the goal symbol. For our example, a valid sequence of shifts and rule reductions
is given in Fig. B.5d. The performed rule reductions can also be represented as a
parse tree, illustrating the terminals and nonterminals which were used to parse
the sequence of terminals. Figure B.5e shows the corresponding parse tree for the
sequence shown in Fig. B.5d. Lastly, when performing a rule reduction we also
execute the action associated with the rule. For our example, the resulting assembly
code is shown in Fig. B.5f.

b.3 using lr parsing to cover trees bottom-up 165

The problem that remains is how to know when to shift and when to reduce.
This can be addressed by consulting a state table which has been generated for a
specific grammar. How this table is produced is out of scope for this dissertation,
but an example generated from the machine grammar shown in Fig. B.6 is given in
Fig. B.7. A walk-through of executing an instruction selector with this state table
using an LR parser is provided in Fig. B.8.

The subscripts that appear in some of the productions in Fig. B.6 are semantic
qualifiers, which are used to express restrictions that may appear for some of the
instructions. For example, all two-address arithmetic instructions store the result
in one of the registers provided as input. Using semantic quantifiers, this could
be expressed as R1→ + R1 R2, indicating that the destination register must be the
same as that of the first operand. To make this information available during parsing,
the parser pushes it onto the stacking along with its corresponding terminal or
nonterminal symbol. Glanville and Graham also incorporated a register allocator
into their parser, thus constituting an entire code generator.

Resolving Conflicts and Avoiding Blocking As instruction sets are rarely orthog-
onal, most machine grammars are ambiguous, meaning multiple valid parse trees
may exist for the same expression tree. This causes the instruction selector to have
the option of performing either a shift or a rule reduction, which is known as
shift-reduce conflict. To solve this kind of conflict, Glanville and Graham’s state table
generator always decides to shift. The intuition is that this will favor larger patterns
over smaller ones as a shift postpones a decision to pattern select while allowing
more information about the expression tree to accumulate on the stack.2

Unfortunately, this scheme can cause the instruction selector to fail even though
a valid parse tree exists. This is called syntactic blocking. To avoid such situations,
the grammar designer must augment the machine grammar with auxiliary rules
that patch the top of the stack when necessary. This allows the parser to recover
from situations when it greedily decides to shift instead of applying a necessary
rule reduction.

Likewise, there is also the possibility of reduce-reduce conflicts, where the parser
has the option of choosing between two or more rules in a . Glanville and Graham
resolved these by selecting the rule with the longest pattern. If the grammar contains
rules that differ only in their semantic quantifiers, then there may still exist more
than one rule to reduce (in Fig. B.6, rules 5 and 6 are two such rules). These are
resolved at parse time by checking the semantic restrictions in the order in which
they appear in the grammar (see for example state 20 in Fig. B.7).

If all rules in this set are semantically constrained, then situations can arise
where the parser is unable to apply any rule due to semantic mismatch. This
is called semantic blocking and can be resolved by always providing a default
rule that can be invoked when all other semantically constrained rules fail. This

2The approach of always selecting the largest possible pattern is a scheme commonly known as
maximum munch, which was coined by Cattell in his doctoral dissertation [69].

166 b tree covering

production action

1 R2 → + ld + c R1 R2 add R2,c,R1
2 R1 → + R1 ld + c R2 add R1,c,R2
3 R → + ld c R add R,c
4 R → + R ld c add R,c
5 R1 → + R1 R2 add R1,R2
6 R2 → + R1 R2 add R2,R1
7 → � ld + c R1 R2 store R2,*c,R1
8 → � + c R1 R2 store R2,c,R1
9 → � ld c R store R,*c

10 → � c R store R,c
11 → � R1 R2 store R2,R1
12 R2 → ld + c R1 load R2,c,R1
13 R2 → + c R1 load R2,� c,R1
14 R2 → + R1 c load R2,=c,R1
15 R2 → ld R1 load R2,*R1
16 R → ld c load R,=c
17 R → c mv R,c

Figure B.6: Example of a machine gram-
mar [163]. c (“const”), ld (“load”), +, and
� are all terminals, R is a nonterminal in-
dicating that the result will be stored in a
register, and subscripts denote the semantic
qualifiers. All rules have the same unit cost.
Rules 7–11 do not have a nonterminal on
the left-hand side as memory store instruc-
tions do not produce anything. A dummy
nonterminal can also be used if needed.

$ R c + ld �

0 accept s1
1 s2 s3 s4 s5
2 s6 s7 s8 s9
3 s10 s7 s8 s9
4 s11 s12 s8 s13
5 s14 s15 s16 s9
6 r11 r11 r11 r11 r11 r11
7 r17 r17 r17 r17 r17 r17
8 s11 s17 s8 s13
9 s14 s18 s19 s9

10 r10 r10 r10 r10 r10 r10
11 s20 s21 s8 s22
12 s23 s7 s8 s9
13 s14 s24 s25 s9
14 r15 r15 r15 r15 r15 r15
15 s26 s7 s8 s9
16 s11 s27 s8 s13
17 s28 s7 s8 s9
18 r16 r16 r16 r16 r16 r16
19 s11 s29 s8 s13
20 r5/6 r5/6 r5/6 r5/6 r5/6 r5/6
21 r14 r14 r14 r14 r14 r14
22 s14 s30 s31 s9
23 s32 s7 s8 s9
24 s33 s7 s8 s9
25 s11 s34 s8 s13
26 r9 r9 r9 r9 r9 r9
27 s35 s7 s8 s9
28 r13 r13 r13 r13 r13 r13
29 s36 s7 s8 s9
30 r4 r4 r4 r4 r4 r4
31 s11 s37 s8 s13
32 r8 r8 r8 r8 r8 r8
33 r3 r3 r3 r3 r3 r3
34 s38 s7 s8 s9
35 s39 s7 s8 s9
36 r12 r12 r12 r12 r12 r12
37 s40 s7 s8 s9
38 s41 s7 s8 s9
39 r7 r7 r7 r7 r7 r7
40 r2 r2 r2 r2 r2 r2
41 r1 r1 r1 r1 r1 r1

Figure B.7: State table generated
from the machine grammar given
in Fig. B.6 [163]. si indicates a shift
to the next state i, r j indicates the
reduction of rule j, and a blank entry
indicates an error.

b.3 using lr parsing to cover trees bottom-up 167
st

ep
st

at
e

st
ac

k
sy

m
bo

l
in

pu
t

ac
tio

n

1
0

�
+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
1

2
0

1
�

+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
4

3
0

1
4

�
+

c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
12

4
0

1
4

12
�

+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c

$
sh

ift
to

23
5

0
1

4
12

23
�

+
c
a

R
7

+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
8

6
0

1
4

12
23

8
�

+
c
a

R
7
+

l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
13

7
0

1
4

12
23

8
13

�
+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
25

8
0

1
4

12
23

8
13

25
�

+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
34

9
0

1
4

12
23

8
13

25
34

�
+
c
a

R
7
+
l
d

+
c
b

l
d

R
7
l
d
c
c
$

sh
ift

to
9

10
0

1
4

12
23

8
13

25
34

9
�

+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c
$

sh
ift

to
14

11
0

1
4

12
23

8
13

25
34

9
14

�
+
c
a

R
7
+
l
d

+
c
b
l
d

R
7

l
d
c
c
$

re
du

ce
ru

le
15

(R
2
→
l
d

R
1)

as
si

gn
re

su
lt

to
re

gi
st

er
8

em
it
l
o
a
d

R
8,
*
R

7
sh

ift
to

38
12

0
1

4
12

23
8

13
25

34
38

�
+
c
a

R
7
+
l
d

+
c
b

R
8

l
d
c
c
$

sh
ift

to
9

13
0

1
4

12
23

8
13

25
34

38
9

�
+
c
a

R
7
+
l
d

+
c
b

R
8
l
d

c
c
$

sh
ift

to
18

14
0

1
4

12
23

8
13

25
34

38
9

18
�

+
c
a

R
7
+
l
d

+
c
b

R
8
l
d
c
c

$
re

du
ce

ru
le

16
(R
→
l
d
c
)

as
si

gn
re

su
lt

to
re

gi
st

er
9

em
it
l
o
a
d
r
9
,
c

sh
ift

to
41

15
0

1
4

12
23

8
13

25
34

38
41

�
+
c
a

R
7
+
l
d

+
c
b

R
8

R
9

$
re

du
ce

ru
le

1
(R

2
→

+
l
d

+
c

R
1

R
2)

em
it
a
d
d

R
9,
b
,
R

8
sh

ift
to

32
16

0
1

4
12

23
32

�
+
c
a

R
7

R
2

$
re

du
ce

ru
le

8
(
→

�
+
c

R
1

R
2)

em
it
s
t
o
r
e

R
9,
a
,
R

7
17

0
$

ac
ce

pt

Fi
gu

re
B.

8:
A

w
al

k-
th

ro
ug

h
of

ex
ec

ut
in

g
th

et
ab

le
fr

om
Fi

g.
B.

7
on

a
se

qu
en

ce
�

+
c
a

R
7
+
l
d

+
c
b
l
d

R
7
l
d
c
c

(fo
rs

im
pl

ic
ity

,
re

gi
st

er
si

n
th

e
se

qu
en

ce
ar

e
re

pr
es

en
te

d
di

re
ct

ly
as

no
nt

er
m

in
al

s)
.N

ot
e

th
at

a
ru

le
re

du
ct

io
n

m
ay

in
vo

lv
e

tw
o

op
er

at
io

ns
:

th
e

m
an

da
to

ry
re

du
ce

op
er

at
io

n,
fo

llo
w

ed
by

an
op

tio
na

lo
pe

ra
tio

n
w

hi
ch

m
ay

be
a

sh
ift

or
an

ot
he

rr
ul

e
re

du
ct

io
n.

Fo
r

ex
am

pl
e,

le
tu

se
xa

m
in

e
st

ep
11

.F
ir

st
,a

re
du

ce
is

ex
ec

ut
ed

us
in

g
ru

le
15

,w
hi

ch
po

ps
l
d

R
7

fr
om

th
e

sy
m

bo
ls

ta
ck

.T
hi

s
is

fo
llo

w
ed

by
pu

sh
in

g
th

e
re

su
lt

of
th

e
ru

le
,R

8,
on

to
p.

A
tt

he
sa

m
e

tim
e,

st
at

es
9

an
d

14
ar

e
po

pp
ed

fr
om

th
e

st
ac

k,
w

hi
ch

le
av

es
st

at
e

34
on

to
p.

Th
e

to
p

el
em

en
ts

of
bo

th
st

ac
ks

ar
e

no
w

us
ed

to
co

ns
ul

tt
he

st
at

e
ta

bl
e

fo
ri

nf
er

rin
g

th
e

ne
xt

,
ad

di
tio

na
la

ct
io

n
(if

an
y)

.I
n

th
is

ca
se

,i
np

ut
sy

m
bo

lR
8

at
st

at
e

34
le

ad
st

o
a

sh
ift

to
st

at
e

38
.

168 b tree covering

fallback rule typically uses multiple, shorter instructions to simulate the effect of
the more complex rule, and Glanville and Graham devised a clever trick to infer
them automatically. For every semantically constrained rule r, tree parsing is then
performed over the tree representing the pattern of r. The instructions selected to
implement this tree thus constitute the implementation of the fallback rule for r.

Advantages Subsequent experiments and evaluations showed that this design
proved simpler and more general than contemporary designs [10, 153, 168, 169,
232]. Due to this, the Glanville-Graham approach has been acknowledged as one
of the most significant breakthroughs in this field which has influenced many
later techniques in one way or another. In addition, by relying on a state table a
Glanville-Graham-style instruction selector is completely table-driven since it is
implemented by a core that basically consists of a series of table lookups.3 Hence
the time it takes for the instruction selector to generate the assembly code is linearly
proportional to the size of the expression tree. Although the idea of table-driven
code generation was not novel in itself – we have seen several examples of it in Ap. A
– earlier attempts had all failed to provide an automated procedure for producing
the tables. In addition, many decisions regarding pattern selection are precomputed
by resolving and reduce-reduce conflicts at the time that the state table is generated,
thus reducing compilation time.

Another advantage of the Glanville-Graham approach is its formal foundation,
which enables means of automatic verification. For instance, Emmelmann [115]
presented one of the first methods of proving the completeness of an machine
grammar.4 The intuition behind Emmelmann’s automatic prover is to find all
expression trees that can appear in the function but cannot be handled by the
instruction selector. Let us denote an machine grammar by G and a grammar
describing the expression trees by T. If we further use L(X) to represent the
set of all trees accepted by a grammar X, we can then determine whether the
machine grammar is incomplete by checking if L(T) \ L(G) yields a nonempty
set. Emmelmann recognized that this intersection can be computed by creating a
product automaton which essentially implements the language that accepts only
the trees in this set of counterexamples. From this automaton it is also possible to
derive the rules that are missing from the machine grammar. Brandner [52] recently
extended this method to handle productions that contain predicates – we will
discuss these shortly when exploring attribute grammars – by splitting terminals to
expose these otherwise-hidden characteristics.

3Pennello [299] developed a technique to express the state table directly as assembly code, thus
eliminating even the need to perform table lookups. This was reported to improve the efficiency of LR
parsing by six to ten times.

4Note, however, that even though an machine grammar has been proven to be complete, a greedy
instruction selector may still fail to use a necessary rule. Consequently, Emmelmann’s checker assumes
that an optimal instruction selector will be used for the proven machine grammar.

b.3 using lr parsing to cover trees bottom-up 169

Disadvantages Although it addressed several of the problems with contemporary
instruction selection techniques, the Glanville-Graham approach also had disadvan-
tages of its own. First, since an LR parser can only reason on syntax, any restrictions
regarding specific values or ranges must be captured by its own nonterminal. In
conjunction with the limitation that each production can match only a single pattern,
this typically meant that rules for versatile instructions with several or operand
modes had to be duplicated for each such mode. For most target machines this
turned out to be impracticable. For example, in the case of the VAX machine –
a complex instruction-set computer (CISC) architecture from the 1980s, where each
instruction accepted a multitude of operand modes [71] – the machine grammar
would contain over eight million rules [169]. By introducing auxiliary nonterminals
to combine features shared among the rules – a task called refactoring – the number
was brought down to about a thousand rules, but this had to be done carefully to
not have a negative impact on code quality. Second, since the parser traverses from
left to right without backtracking, assembly code regarding one operand has to be
emitted before any other operand can be observed. This can potentially lead to
poor decisions which later have to be undone by emitting additional code, as in the
case of recovering from syntactic blocking. Hence, to design an machine grammar
that was both compact and yielded good code quality, the developer had to possess
extensive knowledge about the implementation of the instruction selector.

B.3.3 Extending Grammars with Semantic Handling

In purely context-free grammars there is just no way to handle semantic information.
For example, the exact register represented by a reg nonterminal is not available.
Glanville and Graham worked around this limitation by pushing the information
onto the stack, but even then their modified LR parser could reason upon it using
only simple equality comparisons. Ganapathi and Fischer [149, 150, 151, 152]
addressed this problem by replacing the use of traditional, context-free grammars
with the use of a more powerful set of grammars known as attribute grammars. There
are also affix grammars, which can be thought of as a subset of attribute grammars.
In this dissertation, however, we will only consider attribute grammars, and, as
with the Glanville-Graham approach, we will discuss how they work only at a high
level.

Attribute Grammars Attribute grammars were introduced in 1968 by Knuth [221],
who extended context-free grammars with attributes. Attributes are used to store,
manipulate, and propagate additional information about individual terminals and
nonterminals during parsing, and an attribute is either synthesized or inherited.
Using parse trees as the point of reference, a node with a synthesized attribute
forms its value from the attributes of its children, and a node with an inherited
attribute copies the value from the parent. Consequently, information derived from
synthesized attributes flows upwards along the tree while information derived from
inherited attributes flows downwards. We therefore distinguish between synthesized

170 b tree covering

production predicates actions

1 Byte ↑ r→ + Byte ↑ a Byte ↑ r IsOne(↓ a), NotBusy(↓ r) emit incb ↓ r

2 Byte ↑ r→ + Byte ↑ r Byte ↑ a IsOne(↓ a), NotBusy(↓ r) emit incb ↓ r

3 Byte ↑ r→ + Byte ↑ a Byte ↑ r TwoOp(↓ a, ↓ r) emit addb2 ↓ a, ↓ r

4 Byte ↑ r→ + Byte ↑ r Byte ↑ a TwoOp(↓ a, ↓ r) emit addb2 ↓ a, ↓ r

5 Byte ↑ r→ + Byte ↑ a Byte ↑ b get register ↑ r

emit addb3 ↓ r, ↓ a, ↓ b

Table B.3: Example of an instruction set expressed as attribute grammar [151].

and inherited attributes by a ↑ or ↓, respectively, which will be prefixed to the
attribute of the concerned symbol. For example, the synthesized attribute x of a
Reg nonterminal is written as Reg ↑ x.

The attributes are then used within predicates and actions. Predicates are used
for checking the applicability of a rule, and, in addition to emitting assembly code,
actions are used to produce new synthesized attributes. Hence, when modeling
instructions we can use predicates to express the constraints, and actions to indicate
effects, such as code emission, and which register the result will be stored in. Let us
look at an example.

In Tab. B.3 we see a set of rules for modeling three byte-adding instructions:
(i) an increment version incb (increments a register by 1, modeled by rules 1 and 2);
(ii) a two-address version add2b (adds two registers and stores the result in one of
the operands, modeled by rules 3 and 4); and (iii) a three-address version add3b (the
result can be stored elsewhere, modeled by rule 5). Naturally, the incb instruction
can only be used when one of the operands is a constant of value 1, which is checked
by the IsOne predicate. In addition, since this instruction destroys the previous value
of the register, it can only be used when no subsequent operation uses the old value
(meaning the register is not “busy”), which is checked by the NotBusy predicate.
The emit action then emits the corresponding assembly code. Since addition is
commutative, we require two rules to make the instruction applicable in both cases.
Similarly, we have two rules for the add2b instruction, but the predicates have been
replaced by a TwoOp, which checks if one of the operands is the target of assignment
or if the value is not needed afterwards. Since the last rule does not have any
predicates, it also acts as the default rule, thus preventing situations of semantic
blocking which we discussed when covering the Glanville-Graham approach.

Advantages The use of predicates removes the need of introducing new nontermi-
nals for expressing specific values and ranges, resulting in a more concise machine
grammar compared to a context-free grammar. For example, for the VAX machine,
the use of attributes leads to a grammar half the size (around 600 rules) compared to
that required for the Glanville-Graham approach, even without applying any exten-
sive refactoring [150]. Attribute grammars also facilitate incremental development
of the machine descriptions. One can start by implementing the most general rules

b.3 using lr parsing to cover trees bottom-up 171

to achieve an machine grammar that produces correct but inefficient code. Rules for
handling more complex instructions can then can be added incrementally, making
it possible to balance implementation effort against code quality. Another useful
feature is that other program optimization routines, such as constant folding, can
be expressed as part of the grammar instead of as a separate component. Farrow
[126] even made an attempt at deriving an entire Pascal compiler from an attribute
grammar.

Disadvantages To permit attributes to be used together with LR parsing, the
properties of the machine grammar must be restricted. First, only synthesized
attributes may appear in nonterminals. This is because an LR parser constructs
the parse tree bottom-up and left-to-right, starting from the leaves and working its
way up towards the root. Hence an inherited value only becomes available after
the subtree of its nonterminal has been constructed. Second, since predicates may
render a rule as semantically invalid for rule reduction, all actions must appear last
in the rules. Otherwise they may cause effects that must be undone after a predicate
fails its check. Third, as with the Glanville-Graham approach, the parser has to
take decisions regarding one subtree without any consideration of sibling subtrees
that may appear to the right. This can result in assembly code that could have been
improved if all subtrees had been available beforehand, and this is again a limitation
due to the use of LR parsing. Ganapathi [148] later made an attempt to resolve
this problem by implementing an instruction selector in Prolog – a logic-based
programming language – but this incurred exponential worst-case time complexity
of the instruction selector.

B.3.4 Maintaining Multiple Parse Trees for Better Code Quality

Since LR parsers make a single pass over the expression trees – and thus only
produce one out of many possible parse trees – the quality of the produced assembly
code is heavily dependent on the machine grammar to guide the parser in finding a
“good” parse tree.

Christopher et al. [75] attempted to address this concern by using the concepts of
the Glanville-Graham approach but extending the parser to produce all parse trees,
and then select the one that yields the best assembly code. This was achieved by
replacing the original LR parser with an implementation of Earley’s algorithm [107],
and although this scheme certainly improves code quality – at least in theory – it
does so at the cost of enumerating all parse trees, which is often too expensive in
practice.

In 2000, Madhavan et al. [261] extended the Glanville-Graham approach to
achieve optimal selection of patterns while allegedly retaining the linear time
complexity of LR parsing. By incorporating a new version of LR parsing [336],
s that were previously executed directly as matching rules were found are now
allowed to be postponed by an arbitrary number of steps. Hence the instruction
selector essentially keeps track of multiple parse trees, allowing it to gather enough

172 b tree covering

information about the function before committing to a decision that could turn out
to be suboptimal. In other words, as in the case of Christopher et al. the design
by Madhavan et al. also covers all parse trees but it immediately discards those
determined to result in less efficient assembly code Hence the scheme resembles
the branch and bound search strategy (see Chap. 3 on p. 53).

To do this efficiently, the design also incorporates offline cost analysis, which
we will explore later in Sect. B.5.3. More recently, Yang [375] proposed a similar
technique involving the use of parser cactuses, where deviating parse trees are
branched off a common trunk to reduce space requirements. In both designs,
however, the underlying principle still prohibits the modeling of many typical target
machine features such as multi-output instructions since their grammars only allow
rules that produce a single result.

B.4 Using Recursion to Cover Trees Top-Down

The tree covering techniques we have examined so far – in particular those based
on LR parsing – all operate bottom-up. The instruction selector begins to cover the
leaves in the expression tree. Based on the decisions taken for the subtrees, it then
progressively works upwards along the tree until it reaches the root, continually
matching and selecting applicable patterns along the way. This is by no means
the only method of covering, as it can also be done top-down. In such designs,
the instruction selector covers the expression tree starting from the root, and
then recursively works its way downwards. Consequently, the flow of semantic
information, such as the particular register in which a result will be stored, is also
different. A bottom-up instruction selector lets this information trickle upwards
along the expression tree – either via auxiliary data structures or through tree
rewriting – whereas a top-down implementation decides upon this beforehand and
pushes this information downwards. The latter is therefore said to be goal-driven,
as pattern selection is guided by a set of additional requirements which must be
fulfilled by the selected pattern. Since this in turn will incur new requirements for
the subtrees, most top-down techniques are implemented recursively. This also
enables backtracking, which is a necessary feature, as selection of certain patterns
can cause the lower parts of the expression tree to become uncoverable.

B.4.1 First Applications

Using Means-End Analysis to Guide Instruction Selection To the best of the
author’s knowledge, Newcomer [281] was the first to develop a scheme that uses
top-down tree covering to address instruction selection. In his 1975 doctoral
dissertation, Newcomer proposes a design that exhaustively finds all combinations
of patterns that cover a given expression tree, and then selects the one with lowest
cost. Cattell [68] also describes this in his survey paper, which is the main source
for the discussion of Newcomer’s design.

b.4 using recursion to cover trees top-down 173

The instructions are modeled as T-operators, which are basically pattern trees
with costs and attributes attached. The attributes describe various restrictions, such
as which registers can be used for the operands. There is also a set of T-operators that
the instruction selector uses to perform necessary transformations of the function
– its need will become clear as the discussion continues. The scheme takes an
AST as expected input and then covers it following the aforementioned top-down
approach. The instruction selector first attempts to find all matching patterns for
the root of the AST, and then proceeds to recursively cover the remaining subtrees
for each match. Pattern matching is done using a straightforward technique that
we know from before (see Alg. B.1 on Alg. B.1). For efficiency, all patterns are
indexed according to the type of their root. The result of this procedure is thus
a set of pattern sequences each of which covers the entire AST. Afterwards, each
sequence is checked for whether the attributes of its patterns are equal to those of
a preferred attribute set (PAS), which corresponds to a goal. If not, the instruction
selector will attempt to rewrite the subtree using the transformation T-operators
until the attributes match. To guide this process, Newcomer applied a heuristic
search strategy known as means-end analysis, which was introduced by Newell and
Simon [282] in 1959. The intuition behind means-end analysis is to recursively
minimize the quantitative difference between the current state (that is, what the
subtree looks like now) and a goal state (what it should look like). How to calculate
this quantitative difference, however, is not mentioned in [68]. To avoid infinite
looping, the transformation process stops once it reaches a certain depth in the
search space. If successful, the applied transformations are inserted into the pattern
sequence; if not, the sequence is dropped. From the found pattern sequences the
one with the lowest total cost is selected, followed by assembly code emission.

Newcomer’s design was pioneering as its application of means-end analysis
made it possible to guide the process of modifying the function, without having to
resort to target-specific mechanisms, until it could be implemented on the target
machine. But the design also had several significant flaws. First, it had little
practical application, as Newcomer’s implementation only handled arithmetic
expressions. Second, the T-operators used for modeling the instructions as well as
transformations had to be constructed by hand – a task that was far from trivial
– which hindered compiler retargetability. Third, the process of transforming
the function could end prematurely due to the search space cut-off, causing the
instruction selector to fail to generate any assembly code whatsoever. Lastly, the
search strategy proved much too expensive to be usable in practice except for very
small expression trees.

Making Means-End Analysis Work in Practice Cattell et al. [67, 70, 250] later
improved and extended Newcomer’s work into a more practical framework which
was implemented in the Production Quality Compiler-Compiler (PQCC), a derivation of
the Bliss-11 compiler originally written by Wulf et al. [372]. Instead of performing
the means-end analysis as the function is compiled, their design does it as a

174 b tree covering

preprocessing step when generating the compiler itself – much as with the Glanville-
Graham approach.

The patterns are expressed as a set of templates which are formed using recursive
composition, and are thus similar to the productions found in machine grammars.
But unlike Glanville and Graham’s and Ganapathi and Fischer’s designs – where the
grammars were written by hand – the templates in PQCC are derived automatically
from a machine description. Each instruction is modeled as a set of machine operations

that describe the effects of the instruction. The machine operations are thus akin to
the RTLs introduced by Fraser [139] in Ap. A on p. 146. These effects are then used
by a separate tool, called the Code-Generator Generator (CGG), to create the templates
which will be used by the instruction selector.

In addition to producing the trivial templates corresponding directly to an
instruction, CGG also produces a set of single-node patterns as well as a set of larger
patterns that combine several instructions. The former ensures that the instruction
selector is capable of generating assembly code for all functions (since any expression
tree can thereby be trivially covered), while the latter reduces compilation time as
it is quicker to match a large pattern than many smaller ones. To do this, CGG
uses a combination of means-end analysis and heuristic rules which apply a set of
axioms (such as ¬¬E⇔ E, E + 0⇔ E, and ¬(E1 ≥ E2) ⇔ E1 < E2) to manipulate
and combine existing patterns into new ones. However, there are no guarantees
that these “interesting” patterns will ever be applicable in practice. Once generated,
instruction selection is performed in a greedy, top-down fashion that always selects
the lowest-cost template matching the current node in the expression tree. Pattern
matching is done using a scheme identical to that of Newcomer. If there is a tie, the
instruction selector picks the template with the least number of memory loads and
stores.

Compared to the LR parsing-based methods discussed previously, the design
by Cattell et al. has both advantages and disadvantages. The main advantage is that
the instruction selectors is less at risk of failing to generate assembly code for some
function. There is the possibility that the set of predefined templates is insufficient
to produce all necessary single-node patterns. In such cases, however, CGG can at
least issue a warning (in Ganapathi and Fischer’s design this correctness has to be
ensured by the grammar designer). The disadvantage is that it is relatively slow.
Whereas the tree parsing-based instruction selectors exhibit linear time complexity
– both for pattern matching and selection – the instruction selector by Cattell et al.
has to match each template individually, which could take quadratic time in the
worst case.

Recent Designs To the best of the author’s knowledge, the only recent technique
(less than 20 years old) to use this kind of recursive top-down methodology for tree
covering is that of Nymeyer et al. [289, 290]. In two papers from 1996 and 1997,
Nymeyer et al. introduce a method where A∗ search – another strategy for exploring
the search space (see [323]) – is combined with BURS theory. We will discuss BURS

b.4 using recursion to cover trees top-down 175

theory in more detail later in this appendix (the eager reader can skip directly
to Sect. B.5.3). Until then, let it for now be sufficient to say that grammars based
on BURS allow transformation rules, such as rewriting X + Y into Y + X, to be
included as part of the machine grammar. This potentially simplifies and reduces
the number of rules required for expressing the instructions, but unfortunately
the authors did not publish any experimental results. Hence it is difficult to judge
whether the A∗-BURS theory combination would be an applicable technique in
practice.

B.4.2 A Note on Tree Rewriting vs. Tree Covering

At this point some readers may feel that tree rewriting – where patterns are
iteratively selected for rewriting the expression tree until it consists of a single node
of some goal type – is something entirely different compared to tree covering –
where compatible patterns are selected for covering all nodes in the expression
tree. The same argument applies to and graph covering, although rewriting-based
techniques are less common for those principles. Indeed, there appears to be a
subtle difference, but a valid solution to a problem expressed using tree rewriting is
also a valid solution to the equivalent problem expressed using tree covering, and
vice versa. It could therefore be argued that the two are interchangeable, but we
regard tree rewriting as a means to solving the tree covering problem, which we
regard as the fundamental principle.

Handling Chain Rules in Purely Coverage-Driven Designs Another objection
that may arise is how tree covering, as a principle, can support chain rules. A chain
rule is a rule whose pattern consists of a single nonterminal, and the name comes
from the fact that s using these rules can be chained together one after another.
Consequently, chain rules are often used to represent data transfers and other
value-preserving transformations (an example of this is given in Ap. D).

Let us first assume that we have as input the expression tree shown in Fig. B.9a,
which will be covered using the machine grammar shown in Fig. B.9b. Let us further
assume that we have an instruction selector where pattern matching is performed
strictly through node comparison. This instruction selector is clearly based on tree
covering, but it will fail to find a valid cover for the aforementioned expression tree
as it will not be able to match and select the necessary chain rules (see Fig. B.9c).

There are three ways of solving this problem. The simplest method is to simply
ignore the incompatibilities during pattern selection, and then inject the assembly
code for the necessary chain rules afterwards. But this obviously compromises code
quality as the cost of the chain rules is not taken into account. A better approach is
to consider all chain rule applications during pattern matching, thus essentially
combining regular patterns with chain rules to yield new patterns (see Fig. B.9d).
Finding all such combinations is known as computing the transitive closure. The
third and last approach is to augment the expression tree by inserting auxiliary
nodes, each of which each represents the application of a chain rule (see Fig. B.9e).

176 b tree covering

+

a b

(a) Expression tree to cover. Variables a and b
are assumed to be stored in A-type registers.

production

1 RegA→ reg
2 RegB → RegA

3 RegB → + RegB RegB

(b) Machine grammar.

+

a b

3

1 1

(c) Invalid cover due to
incompatibilities between
the selected patterns.

+

a b

3

1 + 2 1 + 2

(d) Covering using the
transitive closure method.

+

a b

3

1 1

2 2

(e) Covering using the
augmentation method.

Figure B.9: Examples illustrating how chain rules can be supported by tree covering-
based techniques. The numbers represent rule numbers.

The transitive closure and augmentation methods both come with certain
benefits and drawbacks. The former method allows chain rules to be applied in any
combination and of any length, but it complicates the tasks of pattern matching and
pattern selection. The latter method requires no change in the pattern matcher and
pattern selector. However, it enlarges the expression tree and requires an additional
dummy rule to indicate that no chain rule is applied. If more than one chain rule
needs to be applied, then several auxiliary nodes must be inserted one after another.
As we have seen, several designs ignore this problem by assuming a homogeneous
target architecture, and a few techniques apply the inefficient idea of code injection.
The transitive closure approach is typically limited to tree covering-based methods,
while the augmentation method is mostly applied when covering more general
forms such as directed acyclic graphs and graphs (which we will discuss in the
coming appendices).

B.5 Separating Pattern Matching from Pattern Selection

In the previously discussed techniques based on tree covering, the tasks of pattern
matching and pattern selection are unified into a single step. Although this enables
single-pass code generation, it typically also prevents the instruction selector from
considering the impact of certain combinations of patterns. By separating these
two concerns and allowing the instruction selector to make multiple passes over

b.5 separating pattern matching from pattern selection 177

0 1 2 3 4 5 6 7 8

input string a b c a b c a b d
pattern string a b c a b d

↑
a b c a b d

↑

Table B.4: Example of string matching without full backtracking.

the expression tree, it can gather enough information about all applicable patterns
before having to commit to premature decisions.

But the pattern matchers we have seen so far – excluding those based on
LR parsing – have all been implementations of algorithms with quadratic time
complexity. Fortunately, we can do better.

B.5.1 Algorithms for Linear-Time, Tree-Based Pattern Matching

Over the years many algorithms have been discovered for finding all matches given
a subject tree and a set of pattern trees (see for example [73, 83, 106, 193, 209, 308,
311, 335, 363, 373]). For tree covering, most pattern matching algorithms have been
derived from methods of string-based pattern matching. This was first discovered
by Karp et al. [209] in 1972, and their ideas were later extended by Hoffmann and
O’Donnell [193] to form the algorithms most applied by tree-based instruction
selection techniques. Hence, in order to understand pattern matching with trees,
let us first explore how this is done with strings.

Matching Trees Is Equivalent to Matching Strings The algorithms most com-
monly used for string matching were introduced by Aho and Corasick [6] and
Knuth et al. [222] (also known as the Knuth-Morris-Pratt algorithm) in 1975 and 1977,
respectively. Independently discovered from one another, both algorithms operate
in the same fashion and are thus nearly identical in their approach. The intuition
is that when a partial match of a pattern with a repetitive substring fails, the
pattern matcher does not need to return all the way to the input character where
the matching initially started. This is illustrated in Tab. B.4, where the pattern
string abcabd is matched against the input string abcabcabd. The arrow indicates the
current character under consideration. At first, the pattern matches the beginning
of the input string up until the last character (position 5). When this fails, instead
of returning to position 1 and restarting the matching from scratch, the matcher
remembers that the first three characters of the pattern (abc) have already been
matched at this point. Therefore, it continues to position 6 and attempts to match
the fourth character in the pattern. Hence all occurrences of the pattern can be
found in linear time. We continue our discussion with Aho and Corasick’s design
as it is capable of matching multiple patterns whereas the algorithm of Knuth

178 b tree covering

0 1 2 8 9

6 7

4 53

h e r s

s

h e

i

s

¬{h,s}

(a) Goto function, represented as a state machine.

i output(i)

2 {he}
5 {she, he}
7 {his}
9 {hers}

(b) Output function.

i 0 1 2 3 4 5 6 7 8 9
failure(i) 0 0 0 0 1 2 0 3 0 3

(c) Failure function.

Figure B.10: Example of a string-matching machine [6].

et al. only considers a single pattern (although it can easily be extended to handle
multiple patterns as well).

Aho and Corasick’s algorithm relies on three functions – goto, failure, and output

– where the first function is implemented as a state machine and the two latter ones
are implemented as simple table lookups. How these are constructed is out of scope
for our purpose – the interested reader can consult the referenced paper – and we
will instead illustrate how the algorithm works on an example. In Fig. B.10 we see
the corresponding functions for matching the strings he, she, his, and hers. As a
character is read from an input string, say shis, it is first given as argument to the
goto function. Having initialized to state machine to state 0, goto(s) first causes a
transition to state 3, and goto(h) causes a subsequent transition to state 4. For each
successful transition to some state i we invoke output(i) to check whether some
pattern string has been matched, but so far no match has been found. For the next
input character i, however, there exists no corresponding edge from the current
state (that is, goto(i) causes a failure). At this point failure(4) is invoked, which
dictates that the state machine should fall back to state 1. We then retry goto(i),
which takes us to state 6. With the last input character, goto(s) causes a transition to
state 7, where output(7) indicates a match with the pattern string his.

The Hoffmann-O’Donnell Algorithm Hoffmann and O’Donnell [193] developed
two algorithms incorporating the ideas of Aho and Corasick and Knuth et al. In a
paper from 1982, Hoffmann and O’Donnell first present an O(np) algorithm that
matches pattern trees in a top-down fashion. In the same paper, Hoffmann and
O’Donnell then present an O(n + m) bottom-up algorithm that trades linear-time
pattern matching for longer preprocessing times (n is the size of the expression tree,
p is the number of patterns, and m is the number of matches found).

The bottom-up algorithm is outlined in Alg. B.2. Starting at the leaves, each

b.5 separating pattern matching from pattern selection 179

function LabelTree (expression tree E, set T of lookup tables):
1 nE ← root node of E
2 LabelNode (nE)

3 function LabelNode (expression tree rooted at n):
4 foreach child mi of n do
5 LabelNode (mi)

6 t ← node type of n
7 label n with Tt[labels of m1 , . . . ,mk]

Algorithm B.2: Hoffmann-O’Donnell algorithm for labeling expression trees [193].

node is labeled with an identifier denoting the set of patterns that match the
subtree rooted at that node. We call this set the match set. The label to assign a
particular node is retrieved by using the labels of the children as indices in a table
that is specific to the type of the current node. For example, label lookups for
nodes representing addition are done using one table, while lookups for nodes
representing subtraction are done using another table. The dimension of the table
is equal to the number of children that the node may have. For example, binary
operation nodes have two-dimensional tables while nodes representing constant
values have 0-dimensional tables, which simply consist of a single value. A fully
labeled example is shown in Fig. B.11g, and the match sets are then retrieved via a
subsequent top-down traversal of the labeled tree.

Since the bottom-up algorithm introduced by Hoffmann and O’Donnell has had
a historical impact on instruction selection, we will spend some time discussing the
details of how the lookup tables are produced.

Definitions We begin by introducing a few definitions. To our aid, we will use
two pattern trees i and ii, shown in Figs. B.11a and B.11b, respectively. The patterns
in our pattern set thus consist of nodes with symbols a, b, c, or v, where an a-node
always has exactly two children, and b, c, and v-nodes always have no children. The
v-symbol is a special nullary symbol, as such nodes represent placeholders that can
match any subtree. We say that these symbols collectively constitute the alphabet Σ

of our pattern set. The alphabet needs to be finite and ranked, meaning that each
symbol in Σ has a ranking function that gives the number of children for a given
symbol. Hence, in our case rank(a) � 2 and rank(b) � rank(c) � rank(v) � 0.

Following the terminology used in Hoffmann and O’Donnell’s paper, we also
introduce the notion of a Σ-term and define it as follows:

1. Each i ∈ Σwith rank(i) � 0 is a Σ-term.
2. If i ∈ Σ and rank(i) > 0, then i(t1 , . . . , trank(i)) is a Σ-term provided every ti is

a Σ-term.
3. Nothing else is a Σ-term.

180 b tree covering

a

a b

v v

(a) Pattern i.

a

a v

(b) Pattern ii.

v

b a(v , v)

a(a(v , v), b) a(b , v)

(c) Subsumption graph,
excluding loop edges.

Ta 0 1 2 3 4

0 2 2 2 2 2
1 3 3 3 3 3
2 2 4 2 2 2
3 2 4 2 2 2
4 2 4 2 2 2

(d) Lookup table for symbol a.

Ta 1

(e) Lookup table
for symbol b.

Tv 0

(f) Lookup table
for symbol v.

a

a c

a b

b c

2

4

3

1

0

1

0

(g) Labeled expression tree.

Figure B.11: Example of tree pattern matching using Hoffmann-O’Donnell [193].
Nullary nodes v are indicated with a dashed border. The subpatterns v, b, a(v, v),
a(b, v), and a(a(v, v), b) are labeled 0, 1, 2, 3, and 4, respectively.

A pattern tree is therefore a Σ-term, allowing us to write patterns i and ii as
a(a(v, v), b) and a(b, v), respectively. Σ-terms are also ordered, meaning a(b , v) for
example is different from a(v, b). Consequently, commutative operations, such as
addition, must be handled through pattern duplication (as in the Glanville-Graham
approach).

We continue with some definitions concerning patterns. First, let us denote by
mtrees(p) the set of trees that can be matched by the pattern p at the root of any valid
tree.5 Depending on the alphabet, this set could be infinite. Then, a pattern p is said
to subsume another pattern q (written p ≥ q) if and only if any match set including
p always also includes q (hence mtrees(q) ⊆ mtrees(p)). For example, given two
patterns a(b, b) and a(v, v), we have that a(b , b) ≥ a(v, v), since the v-nodes must
obviously also match whenever the b-nodes match. By this definition every pattern
also subsumes itself. Furthermore, p strictly subsumes q (written p > q) if and only
if p ≥ q and p , q, and p immediately subsumes q (written p >i q) iff p > q and there
exists no other pattern r such that p > r and r > q.

We also say that two patterns p and q are inconsistent if and only if both patterns
never appear in the same match set (hence mtrees(q) ∩mtrees(p) � �). Lastly, p and

5This definition is not used by Hoffmann and O’Donnell in their paper, but having it will simplify
the discussion to come.

b.5 separating pattern matching from pattern selection 181

q are independent iff there exist three distinct trees t, t′, and t′′ (that is, t , t′ , t′′),
such that t is matched by p but not q (hence mtrees(p) * mtrees(q)), t′ is matched by
q but not p (hence mtrees(q) * mtrees(p)), and t′′ is matched by both p and q (hence
mtrees(q) ∩mtrees(p) , �).

Pattern sets that contain no independent patterns are known as simple pattern

sets.6 For example, the pattern set consisting of patterns i and ii is simple as there
exists no tree for which both match. As we will see, simple pattern sets have two
important properties that we will use for generating the lookup tables.

Generating Lookup Tables for Simple Pattern Sets In general, the size of each
lookup table is exponential to the size of the pattern set, as is the time to generate
these tables. But Hoffmann and O’Donnell recognized that, for simple pattern sets,
the number of possible match sets is equal to the number of patterns, making it
tractable to generate the tables for such sets.

Furthermore, Hoffmann and O’Donnell found that each possible match set for
a simple pattern set can be represented using a single pattern tree. The intuition
is as follows. If a pattern p strictly subsumes another pattern q, then by definition
it means that q will appear in every match set where p appears. Consequently, q
does not need to be explicitly encoded into the match set since it can be inferred
from the presence of p. Therefore, for every match set M we can select a subset
of patterns in M to encode the entire match set. Let us call this subset the base of
M, which we will denote by M0. It can be proven that different match sets must
have different bases, and that all patterns in M0 must be pair-wise independent.
However, in simple pattern sets we have no such patterns, and therefore the base of
every match set must consist of a single pattern. We will call this pattern the base

pattern of a match set, and it is the labels of the base patterns that will appear as
entries in the lookup tables.

The key insight behind labeling is that in order to find the match set for some
expression tree T � a(T1 , T2), it is sufficient to only consider the match sets for T1
and T2 in the context of a instead of T in its entirety. If the pattern set is simple, then
we know that every match set has a base pattern. Let p1 and p2 denote the base
patterns of the match sets of T1 and T2, respectively. With these we can transform
T into T′ � a(p1 , p2), and finding the match set for T′ will then be equivalent to
finding the match set for T. Since every entry in a lookup table refers to a match set
(which is represented by its base pattern), and each symbol in Σ has its own table,
we can produce the tables simply by finding the base patterns of the match set for
the tree represented by every table entry. For example, if labels 1 and 2 respectively
refer to the patterns b and a(v, v), then the table entry Tc[2, 1]will denote the tree
c(a(v, v), b), and we are then interested in finding the match set for that tree.

The next problem is thus to find the base pattern of a given match set. For simple
pattern sets it can be proven that if we have three distinct patterns p, p′, and p′′,
and p subsumes both p′ and p′′, then it must hold that either p′ > p′′ or p′′ > p′.

6 In Hoffmann and O’Donnell’s paper these are called simple pattern forests.

182 b tree covering

function BuildSubsumptionGraph (set S of subpatterns):
1 GS ← empty graph
2 foreach subpattern s ∈ S do
3 add node s to GS

4 add edge s → s to GS

5 foreach subpattern s ← a(s1 , . . . , sm) ∈ S in increasing height order do
6 foreach subpattern s′ ∈ S s.t. height of s′ ≤ height of s do
7 if s′ � v or s′ � a(s′1 , . . . , s

′
m) s.t. ∀1 ≤ i ≤ m : edge si → s′i ∈ GS then

8 add edge s → s′ to GS

Algorithm B.3: Algorithm for building the subsumption graph [193].

Consequently, for every match set M we can form a subsumption order among the
patterns appearing in M. In other words, if a match set M contains m patterns, then
we can arrange these patterns such that p1 > p2 > . . . > pm . The pattern appearing
first in this order (in this case, p1) is the base pattern of M as it strictly subsumes all
other patterns in M. Hence, if we know the subsumption order, then we can easily
find the base pattern.

For this purpose we first enumerate all unique subtrees, called the subpatterns,
that appear in the pattern set. In the case of patterns i and ii, this includes v, b,
a(v, v), a(b, v), and a(a(v, v), b), and we denote the set of all subpatterns as S. We
then assign each subpattern in S a sequential number, starting from 0, which will
represent the labels (the order in which these are assigned is not important).

Building the Subsumption Graph Next we form the subsumption graph for S,
denoted by GS, where each node ni represents a subpattern si ∈ S and each
edge ni → n j indicates that si subsumes s j . For our pattern set, we get the
subsumption graph illustrated in Fig. B.11c,7 which we produce using the algorithm
given in Alg. B.3. The algorithm basically works as follows. First, we add a node for
every subpattern in S, together with a loop edge, as every pattern always subsumes
itself. Next we iterate over all pair-wise combinations of subpatterns and check
whether one subsumes the other, and add a corresponding edge to GS if this is
the case. To test whether a subpattern q subsumes another pattern q, we check
whether the roots of p and q are of the same symbol and whether every subtree of p
subsumes the corresponding subtree of q. This last check can be done by checking
whether a corresponding edge exists in GS for each combination of subtrees. Hence
we should iterate this process until GS reaches a fixpoint, but we can minimize the

7For every subsumption graph GS , there is also a corresponding immediate subsumption graph GS . In
general, GS is shaped like a directed acyclic graph, but for simple pattern sets it is always a tree.

b.5 separating pattern matching from pattern selection 183

function GenerateTable (set S of subpatterns, subsumption graph GS symbol a ∈ Σ):
1 Ta ← matrix of size |Σ| × |Σ|, initialized to v ∈ S
2 foreach subpattern s ← a(s1 , . . . , sm) ∈ S in increasing subsumption order do
3 foreach m-tuple 〈s′1 , . . . , s

′
m〉 s.t. ∀1 ≤ i ≤ m : s′i ≥ si do

4 Ta[s′1 , . . . , s
′
m] ← s

Algorithm B.4: Algorithm for generating the lookup tables [193].

number of checks by first ordering the subpatterns in S by increasing height order
and then comparing the subpatterns in that order.

Building the Lookup Tables Once we have GS, we can generate the lookup tables
following the algorithm given in Alg. B.4. First, we find the subsumption order for
all patterns by doing a topological sort of the nodes in GS (see Ap. F for a definition
of topological sort). Next, we initialize each entry in the table with the label of the
subpattern consisting of a single nullary symbol, and then incrementally update an
entry with the label of the next, larger pattern that matches the tree corresponding
to that entry. By iterating over the patterns in increasing subsumption order, the last
assignment to each entry will be that of the largest matching pattern in the pattern
set. For our example, this results in the tables shown in Figs. B.11d, B.11e, and B.11f.

As already stated, since patterns are required to be ordered, we need to duplicate
patterns containing commutative operations by swapping the subtrees of the
operands. But doing this yields patterns that are pair-wise independent, destroying
the property of the pattern set being simple. In such cases, the algorithm is still
able to produce usable lookup tables, but the resulting match sets will include
only one of the commutative patterns and not the other (which one depends on
the subpattern last used during table generation). Consequently, not all matches
will be found during pattern matching, which may in turn prevent optimal pattern
selection.

Compressing the Lookup Tables Chase [72] further advanced Hoffmann and
O’Donnell’s table generation technique by developing an algorithm that compresses
the final lookup tables. The key insight is that the lookup tables often contain
redundant information as many rows and columns are duplicates. For example,
this can be seen clearly in Ta from our previous example, which is also shown in
Tab. B.5a. By introducing a set of index maps, the duplicates can be removed by
mapping identical columns or rows in the index map to the same row or column in
the lookup table. The lookup table can then be reduced to contain only the minimal
amount of information, as seen in Tab. B.5b. By denoting the compressed version of
Ta by τa , and the corresponding index maps by µa ,0 and µa ,1, we replace a previous
lookup Ti[l0 , . . . , lm] for symbol i with τi[µi ,0[l0], . . . , µi ,m[lm]].

184 b tree covering

Ta 0 1 2 3 4

0 2 2 2 2 2
1 3 3 3 3 3
2 2 4 2 2 2
3 2 4 2 2 2
4 2 4 2 2 2

(a) Uncompressed lookup table.

τa 0 1

0 2 2
1 3 3
2 2 4

µa ,0

0 0
1 1
2 2
3 2
4 2

µa ,1 0 1 2 3 4

0 1 0 0 0

(b) Compressed lookup table.

Table B.5: Example of compressing the lookup table Ta [72].

Table compression also provides another benefit in that, for some pattern sets,
the lookup tables can be so large that they cannot even be constructed in the first
place. But Chase discovered that the tables can be compressed as they are generated,
thus pushing the limit on how large lookup tables can be produced. Cai et al. [61]
later improved the asymptotic bounds of Chase’s algorithm.

B.5.2 Optimal Pattern Selection with Dynamic Programming

Once it became possible to find all match sets for the entire expression tree in linear
time, techniques started to appear that also tackled the problem of optimal pattern
selection in linear time. According to the literature, Ripken [320] was the first to
propose a viable method for optimal linear-time instruction selection, which is
described in a 1977 technical report. Ripken based his method on the dynamic
programming algorithm by Aho and Johnson and later extended it to handle more
realistic instruction sets with multiple register classes and addressing modes. For
brevity, we will henceforth abbreviate dynamic programming as DP.

Although Ripken appears to have been the first to propose a design of an optimal
DP-based instruction selector, it only remained that – a proposal. The first practical

attempt was instead made in 1986 by Aho et al. [7, 8, 352] with the introduction of a
compiler generator called Twig.

TWIG As in Ripken’s design, Twig uses a version of Aho and Johnson’s DP al-
gorithm for selecting the optimal set of pattern trees to cover a given expression
tree. The machine description is expressed as a machine grammar (see Sect. B.3.2)
using a language called Code Generator Language (CGL), which as introduced by Aho
and Ganapathi [7] in 1985. An excerpt of such a machine description is shown in
Fig. B.12. Twig takes this machine description and generates an instruction selector
that makes three passes over the expression tree. The first pass is a top-down

b.5 separating pattern matching from pattern selection 185

node const mem assign plus ind;
label reg no_value;
reg:const /* Rule 1 */
{ cost = 2; }
={ NODEPTR regnode = getreg();
emit(’’MOV’’, 1, regnode, 0);
return(regnode);

};
no_value: assign(mem, reg) /* Rule 3 */
{ cost = 2+$%1$->cost; }
={ emit(’’MOV’’, 2, 1, 0);
return(NULL);

};
reg: plus(reg, ind(plus(const, reg))) /* Rule 6 */
{ cost = 2+$%1$->cost+$%2$->cost; }
={ emit(’’ADD’’, 2, 1, 0);
return(1);

};

Figure B.12: Examples of grammar rules for Twig, written in CGL [8].

labeling pass that finds all match sets for every node in the expression tree8 using
an implementation of the Aho-Corasick string matching algorithm [6]. The second
pass is a bottom-up cost computation pass that gives the cost of selecting a particular
pattern for a given node. As we will see, the costs are computed using DP and hence
the computation constitutes the core of this design. The last pass is a recursive
top-down pass that finds the least-cost cover of the expression tree. This pass also
executes the actions associated with the selected patterns, which in turn emits the
corresponding assembly code.

The design is centered around the following assumption. Given a node n in
an expression tree and a rule r, the cost of applying r on n is the cost of r plus the
costs of reducing all children of n to the appropriate nonterminals appearing on
the right-hand side of r. If r is a chain rule then the cost is computed as the cost of
r plus the cost of reducing n to the result of r. The recursive nature of these costs
can be exploited using dynamic programming, resulting in the algorithm shown
in Alg. B.5 which computes the least cost of reducing a given expression tree to a
particular nonterminal.

The algorithm works as follows. It first constructs a cost matrix C, where rows
represent nodes in the expression tree and columns represent nonterminals in the
grammar, which is assumed to be in normal form.9 The cost in each element C[i][j]
is initialized to infinity, indicating that there exists no sequence of rule reductions
which reduces node i to nonterminal j. It then computes the costs by traversing
the expression tree bottom up. At each node n and for each matching base rule r,

8Remember that, when using machine grammars, a pattern found in the match set during pattern
matching corresponds to the right-hand side of a production.

9The algorithm can be adapted to accept any grammar by expanding the FindMatchingRules and
ComputeReductionCost functions to handle rules of arbitrary form.

186 b tree covering

function ComputeCosts (expression tree T, normal-form grammar G):
1 S← {s | s is a nonterminal in G}
2 C← matrix of size |T | × |S |, costs initialized to∞
3 ComputeCostsRec (root node of T)
4 return C

5 function ComputeCostsRec (node n):
6 foreach child m of n do
7 ComputeCostsRec (m)

8 foreach base rule r ∈ FindMatchingRules (n) do
9 c← ComputeReductionCost (n, r)

10 l← result of r
11 if c < C[n][l].cost then
12 C[n][l].cost← c
13 C[n][l].rule← r

14 repeat
15 foreach chain rule r ∈ G do
16 c← ComputeReductionCost (n, r)
17 l← result of r
18 if c < C[n][l].cost then
19 C[n][l].cost← c
20 C[n][l].rule← r

21 until no change to C

22 function FindMatchingRules (node n):
23 M←�
24 foreach base rule r ∈ G do
25 if terminal in pattern of r � node type of n then
26 M← M ∪ {r}

27 return M

28 function ComputeReductionCost (node n, rule r):
29 c← cost of r
30 if r is a chain rule then
31 s ← nonterminal in pattern of r
32 c← c + C[n][s].cost here cost of node itself is taken instead of its children

33 else
34 for i← 1 to number of children for n do
35 m← ith child of n
36 s ← ith nonterminal in pattern of r
37 c← c + C[m][s].cost

38 return c

Algorithm B.5: Computes the optimal sequence of rules that reduces the given
expression tree to a particular nonterminal.

b.5 separating pattern matching from pattern selection 187

function SelectRules (expression tree T, goal nonterminal g, cost matrix C):
1 n← root node of T
2 r ← C[n][g].rule
3 if r is a chain rule then
4 s ← result of r
5 SelectRules (T, s, C)
6 else
7 for i← 1 to number of children for n do
8 m← ith child of n
9 s ← ith nonterminal in pattern of r

10 SelectRules (expression tree rooted at m, s, C)

11 execute actions associated with r

Algorithm B.6: Selects optimal sequence of rules that reduces a given expression
tree to a given nonterminal, based on costs computed by Alg. B.5.

with nonterminal s as result, it computes the cost c of applying r at n to produce s
according to the scheme stated above. If c is less than the currently recorded cost
for reducing n to s, then the cost and rule information for n is updated accordingly.
The same is then done for all chain rules until it reaches a fixpoint (which must
eventually be reached as all rule costs are non-negative and an update only occurs
when the cost is strictly less). Since every node is also only processed once, the
algorithm runs in linear time with respect to the size of the expression tree.

Having computed the costs, the optimal order of rule reductions – which is
equivalent to the least-cost cover – can be found using the algorithm shown in
Alg. 2.2. Starting from the root, we select the rule that reduces this node of the
expression tree to a particular nonterminal. The same is then done recursively for
each nonterminal that appears on the pattern in the selected rule, acting as the goal
for the corresponding subtree. Since it is assumed that the machine grammar is
in normal form, every pattern is exactly one node which makes it trivial to find
the next subtree in the expression tree. The algorithm also correctly applies the
necessary chain rules, as the use of such a rule causes the routine to be reinvoked
on the same node but with a different goal nonterminal.

DP vs. LR Parsing The DP scheme has several advantages over those based on LR
parsing. First, conflicts are automatically handled by the cost-computing algorithm,
removing the need of ordering the rules which could affect the code quality yielded
by LR parsers. Second, rule cycles that cause LR parsers to get stuck in an infinite
loop no longer need to be explicitly broken. Third, machine descriptions can be
made more concise as rules differing only in cost can be combined into a single rule.
Again taking the VAX machine as an example, Aho et al. reported that the entire
Twig specification could be implemented using only 115 rules, which is about half

188 b tree covering

the size of Ganapathi and Fischer’s attribute-based machine grammar for the same
target machine.

However, the DP approach requires that the code generation problem exhibit
properties of optimal substructure, meaning that it is possible to generate optimal
assembly code by solving each of its subproblems to optimality. However, this is not
always the case. Some solutions, whose total sum is greater compared to another
set of selected patterns, can actually lead to better assembly code in the end.

Further Improvements Several improvements of Twig were later made by Yates
and Schwartz [376] and Emmelmann et al. [113]. Yates and Schwartz improved the
rate of pattern matching by replacing Twig’s top-down approach with the faster
bottom-up algorithm proposed by Hoffmann and O’Donnell, and also extended the
attribute support for more powerful predicates. Emmelmann et al. modified the
DP algorithm to be run as the expression trees are built by the frontend, which also
inlines the code of auxiliary functions directly into the DP algorithm to reduce the
overhead. Emmelmann et al. implemented their improvements in a system called
the Back End Generator (BEG), and a modified version of this is currently used in the
CoSy compiler [89].

Fraser et al. [140] made similar improvements in a system called IBurg that is
both simpler and faster than Twig; IBurg requires only 950 lines of code compared
to Twig’s 3,000 lines of C code, and generates assembly code of comparable quality
at a rate that is 25 times faster. IBurg has also been used in several compilers,
such as Record [248, 268] and Redaco [226]. Gough and Ledermann [165, 166]
later extended the predicate support of IBurg in an implementation called MBurg.
Both IBurg and MBurg have later been reimplemented in various programming
languages, such as the Java-based JBurg [178], OCamlBurg [312], which is written
in C−−, and GPBurg [167], which is written in C#.

According to Leupers and Marwedel [247] and Cao et al. [63], Tjiang [351] later
merged the ideas of Twig and IBurg into a new implementation called Olive (the
name is a spin-off of Twig). Tjiang also made several additional improvements such
as supporting rules to use arbitrary cost functions instead of fixed, numeric values.
This supports more versatile instruction selection, as rules can be dynamically
deactivated by setting infinite costs, which can be controlled from the current
context. Olive is also used in Spam [346] – a fixed-point DSP compiler – and Araujo
and Malik [18] employed it in an attempt to integrate instruction selection with
scheduling and register allocation.

Code Size-Reducing Instruction Selection In 2010, Edler von Koch et al. [110]
modified the backend in CoSy to perform code generation in two stages in order to
reduce code size for architectures with mixed 16-bit and 32-bit instructions, where
the former is smaller but can only access a reduced set of registers. In the first
stage, instruction selection is performed by aggressively selecting 16-bit instructions.
Then, during register allocation, whenever a memory spill is required due to the

b.5 separating pattern matching from pattern selection 189

+

ld

+

int

Reg

Reg

Reg

(a) Original pattern.

+
Reg Bdmem

Reg

+

Bdaddr

Bdmem

int

Imm

+
Imm Reg

Bdaddr

(b) Components.

Figure B.13: Example of breaking down a pattern into single-node components in
order for it to be supported by a macro-expanding instruction selector [197].

use of a 16-bit instruction, the node “causing” this spill is annotated with a special
flag. Once register allocation is finished, another round of instruction selection is
performed but this time no nodes which have been annotated are allowed to be
covered by patterns originating from 16-bit instructions. Experiments showed that
this scheme reduced code size by about 17 % on average compared to CoSy for the
selected target architecture and benchmark suite.

Combining DP with Macro Expansion After arguing that Glanville and Graham’s
method attacked the instruction selection problem from the wrong direction – that is,
by defining the instructions in terms of IR operations – Horspool [197] developed in
1987 a technique that essentially is an enhanced form of macro expansion. Because
macro-expanding instruction selectors only visit and execute macros one IR node at
a time (see Ap. A on p. 152), they do not inherently support instructions where there
is an n-to-1 mapping between theIR nodes and the instructions. This limitation
can be worked around by incorporating additional logic and bookkeeping into the
macro definitions, but doing so by hand often proves to be infeasible. By including
an edge labeling step prior to macro expansion, Horspool found a way of supporting
such instructions while at the same time simplifying the macro definitions.

The idea is to first break down every pattern into single-node components (see
Fig. B.13). As part of the breakdown process the intermediate edges are labeled
with storage classes which serve as a form of glue between the components, allowing
them to be reconnected during macro expansion. The same storage classes can
be used across multiple patterns if this is deemed appropriate, which is akin to
refactoring an machine grammar in order to reduce the number of rules.

The goal is then to label the edges of the expression tree with storage classes such
that they correspond to a least-cost cover of the , which can be done using dynamic
programming (but the paper does not go into detail about how the component
costs should be assigned). Once the expression tree has been labeled, the assembly
code can be emitted using a straightforward macro expander that uses the current

190 b tree covering

node’s type and the storage classes of its edges as indices to a macro table. Since
the bookkeeping is essentially lifted into the storage classes, the macro definitions
become much simpler compared to those of traditional macro-expanding techniques.
Moreover, there is no need to handle backtracking, as such a combination of edge
labels would imply an illegal cover of the expression tree.

In principle, Horspool’s design is comparable to that of Aho et al., and should
yield similar code quality. However, Horspool appears to have had to implement
his instruction selection tables by hand whereas Aho et al. built a tool to do it for
them.

B.5.3 Faster Pattern Selection with Offline Cost Analysis

In the DP approach just discussed, the rule costs needed for selecting the patterns
are dynamically computed while the pattern matcher is completely table-driven.
It was later discovered that these calculations can also be done beforehand and
represented as tables, improving the speed of the pattern selector as it did for
pattern matching. We will refer to this aspect as offline cost analysis, which means
that the costs of covering any given expression tree are precomputed as part of
generating the compiler instead at compile time.

Extending Match Set Labels with Costs To make use of offline cost analysis, we
need to extend the labels to not only represent match sets, but also incorporate
the information about which pattern will lead to the lowest covering cost given a
specific goal. To distinguish between the two, we refer to this extended form of
label as a state. A state is essentially a representation of a specific combination of
goals, patterns, and costs, where each possible goal g is associated with a pattern p
and a relative cost c. A goal in this context typically dictates where the result of an
expression must appear, like a particular register class or memory, and in grammar
terms this means that each nonterminal is associated with a rule and a cost. This
combination is such that

1. for any expression tree whose root has been labeled with a particular state,
2. if the goal of the root must be g,
3. then the entire expression tree can be covered with minimal cost by selecting

pattern p at the root. The relative cost of this covering, compared to the
scenario in which the goal is something else, is equal to c.

A key point to understand here is that a state does not necessarily need to carry
information about how to optimally cover the entire expression tree. Indeed, such
an attempt would require an infinite number of states. Instead, the states only
convey enough information about how to cover the distinct key shapes that can
appear in any expression tree. To explain this further, let us observe how most
target machines typically operate. Between the execution of two instructions, the
data is synchronized by storing it in registers or in memory. The manner in which

b.5 separating pattern matching from pattern selection 191

function LabelTree (expression tree T, list L of state tables):
1 n← root node of T
2 k← number of children for n
3 for i← 1 to k do
4 mi ← ith child of n
5 LabelTree (expression tree rooted at mi , L)

6 S← L[terminal corresponding to n]
7 n.label← S[m1.label, . . . ,mk .label]

Algorithm B.7: Labels an expression tree using states.

some data came to appear in a particular location has in general no impact on
the execution of the subsequent instructions. Consequently, depending on the
available instructions, one can often break a expression tree at certain key places
without compromising code quality. This yields a set of many, smaller expression
trees, each with a specific goal at the root, which then can be optimally covered
in isolation. In other words, the set of states only needs to collectively represent
enough information to communicate where these cuts can be made for all possible
expression trees. This does not mean that the expression tree is actually partitioned
into smaller pieces before pattern selection, but thinking about it in this way helps
us understand why we can restrict ourselves to a finite number of states and still
get optimal pattern selection.

The algorithm for labeling an expression tree using states is given in Alg. B.7.
Since a state is simply an extended form of a label, this algorithm is very similar to
the one used in Hoffmann-O’Donnell (compare with Alg. B.2 on p. 179). Pattern
selection and assembly code emission is then done as described in Alg. B.8. This
is more or less identically to the selection algorithm when computing the costs
directly (compare with Alg. 2.2 on p. 26). However, we have yet to describe how to
compute the states.

First Technique to Apply Offline Cost Analysis Due to a 1986 paper, Hatcher and
Christopher [179] appear to have been pioneers in applying offline cost analysis to
pattern selection. Hatcher and Christopher’s design, which is an extension of the
work by Hoffmann and O’Donnell, can intuitively be described as follows. Given a
expression tree whose root has been assigned a label l, find the rule to apply such
that the entire tree can be reduced to a given nonterminal at lowest cost. Hatcher
and Christopher argued that for optimal pattern selection we can consider each
pair of a label l and nonterminal N, and then always apply the rule that will reduce
the largest expression tree Tl , which is representative of l, to N at the lowest cost. In
Hoffmann and O’Donnell’s design, where there is only one nullary symbol that
may match any subtree, Tl is equal to the largest pattern appearing in the match set.
However, to accommodate machine grammars Hatcher and Christopher’s version

192 b tree covering

function Select (labeled expression tree T, goal nonterminal g, list L of rule lookup tables):
1 n← root node of T
2 R← L[n.label]
3 r ← R[g]
4 if r is a chain rule then
5 s ← result of r
6 Select (T, s, L)
7 else
8 for i← 1 to number of children for n do
9 m← ith child of n

10 s ← ith nonterminal in pattern of r
11 Select (expression tree rooted at m, s, L)

12 execute actions associated with r

Algorithm B.8: Selects optimal sequence of rules that reduces a given labeled
expression tree to a given nonterminal.

includes one nullary symbol per nonterminal. This means that Tl has to be found
by overlapping all patterns appearing in the match set. We then calculate the cost
of transforming a larger pattern p into a subsuming, smaller pattern q (hence p > q)
for every pair of patterns. This cost, which is later annotated to the subsumption
graph, is calculated by recursively rewriting p using other patterns until it is equal
to q. Hence the cost of this transformation is equal to the sum of all applied patterns.
We represent this cost with a function reducecost(p ∗−→ q). With this information, we
retrieve the rule that leads to the lowest-cost of Tl to a goal g by finding the rule r
for which

reducecost(Tl
∗−→ g) � reducecost(Tl

∗−→ pattern tree of r) + cost of r.

This will select either the largest pattern appearing in the match set of l, or, if one
exists, a smaller pattern that in combination with others has a lower cost. We have
of course glossed over many details, but this covers the main idea of Hatcher and
Christopher’s design.

By encoding the selected rules into an additional table to be used during pattern
matching, we achieve a completely table-driven instruction selector which also
performs optimal pattern selection. Hatcher and Christopher also augmented
the original algorithm so that the returned match sets contain all patterns that
were duplicated due commutative operations. However, if the pattern set contains
patterns which are truly independent, then Hatcher and Christopher’s design
does not always guarantee that the expression trees can be optimally covered.
It is also not clear whether optimal pattern selection for the largest expression
trees representative of the labels is an accurate approximation for optimal pattern
selection for all possible expression trees.

b.5 separating pattern matching from pattern selection 193

pattern

1 R → Op A A

2 R → r
3 R → A

4 A → R

5 A → c
6 A → + c R

7 c→ 0
8 X → + X 0
9 + Y X → + X Y

10 Op X Y → + X Y

(a) BURS grammar.

+ c R

+ 0 R + R 0 R

+ R R Op R R

A

6

9

10

8

1

34

(b) Example of an LR graph based on the expression tree
+ 0 + c c and the grammar on the left-hand side. Dashed
nodes represent subtrees of the expression tree and fully
drawn nodes represent goals. Edges indicate rule applica-
tions, with the number of the applied rule appearing next
to the edge.

Figure B.14: Example of a BURS grammar and an LR graph [298].

Generating the States Using BURS Theory A different and more well-known
method for generating the states was developed by Pelegrı-Llopart and Graham
[298]. In a seminal paper from :1988, Pelegrı-Llopart and Graham prove that
the methods of tree rewriting can always arranged such that all rewrites occur
at the leaves of the tree, resulting in a bottom-up rewriting system (BURS). We say
that a collection of such rules constitute a BURS grammar, which is similar to the
grammars already seen, with the exception that BURS grammars allow multiple
symbols – including terminals – to appear on the left-hand side of a production.
An example of such a grammar is given in Fig. B.14a. As an extension to the work
of Zimmermann and Gaul [383], Dold et al. [102] later developed a method for
proving the correctness of BURS grammars using abstract state machines.

Using BURS theory Pelegrı-Llopart and Graham developed an algorithm that
computes the tables needed for optimal pattern selection based on a given BURS
grammar. The idea is as follows. For a given expression tree T, a local rewrite (LR)

graph is formed where each node represents a specific subtree appearing in T and
each edge indicates the application of a particular rewrite rule on that subtree (an
example is shown in Fig. B.14b). Setting some nodes as goals (that is, the desired
results of tree rewriting), a subgraph called the uniquely invertable (UI) LR graph is
then selected from the LR graph such that the number of rewrite possibilities is
minimized. Each UI LR graph then corresponds to a state, and by generating all
LR graphs for all possible expression trees that can be given as input, we can find
all the necessary states. Since finding a UI LR graph is an NP-complete problem,
Pelegrı-Llopart and Graham applied a heuristic that iteratively removes nodes

194 b tree covering

pattern cost

1 R → var 1
2 R → load R 1

(a) A BURS grammar that
may lead to an unbounded
number of states.

A

ld

ld
goal: R

rule: 2
cost: N + 1

goal: R

rule: 2
cost: 2

goal: R

rule: 1
cost: 1

(b) Expression tree labeled
with states that incorporate
the full cost (requires N + 1
states).

A

ld

ld
goal: R

rule: 2
cost: 0

goal: R

rule: 2
cost: 0

goal: R

rule: 1
cost: 0

(c) Same tree but labeled
with states that incorporate
the delta costs (requires
only two states).

Figure B.15: Example illustrating how incorporating costs into states can result in
an infinite number of states [298].

which are deemed “useless” until a UI LR graph is achieved.

Achieving a Bounded Number of States To achieve optimal pattern selection, the
LR graphs are augmented such that each node no longer represents a pattern tree
but a (p, c) pair, where c denotes the minimal cost of covering the corresponding
subtree with pattern p. This is the information embodied by the states as discussed
earlier. A naive approach would be to include the full cost of reaching a particular
pattern into the state, but depending on the rewrite system this may require an
infinite number of states. An example where this occurs is given in Fig. B.15b.

A better method is to instead account for the relative cost of a selected pattern.
This is achieved by computing c as the difference between the cost of p and the
smallest cost associated with any other pattern appearing in the LR graph. This
yields the same optimal pattern selection but the number of needed states is
bounded, as seen in Fig. B.15c. This cost is called the delta cost and the augmented
LR graph is thus known as a δ-LR graph. To limit the memory footprint when
generating the δ-LR graphs, Pelegrı-Llopart and Graham used an extension of
Chase’s table compression algorithm [72] (which we discussed in Sect. 4).

During testing, Pelegrı-Llopart and Graham reported that their implementation
yielded state tables only slightly larger than those produced by LR parsing. They
also reported that it generated assembly code of quality comparable to Twig’s but
at a rate that was about five times faster.

BURS< Offline Cost Analysis Since Pelegrı-Llopart and Graham’s 1988 paper,
many later publications mistakenly associate to the idea of offline cost analysis
with BURS theory, typically using terms like BURS states, when these two aspects
are in fact orthogonal to each other. Although the work by Pelegrı-Llopart and

b.5 separating pattern matching from pattern selection 195

Graham undoubtedly led to making offline cost analysis an established aspect of
modern instruction selection, the application of BURS theory is only one means to
achieving optimal pattern selection using tables.

For example, in 1990 Balachandran et al. [32] introduced an alternative method
for generating the states that is both simpler and more efficient than that of Pelegrı-
Llopart and Graham. At its heart their algorithm iteratively creates new states using
those already committed to appear in the state tables. Remember that each state
represents a combination of nonterminals, rules, and costs, where the costs have
been normalized such that the lowest cost of any rule appearing in that state is 0.
Hence two states are identical if the rules selected for all nonterminals and costs
are the same. Before a new state is created it is first checked whether it has already
been seen – if not, then it is added to the set of committed states – and the process
repeats until no new states can be created. We will go into more detail shortly.

Compared to Pelegrı-Llopart and Graham, this algorithm is less complicated and
also faster as it directly generates a smaller set of states instead of first enumerating all
possible states and then reducing them. In addition, Balachandran et al. expressed
the instructions as a more traditional machine grammar – like those used in the
Glanville-Graham approach – instead of as a BURS grammar.

A Work Queue Approach for State Table Generation Another state-generating
algorithm similar to the one by Balachandran et al. was proposed by Proebsting [303,
306]. This algorithm was also implemented by Fraser et al. [141] in a renowned
code generation system called Burg.10 Since its publication in 1992, the paper has
sparked a naming convention within the compiler community which we call the
Burger phenomenon.11 Although Balachandran et al. were first, we will continue
with studying Proebsting’s algorithm as it is better documented. More details are
also available in Proebsting’s doctoral dissertation [304].

The idea for computing the states – which will only be described briefly –
works as follows. For each terminal representing a k-argument operation, an
k-dimensional matrix is maintained. This is called the terminal’s state table, which
indicates the state to assign such nodes given the labels of its children. First the
states for all leaf nodes are built, considering only base rules with a single terminals
on the right-hand side in the production. The costs and rule decisions are computed
using the same logic as in Alg. B.5, lines 8–21. The leaf state are then pushed

10The keen reader will notice that Fraser et al. also implemented the DP-based system IBurg which
was introduced in Sect. 11. The connection between the two is that IBurg began as a testbench for the
grammar specification to be used as input to Burg. Fraser et al. later recognized that some of the ideas
for the testbench showed some merit in themselves, and therefore improved and extended them into a
stand-alone generator. Unfortunately the authors neglected to say in their papers what these acronyms
stand for. The author’s tentative guess is that Burg was derived from the BURS acronym and stands for
Bottom-Up Rewrite Generator.

11During the research for this dissertation, the author came across the following systems, all
with equally creative naming schemes: Burg [141], CBurg [329], DBurg [121], GBurg [142], GP-
Burg [167], HBurg [47], IBurg [140], JBurg [178], LBurg [175], MBurg [165, 166], OCamlBurg [312],
and WBurg [307].

196 b tree covering

op(, , . . . ,)

s1 s2 . . . sn

sn+1

existing
states

terminal

new state

Figure B.16: Creation of a new state.

onto a queue. Each popped state is used as the ith child to all base rules with a
non-leaf terminals in combination with all other existing states (see Fig. B.16). If
any combination gives rise to a new set of costs and rule decisions, then a new state
is created and pushed onto the queue after having updated the state tables. This
process continues until the queue is empty, whereupon all necessary states have
been built.

Further Improvements The time required to generate the state tables can be
decreased if the number of committed states can be minimized. According to
Proebsting [306], the first attempts to do this were made by Henry [182], whose
methods were later improved and generalized by Proebsting [303, 306]. Proebsting
developed two methods for reducing the number of generated states: state trimming,
which extends and generalizes Henry’s ideas; and a new technique called chain rule

trimming. Without going into details, state trimming increases the likelihood that
two created states will be identical by removing the information about nonterminals
that can be proven to never take part in a least-cost covering. Chain rule trimming
then further minimizes the number of states by attempting to use the same rules
whenever possible. This technique was later improved by Kang and Choe [207,
208], who exploited properties of common machine descriptions to decrease the
amount of redundant state testing.

More Applications The approach of extending pattern selection with offline cost
analysis has been applied in numerous compiler-related systems. Some notable
applications that we have not already mentioned include UNH-Codegen [181],
DCG [118], LBurg [175], and WBurg [307]. Burg is also available as a Haskell clone
called HBurg [47], and has been adapted by Boulytchev [50] to assist instruction
set selection. LBurg was developed to be used in the Little C Compiler (LCC) [175],
and was adopted by Brandner et al. [53] in designing an architecture description
language from which the instructions can automatically be inferred. LBurg was
also extended by Farfeleder et al. [125] to support certain multi-output instructions
by adding an additional, handwritten pass in the pattern matcher.

b.6 other tree-based approaches 197

B.5.4 Generating States Lazily

The two main approaches for achieving optimal pattern selection – those that
dynamically compute the costs as the function is compiled, and those that rely on
statically computed costs via state tables – both have their respective advantages
and drawbacks. The former have the advantage of being able to support dynamic
costs (meaning the pattern cost is not fixed but depends on the context), but they
are also considerably slower than their purely table-driven counterparts. The latter
yield faster but larger instruction selectors due to the use of state tables, which are
also very time-consuming to generate – for pathological grammars this may even
be infeasible – and they only support grammar rules with fixed costs.

Combining the Best of State Tables and DP In 2006, Ertl et al. [122] introduced
a method that allows the state tables to be generated lazily and on demand. The
intuition is that instead of generating the states for all possible expression trees in
advance, one can get away with only generating the states needed for the expression
trees that actually appear in the function.

The scheme can be outlined as follows. As the instruction selector traverses
a expression tree, the states required for covering its subtrees are created using
dynamic programming. Once the states have been generated, the subtree is labeled
and patterns are selected using the familiar table-driven techniques. Then, if an
identical subtree is encountered elsewhere – either in the same expression tree
or in another tree of the function – the same states can be reused. This allows
the cost of state generation to be amortized as the subtree can now be optimally
covered faster than if it had been processed using a purely DP-based pattern selector.
Ertl et al. reported the overhead of state reuse was minimal compared to purely
table-driven implementations. They also reported that the time required to first
compute the states and then label the expression trees was on par with selecting
patterns using ordinary DP-based techniques. Moreover, by generating the states
lazily it is possible to handle larger and more complex machine grammars which
otherwise would require an intractable number of states.

Ertl et al. also extended this design to support dynamic costs by recomputing
and storing the states in hash tables whenever the costs at the expression tree
roots differ. The authors noted that while this incurs an additional overhead, their
instruction selector was still faster than a purely DP-based instruction selector.

B.6 Other Tree-Based Approaches

So far we have discussed the conventional methods of covering trees: LR parsing, top-
down recursion, dynamic programming, and the use of state tables. In this section
we will look at other designs which also rely on trees, but solve the instruction
selection problem using alternative methods.

198 b tree covering

B.6.1 Techniques Based on Formal Frameworks

Homomorphisms and Inversion of Derivors In order to simplify the machine
descriptions and enable formal verification, Giegerich and Schmal [162] proposed
in 1988 an algebraic framework intended to support all aspects of code generation,
including instruction scheduling and register allocation. In brief terms Giegerich
and Schmal reformulated the instruction selection problem into a “problem of a
hierarchic derivor,” which essentially entails the specification and implementation
of a mechanism

γ : T(Q) → T(Z),

where T(Q) and T(Z) denote the term algebras for expressing functions in an
intermediate language and target machine language, respectively. Hence γ can be
viewed as the resulting instruction selector. Most machine descriptions, however,
are typically expressed in terms of Z rather than Q. We therefore view the machine
specification as a homomorphism

δ : T(Z) → T(Q),

and the task of an instruction selection-generator is thus to derive γ by inverting δ.
Usually this is achieved by resorting to pattern matching, but for optimal instruction
selection the generator must also interleave the construction of the inverse δ−1 with
a choice function ξ whenever some q ∈ T(Q) has several z ∈ T(Z) such that δ(q) � z.
Conceptually this gives us the following functionality:

T(Q) δ
−1
−−−→ 2T(Z) ξ−−−→ T(Z).

In the same paper, Giegerich and Schmal also demonstrate how some other methods,
such as tree parsing, can be expressed using this framework. A similar scheme
based on rewriting techniques was later proposed by Despland et al. [97, 98] in an
implementation called Pagode [62].

Equational Logic Shortly after Giegerich and Schmal, Hatcher [180] developed
a design similar to that of Pelegrı-Llopart and Graham that relies on equational

logic [291] instead of BURS theory. The two are closely related in that both apply
a set of predefined rules to rewrite the expression tree into a single goal term.
However, an equational specification has the advantage that all such rules – which
are derived from the instructions and axiomatic transformations – are based on a
set of so-called built-in operations. Each built-in operation has a cost and implicit
semantics, expressed as assembly code emission. The cost of a rule is then equal
to the sum of all built-in operations it applies, removing the need to set the rule
costs manually. In addition, no built-in operations are predefined, but are instead
given as part of the equational specification, providing a very general mechanism
for describing target machines. Experimental results with an implementation called

b.6 other tree-based approaches 199

UCG12 show that it could, for a selected set of problems, generate assembly code of
comparable quality to that of contemporary techniques but in less time.

B.6.2 More Tree Rewriting-Based Methods

We have already discussed numerous techniques which perform instruction selec-
tion by rewriting the expression tree such that it finally reaches a particular goal.
For completeness we will in this section examine the remaining such designs, but
without going into much detail.

Using Finite Tree Automata, Series Transducers, and Pushdown Automata Em-
melmann [114] introduced in 1992 a technique that relies on the theories of finite
tree automata (see for example [156] for an overview), which was later extended by
Ferdinand et al. [131]. In their 1994 paper, Ferdinand et al. demonstrate how finite
tree automata can be used to solve both pattern matching and pattern selection
– greedily as well as optimally – and also present algorithms for how to produce
these automata. An experimental implementation demonstrated the feasibility
of this technique, but the results were not compared to those of other techniques.
Similar designs were later proposed by Borchardt [48] and Janoušek and Málek
[201], who made use of tree series transducers (see for example [116] for an overview)
and pushdown automata, respectively.

Rewriting Strategies In 2002, Bravenboer and Visser presented a design where
rule-based function transformation systems [359] are adapted to instruction selection.
Through a system called Stratego [360], a machine description can be augmented
by pattern selection strategies, allowing the pattern selector to be tailored to that
particular target machine. Bravenboer and Visser refer to this as providing a
rewriting strategy, and their system supports modeling of several strategies such as
exhaustive search, maximum munch, and dynamic programming. Purely table-
driven techniques, however, do not seem to be supported at the time of writing,
which excludes the application of offline cost analysis. In their paper, Bravenboer
and Visser argue that this setup allows several pattern selection techniques to be
combined, but they do not provide an example of where this would be beneficial.

B.6.3 Techniques Based on Genetic Algorithms

To solve the pattern selection problem, Shu et al. [337] employed the theories of
genetic algorithms (GA), which mimic the process of natural selection (see for example
[316] for an overview).13 The idea is to formulate a solution as a string, called a

12The paper does not say what this acronym stands for.
13On a related note, Wu and Li [371] applied ant colony optimization – a meta-heuristic inspired by the

shortest-path searching behavior of various ant species [105] – to improve overall code size by alternating
between instruction sets on a per-function basis.

200 b tree covering

chromosome (or gene), and then mutate it in order to hopefully end up with a better
solution. For a given expression tree whose match sets have been found using an
O(nm) pattern matcher, Shu et al. formulated each chromosome as a binary bit
string where a 1 indicates the selection of a particular pattern. Likewise, a 0 indicates
that the pattern is not used in the tree covering. The length of a chromosome is
therefore equal to the sum of the number of patterns appearing in all match sets.
The objective is then to find the chromosome which maximizes a fitness function f,
which Shu et al. defined as

f (c) � 1
k ∗ pc + nc

,

where k is a tweakable constant greater than 1, pc is the number of selected patterns
in the chromosome c, and nc is the number of nodes in c which are covered by
more than one pattern. Hence patterns are allowed to overlap in covering the
expression tree. First, a fixed number of chromosomes is randomly generated and
evaluated. The best ones are kept and subjected to standard GA operations – such as
fitness-proportionate reproduction, single-point crossover, and one-bit mutations –
in order to produce new chromosomes, and the process repeats until a termination
criterion is reached. The authors claim to be able to find optimal tree covers in
“reasonable” time for medium-sized expression trees, but these include at most
50 nodes. Moreover, due to the nature of GAs, optimality cannot be guaranteed
for all expression trees. A similar technique was devised by Eriksson et al. [119],
which also incorporates instruction scheduling, for generating assembly code for
clustered VLIW architectures.

B.6.4 Techniques Based on Trellis Diagrams

The last instruction selection technique that we will examine in this appendix is
a rather unusual design by Wess [365, 366]. Specifically targeting digital signal
processors, Wess’s design integrates instruction selection with register allocation
through the use of trellis diagrams.

A trellis diagram is a graph where each node consists of an optimal value array (OVA).
An element in an OVA represents that the data is stored either in memory (m) or in a
particular register (rx), and its value indicates the lowest accumulated cost from the
leaves to the node. An example is shown in Tab. B.6, where TL denotes the target
location of the data produced at a given node, and RA denotes the set of registers
that may be used when producing the data. The cost is computed similarly as in
the DP-based techniques. To facilitate the following discussion, let us denote by
TL(i, n) and RA(i, n) the target location and set of available registers, respectively,
for the ith element in the OVA of node n.

We create the trellis diagram using the following scheme. For each node in the
expression tree, a new node representing an OVA is added to the trellis diagram.
For the leaves an additional node is added in order to handle situations where the
values first need to be transferred to another location before being used (this is
needed for example if the value resides in memory). Next we add the edges. Let

b.7 limitations of tree covering 201

i 0 1 2 3 4
OVA
TL m r1 r1 r2 r2
RA {r1 , r2} {r1} {r1 , r2} {r2} {r1 , r2}

Table B.6: Example of an OVA for a target machine with two registers r1 and r2 [365].

us denote by e(i, n) the ith element in the OVA of a node n. For a unary operation
node n with a child m, we add an edge between e(i, n) and e(j,m) if there exists a
sequence of instructions that implements the operation of n, stores the result in
TL(i, n), takes as input the value stored in TL(j,m), and exclusively uses the registers
in RA(i, n). Similarly, for a binary operation node o with two children n and m,
we add an edge pair from e(i, n) and e(j,m) to e(k, o) if there exists a sequence of
instructions that implements the operation of o, stores the result in TL(k, o), takes
as input the two values stored in TL(i, n) and TL(j,m), and exclusively uses the
registers in RA(k, o). This can be generalized to n-ary operations. An example is
given in Fig. B.17.

The edges in the trellis diagram thus correspond to the possible combinations of
instructions and registers that implement a particular operation in the expression
tree. A path from every leaf in the trellis diagram to its root thus represents a
selection of such combinations. By keeping track of the costs, we can get the optimal
instruction sequence by selecting the path which ends at the OVA element with the
lowest cost in the root of the trellis diagram.

The strength of Wess’s design is that target machines with asymmetric register
classes – where different instructions are needed for accessing different registers – are
easily handled as instruction selection and register allocation is done simultaneously.
The drawback is that the number of nodes in the trellis diagram is exponential in
the number of registers. This problem was mitigated by Fröhlich et al. [145], who
augmented the algorithm to build the trellis diagram in a lazy fashion. However,
both schemes nonetheless require a 1-to-1 mapping between the nodes in a trellis
diagram and the instructions in order to be effective.

This, in combination of how instructions are selected, makes one wonder whether
these techniques actually conform to the principles of and DAG covering. The
author certainly struggled with deciding how to categorize them, and finally opted
against creating a separate principle, as that would indeed be a very short appendix.

B.7 Limitations of Tree Covering

While tree covering enables use of more complex patterns compared to macro
expansion, tree covering has several disadvantages of its own.

202 b tree covering

−

− c

×

a b

(a) Expression tree.

production

1 r1 ← r1 × r2
2 r1 ← r1 × m
3 r1 ← r1 − m
4 r1 ← − r1
5 r1 ← m
6 r2 ← m
7 m← r1
8 m← r2
9 r2 ← r1

10 r1 ← r2
(b) Instruction set. All instruc-
tions are assumed to have
equal cost. Note that this is
not a machine grammar.

m r1 r1 r2 r2
OVA

a b

c×

−

−

5 6

1

4

Instructions
3 and 7

(c) Trellis diagram. Gray edges represent available paths,
and black edges indicate the (selected) optimal path.

Figure B.17: A trellis diagram corresponding to an expression −(a × b) − c for a
two-register target machine. The variables a, b, and c are assumed to initially be
stored in memory. Note that two instructions are selected for the root as the result
is also required to be stored in memory [365].

x = a + b
y = x + x

The first disadvantage of trees has to do with expression modeling.
Due to the definitions of trees, common subexpressions cannot be
properly modeled in a expression tree. For example, the inlined code
cannot be modeled directly without applying one of the following
workarounds:

1. Repeating the shared operations, which in Polish notation results in

� y + + a b + a b.

2. Splitting the expression, which results in

� x + a b

� y + x x.

b.8 summary 203

The first approach leads to additional instructions in the assembly code, while
the second hinders the use of more complex instructions. Hence code quality is
compromised in both cases.

The second disadvantage is limited instruction set support. For example, since
trees only allow a single root, multi-output instructions cannot be represented as
pattern trees as such instructions would require multiple roots. Even disjoint-output
instructions, where each individual operation can be modeled as trees, cannot be
selected because tree covering-based instruction selectors can only consider a single
pattern tree at a time.

The third disadvantage is that expression trees typically cannot model control
flow. For example, a for loop statement requires a cyclic edge between blocks, which
violates the definition of trees. For this reason, tree-based instruction selectors
are limited to selecting instructions for a single expression tree at a time, which
is known as local instruction selection. Moreover, handling of control flow must be
done separately, which excludes matching and selection of inter-block instructions,
whose behavior incorporates control flow.

To summarize, although the principle of tree covering greatly improves code
quality over the principle of pure macro expansion (ignoring peephole optimization,
that is), the inherent restrictions of trees prevent exploitation of many instructions
provided by modern target machines.

B.8 Summary

In this appendix, we have looked at numerous techniques that are based on the
principle of tree covering. In contrast to macro expansion, tree covering enables use
of more complex patterns, allowing a wider range of instructions to be selected. By
applying dynamic programming, optimal covers can be found in linear time, thereby
further improving the quality of the generated assembly code. Several techniques
also incorporate offline cost analysis into the instruction selector generator to reduce
compilation time. In other words, this kind of implementation is very fast and
efficient while also supporting a wide array of target machines. Consequently,
tree covering has become the most known – although perhaps no longer the most
applied – principle of instruction selection.

Restricting oneself to trees, however, has several inherent disadvantages, and in
the next appendix we will look at a more general principle that addresses some of
these issues.

APPENDIX

C
DAG Covering

This appendix considers techniques based on DAG covering. First, we introduce the
principle in Sect. C.1. We then prove in Sect. C.2 that optimal pattern selection using
DAGs is NP-complete. We describe straightforward, greedy approaches in Sect. C.3,
moving on to exhaustive techniques in Sect. C.4. In Sect. C.5 we describe techniques
that extend methods from tree covering to DAGs. In Sect. C.6 we describe techniques
that model instruction selection as a MIS or MWIS problem. In Sect. C.7 we describe
techniques that model instruction selection as a unate or binate covering problem.
In Sects. C.8 and C.9, we describe techniques based on methods from combinatorial
optimization. Other DAG-based approaches that do not fit into any of the sections
above are discussed in Sect. C.10. Lastly, we discuss limitations of this principle in
Sect. C.11 and summarize in Sect. C.12.

The appendix is based on material presented in [186, Chap. 4] that has been
adapted for this dissertation. To not disturb the flow of reading, material already
presented in Chap. 2 is duplicated in this appendix.

C.1 The Principle

As we saw in Ap. B, the principle of tree covering has two significant disadvantages.
The first is that common subexpressions cannot be properly expressed in expression
trees, and the second is that many instruction characteristics – such as multi-
output instructions – cannot be modeled as pattern trees. As these shortcomings are
primarily due to the restricted use of trees, we can achieve a more powerful approach
to instruction selection by operating DAGs, thereby extending tree covering to DAG
covering.

By lifting the restriction that every node in the expression tree have exactly one
parent, we attain a block DAG. Because DAGs permit nodes to have multiple parents,
the intermediate values in an expression can be shared and reused within the same
block DAG. This also enables pattern DAGs that contain multiple root nodes, which

205

206 c dag covering

signify the production of multiple output values. Hence the instruction set support
is extended to include multi-output instructions.

Since DAGs are less restrictive compared to trees, transitioning from tree covering
to DAG covering requires new methods for solving the problems of pattern matching
and pattern selection. Pattern matching is typically addressed using one of the
following methods:

First split the pattern DAGs into trees, then match these individually, and
then recombine the matched pattern trees into their original DAG form. In
general, matching trees on DAGs is NP-complete [154], but designs applying
this technique typically sacrifice completeness to retain linear time complexity.
Match the pattern DAGs directly using a generic subgraph isomorphism
algorithm. Although such algorithms exhibit exponential worst-case time
complexity, in the average case they often finish in polynomial time and
are therefore used by several DAG covering-based designs discussed in this
appendix.

Optimal pattern selection on block DAGs, however, does not offer the same
range of choices in terms of complexity.

C.2 Optimal Pattern Selection on DAGs Is NP-Complete

The cost of the gain in generality and modeling capabilities that DAGs give us is a
substantial increase in complexity. As we saw in Ap. B, selecting an optimal set of
patterns to cover a expression tree can be done in linear time, but doing the same for
block DAGs is an NP-complete problem. Proofs were given in 1976 by Bruno and
Sethi [59] and Aho et al. [5], but these were most concerned with the optimality of
instruction scheduling and register allocation. In 1995, Proebsting [305] gave a very
concise proof for optimal pattern selection, and a longer, more detailed proof was
given by Koes and Goldstein [224] in 2008. In this dissertation, we will paraphrase
the longer proof.

C.2.1 The Proof

The idea behind the proof is to transform the SAT problem into an optimal – that is,
least-cost – DAG covering problem. The SAT problem is the task of deciding whether
a Boolean formula, written in conjunctive normal form (CNF), can be satisfied. A
CNF formula is an expression consisting of conjunctions of disjunctions of Boolean
variables In other words, a formula is in CNF if it has the following structure:

(x1 ∨ x2 ∨ . . .) ∧ (xn+1 ∨ xn+2 ∨ . . .) ∧ . . .
where xi ∈ {true, false} and∨ and∧ denotes logical-or and logical-and, respectively.
A variable x can also be negated, written as ¬x.

Since the SAT problem is NP-complete, all polynomial-time transformations
from SAT to any other problem P must also render P NP-complete.

c.2 optimal pattern selection on dags is np-complete 207

x

x � F

x

x � T satisfied

¬

¬T � F

¬

¬F � T

∨

T ∨ T � T

∨

T ∨ F � T

∨

F ∨ T � T

∨

F ∨ F � F
(a) The SAT patterns. For brevity, the patterns for the∧ operation
are omitted as these can be easily inferred from the ∨ patterns.
All patterns are assumed to have the same unit cost.

∧

∨ ¬

x1 x2

(x1 ∨ x2) ∧ (¬x2)
(b) Example of a SAT
problem represented as a
DAG covering problem.

Figure C.1: Transforming SAT to DAG covering [224].

Modeling SAT as a Covering Problem First, we transform an instance S of the
SAT problem into a block DAG. The goal is then to find an exact cover for the DAG
in order to deduce the truth assignment for the Boolean variables from the set of
selected patterns. For this purpose we will use ∨, ∧, ¬, v, , and as node types,
and define type(n) as the type of a node n. Nodes of type and will be referred to
as box nodes and stop nodes, respectively. Now, for each Boolean variable x ∈ S we
create two nodes n1 and n2 such that type(n1) � v and type(n2) � , and add these
to the block DAG. At the same time we also add an edge n1 → n2. The same is done
for each binary Boolean operator op ∈ S by creating two nodes n′1 and n′2 such that
type(n′1) � op and type(n′2) � , along with an edge n′1 → n′2.

To model the connection between the op operation and its two input operands x
and y, we add two edges nx → n′1 and ny → n′1 such that type(nx) � type(ny) � .
For the unary operation ¬ we obviously only need one such edge, and since ∨ and
∧ are commutative it does not matter in what order the edges are arranged with
respect to the operator node. Hence, in the resulting block DAG, only box nodes
will have more than one outgoing edge. An example of such a DAG is shown in
Fig. C.1, which can be constructed in linear time simply by traversing the Boolean
formula.

Boolean Operations as Patterns To cover the block DAG, we will use the pattern
trees given in Fig. C.1a, and we will refer to this pattern set as Psat. Every pattern in
Psat adheres to the following invariant:

208 c dag covering

1. If a variable x is set to true (T), then the selected pattern covering the x node
will also cover the corresponding box node of x.

2. If the result of an operation op evaluates to false (F), then that pattern will not
cover the corresponding box node of op.

Another way of looking at it is that an operator in a pattern consumes a box node if
its corresponding value must be set to T, and produces a box node if the result must
evaluate to F. Using this scheme, we can easily deduce the truth assignments to the
variables by inspecting whether the patterns selected to cover the DAG consume
the box nodes of the variables. Since the only pattern to contain a stop node also
consumes a box node, the entire expression will be forced to evaluate to T.

In addition to the node types that can appear in the block DAG, the patterns
can also contain nodes of an additional type, •, which we will refer to as anchor

nodes. Let numch(n) denote the number of children of n, and child(i, n) the ith child
of n. We now say that a pattern p, with root node pr , matches the part of a block
DAG 〈N, E〉 which is rooted at a node n ∈ N if and only if:

1. type(n) � type(pr),
2. numch(n) � numch(pr), and
3. ∀1 ≤ i ≤ numch(n) : type(child(i, n)) � • ∨ child(i, n)matches child(i, pr).

In other words, the structure of the pattern tree – which includes the node types
and edges – must correspond to the structure of the matched subgraph (excluding
anchor nodes, which can match any node in the block DAG).

We introduce several new definitions. Given a block DAG G � 〈N, E〉, let Mn be
the set of patterns in Psat that match at node n ∈ N. Also, given a pattern 〈Np , Ep〉,
let matched(p , np) be the set of nodes in N that are matched by a node np ∈ Np .
Lastly, we say that G is covered by a function f : N → 2Psat , which maps nodes in
the block DAG to a set of patterns, if and only if, for each n ∈ N,

1. ∀p ∈ f (n) : p matches n,
2. type(n) � ⇒ f (n) , �, and
3. ∀p � 〈Np , Ep〉 ∈ f (v), np ∈ Np : type(np) � • ⇒ f (matched(n , np)) , �.

The first constraint enforces that only valid matches are selected. The second
constraint enforces that some match has been selected to cover the stop node. The
third constraint enforces that matches have been selected to cover the rest of the
DAG. An optimal cover is thus a mapping f which covers the block DAG 〈N, E〉
and also minimize ∑

n ∈N

∑
p ∈ f (n)

cost(p),

where cost(p) is the cost of pattern p.

c.3 straightforward, greedy techniques 209

Optimal Solution to DAG Covering⇒ Solution to SAT We now postulate that if
the optimal cover has a total cost equal to the number of non-box nodes in the block
DAG, then the corresponding SAT problem is satisfiable. Since all patterns in Psat
cover exactly one non-box node and have equal unit cost, the condition above means
that every node in the DAG is covered by exactly one pattern. This in turn means
that exactly one value will be assumed for every Boolean variable and operator
result, which is easy to deduce through inspection of the selected matches.

We have thereby shown that an instance of the SAT problem can be solved by
transforming it, in polynomial time, to an instance of the optimal DAG covering
problem. Hence optimal DAG covering – and therefore also optimal instruction
selection based on DAG covering – is NP-complete. �

C.3 Straightforward, Greedy Techniques

Since instruction selection on DAGs with optimal pattern selection is computationally
difficult, most instruction selectors based on this principle are suboptimal. One of
the first code generators to operate on DAGs was developed by Aho et al. [5]. In
their 1976 paper, Aho et al. introduce some simple greedy heuristics for producing
assembly code for a commutative one-register target machine. However, these
methods assume a 1-to-1 mapping between the nodes in a block DAG and the
instructions and thus effectively ignore the instruction selection problem.

C.3.1 LLVM

A more flexible, but still greedy, heuristic is applied in the well-known LLVM

compiler infrastructure [235]. According to a blog entry by Bendersky [43] – which
at the time of writing provides the only documentation, except for the source code
itself – the instruction selector is basically a greedy DAG-to-DAG rewriter.1

The patterns – which are limited to trees – are expressed in a machine description
that allows common features to be factored out into abstract instructions. A tool
called TableGen expands the abstract instructions into pattern trees, which are then
processed by a matcher generator. To ensure a partial order among all patterns, the
matcher generator first performs a lexicographical sort on the pattern set, in the
following order: (i) by decreasing complexity, which is the sum of the pattern’s size
and a constant that can be tweaked to give higher priority for particular instructions;
(ii) by increasing cost; and (iii) by increasing size of the subgraph that replaces
the covered part in the block DAG (if the corresponding pattern is selected). Once
sorted, the patterns are converted into small recursive programs which essentially
check whether the corresponding pattern matches at a given node in the block
DAG. These programs are then compiled into a form of byte code and assembled
into a matcher table, arranged such that the lexicographical sort is preserved. The

1LLVM is also equipped with a “fast” instruction selector, but it is implemented as a typical macro
expander and is only intended to be used when compiling without extensive program optimization.

210 c dag covering

instruction selector applies this table by simply executing the byte code, starting
with the first element. When a match is found, the pattern is greedily selected and
the matched subgraph is replaced with the output (usually a single node) of the
selected pattern. This process repeats until there are no nodes remaining in the
original block DAG.

Although in extensive use (as of version 3.4), LLVM’s instruction selector has
several drawbacks. The main disadvantage is that any pattern that is not supported
by TableGen has to be handled manually through custom C functions. Unlike
GCC – which applies macro expansion combined with peephole optimization (see
Sect. A.3.2) – this includes all multi-output instructions, since LLVM is restricted to
pattern trees only. In addition, the greedy scheme compromises code quality.

C.4 Techniques Based on Exhaustive Search

Although optimal pattern selection can be achieved through exhaustive search,
in practice this is typically infeasible due to the exponential number of possible
combinations. Nonetheless, there do exist a few techniques that do exactly this, but
they apply various techniques to prune the search space.

C.4.1 Extending Means-End Analysis to DAGs

Twenty years after Newcomer and Cattell et al. (see Sect. B.4.1), Yu and Hu [379,
380] rediscovered means-end analysis as a method for instruction selection. They
also made two major improvements. First, Yu and Hu’s design supports block
and pattern DAGs whereas those by Newcomer and Cattell et al. are both limited
to trees. Second, it combines means-end analysis with hierarchical planning [324],
which is a search strategy that relies on the fact that many problems can be arranged
in a hierarchical manner for handling larger and more complex problem instances.
Using hierarchical planning enables exhaustive exploration of the search space
while at the same time avoiding the situations of dead ends and infinite looping that
may occur in straightforward implementations of means-end analysis (Newcomer
and Cattell et al. both circumvented this problem by enforcing a cut-off when a
certain depth in the search space had been reached).

Although this technique exhibits a worst time execution that is exponential in
the search depth, Yu and Hu assert that a depth of 3 is sufficient to yield results of
equal quality to that of handwritten assembly code. This claim notwithstanding,
it is unclear whether it can be extended to support complex instructions such as
inter-block and interdependent instructions.

C.4.2 Relying on Semantic-Preserving Transformations

In 1996, Hoover and Zadeck [195] developed a system called Toast with the goal of
automating the generation of entire compiler frameworks – including instruction
scheduling and register allocation – from a declarative machine description. In Toast

c.5 extending tree covering techniques to dags 211

the instruction selection is done by applying semantic-preserving transformations
during pattern selection to make better use of the instruction set. For example,
although x ∗ 2 is semantically equivalent to x � 1, where x is arithmetically shifted
one bit to the right which is a faster computation than multiplication. Most
instruction selectors, however, will fail to select instructions implementing the latter
when the former appears in the block DAG as the patterns are syntactically different
from one another.

Their design works as follows. First, the frontend emits block DAGs consisting of
semantic primitives, a kind of IR code also used for describing the instructions. The
block DAG is then semantically matched using single-output patterns derived from
the instructions. Semantic matches – which Hoover and Zadeck call toe prints – and
are found by a semantic comparator. The semantic comparator first performs syntactic
matching – that is, checking that the nodes are of the same type, which is done
using a straightforward O(nm) algorithm – and then resorts to semantic-preserving
transformations for when syntactic matching fails. To bound the exhaustive search
for all possible toe prints, a transformation is only applied if it will lead to a syntactic
match later on. Once all toe prints have been found, they are combined into foot

prints, which correspond to the full effects of an instruction. A foot print can consist
of just a single toe print (as with single-output instructions) or several (as with
multi-output instructions), but the paper lacks details on how this is done exactly.
Lastly, all combinations of foot prints are considered in pursuit of the one leading
to the most effective implementation of the block DAG. To further prune the search
space, this process only considers combinations where each selected foot print
syntactically matches at least one semantic primitive in the block DAG. In addition,
only “trivial amounts” of the block DAG (such as nodes representing constants)
may be included in more than one foot print.

Using a prototype implementation, Hoover and Zadeck reported that almost
1070 “implied instruction matches” were found for one of the test cases, but it is
unclear how many of them were actually useful. Moreover, in its current form the
design appears to be unpractical for generating assembly code for all but very small
functions.

C.5 Extending Tree Covering Techniques to DAGs

Another common approach to DAG covering is to reuse already-known, linear-time
methods from tree covering. This can be achieved either by transforming the block
DAGs into trees, or by generalizing the tree-based algorithms for pattern matching
and pattern selection. We begin by discussing designs that apply the first technique.

C.5.1 Undagging Block DAGs

The simplest approach for reusing tree covering techniques is to transform the block
DAG into several expression trees. We will refer to this idea as undagging.

212 c dag covering

+

×

x y

(a) Block DAG
with matches.

+

t t

×

x y

store result in t

(b) After edge splitting.

+

× ×

x y x y

(c) After node duplication.

Figure C.2: Example of undagging a block DAG.

As illustrated in Fig. C.2, a block DAG can be undagged into expression trees in
two ways. The first approach is to split the edges involving shared nodes – these are
nodes where reuse occurs due to the presence of common subexpressions – which
results in a set of disconnected expression trees that can then be covered individually.
Not surprisingly, this approach is called edge splitting. An implicit connection
between the expression trees is maintained by forcing the values computed at the
shared nodes to be stored and read from a specific location, typically in memory.
An example of such an implementation is Dagon, a technology binder developed by
Keutzer [216], which maps technology-independent descriptions onto circuits. The
second approach is to duplicate the nodes involved in computing the shared value,
which is known as node duplication. This results in a single but larger expression
tree compared to those produced with edge splitting.

Common for both schemes is that they compromise code quality: too aggressive
edge splitting produces many small trees that cannot be covered using larger
patterns, inhibiting use of more efficient instructions; and too aggressive node
duplication incurs a larger computational workload where many operations are
needlessly re-executed in the final assembly code. Moreover, the intermediate
results of an edge-split block DAG must be forcibly stored in specific locations,
which can be troublesome for heterogeneous memory-register architectures (this
particular problem was studied by Araujo et al. [19]).

Balancing Splitting and Duplication In 1994, Fauth et al. [129, 277] developed
a technique that tries to mitigate the deficiencies of undagging by balancing the
use of node duplication and edge splitting. Implemented in the Common Bus

Compiler (CBC), the instruction selector applies a heuristic algorithm that first favors
node duplication, and resorts to edge splitting when the former is deemed too
costly. The decision about whether to duplicate or to split is taken by comparing
the cost of the two solutions and selecting the cheapest one. The cost is calculated
as a weighted sum w1ndup + w2nsplit, where ndup is the number of nodes in the
block DAG (a rough estimate of code size), and nsplit is the expected number of
nodes executed along each execution path (a rough estimate of execution time).
Once this is done, each resulting expression tree is covered by an improved version
of IBurg (see Ap. B on p. 188) with extended match condition support. However,

c.5 extending tree covering techniques to dags 213

the experimental data is too limited for us to judge how efficient this technique is
compared to a design where the block DAGs have been transformed into expression
trees using just one method.

Register-Sensitive Instruction Selection In 2001, Sarkar et al. [326] developed an
instruction selection technique that attempts to reduce the register pressure – that
is, the number of registers needed by the function – in order to facilitate register
allocation.2

The design works as follows. The block DAG is first augmented with additional
edges to signify scheduling dependencies between memory operations, and then
it is split into a several expression trees using a heuristic to decide which edges
to break. The expression trees are then covered individually using conventional
methods based on tree covering. However, instead of being the usual number of
execution cycles, the cost of each instruction is set so as to reflect the amount of
register pressure incurred by that instruction (unfortunately, the paper lacks details
on how these costs are computed exactly). Once patterns have been selected, the
nodes which are covered by the same pattern are merged into super nodes. The
resulting graph is then checked for whether it contains any cycles, which may
appear due to the extra data dependencies that were added at the earlier stage. If it
does, it means that there exist cyclic scheduling dependencies between two or more
memory operations, making it an illegal cover. The splits are then reverted and the
process repeats until a legal cover is found.

Sarkar et al. implemented their register-sensitive design in Jalapeño, a register-
based Java virtual machine developed by IBM. For a small set of problems the
performance increased by about 10 %, which Sarkar et al. claim to be due to fewer
instructions needed for register spilling compared to the default instruction selector.
Although innovative, it is doubtful that the technique can be extended much further.

C.5.2 Extending the Dynamic Programming Approach to DAGs

To avoid the application of ad hoc heuristics, several DAG-based instruction selectors
perform pattern selection by applying an extension of the tree-based DP algorithm
originally developed by Aho and Johnson [4]. According to the literature, Liem
et al. [253, 296, 297] appear to have been the first to have done so.

In a seminal paper from 1994, Liem et al. introduce a design which is part
of CodeSyn, a well-known code synthesis system, which in turn is part of a
development environment for embedded systems called FlexWare. For pattern
matching, Liem et al. applied the same technique as Weingart [362] (see Sect. B.2) by
combining all available pattern trees into a single tree of patterns. This pattern tree
is traversed in tandem with the block DAG, and for each node an O(nm) pattern

2Another register-aware instruction selection technique was developed in 2014 by Xie et al. [374],
with the aim of reducing the number of writes to a nonvolatile register file. However, the instructions
are selected using a proprietary and greedy heuristic hat does not warrant in-depth discussion.

214 c dag covering

×

ld

+

4 a

Reg ,Reg

R
e
g

Addr
Reg

Reg
Figure C.3: A block DAG to be covered using tree
patterns [121]. The nonterminal produced by a
given match is given along the edge where the
result is used. Note that the a node can be covered
by two matches, both of which reduce the node
to the same nonterminal. Hence only one match
is needed as the result can be shared by the two
matches making use of that nonterminal.

matcher is used to find all match sets. Pattern selection is then performed using
an extended version of the DP algorithm, but the paper does not explain how this
is done exactly. Moreover, the algorithm is only applied on the data flow of the
block DAG – control flow is covered separately using a simple heuristic – and no
guarantees are made that the pattern selection is optimal, as that is an NP-complete
problem.

Potentially Optimal Pattern Selection In a paper from 1999, Ertl [121] introduces
a design which guarantees optimal pattern selection on block DAGs for certain
machine grammars. The idea is to first make a bottom-up pass over the block
DAG and compute the costs using the conventional DP algorithm as discussed in
Ap. B. Each node is thus labeled with the same costs, as if the block DAG had first
been transformed into a tree through node duplication. But Ertl recognized that if
several patterns reduce the same node to the same nonterminal, then the reduction
to that nonterminal can be shared between several rules whose patterns contain the
nonterminal. Hence the instructions for implementing shared nonterminals only
need to be emitted once, decreasing code size and also improving performance,
since the amount of redundant computation is reduced. With appropriate data
structures, a linear-time implementation can be achieved.

An example illustrating such a situation is given in Fig. C.3, where we see an
addition that will have to be implemented twice, as its node is covered by two
separate patterns each of which reduces the subtree to a different nonterminal. The
reg node, on the other hand, is reduced twice to the same nonterminal (Reg), and
can thus be shared between the rules that use this nonterminal in the patterns.

As said earlier, however, this technique yields optimal pattern selection only
for certain machine grammars. Ertl therefore devised a checker, called DBurg,
that detects when the grammar does not belong into this category and thus cannot
guarantee optimality. The basic idea is to check whether every locally optimal
decision is also globally optimal by performing inductive proofs over the set of
all possible block DAGs. To do this efficiently, Ertl implemented DBurg using the
ideas behind Burg (hence the name).

c.5 extending tree covering techniques to dags 215

x y

+ + 0

�

(a) Original pattern DAG.

+

x y

�

+ 0

x y

(b) Partial pattern trees.

Figure C.4: Example of converting a pattern DAG into partial pattern trees. The
pattern DAG represents an add instruction that also sets a status flag if the result is
equal to 0. The black nodes indicate the output nodes.

Combining DP and Edge Splitting Koes and Goldstein [224] extended Ertl’s ideas
by providing a heuristic that splits the block DAG at points where node duplication
is estimated to have a detrimental effect on code quality. Like Ertl’s algorithm, Koes
and Goldstein’s first selects patterns optimally by performing a tree-like, bottom-up
DP pass which ignores the fact that the input is a DAG. Then, at points where
multiple patterns overlap, two costs are calculated: an overlap-cost and a cse-cost. The
overlap-cost is an estimate of the cost of letting the patterns overlap and thus incur
duplication of operations in the final assembly code. The cse-cost is an estimate of
the cost of splitting the edges at such points. If cse-cost is lower than overlap-cost,
then the node where overlapping occurs is marked as fixed. Once all such nodes
have been processed, a second bottom-up DP pass is performed on the block DAG,
but this time no patterns are allowed to span across fixed nodes, which can only be
matched at the root of a pattern. Lastly, a top-down pass emits the assembly code.

For evaluation purposes Koes and Goldstein compared their own implementa-
tion, called Noltis, against an implementation based on integer programming – we
will discuss such techniques later in this appendix – and found that Noltis achieved
optimal pattern selection in 99.70 % of the test cases. More details are given in
Koes’s doctoral dissertation [223]. But like Ertl’s design, Koes and Goldstein’s is
limited to pattern trees and thus cannot support more complex instructions such as
multi-output instructions.

Supporting Multi-output Instructions In most instruction selection techniques
based on DAG covering, it is assumed that the outputs of a pattern DAG always
occur at the root nodes. But in a design by Arnold and Corporaal [23, 24] (originally
introduced in a technical report by Arnold [22]), the nodes representing output
can be marked explicitly. The advantage of this is that it allows the pattern DAGs
to be fully decomposed into trees such that each output value receives its own
pattern tree, which Arnold and Corporaal call partial patterns. An example is given
in Fig. C.4.

The partial patterns are then matched over the block DAG using an O(nm)
algorithm. After matching, another algorithm attempts to merge appropriate
combinations of partial matches into matches of the original pattern DAG. This is

216 c dag covering

done in a straightforward manner by maintaining, for each match, an array that
maps the nodes in the pattern DAG to the covered nodes in the block DAG. Then, a
check is made on whether two partial patterns belong to the same original pattern
DAG and have compatible mappings. If a pair of pattern nodes belong to different
partial patterns but correspond to the same node in the original pattern DAG,
then both pattern nodes must cover the same node in the block DAG. For pattern
selection, Arnold and Corporaal applied a variant of the DP scheme but combined
it with a greedy heuristic in order to enforce that each node is covered exactly once.
Hence code quality is compromised.

C.6 Modeling Instruction Selection as an M(W)IS Problem

In the techniques discussed so far, the instruction selector operates directly on the
block DAG when performing pattern selection. The same applies for most designs
based on tree covering. But another approach is to indirectly solve the pattern
selection problem by first transforming it into an instance of some other problem for
which there already exist efficient solving methods. When that problem has been
solved, the answer can be translated back into a solution for the original pattern
selection problem.

One such problem is the maximal independent set (MIS) problem, where the task
is to select the largest set of nodes from a graph such that no pairs of selected
nodes have an edge between them. In the general case, finding such a solution
is NP-complete [154], and the pattern selection problem is transformed into an
MIS problem as follows. From the match sets found by pattern matching, a
corresponding conflict graph – or interference graph, as it is sometimes called – is
formed. Each node in the conflict graph represents a match, and there exists an
edge between two nodes if and only if the corresponding matches overlap. An
example of this is given in Fig. C.5. By solving the MIS problem for the conflict
graph, we obtain a selection of matches such that every node in the block DAG is
covered by exactly one match.

But a solution to the MIS problem does not necessarily yield an optimal solution
to the pattern selection problem, as the former does not incorporate costs. We
address this limitation by transforming the MIS problem into a maximal/minimal

weighted independent set (MWIS) problem, where the task is to find a solution to the
MIS problem that maximizes (or minimizes)

∑
p weight p, and assign as weights the

costs of the patterns. We can get the solution with minimal total cost simply by
negating the weights. Note that although the MWIS-based techniques discussed in
this dissertation have all been limited to block DAGs, the approach can just as well
be applied in graph covering, which will be introduced in Ap. D.

C.6.1 Applications

In 2007, Scharwaechter et al. [329] introduced what appears to be the first instruction
selection technique to use the MWIS approach for selecting patterns. But despite

c.6 modeling instruction selection as an m(w)is problem 217

+

a b

× ld

c

m1 m2

m3 m4

m5

m6

m7

m8

(a) Block DAG with matches.

m1 m2 m3 m4

m5

m6

m7

m8

(b) Interference graph.

Figure C.5: Example of modeling instruction selection as a MIS problem.
Valid maximal independent sets of the interference graph are {m1 , . . . ,m5 ,m7},
{m1 ,m2 ,m3 ,m5 ,m8}, and {m1 ,m2 ,m3 ,m6 ,m7}, which correspond to valid covers
of the block DAG.

A →

simple
pattern︷︸︸︷
op . . . cost action︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸

simple rule

〈A , B , . . .〉 →

complex pattern︷¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︸︸¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈ ¨̈︷
〈

proxy
pattern︷︸︸︷
op . . .,

proxy
pattern︷︸︸︷
op . . ., . . . 〉 cost action︸¨̈ ¨̈︷︷¨̈ ¨̈︸

complex rule

Figure C.6: Anatomy of simple and complex rules in an extended machine grammar.

this novelty, the most cited contribution of their design is its extensions to machine
grammars to support multi-output instructions.

Machine Grammars with Multiple Left-Hand Side Nonterminals Scharwaechter
et al. [329] appears to have pioneered the modeling of instruction selection as a
MWIS problem, although the main contribution of their paper is the extension of
machine grammars to handle multi-output instructions. The idea is to model such
instructions using complex rules, which each consists of multiple productions – one
for every result. In this dissertation, such productions and their patterns are called
proxy rules3 and proxy patterns, respectively, whereas rules with a single production
and their patterns are called simple rules and simple patterns, respectively. The rule
structure is also illustrated in Fig. C.6.

Pattern matching is a two-step process. First, the match sets are found for
the simple and proxy patterns, using conventional tree-based pattern matching
techniques. Second, the match sets for the complex patterns are found by combining
the matches of proxy patterns into matches of complex patterns where appropriate.
The pattern selector then checks whether it is worth applying a complex pattern for

3In the original paper, they are called split rules.

218 c dag covering

covering a certain set of nodes, or if they should be covered using the simple patterns
instead. Since the intermediate results of nodes within complex patterns cannot
be reused for other patterns, selecting a complex pattern can incur an additional
overhead cost as nodes in the block DAG may need to be covered using multiple
patterns. Consequently, a complex pattern will only be selected if the cost reduced
by replacing a set of simple patterns with this pattern is greater than the cost
incurred by code duplication.

After these decisions have been taken, the next step is to perform pattern
selection. For this, Scharwaechter et al. solve the corresponding MWIS problem in
order to limit solutions to those of exact covering only. The weights are calculated
as the negated sum of the proxy pattern costs, but the paper is ambiguous on how
these costs are calculated. Since the MWIS problem is known to be NP-complete,
Scharwaechter et al. employed a greedy heuristic called Gwmin2 by Sakai et al.
[325]. Lastly, proxy patterns which have not been merged into complex patterns are
replaced by corresponding simple patterns before assembly code emission.

Scharwaechter et al. implemented a prototype called CBurg as an extension of
Olive (see Ap. B on p. 188), and then ran some experiments by targeting a MIPS-like
architecture. In these experiments CBurg generated assembly code which improved
performance by almost 25 %, and reduced code size by nearly 22 %, compared to
assembly code which was only allowed to make use of single-output instructions.
Measurements of CBurg also indicate that this technique exhibits near-linear time
complexity. Ahn et al. [3] later broadened this work by including scheduling
dependency conflicts between complex patterns, and incorporating a feedback loop
with the register allocator to facilitate register allocation.

A shortcoming of both designs by Scharwaechter et al. and Ahn et al. is that
complex rules can only consist of disconnected pattern trees (hence there can be
no sharing of nodes between the proxy patterns). Youn et al. [377] address this
problem in a 2011 paper – which is a revised and extended version of the original
paper by Scharwaechter et al. – by introducing index subscripts for the operand
specification of the complex rules. However, the subscripts are restricted to the
input nodes of the pattern, still hindering support for completely arbitrary pattern
DAGs.

Targeting Machines with Echo Instructions In 2004, Brisk et al. [56] introduced
a technique to perform instruction selection for target machines with special echo

instructions, which are small markers that refer back to an earlier portion in the
assembly code for re-execution. This allows the assembly code to be compressed by
basically using the same idea that is applied in the LZ77 algorithm [384].4 Since
echo instructions do not incur a branch or a procedure call, the assembly code
can be reduced in size without sacrificing performance. Consequently, unlike for
traditional target machines, the pattern set is not fixed in this case but must be

4The algorithm performs string compression by replacing recurring substrings that appear earlier in
the string with pointers, allowing the original string to be reconstructed by “copy-pasting.”

c.7 modeling instruction selection as a unate/binate covering problem 219

determined as a precursor to pattern matching. This is known as the ISE problem,
which appears when generating code for ASIPs where the processor can be partially
customized for executing a particular program.

The intuition behind this design is to use echo instructions where code dupli-
cation is most prominent. To find these cases in a given function, Brisk et al. first
enumerate all subgraphs from the block DAGs, and then match each subgraph
over the block DAGs. Pattern matching is done using VF2, which is a generic
subgraph isomorphism algorithm (see Chap. 2 on p. 40). Summing the sizes of the
resulting match sets gives a measure of code duplication for each subgraph, but this
value will be an overestimation as the match sets may contain overlapping matches.
Brisk et al. addressed this by first solving the MIS problem on the conflict graph
for each match set, and then adding up the sizes of these sets. After selecting the
most beneficial subgraph, the covered nodes in the block DAGs are collapsed into
single nodes to reflect the use of echo instructions. This process of matching and
collapsing is then repeated until no new subgraph better than some user-defined
value criterion can be found. Brisk et al. performed experiments on a prototype
using a selected set of benchmark applications, which showed code size reductions
of 25 % to 36 % on average.

C.7 Modeling Instruction Selection as a Unate/Binate Covering
Problem

Another approach to solving pattern selection is to translate it to a corresponding
unate or binate covering problem. The concepts behind the two are identical with the
exception of one detail, and both unate and binate covering can be used directly for
covering graphs even though the designs discussed in this dissertation have only
been applied on block DAGs.

Although binate covering-based techniques actually appeared first, we will
begin with explaining unate covering, as binate covering is an extension of unate
covering.

Unate Covering The idea of unate covering is to create a Boolean matrix M, where
each row represents a node in the block DAG and each column represents a match
covering one or more nodes in the block DAG. If we denote mi j as row i and
column j in M, then mi j � 1 indicates that node i is covered by pattern j. Hence the
pattern selection problem is equivalent to finding a set of columns in M such that
the sum for every row is exactly 1. An example is given in Fig. C.7. Unate covering
is an NP-complete problem, but as with the MIS and MWIS problems there exist
several efficient techniques for solving it heuristically (see [87, 164] for an overview).

Unate covering alone, however, does not incorporate all necessary constraints of
pattern selection when some patterns require – and prevent – the selection of other
patterns in order to yield correct assembly code. Using machine grammars this can
be enforced with the appropriate use of nonterminals, but for unate covering we

220 c dag covering

+

a b

× ld

c

m1 m2

m3 m4

m5

m6

m7

m8

(a) Block DAG with matches.

node m1 m2 m3 m4 m5 m6 m7 m8

a 1 0 0 0 0 0 0 0
b 0 1 0 0 0 0 0 0
c 0 0 1 0 0 0 0 0
+ 0 0 0 1 0 1 0 1
× 0 0 0 0 1 1 0 0
load 0 0 0 0 0 0 1 1

(b) Boolean matrix.

Figure C.7: Example of unate covering.

have no means of expressing this constraint. We therefore turn to binate covering,
where this is possible.

Binate Covering We first rewrite the Boolean matrix from the unate covering
problem into a Boolean CNF formula. If xi ∈ {0, 1} represents a variable deciding
whether match mi is selected, then the Boolean matrix in Fig. C.7b can be rewritten
as

x1 ∧ x2 ∧ x3 ∧ (x4 ∨ x6 ∨ x8) ∧ (x5 ∨ x6) ∧ (x7 ∨ x8).

Now, the difference between unate covering and binate covering is that all
variables must be non-negated in the former, but may be negated in the latter.
Hence binate covering is equivalent to SAT.

C.7.1 Applications

According to Liao et al. [251, 252] and Cong et al. [84], the pioneering use of binate
covering to solve DAG covering was done by Rudell [322] in 1989 as a part of a very

large scale integration (VLSI) synthesis design. Liao et al. [251, 252] later adapted it to
instruction selection in a method that optimizes code size for one-register target
machines. To prune the search space, Liao et al. perform pattern selection in two
iterations. In the first iteration, patterns are selected such that the block DAG is
covered but the costs of necessary data transfers are ignored. After this step the
nodes covered by the same pattern are collapsed into single nodes, and a second
binate covering problem is constructed to minimize the costs of data transfers.
Although these two problems can be solved simultaneously, Liao et al. chose
not to do so as the number of necessary implication clauses would become very
large. Recently, Cong et al. [84] also applied binate covering as part of generating
application-specific instructions for configurable processor architectures.

Unate covering was applied by Clark et al. [79] in generating assembly code
for acyclic computation accelerators, which can be partially customized in order
to increase performance of the currently executed function. Described in a paper

c.8 modeling instruction selection using ip 221

from 2006, the target machines are presumably homogeneous enough that impli-
cation clauses are unnecessary. The work by Clark et al. was later expanded by
Hormati et al. [196] to reduce the number of interconnects as well as data-centered
latencies in accelerator designs.

Martin et al. [266, 267] also applied unate covering to solve a similar problem con-
cerning reconfigurable processor extensions. However, they combined instruction
selection with instruction scheduling and solved both in tandem using constraint
programming – we will discuss this approach later in this appendix – which they
also applied for solving the pattern matching problem. Unlike in the cases of Clark
et al. and Hormati et al., who solved their unate covering problems using heuristics,
the assembly code generated by Martin et al. is potentially optimal.

C.8 Modeling Instruction Selection Using IP

It is well known that performing instruction selection, instruction scheduling, or
register allocation in isolation will typically always yield suboptimal assembly code.
But since each subproblem is already NP-complete on its own, attaining integrated

code generation – where all these problems are solved simultaneously – is an even
more difficult problem.

These challenges notwithstanding, Wilson et al. [368] introduced in 1994 what
appears to be the first design that could be said to yield truly optimal assembly
code. Wilson et al. accomplished this by using IP, which is a method for solving
combinatorial optimization problems (sometimes IP is also called integer linear

programming). In IP, a problem is expressed using sets of integer variables and linear
equations, and a solution to an IP model is an assignment to all variables such that
all equations are fulfilled (see Def. 2.1 on p. 31 for a formal definition). In general,
solving an IP model is NP-complete, but extensive research in this field has made
many problem instances tractable. For a comprehensive overview of IP, see in [370].

Modeling Pattern Selection Using Linear Inequality In their seminal paper, Wil-
son et al. describe that the pattern selection problem can be expressed as the
following linear inequality:

∀n ∈ N :
∑

m ∈Mn

xm ≤ 1.

This reads: for every node n in the block DAG 〈N, E〉, at most one match m from
the match set involving n (represented by Mn) may be selected.5 The decision is
represented by a xm ∈ {0, 1} variable.

Similar linear equations can be formulated for modeling instruction scheduling
and register allocation – which Wilson et al. also included in their model – but these

5The more common constraint is that exactly one match must be selected, but in the design by Wilson
et al. nodes are allowed to become inactive and thus need not be covered.

222 c dag covering

are out of scope for this dissertation. In fact, any constraint that can be formulated in
this way can be added to an existing IP model, making this approach a suitable code
generation method for targeting irregular architectures. Furthermore, this is the
first design we have seen that could potentially support interdependent instructions
(although this was not the main focus of Wilson et al.).

Solving this monolithic IP model, however, typically requires considerably more
time compared to the previously discussed techniques of instruction selection. But
the trade-off for longer compilation time is better code quality; Wilson et al. reported
that experiments showed that the generated assembly code was of comparable
code quality to that of manually optimized assembly code. In theory, optimal
assembly code can be generated, although this is in practice only feasible for small
enough functions. Another much-valued feature is the ability to extend the model
with additional constraints in order to support complicated target machines, which
cannot be properly handled by the conventional designs as that typically violates
assumptions made by the underlying heuristics.

C.8.1 Approaching Linear Solving Time with Horn Clauses

Although IP models are NP-complete to solve in general, it was discovered that for
a certain class of problem instances – namely those based on Horn clauses – an
optimal solution can be found in linear time [194]. A Horn clause is a disjunctive
Boolean formula which contains at most one non-negated term. This can also be
phrased as a logical statement that has at most one conclusion. For example, the
statement

if x1 and x2 then x3

can be expressed as ¬x1 ∨ ¬x2 ∨ x3, which is a Horn clause, as only x3 is not negated.
This can then easily be rewritten into the linear inequality

(1 − x1) + (1 − x2) + x3 ≥ 1.

Moreover, statements that do not yield Horn clauses in their current form can often
be rewritten so that they do. For example,

if x1 then x2 and x3

can be expressed as ¬a ∨ b ∨ c and is thus not a Horn clause because it has more
than one non-negated term. But by rewriting it into

if x1 then x2
if x1 then x3

the statement can now be expressed as ¬x1 ∨ x2 and ¬x1 ∨ x3, which are two valid
Horn clauses.

Gebotys [155] exploited this property in 1997 by developing an IP model for
TMS320C2x – a common DSP at the time – where many of the constraints imposed

c.8 modeling instruction selection using ip 223

by the target architecture, instruction selection, and register allocation, and a part
of the instruction scheduling problem, are expressed as Horn clauses. Using
only Horn clauses may require a larger number of constraints than are otherwise
needed, but Gebotys claims that the number is still manageable. When compared
against a then-contemporary industrial DSP compiler, Gebotys demonstrated that
an implementation based on IP yielded a performance improvement mean of 44 %
for a select set of functions, while attaining reasonable compilation times. However,
the solving time increased by orders of magnitude when Gebotys augmented the
IP model with the complete set of constraints for instruction scheduling, which
cannot be expressed entirely as Horn clauses.

C.8.2 IP-Based Designs with Multi-output Instruction Support

Leupers and Marwedel [245, 249] expanded the work of Wilson et al. – whose
design is restricted to pattern trees – by developing an IP-based instruction selector
which also supports multi-output instructions. In a paper from :1996, Leupers and
Marwedel describe a scheme where the pattern DAGs of multi-output instructions
– Leupers and Marwedel refer to these as complex patterns – are first decomposed
into multiple pattern trees according to their RTs. RTs are akin to Fraser’s RTLs [139]
(see Ap. A on p. 146), and essentially mean that each observable effect gets its own
pattern tree. Each individual RT may in turn correspond to one or more instructions,
but unlike in Fraser’s design this is not strictly required.

Assuming the block DAG has already been undagged, each expression tree is
first optimally covered using IBurg. The RTs are expressed as rules in an machine
grammar that has been automatically generated from a machine description written
in MIMOLA (we will come back to this in Sect. C.10.3). Once RTs have been selected,
the expression tree is reduced to a tree of super nodes, where each super node
represents a set of nodes covered by some RT that have been collapsed into a single
node. Since multi-output and disjoint-output instructions implement more than
one RT, the goal is now to cover the super node graph using the patterns which
are formed when the instructions are modeled as RTs. Leupers and Marwedel
addressed this problem by applying a modified version of the IP model by Wilson
et al.

But because the step of selecting RTs to cover the expression tree is separate from
the step which implements them with instructions, the generated assembly code is
not necessarily optimal for the whole expression tree. To achieve this property, the
covering of RTs and selection of instructions must be done in tandem.

C.8.3 IP-Based Designs with Disjoint-output Instruction Support

Leupers [243] later made a more direct extension of the IP model by Wilson et al. in
order to support SIMD instructions, which belong to the class of disjoint-output
instructions. Described in a paper from 2000, Leupers’s design assumes every SIMD
instruction performs two operations, each of which takes a disjoint set of input

224 c dag covering

operands. This is collectively called a SIMD pair, and Leupers then extended the
IP model with linear equations for combining SIMD pairs into SIMD instructions
and defined the objective function so as to maximize the use of SIMD instructions.

In the paper, Leupers reports experiments where the use of SIMD instructions
reduced code size by up to 75 % for the selected test cases and target machines. But
since this technique assumes that each individual operation of the SIMD instructions
is expressed as a single node in the block DAG, it is unclear whether the method
can be extended to more complex SIMD instructions and whether it scales to larger
functions. Tanaka et al. [348] later expanded Leupers’s work for selecting SIMD
instructions while also taking data copying into account by introducing auxiliary
transfer nodes and transfer patterns into the block DAG.

C.8.4 Modeling the Pattern Matching Problem with IP

In 2006, Bednarski and Kessler [38] developed an integrated code generation
design where both pattern matching and pattern selection are solved using integer
programming. The scheme – which later was applied by Eriksson et al. [119], and
is also described in an article by Eriksson and Kessler [120] – is an extension of their
earlier work where instruction selection had previously more or less been ignored
(see [212, 213]).

In broad outline, the IP model assumes that a sufficient number of matches has
been generated for a given block DAG G. This is done using a pattern matching
heuristic that computes an upper bound. For each match m, the IP model contains
integer variables that:

map a pattern node in m to a node in G;
map a pattern edge in m to an edge in G; and
decide whether m is used in the solution. Remember that we may have an
excess of matches, so they cannot all be selected.

Hence, in addition to the typical linear equations we have seen previously for
enforcing coverage, this IP model also includes equations to ensure that the selected
matches are valid matches.

Implemented in a framework called Optimist, Bednarski and Kessler compared
their IP model against another integrated code generation design based on dynamic
programming. This DP algorithm, however, which was developed by the same
authors (see [212]), has nothing to do with the conventional DP algorithm by
Aho et al. [8]). Bednarski and Kessler found that Optimist substantially reduced
compilation time while retaining code quality. However, for several test cases –
the largest block DAG containing only 33 nodes – Optimist failed to generate any
assembly code whatsoever within the set time limit. One reasonable cause could
be that the IP model also attempts to solve pattern matching – a problem which
we have seen can be solved externally – and thus further exacerbates an already
computationally difficult problem.

c.9 modeling instruction selection using cp 225

C.9 Modeling Instruction Selection Using CP

Although integer programming allows auxiliary constraints to be included into
the IP model, they may be cumbersome to express as linear equations. This issue
can be alleviated by using CP, which is another method for solving combinatorial
optimization problems but has more flexible modeling capabilities compared to IP.
For a brief introduction to CP, see Chap. 3.

First Application In 1990, Bashford and Leupers [36] pioneered the use of CP in
code generation by developing a constraint model for integrated code generation that
targets DSPs with highly irregular architectures (the work is also discussed in [243,
244]). Like Leupers and Marwedel’s IP-based design, Bashford and Leupers’s first
breaks down the instruction set of the target machine into a set of RTs which are
used to cover individual nodes in the block DAG. As each RT concerns specific
registers on the target machine, the covering problem essentially also incorporates
register allocation. The goal is then to minimize the cost of covering by combining
multiple RTs that can be executed in parallel as part of some instruction.

For each node in the block DAG a FRT is introduced, which basically embodies
all RTs that match a particular node and is formally defined as the following tuple:〈

op, d, [u1 , . . . , un], f, c, t,CS

〉
.

op is the operation of the node. d and u1 , . . . , un are variables representing the
storage locations of the result and the respective inputs to the operation. These are
typically the registers that can be used for the operation, but also include virtual

storage locations which convey that the value is produced as an intermediate result in
a chain of operations (for example, the multiplication term in a multiply-accumulate
instruction is such a result). Then, for every pair of operations that are adjacent in
the block DAG, a set of constraints is added to ensure that there exists a valid data
transfer between the storage locations of d and ui if these are assigned to different
registers. In addition, if either of d and ui resides in a virtual storage location, then
both must be identical. f, c, and t are all variables which collectively represent the
extended resource information (ERI). The ERI specifies at which functional unit the
operation will be executed, at what cost in terms of number of execution cycles, and
by which instruction type. A combination of a functional unit and an instruction
type is later mapped to a particular instruction. Multiple RTs can be combined into
the same instruction when the destination of the result is a virtual storage location by
setting c � 0 and letting the last node in the operation chain account for the required
number of execution cycles. The last entity, CS, is the set of constraints for defining
the range of values for the variables and the dependencies between d and ui , as
well as other auxiliary constraints that may be required for the target machine. For
example, if the set of RTs matching a node consists of {rc � ra + rb , ra � rc + rb},
then the corresponding FRT becomes

〈+, d, [u1 , u2], f, c, t, {d ∈ {rc , ra}, u1 ∈ {ra , rc}, u2 � rb , d � rc ⇒ u1 � ra}〉 .

226 c dag covering

For brevity, we omit several details such as the constraints concerning the ERI.
This constraint model is then solved to optimality using a constraint solver. But

since optimal covering using FRTs is NP-complete, Bashford and Leupers applied
heuristics to curb the complexity by splitting the block DAG into smaller pieces
along edges where intermediate results are shared. Once split, instruction selection
is then performed on each expression tree in isolation.

C.9.1 Taking Advantage of Global Constraints

So far we have discussed several techniques that apply constraint programming
for solving the problems of pattern matching and pattern selection – namely those
by Bashford and Leupers and Martin et al. Recently, Beg [40] introduced another
constraint model for instruction selection as well as new methods for improving
solving. For example, in order to reduce the search space, Beg applied conventional
DP-based techniques to compute an upper bound on the cost. However, the
constraint model mainly deals with the problem of pattern matching rather than
pattern selection. Moreover, Beg noticed only a negligible improvement (less
than 1 %) in code quality compared to LLVM, mainly because the target machines
(MIPS and ARM) were simple enough that greedy heuristics generate near-optimal
assembly code. In addition, the block DAGs of the benchmark functions were
fairly tree-shaped [355], for which optimal code can be generated in linear time.
In any case, none of these designs take advantage of a key feature of constraint
programming, which is the use of global constraints. A global constraint captures
relations among multiple variables and results in more search space pruning than
if it had been expressed using a decomposition of constraints.

Hence, when Floch et al. [135] in 2010 adapted the constraint model by Martin
et al. to support processors with reconfigurable cell fabric, they replaced the method
of pattern selection with constraints that are radically different from those incurred
by unate covering. In addition, unlike in the case of Bashford and Leupers, the
design by Floch et al. applies the more direct form of pattern matching instead
of first breaking down the patterns into RTs and then selecting instructions that
combine as many RTs as possible.

Modeling Pattern Selection Using Global Cardinality Constraint As described in
their 2010 paper, Floch et al. use the global cardinality constraint to enforce the
requirement that every node in the block DAG must be covered by exactly one
match.6 The constraint, referred to as gcc, constrains the number of variables
assigned a particular value (which may also be a variable). Given a set v1 , . . . , vk of
values and two sets x1 , . . . , xn and c1 , . . . , ck of variables, the constraint holds if, for
each i � 1, . . . , k, exactly ci variables in the set x1 , . . . , xn are assigned value vi (see
also Def. 3.2 on p. 47). For example, gcc(〈5, c1 � 0〉, 〈3, c2 � 1〉, x1 � 2, x2 � 3) holds

6It is also possible to enforce pattern selection through a global set covering constraint developed by
Mouthuy et al. [276], but no implementation is known to do so.

c.10 other dag-based approaches 227

because no x variable is assigned value 5 and exactly one x variable is assigned
value 3. Similarly, gcc(〈3, c1 ∈ {0, 2}〉, x1 � 2, x2 � 3) does not holds because either
none or both x variables must be assigned value 3.

To model pattern selection using gcc, two new sets of variables are needed.
Assume that N denotes the set of nodes to be covered, M denotes the match
set, and covers(m) denotes the set of nodes covered by match m. Then, variable
matchn ∈ {m | m ∈ M, n ∈ covers(m)} decides which match covers node n, and
variable countm ∈ {0, | covers(m)|} decides how many nodes are covered by match m.
Hence each match covers either no nodes or all nodes in its pattern. With these
variables, pattern selection can be modeled as

gcc(∪m ∈M 〈m , countm〉,∪n ∈N matchn),

which offers stronger propagation than the corresponding linear inequality con-
straint and thus reduces solving time [135].

Accommodating VLIW Architectures The constraint model by Floch et al. was
also further extended by Arslan and Kuchcinski [25, 26, 27] to accommodate
VLIW architectures and disjoint-output instructions. First, every disjoint-output
instructions is split into multiple subinstructions, each modeled by a disjoint pattern
which is mapped onto the block DAG using a generic subgraph isomorphism
algorithm. Pattern selection is then modeled as an instance of the constraint model
with the additional constraints to schedule the subinstructions such that they can be
replaced by the original disjoint-output instruction. Consequently, unlike previous
techniques that recombine partial matches into complex matches prior to pattern
selection (see for example Scharwaechter et al. [329], Ahn et al. [3], Arnold and
Corporaal [22, 23, 24]), Arslan and Kuchcinski instead solve these two problems
in tandem. Their design is also capable of accepting multiple, disconnected block
DAGs as a single input.

Limitations An inherent limitation to the constraint models applied by Martin
et al., Floch et al., and Arslan and Kuchcinski is that they do not model the necessary
data transfers between different register classes. This in turn means that the cost
model is only accurate for target machines equipped with a homogeneous register
architecture, which could compromise code quality for more complicated target
machines.

C.10 Other DAG-Based Approaches

C.10.1 More Genetic Algorithms

Seemingly independently from the earlier work by Shu et al. [337] (discussed in
Ap. B on p. 199), Lorenz et al. [256, 257] introduced in 2001 another technique where
genetic algorithms are applied to code generation. But unlike the design by Shu

228 c dag covering

et al., the one by Lorenz et al. takes block DAGs instead of trees as input and also
incorporates instruction scheduling and register allocation. Lorenz et al. recognized
that contemporary compilers struggled with generating efficient assembly code
for DSPs equipped with very few registers and typically always spill the results of
common subexpressions to memory and reload them when needed. Compared to
optimal assembly code, this may incur more memory accesses than needed.

The design by Lorenz et al. is basically an iterative process. First, the operations
within a block are scheduled using list scheduling, which is a traditional method
of scheduling (see for example [315]). For every scheduled operation, a gene
is formulated to encode all the possible decisions to take in order to solve the
problems of instruction selection and register allocation. These decisions are then
taken over multiple steps using standard GA operations, where the values are
selected probabilistically. In each step the gene is mutated and crossed over in
order to produce new, hopefully better genes, and a fitness function is applied to
evaluate each gene in terms of expected execution time. After a certain number
of generations, the process stops and the best gene is selected. Certain steps are
also followed by a routine based on constraint programming that prunes the search
space for the subsequent decisions by removing values which will never appear in
any valid gene. Although every gene represents a single node in the block DAG,
complex patterns can still be supported through an additional variable for selecting
the instruction type for the node. If nodes with the same instruction type have been
scheduled to be executed on the same cycle, then they can be implemented using
the same instruction during assembly code emission.

Lorenz et al. originally developed this technique in order to reduce power usage
of assembly code generated for constrained DSPs, and later extended the design
to also incorporate instruction compaction and address generation. Experiments
indicate that the technique for a selected set of test cases resulted in energy savings
of 18 % to 36 % compared to a traditional tree covering-based compiler, and reduced
execution time by up to 51 %. According to Lorenz et al., the major contribution
to this reduction is due to improved usage of registers for common subexpression
values, which in turn leads to less use of power-hungry and long-executing memory
operations. But due to the probabilistic nature of GA, optimality cannot be
guaranteed, making it unclear how this technique would fare against other DAG
covering-based designs which allow a more exhaustive exploration of the search
space.

C.10.2 Extending Trellis Diagrams to DAGs

In 1998, Hanono and Devadas [173, 174] proposed a technique that is similar to
Wess’s use of trellis diagrams, which we discussed in Ap. B on p. 200. Implemented
in a system called Aviv, Hanono and Devadas’s instruction selector takes a block
DAG as input and duplicates each operation node according to the number of
functional units in the target machine on which that operation can run. Special
split and transfer nodes are inserted before and after each duplicated operation node

c.10 other dag-based approaches 229

to allows the data flow to diverge and then reconverge before passing to the next
operation node in the block DAG. The use of transfer nodes also allow the cost
of transferring data from one functional unit to another to be taken into account.
Similarly to the trellis diagram, instruction selection is thus transformed to finding
a path from the leaf nodes in the block DAG to its root node. But differently from
the optimal, DP-oriented design of Wess, Hanono and Devadas applied a greedy
heuristic that starts from the root node and makes it way towards the leaves.

Unfortunately, as in Wess’s design, this technique assumes a 1-to-1 mapping
between the nodes in the block DAG and the instructions in order to generate
efficient assembly code. In fact, the main purpose behind Aviv was to generate
efficient assembly code for VLIW architectures, where the focus is on executing as
many instructions as possible in parallel.

C.10.3 Hardware Modeling Techniques

In 1984, Marwedel [269] developed a retargetable system called MSS for microcode
generation,7 where a machine description written in Machine Independent Micro-

programming Language (MIMOLA) [382] is used for modeling the entire data path
of the processor, instead of just the instruction set as we have commonly seen.
This is commonly used for DSPs where the processor is small but highly irregular.
Although MSS consists of several tools, we will concentrate on the compiler – MSSQ

– as its purpose is most aligned with instruction selection. MSSQ was developed by
Leupers and Marwedel [246] as a faster version of MSSC [288], which in turn is an
extension of the tree-based MSSV [270].

The MIMOLA specification contains the processor registers as well as all the
operations that can be performed on these registers within a single cycle. From
this specification, a hardware DAG called the connection-operation (CO) graph is
automatically derived. An example is given in Fig. C.8. A pattern matcher then
attempts to find subgraphs within the CO graph to cover the expression trees.
Because the CO graph contains explicit nodes for every register, a match found
on this graph – called a version – is also an assignment of function variables (and
temporaries) to registers. If a match cannot be found (due to a lack of registers), the
expression tree will be rewritten by splitting assignments and inserting additional
temporaries. The process then backtracks and repeats in a recursive fashion until
the entire expression tree is covered. A subsequent process then selects a specific
version from each match set and tries to schedule them so that they can be combined
into bundles for parallel execution.

Although microcode generation is at a lower hardware level than assembly code
generation – which is usually what we refer to with instruction selection – we see
several similarities between the problems that must be solved in each. For this
reason it is included in this survey, and further examples include [33, 233, 262]. In

7
Microcode is essentially the hardware language that processors use internally for executing instruc-

tions. For example, microcode controls how the registers and program counter should be updated for a
given instruction.

230 c dag covering

. . .

. . .

R0 R2 R1

load noload

i ct ct

load noload

i ct ct

I.f.R0 I.f.R0 I.f.R1 I.f.R1

ALU

via(+) + − dat

i1 i2 ct

I.f.ALU

i1 i2 ct

I.f.ALU

i1i2 ct

I.f.ALU

i1 ct

I.f.ALU

R1MUX

Figure C.8: Example of a CO graph for a simple processor [288], containing an
arithmetic logic unit, two data registers, a program counter, and a control store.

Ap. D, we will see another design that also models the entire processor but applies
a more powerful technique.

C.11 Limitations of DAG Covering

Although DAG coverings addresses the issue of whether to split or duplicate
common subexpressions within a block, the problem still remains for expressions
that are spread across multiple blocks. To fully address this problem, one must
resort to graph covering.

This also applies to other situations where decisions made for one block can
inhibit subsequent decisions for other blocks, such as enforcing specific storage
locations or value modes. For example, Fig. C.9 shows a function that multiplies
the elements of two arrays and sums the results. Assume that the arrays consist
of fixed-point values. For efficiency, a common idiosyncrasy in many DSPs is that
multiplication of two fixed-point values return a value that is shifted one bit to
the left. For such target machines, both the value 0 and the accumulator variable s
should be in shifted mode throughout the entire function, and only restored into
normal mode upon return. Otherwise the accumulated value would be needlessly
shifted back and forth within the loop. Achieving this, however, is difficult when
limited to covering only a single block DAG at a time. Assume for example that

c.12 summary 231

int f(int* A, int* B, int N) {
int s = 0;
for (int i = 0; i < N; i++) {
s = s + A[i] * B[i];

}
return s;

}

(a) C code.

a

×

b

+

s

0 s

ret

(b) Block graphs involving variable s. For
brevity, the subtrees concerning A[i] and
B[i] are not included.

rules

Reg→ const SReg→× Reg Reg

SReg→ const Null→ ret Reg

Reg→ + Reg Reg Reg→ SReg (r � 1)
SReg→ + SReg SReg SReg→ Reg (r � 1)

(c) Rules. For brevity, the actions are not included. Null is a dummy nonterminal since ret
does not return anything, yet all productions must have a result. All rules are assumed to
have equal cost.

Figure C.9: Example illustrating the limitation of block DAGs.

the function had no multiplication. In that case, deciding to load value 0 in shifted
mode would instead lower code quality as the value would needlessly have to be
shifted back before returning, which takes an extra instruction.

Lastly, most of these approaches are restricted to tree-shaped patterns, meaning
they only support single-output instructions. Many instruction sets, however,
contain multi-output instructions and require DAG-shaped patterns, which violate
underlying assumptions made by many of the aforementioned approaches.

C.12 Summary

In this appendix, we have investigated several methods that rely on the principle of
DAG covering, which is a more general form of tree covering. Operating on DAGs
instead of trees has several advantages. Most importantly, common subexpressions
can be directly modeled, and a larger set of instructions – including multi-output and
disjoint-output instructions – can be supported and exploited during instruction
selection. This in turn leads to improved performance and reduced code size.
Consequently, techniques based on DAG covering are today one of the most widely
applied methods for instruction selection in modern compilers.

The ultimate cost of transitioning from trees to DAGs, however, is that optimal
pattern selection can no longer be achieved in linear time as it is NP-complete. At
the same time, DAGs are not expressive enough to allow the proper modeling of

232 c dag covering

all aspects featured in the functions and instructions. For example, statements
such as for loops incur loops in the graph representing the function, restricting
DAG covering to the scope of blocks and excluding the modeling of inter-block
instructions. Another disadvantage is that optimization opportunities for storing
function variables and temporaries in different forms and at different locations
across the function are forfeited.

In the next appendix, we will discuss the last and most general principle of
instruction selection, which addresses some of the aforementioned deficiencies of
DAG covering.

APPENDIX

D
Graph Covering

This appendix considers techniques based on graph covering. First, we introduce
the principle in Sect. D.1 and describe representations that enable this principle
in Sect. D.2. In Sect. D.3 we describe techniques that extend methods from tree
covering to graphs. In Sect. D.4 we describe techniques that model instruction
selection as a PBQP. Other graph-based approaches that do not fit into any of the
sections above are discussed in Sect. D.5. Lastly, we summarize in Sect. D.6.

The appendix is based on material presented in [186, Chap. 5] that has been
adapted for this dissertation. To not disturb the flow of reading, material already
presented in Chap. 2 is duplicated in this appendix.

D.1 The Principle

In DAG covering-based instruction selection, functions can only be modeled one
block at a time as cycles are forbidden to appear in the block DAGs. Lifting this
restriction results in a function graphs, thus capturing the data flow for an entire
function as a single graph. Depending on the representation, some function graphs
also capture the control flow for the function.

Selecting instructions for such graphs is known as global instruction selection

and has several advantages over local instruction selector. First, with an entire
function as input, a global instruction selector can account for the effects of local
pattern selection across the block boundaries and is thereby better informed when
making its decisions. In addition, it enables global code motion. Second, to support
inter-block instructions – which require modeling of both data and control-flow
information – it is imperative that the patterns be expressible using graphs that may
contain cycles. This makes graph covering one of the key approaches for making
use of fewer but more efficient instructions, which is becoming more and more
crucial for modern target machines – especially embedded systems – where both
power consumption and heat emission are becoming increasingly important factors.

233

234 d graph covering

representation pattern matching optimal pattern selection

trees linear linear
DAGs NP-complete NP-complete
graphs NP-complete NP-complete

Table D.1: Time complexities for solving the pattern matching and optimal pattern
selection problems using various representations.

However, when transitioning from pattern DAGs to pattern graphs, we can no
longer apply pattern matching techniques designed for trees and DAGs. Instead
we must resort to methods from the field of subgraph isomorphism in solving
this problem (see Tab. D.1 for time complexity comparison). The pattern selection
problem, on the other hand, can still be solved using many of the techniques
which were discussed in Ap. C. Therefore, in this appendix we will only examine
techniques that were originally designated for graph covering.

D.2 Sea-of-Nodes IRs

With and DAG covering, it is sufficient to represent the function on block level.
Consequently, functions are typically modeled as a forest of expression trees or a
set of block DAGs. But, as previously stated, this becomes an impediment when
applied in graph covering-based techniques, forcing us to instead use a graph-based
intermediate representation. We will therefore continue by looking briefly at how
functions can be expressed using such representations, which are colloquially
referred to as sea-of-nodes IRs.

In the context of instruction selection, there are two sea-of-nodes IRs that are
of interest. The first captures the data flow for entire functions, and the second is
an extension of the first in order to also capture control flow. For a comprehensive
survey on function representations, see [345].

Capturing Data Flow of Entire Functions In order to simply many compiler tasks,
Cytron et al. [91] introduced a function representation called SSA form.

A program is said to be in SSA form if every variable is defined exactly once. One
of the main benefits of this is that the live range of each variable is contiguous. The
live range of a variable can be loosely described as the length within the program
where the value of that variable must not be destroyed. This in turn means that each
variable corresponds to a single value, which simplifies many program optimization
routines.

For example, the function shown in Fig. D.1a is not in SSA form as variables f
and n are redefined within the loop. By introducing new variables and connecting
these using ϕ-functions where the value depends on control flow, the function can
be rewritten into SSA form, as shown in Fig. D.1b.

d.2 sea-of-nodes irs 235

int factorial(int n) {
entry:
int f = 1;

head:
if (n <= 1) goto end;

body:
f = f * n;
n = n - 1;
goto head;

end:
return f;

}

(a) C implementation of factorial.

int factorial(int n1) {
entry:
int f1 = 1;

head:
int f2 = ϕ(f1:entry, f3:body);
int n2 = ϕ(n1:entry, n3:body);
if (n2 <= 1) goto end;

body:
int f3 = f2 * n2;
int n3 = n2 - 1;
goto head;

end:
return f2;

}

(b) Code in SSA form.

n1

ϕ

≤

1

−

1

1

ϕ

× ret

(c) SSA graph.

Figure D.1: Example of an SSA graph.

From an SSA-based function, we can construct a data-flow graph called the SSA

graph [159]. Like in data-flow graphs, each operation in the function (including the
ϕ-functions) is represented as a node. These nodes are connected using data-flow
edges, ignoring the fact that the operations may belong to different blocks. For
the example above, this results in the SSA graph shown in Fig. D.1c, thus giving a
complete view of the data flow in the function.

But since the SSA graph is devoid of any control-flow information, it is often
used as a supplement alongside one or more other IRs. Obviously this also prevents
selection of instructions for implementing branches and procedure calls.

Capturing Both Data And Control Flow Click and Paleczny [81] introduced a
sea-of-nodes IR that captures both data and control flow. The data flow is modeled
exactly as in the SSA graph, and the control flow is captured using nodes to represent
the blocks in the function and edges to represent jumps between blocks. To capture
dependencies between the data and control flow – for example, when the target of
a jump depends on a Boolean value – such jumps flow through special if nodes.
For lack of a better name we will call this the Click-Paleczny graph, and an example is
shown in Fig. D.2.

236 d graph covering

F T

n1

ϕ

≤

1

−

1

1

ϕ

× ret

head

entry

if

body end

Figure D.2: Example of a Click-Paleczny graph, corresponding to the program
shown in Fig. D.1. Thin-lined nodes and edges denote data operations and data flow.
Thick-lined nodes and edges denote control operations and control flow. Dashed
edges indicate to which block an operation belongs.

D.3 Extending Tree Covering Techniques to Graphs

Paleczny et al. [295] introduced an approach for performing instruction selection
based on the Click-Paleczny graph.

Implemented in the Java Hotspot Server Compiler (JHSC), the approach first divides
the function graph into a set of possibly overlapping expression trees. This is done
by labeling certain nodes in the function graph as tree roots. Root candidates are
nodes representing operations whose result are shared or operations with side
effects and may therefore not be duplicated. The selection of roots is geared towards
duplicating address computations and other expressions that can be subsumed into
a single instruction. Once labeled, each expression tree is covered using a variant
of Alg. B.7 (see Ap. B on p. 191). The instructions are then emitted and placed in
blocks using a global code motion method described in [82].

Although the function is represented as a function graph, the instructions must
still be modeled as pattern trees. Consequently, only single-output instructions can
be selected using this approach.

D.4 Modeling Instruction Selection as a PBQP

In 2003, Eckstein et al. [109] recognized that limiting instruction selection to
local scope can decrease code quality of assembly code generated for fixed-point
arithmetic DSPs. For more details, see Ap. C on p. 230.

PBQP To overcome this problem, Eckstein et al. developed a design that takes
SSA graphs as input – making this technique the first to do so – and transforms
the pattern selection problem into a partitioned Boolean quadratic problem (PBQP).
First introduced by Scholz and Eckstein [330] to model and solve register allocation,

d.4 modeling instruction selection as a pbqp 237

PBQP is a variant of the QAP, which is a fundamental combinatorial optimization
problem in the field of operations research (see [254] for a survey). Although both
problems are NP-complete in general, a subclass of PBQP can be solved in linear
time which inspired Scholz and Eckstein in developing a greedy, linear-time solver.

A formal definition of PBQP is given in Chap. 2 on p. 38, which can intuitively
be explained as follows. Assume a problem consists of n decisions, each with
k choices. Then ®xi is a decision variable with k elements, where ®xi[j] � 1 means that
choice j has been selected for decision i. For each variable, the condition ®1T®xi � 1
ensures that exactly one choice is selected. The cost of selecting a particular choice
for decision i is represented through a cost vector ®ci , and the cost of combining two
decisions i and j are represented through a cost matrix Ci j .

In Context of Instruction Selection In this context, ®xi decides whether to select
a particular match to cover node i, ®ci contains the cost for each such match, and
Ci j contains the cost of additional instructions that may need to be selected due to
certain combinations of matches. For example, assume two nodes i and j where j
depends on i. Assume further that the instructions are represented as a normal-form
machine grammar, and that i and j can be covered using two rules, ri and r j , with
productions A → op

i
A A and B → op

j
B B, respectively. Since the result of ri does

not match the operands of r j , this rule combination requires a chain rule – or a
chain of these, if necessary – that derives B from A. The Ci j costs are calculated by
computing the transitive closure for all chain rules. For this Eckstein et al. seem
to have used the Floyd-Warshall algorithm [136], and Schäfer and Scholz [328]
later discovered a method that finds the optimal sequence of chain rules. Illegal
combinations are prevented by assigning infinite cost. An example of a PBQP
instance is shown in Fig. D.3.

Using a prototype implementation, Eckstein et al. ran experiments on a selected
set of fixed-point programs exhibiting the behavior discussed earlier. The results
indicate that their scheme improved performance by 40–60 % on average – and at
most 82 % for one function – compared to traditional tree covering-based instruction
selectors. According to Eckstein et al., this considerable gain in performance comes
from more efficient use of value modes to which tree covering-based techniques
must make premature assignments, and thus could have a detrimental effect on
code quality. For example, if chosen poorly, the instruction selector may need to
emit additional instructions in order to undo decisions regarding value modes,
which obviously reduces performance and needlessly increases the code size.
Although the technique by Eckstein et al. clearly mitigates these concerns, their
design also has limitations of its own. Most importantly, their PBQP model can
only support pattern trees and consequently hinders exploitation of many common
target machine features, such as multi-output instructions.

238 d graph covering

rules cost

Reg→ var 0
Reg→ + Reg Reg 1
Reg→ load Addr 3
Reg→ load + Reg Reg 5

Addr→ Reg 2

(a) Rules. For brevity, the actions are not included.

+

a b

ld

m1 m2

m3

m4

m5

(b) SSA graph.

®xa ∈ {0, 1}
®xb ∈ {0, 1}
®x+ ∈ {0, 1}2

®xload ∈ {0, 1}2

®ca �
[
0
]

m1

®cb �
[
0
]

m2

®c+ �

[
1
5

]
m3

m5

®cload �
[

3
5

]
m4

m5

Ca+ �
[
0

m3

0
m5]

m1

Cb+ �
[
0

m3

0
m5]

m2

C+load �

[
2

m4

∞
m5

∞ 0

]
m3

m5

(c) PBQP instance. The rows and columns in the cost vectors and
matrices are labeled with the matches they represent. Cost matrices
for uninteresting combinations are assumed to consist of 0s.

Figure D.3: Example of modeling instruction selection as a PBQP.

D.4.1 Handling DAG-shaped Patterns

To handle DAG-shaped patterns, the PBQP model must be extended. First assume
an extended grammar where multi-output instructions are described using complex
rules (described in Ap. C on p. 217, see also Fig. 2.7). For each combination of
matches derived from proxy rules that can be combined into an instance of a
complex rule, a complex match is created. Each complex match i in turn introduces
a variable ®xi ∈ {0, 1}2 to decide whether i is selected. Because of the ®1T®xi � 1
condition, every such variable has exactly two elements (one representing on and
the other off). Like with the simple rules, the costs of selecting a complex rule and
interactions between these – for example, two complex matches are not allowed
to overlap or cause cyclic data dependencies – are represented through the cost
vectors and matrices.

In order to select a complex rule, all of its proxy rules must also be selected. This
is achieved by first extending, for each node i, the domain of its variable ®xi with
matches derived from proxy rules. Then a new set of cost matrices Di j is created
such that, for a node i and complex match j, the costs are 0 if ®x j � off or ®xi is set
to a proxy rule associated with j. Otherwise the costs are ∞. Consequently, if a
complex match covering some node n is selected, then the only choice for ®xn with
non-infinite cost is an associated proxy rule. The PBQP model is thus augmented

d.5 other graph-based approaches 239

with another sum ∑
i ∈N, j ∈M

®xT
i Di j ®x j (D.1)

where N denotes the set of nodes in the SSA graph and M denotes the set of complex
matches.

This alone, however, allows solutions where all proxy rules but none of the
complex rules are selected. This is resolved by assigning an artificially large cost K
to the selection of proxy rules, which is offset when selecting the corresponding
complex rule. For example, if a complex rule r with cost 2 consists of three proxy
rules, then the new cost of selecting r is 2 − 3K.

D.4.2 Using Rewrite Rules Instead of Grammar Rules

In 2010, Buchwald and Zwinkau [60] introduced another technique based on PBQPs.
But unlike Eckstein et al. and Ebner et al., Buchwald and Zwinkau approached the
task of instruction selection as a formal graph transformation problem, for which
much previous work already exist. Hence, in Buchwald and Zwinkau’s design
the instructions are expressed as rewrite rules instead of grammar rules. As these
rewrite rules are based on a formal foundation, the resulting instruction selector
can be automatically verified to handle all possible programs. If this check fails,
the verification tool can also provide the necessary rewrite rules that are currently
missing from the instruction set.

The technique works as follows. First the SSA graph is converted into a DAG-like
form by duplicating each φ-node into two nodes, which effectively breaks any cycles
appearing in the SSA graph. After finding all applicable rewrite rules for this DAG
(this is done using traditional pattern matching), a corresponding instance of the
PBQP is formulated and solved as before.

Buchwald and Zwinkau also discovered and addressed flaws in the solver
by Eckstein et al., which may fail to find a solution in certain situations due to
inadequate propagation of information. However, Buchwald and Zwinkau also
cautioned that their own implementation does not scale well when the number
of overlapping patterns grows. In addition, since the SSA graph is devoid of
control-flow information, none of the -based techniques can support inter-block
instructions.

D.5 Other Graph-Based Approaches

D.5.1 More Hardware Modeling Techniques

In Ap. C we saw a technique for performing microcode generation where the entire
processor of the target machine is modeled as a graph instead of by just deriving
the patterns for the available instructions. Here we will look at a few techniques
that rely on the same modeling scheme, but address the more traditional problem
of instruction selection.

240 d graph covering

CHESS Lanneer et al. [234] developed in 1990 a design that was later adopted by
Van Praet et al. [356, 357] in their implementation of Chess, a well-known compiler
targeting DSPs and ASIPs.

Comparing Chess to MSSQ (see Ap. C on p. 229), we find two striking differences.
First, in MSSQ the data paths of the processor are given by a manually written
machine description, whereas Chess derives these automatically from a specification
written in nML [127, 128].

Second, the method of bundling – which is the task of scheduling operations for
parallel execution – is different. The instruction selector in MSSQ uses techniques
from DAG covering to find patterns in the hardware graph, which can subsequently
be used to cover the expression trees. After pattern selection, another routine
attempts to schedule the selected instructions for parallel execution. In contrast,
Chess takes a more incremental approach. From the program Chess first constructs
a chaining graph, where each node represents an operation in the program that has
been annotated with a set of functional units capable of executing that operation.
Since the functional units on a DSP are commonly grouped into functional building

blocks (FBBs), the chaining graph also contains an edge between every pair of nodes
that could potentially be executed on the same FBB. A heuristic algorithm then
attempts to collapse the nodes in the chaining graph by selecting an edge and
replacing the two nodes with a new node. Once replaced, the algorithm tries to
remove the edges between nodes of operations that can no longer be executed on
the same FBB as the operation of the new node. This process iterates until no
more nodes can be collapsed, and every remaining node in the chaining graph
thus constitutes a bundle. The same authors later extended this design in [356] to
consider selection between all possible bundles using branch-and-bound search The
new design also allows some measure of code duplication by allowing the same
operations in the function graph to appear in multiple bundles.

Using this incremental scheme to form the bundles, the design by Van Praet
et al. is capable of bundling operations that potentially reside in different blocks.
Their somewhat-integrated code generation approach also allows efficient assembly
code to be generated for complex architectures, making it suitable for DSPs and
ASIPs where the data paths are very irregular. It may be possible to also extend the
technique to support inter-block instructions as well, but interdependent instructions
are most likely out of reach due to its heuristic nature.

Generating Assembly Code Using Simulated Annealing Another, albeit unusual,
code generation technique was proposed by Visser [358] in 1999. Like MSSQ and
Chess, Visser’s approach is an integrated code generation design but solves the
problem using simulated annealing.1 In brief terms, an initial solution is found by
randomly mapping each node in the function graph to a node in the hardware graph
– which models the entire processor – and then a schedule is found using traditional

1
Simulated annealing is a meta-heuristic that avoids getting stuck in a local maximum when searching

for optimal solutions. For an overview, see for example [219].

d.5 other graph-based approaches 241

list scheduling. A fitness function is then applied to judge the effectiveness of
the solution, but the exact details are omitted from the paper. A proof-of-concept
prototype was developed and tested on a simple program, but it appears no further
research has been conducted on this idea.

D.5.2 Improving Code Quality with Mutation Scheduling

The last item we will discuss is a technique called mutation scheduling,2 which was
introduced in 1994 by Novack et al. [286, 287]. Mutation scheduling is technically a
form of instruction scheduling that primarily targets VLIW architectures, but it also
integrates a sufficient amount of instruction selection to warrant being included
in this dissertation. On the other hand, the amount of instruction selection that
is incorporated is in turn not really based on graph covering. But as with trellis
diagrams (see Aps. B and C on pp. 200 and 228, respectively), the author decided
against discussing it in its own appendix.

Broadly speaking, mutation scheduling essentially tries to reduce the make
span of programs for which assembly code have already been generated (hence
instruction selection, instruction scheduling, and register allocation has already
been performed).3 This is done by progressively moving the computations, one
at a time, such that they can be executed in parallel with other instructions and
thus finish sooner. If such a move cannot be made, for example due to violation
of some resource constraint or data dependency, then mutation scheduling tries
to alter the value. This is called value mutation, which means that the current
operation is replaced by other, equivalent operations that conform to the restrictions.
These operations are selected from a mutation set, which is conceptually a recursive
data structure, as an expression in the mutation set may use intermediate values
that in turn necessitate mutation sets of their own. Novack et al. compute these
mutation sets by first taking the original operation and then applying a series of
semantic-preserving functions that have been derived from various logical axioms,
algebraic theorems, and the characteristics of the target machine. For example, if
the value X is computed as Y + 5, then Y can later be obtained by computing X − 5.
Another example is multiplication by powers of 2, which can be replaced with shift
instructions, provided such instructions are available. If this is beneficial, a value
can also be recomputed instead of copied from its current location. This idea is
known as recomputation (or rematerialization), which is a method for reducing register
pressure, as it allows registers to be released at an earlier point in the assembly
code.

2Despite its name, the idea of mutation scheduling is completely orthogonal to the theory of genetic
algorithms.

3Although it is depicted here primarily as a post-step to code generation, one could just as well
design a Davidson-Fraser-style compiler (see Ap. A on p. 148). In such a design, simple methods are
applied to generate correct but naive assembly code, and then mutation scheduling is used to improve
the code quality.

242 d graph covering

In mutation scheduling, “shorter” mutations are preferred over longer ones.
This is because a value mutation of v can lead to a cascade of new computations,
which all will need to be scheduled before v can be is computed. Note that these
computations can be scheduled such that they appear in blocks preceding the block
in which the computations of v appear. Hence the length of a mutation is loosely
defined as the number of instruction bundles that may need to be modified in order
to realize the mutation. Moreover, since the new computations of a successful
mutation consume resources and incur dependencies of their own, the existing
candidates appearing in mutation sets may need to be removed or modified. The
“best” combination of mutations is then decided heuristically, but the paper is vague
on how this is done exactly.

Novack et al. implemented a prototype by extending an existing scheduler based
on global resource-constrained percolation (GRiP), which is another global instruction
scheduling technique developed by the same authors (see [284]). Subsequent exper-
iments using a selected set of benchmark programs demonstrated that the mutation
scheduling-based design yielded a two- to threefold performance improvement over
the GRiP-only-based counterpart, partly due to its ability to apply rematerialization
in regions where register pressure is high. Unfortunately the authors neglected to
say anything about the time complexity of mutation scheduling, and whether it
scales to larger programs.

D.6 Summary

In this appendix we have considered a number of techniques that are founded,
in one form or another, on the principle of graph covering. Such techniques are
among the most powerful methods of instruction selection since they perform global
instruction selection as well as have more extensive instruction support compared
to most and DAG covering-based designs.

Unfortunately this has not been fully exploited in existing techniques, partly
due to limitations in the program representations or to restrictions enforced by the
underlying solving techniques. Moreover, performing global instruction selection
is computationally much harder compared to local instruction selection. Therefore,
we will most likely only see these techniques applied in compilers whose users can
afford very long compilation times (for example when targeting embedded systems
with extremely high demands on performance, code size, power consumption, or a
combination thereof).

APPENDIX

E
List of Techniques

The list starts on the next page, with its legend appearing at the end of the list. The
techniques are ordered chronologically.

Note that the capabilities of all techniques have been set to reflect those exhibited
by current implementation prototypes and known applications, not the capabilities
that could potentially be achieved through extensions of the technique.

243

244
e

listoftechniques
REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Lowry and Medlock [259] ME L FHC
Orgass and Waite [294] ME L Simcmp
Elson and Rake [112] ME L
Miller [275] ME L Dmacs
Wilcox [367] ME L
Wasilew [361] TC L
Donegan [104] ME L
Tirrell [350] ME L
Weingart [362] TC L
Ammann et al. [12, 13] ME L
Young [378] ME L
Newcomer [281] TC L
Simoneaux [338] ME L
Snyder [340] ME L
Fraser [143, 144] ME L
Ripken [320] TC L
Glanville and Graham [163] TC L
Johnson [203, 204] TC L PCC
Harrison [177] ME+ L
Cattell et al. [67, 70, 250] TC L PQCC
Auslander and Hopkins [30] ME+ L
Ganapathi and Fischer [149, 150, 151, 152] TC L
Krumme and Ackley [229] ME L
Deutsch and Schiffman [99] ME L
Christopher et al. [75] TC L
Davidson and Fraser [93] ME+ L ACK, GCC, ZephyrVPO
Henry [183] TC L
Aho et al. [7, 8, 352] TC L Twig
Hatcher and Christopher [179] TC L
Horspool [197] TC L

245
REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Fraser and Wendt [138] ME+ L
Giegerich and Schmal [162] TC L
Hatcher and Tuller [181] TC L UNH-Codegen
Pelegrı-Llopart and Graham [298] TC L
Yates and Schwartz [376] TC L
Emmelmann et al. [113] TC L BEG, CoSy
Ganapathi [148] TC L
Genin et al. [157] ME+ L
Nowak and Marwedel [288] DC L MSSC
Balachandran et al. [32] TC L
Despland et al. [62, 97, 98] TC L Pagode
Wendt [364] ME+ L
Hatcher [180] TC L UCG
Fraser et al. [140] TC L IBurg, Record, Redaco
Fraser et al. [141, 303, 304, 306, 307] TC L Burg, HBurg, JBurg, WBurg, OCamlBurg
Emmelmann [114] TC L
Wess [365, 366] TD L
Marwedel [270] TC L MSSV
Tjiang [351] TC L Olive, Spam
Engler and Proebsting [118] TC L DCG
Fauth et al. [129, 277] DC L CBC
Ferdinand et al. [131] TC L
Liem et al. [253, 296, 297] DC L CodeSyn
Lanneer et al. [234, 356, 357] GC G Chess
Wilson et al. [368] DC L
Yu and Hu [379, 380] DC L
Novack et al. [286, 287] MS G
Hanson and Fraser [175] TC L LBurg, LCC
Liao et al. [251, 252] DC L
Adl-Tabatabai et al. [1] ME L Omniware
Engler [117] ME L VCode

246
e

listoftechniques
REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Hoover and Zadeck [195] DC L
Leupers and Marwedel [245, 249] DC L
Nymeyer et al. [289, 290] TC L
Shu et al. [337] TC L
Gough [165, 166, 167] TC L MBurg, GPBurg
Gebotys [155] DC L
Hanono and Devadas [173, 174] TD L Aviv
Leupers and Marwedel [246] DC L MSSQ
Bashford and Leupers [36] DC L
Ertl [121] DC L DBurg
Fraser and Proebsting [142] ME L GBurg
Fröhlich et al. [145] TD L
Visser [358] GC G
Leupers [243] DC L
Madhavan et al. [261] TC L
Arnold and Corporaal [22, 23, 24] DC L
Sarkar et al. [326] DC L Jalapeño
Paleczny et al. [295] GC G JHSC
Lorenz et al. [256, 257] DC L
Bravenboer and Visser [54] TC L
Krishnaswamy and Gupta [227] ME+ L
Eckstein et al. [109] GC G
Tanaka et al. [348] DC L
Borchardt [48] TC L
Brisk et al. [56] DC L
Cong et al. [84] DC L
Lattner and Adve [235] DC L LLVM
Kessler et al. [38, 119, 120] DC L Optimist
Clark et al. [79] DC L
Dias and Ramsey [101] ME+ L
Ertl et al. [122] DC L

247
REFERENCES PR SC OP MO DO IB IN KNOWN APPLICATIONS

Farfeleder et al. [125] DC L
Kulkarni et al. [230] ME+ L Vista
Hormati et al. [196] DC L
Scharwaechter et al. [329] DC L CBurg
Ebner et al. [108] GC G
Koes and Goldstein [224] DC L Noltis
Ahn et al. [3] DC L
Martin et al. [266, 267] DC L
Buchwald and Zwinkau [60] GC G
Dias and Ramsey [100, 314] ME+ L
Edler von Koch et al. [110] TC L
Floch et al. [135] DC L
Yang [375] TC L
Youn et al. [377] DC L
Arslan and Kuchcinski [25, 26, 27] DC L
Janoušek and Málek [201] TC L
Andrade [15] ME L Gnu Lightning
Hjort Blindell et al. [188, 189] GC G
Fundamental principle (PR) on which each technique is based: macro expansion (ME), macro expansion with peephole optimization (ME+), tree
covering (TC), trellis diagrams (TD), DAG covering (DC), graph covering (GC), and mutation scheduling (MS). Scope of instruction selection
(SC): local (L, isolated to a single block), and global (G, considers entire functions). Whether the technique is claimed to be optimal (OP).
Supported instruction characteristics: single-output (supported by all techniques), multi-output (MO), disjoint-output (DO), inter-block (IB),
and interdependent (IN) instructions. The symbols , , and indicate no, partial, and full support, respectively.

APPENDIX

F
Graph Definitions

Nodes, Edges, and Graphs A graph is defined as a tuple (N, E)where N is a set
of nodes (also known as vertices) and E is a set of edges, each consisting of a pair of
nodes n ,m ∈ N. A graph G � (N, E) is a subgraph of another graph G′ � (N′, E′),
written G ⊆ G′, if and only N ⊆ N′ and E ⊆ E′. A graph is undirected if its edges
have no direction, and directed if they do. Edges with a direction are written either
(n ,m) or n → m, whichever is most convenient, and edges without are written
{n ,m}. In a directed graph, we say that an edge e � (n ,m) is outgoing (or outbound)
with respect to n, and ingoing (or inbound) with respect to m. We also call n and m
the source and target, respectively, of e, and introduce two functions, source : E→ N
and target : E→ N , that respectively returns an edge’s source and target. Edges for
which source(e) � target(e) are known as loop edges (or simply loops).

If there exists more than one edge between the same pair of nodes then the
graph is a multigraph, otherwise it is a simple graph. A bipartite graph (or bigraph) is a
graph whose nodes can be divided into two disjoint sets N and M such that every
edge connects a node in N with a node in M. Hence there are no edges between
pairs drawn exclusively from N or M.

Paths and Connectivity A sequence of edges that describe how to get from one
node to another is called a path. More formally, we define a path between two nodes n
and m in a directed graph (N, E) as an ordered sequence p � 〈e1 , . . . , el〉 for which
∀ei ∈ p : ei ∈ E, and ∀1 ≤ i < l − 1 : target(ei) � source(ei+1). Paths for undirected
graphs are similarly defined and will thus be skipped. A path 〈e1 , . . . , el〉 for which
source(e1) � target(el) is called a cycle, and a cycle that visits all nodes in the graph
exactly once is called a Hamiltonian cycle.

Two nodes n and m, where n , m, are said to be connected if there exists a path
from n to m, and if the path is of length 1 then n and m are also adjacent. A directed
graph containing no cycles is known as a directed acyclic graph (DAG). An undirected
graph is connected if and only if there exists a path for every distinct pair of nodes.

249

250 f graph definitions

m1

m2

m3

Gm

n1

n2

n3 n4

Gn
f

f

f

Figure F.1: An example of two simple, directed graphs Gm and Gn . Through the
graph homomorphism f we see that Gm is an isomorphic subgraph of Gn . Both
graphs are weakly connected, and Gn also has a strongly connected subgraph,
consisting of n2, n3, and n4 which form a cycle.

For completeness, a directed graph is strongly connected if and only if, for every pair
of distinct nodes n and m, there exists a path from n to m and a path from m to
n. Also, a directed graph is weakly connected if replacing all edges with undirected
edges yields a connected undirected graph. An example is shown in Fig. F.1.

Trees A simple, undirected graph that is connected, contains no cycles, and has
exactly one path between any two nodes, is called a tree. A tree T is a subtree of
another tree T′ if and only if T ⊆ T′. A set of trees constitutes a forest. Nodes in a
tree with exactly one neighbor are known as leaves. A directed tree is a directed graph
that would become a tree when ignoring the direction of its edges. A rooted directed

tree is a directed tree where one node has been assigned as root and all edges either
point away or towards the root. In a rooted directed tree, a parent of a node n is the
node adjacent to n that is closest to the root. Likewise, if a node n is the parent of
another node m, then m is a child of n. In this dissertation, we assume all trees to be
rooted directed trees, and a tree will always be drawn with its root appearing at the
top.

Isomorphisms A graph homomorphism is a mapping between two graphs such
that their structure is preserved. More formally, a graph homomorphism f from a
graph G � (N, E) to another graph G′ � (N′, E′) is a mapping f : N → N′ such that
{u , v} ∈ E implies { f (u), f (v)} ∈ E′. If the graph homomorphism f is an injective
function, then f is also called a subgraph isomorphism. If there exists such a mapping
then we say that G is an isomorphic subgraph of G′, and an example of this is given in
Fig. F.1. If f is a bĳection, whose inverse function is also a graph homomorphism,
then f is called a graph isomorphism.

Topological Sorts Lastly we introduce the notion of topological sort, where the
nodes of a graph (N, E) are arranged in an ordered sequence 〈n1 , . . . , nn〉 such that
∀1 ≤ i ≤ n : ni ∈ N , and for no pair of nodes ni and n j , where i < j, does there exist
an edge (n j , ni) ∈ E. In other words, if the edges are added to the list then all edges

251

will go point forward from left to right (hence topological sorts are only defined for
DAGs). Several methods exists for achieving a topological sort, see for example in
Cormen et al. [88, Sect. 22.4].

APPENDIX

G
MiniZinc Implementation

1 %
2 % Main authors:
3 % Gabriel Hjort Blindell <ghb@kth.se>
4 % Mats Carlsson <matsc@sics.se>
5 %
6 % Contributing authors:
7 % Roberto Castaneda Lozano <rcas@sics.se>
8 %
9 % Copyright (c) 2012-2018, Gabriel Hjort Blindell <ghb@kth.se>
10 % All rights reserved.
11 %
12 % Redistribution and use in source and binary forms, with or without
13 % modification , are permitted provided that the following conditions are
14 % met:
15 % 1. Redistributions of source code must retain the above copyright notice,
16 % this list of conditions and the following disclaimer.
17 % 2. Redistributions in binary form must reproduce the above copyright
18 % notice, this list of conditions and the following disclaimer in the
19 % documentation and/or other materials provided with the distribution.
20 % 3. Neither the name of the copyright holder nor the names of its
21 % contributors may be used to endorse or promote products derived from
22 % this software without specific prior written permission.
23 %
24 % THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
25 % IS" AND ANY EXPRESS OR IMPLIED WARRANTIES , INCLUDING , BUT NOT LIMITED TO,
26 % THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 % PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE LIABLE
28 % FOR ANY DIRECT, INDIRECT , INCIDENTAL , SPECIAL, EXEMPLARY , OR
29 % CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED TO, PROCUREMENT OF
30 % SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 % INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN
32 % CONTRACT , STRICT LIABILITY , OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 % ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE , EVEN IF ADVISED OF
34 % THE POSSIBILITY OF SUCH DAMAGE.
35

36

253

254 g minizinc implementation

37

38

39 %=====================
40 % EXTERNAL PARAMETERS
41 %=====================
42

43 % Function data.
44 int: numOperationsInFunction;
45 int: numDataInFunction;
46 int: numBlocksInFunction;
47 int: entryBlockOfFunction;
48 int: execFrequencyGCD;
49 array[allBlocksInFunction] of set of int: domSetsOfBlocksInFunction;
50 array[allOperationsInFunction] of set of int: depsOfOpsInFunction; % NOT IN
51 % USE
52 array[allDataInFunction] of set of int: depsOfDataInFunction; % NOT IN USE
53 set of allOperationsInFunction: copiesInFunction;
54 set of allOperationsInFunction: controlOpsInFunction;
55 set of allDataInFunction: statesInFunction;
56 array[int, int] of int: defEdgesInFunction;
57 array[allBlocksInFunction] of int: execFrequencyOfBlockInFunction;
58 array[int] of set of int: interchangeableDataInFunction;
59 set of allDataInFunction: dataInFunctionUsedAtLeastOnce; % NOT IN USE
60

61 % Target machine data.
62 int: numLocations;
63 set of int: canonicalDataLocs;
64

65 % Match data.
66 int: numMatches;
67 int: numOperands;
68 array[allOperands] of set of int: operandAlternatives;
69 array[allMatches] of set of int: operationsCoveredByMatch;
70 array[allMatches] of set of int: operandsDefinedByMatch;
71 array[allMatches] of set of int: operandsUsedByMatch;
72 array[allMatches] of set of int: operandsExteriorToMatch;
73 array[allMatches] of set of int: operandsIntermediateToMatch;
74 array[allMatches] of set of int: entryBlockOfMatch;
75 array[allMatches] of set of int: spannedBlocksInMatch;
76 array[allMatches] of set of int: consumedBlocksInMatch;
77 array[int, int] of int: validDataLocsInMatch;
78

79 array[int, int] of int: inputDefEdgesInMatch;
80 array[int, int] of int: outputDefEdgesInMatch;
81 array[allMatches] of int: codeSizeOfMatch;
82 array[allMatches] of int: latencyOfMatch;
83 set of allMatches: copyInstrMatches;
84 set of allMatches: killInstrMatches;
85 set of allMatches: nullInstrMatches;
86 set of allMatches: phiInstrMatches;
87 array[allMatches] of allMatches: allMatchesBySize;
88

89 int: costLowerBound;
90 int: costUpperBound;
91

255

92 % Arrays that encode constraints
93 array[int, int] of int: validDataLocsInFunction;
94 array[int, int] of int: validDataLocRangesInFunction;
95 array[int, int] of int: sameDataLocsInFunction;
96 array[int, int] of int: validDataLocRangesInMatch;
97 array[int, int] of int: sameDataLocsInMatch;
98 array[int, int] of int: fallThroughBlockOfMatch;
99 array[int] of set of int: illegalMatchCombinations;
100

101 % These variables will be set by concatenating the definitions to the end of
102 % this file.
103

104

105 %=====================
106 % INTERNAL PARAMETERS
107 %=====================
108

109 % Total number of location values. Two additional values will be needed for
110 % representing the intermediate value location (for when the datum cannot be
111 % reused by other matches) and the killed location (for when the datum is
112 % defined by a kill match).
113 int: numLocValues = numLocations + 2;
114

115 % Reference to to the intermediate value location.
116 int: locValueForInt = numLocValues - 1;
117

118 % Reference to to the killed location.
119 int: locValueForKilled = numLocValues;
120

121 % Total number of data values. An additional value will be needed for
122 % representing the null datum (for operands used in non-selected matches).
123 int: numDataValues = numDataInFunction + 1;
124

125 % Reference to to the null datum.
126 int: datumValueForNull = numDataValues;
127

128 % Total number of blocks values. An additional value will be needed for
129 % representing the null block (to which non-selected matches will be
130 % placed).
131 int: numBlockValues = numBlocksInFunction + 1;
132

133 % Reference to the null block.
134 int: blockValueForNull = numBlockValues;
135

136 % Sets to be used as array ranges.
137 set of int: allOperationsInFunction = 1..numOperationsInFunction;
138 set of int: allDataInFunction = 1..numDataInFunction;
139 set of int: allBlocksInFunction = 1..numBlocksInFunction;
140 set of int: allMatches = 1..numMatches;
141 set of int: allOperands = 1..numOperands;
142 set of int: allLocValues = { x | x in canonicalDataLocs
143 ++ [locValueForInt
144 , locValueForKilled
145]
146 };

256 g minizinc implementation

147

148 % The ’domRelMatrix ’ matrix is a 2D matrix with 2 columns:
149 % col 1: a block i
150 % 2: a block j that dominates i
151 % In other words, domRelMatrix has a row [i, j] if and only if j belongs to
152 % domSetsOfBlocksInFunction[i].
153 %
154 % Eq. 6.1 in dissertation
155 int: numDomMatrixRows =
156 sum (b in allBlocksInFunction)
157 (card(domSetsOfBlocksInFunction[b]));
158 array[1..numDomMatrixRows , 1..2] of allBlocksInFunction: domRelMatrix =
159 array2d(1..numDomMatrixRows
160 , 1..2
161 , [if k = 1 then i else j endif
162 | i in allBlocksInFunction
163 , j in domSetsOfBlocksInFunction[i]
164 , k in 1..2
165]
166);
167

168 % The set of matches that can cover a particular operation.
169 array[allOperationsInFunction] of set of allMatches: matchsetOfOp =
170 [{ m | m in allMatches where op in operationsCoveredByMatch[m] }
171 | op in allOperationsInFunction
172];
173

174 % The set of matches that can define a particular datum.
175 array[allDataInFunction] of set of allMatches: defsetOfDatum =
176 [{ m | m in allMatches
177 , p in operandsDefinedByMatch[m]
178 where d in operandAlternatives[p]
179 }
180 | d in allDataInFunction
181];
182

183 % The set of matches that can define a particular datum and does not cover
184 % any operations.
185 array[int] of set of allMatches: defsetOfDatumOnly =
186 [M | M in defsetOfDatum
187 where forall (i in index_set(matchsetOfOp))
188 (matchsetOfOp[i] != M)
189];
190

191 % Maps a match to an operation. This is only needed for figuring out in
192 % which block a selected match is to be placed.
193 array[allMatches] of int: opOfM =
194 [min({ o | o in allOperationsInFunction where m in matchsetOfOp[o] })
195 | m in allMatches
196];
197

198 % Maps an operand to a match. This is only needed for figuring out which
199 % operands have not been assigned a datum.
200 array[allOperands] of int: matchOfP =
201 [m | p in allOperands

257

202 , m in allMatches
203 where p in operandsDefinedByMatch[m] union operandsUsedByMatch[m]
204];
205

206 % The total cost is computed as:
207 %
208 % sum (m in allMatches)
209 % (latencyOfMatch[m] * execFrequencyOfBlocks[place[m]])
210 %
211 % but this implementation yields poor propagation. To improve propagation ,
212 % we use the cost per operation instead of cost per selected match.
213 %
214 % First, we split the cost incurred by selecting a given match over the
215 % operations that it covers. As the latency of a match times the exeqution
216 % frequency of a given block may not be evenly divisible by the number of
217 % operations covered, some operations may have a greater cost than
218 % others. Then, we multiply each operation cost with the execution
219 % frequency of the block wherein the operation may be placed.
220 %
221 % This information is put in a matrix called ’costPerOpMatrix ’.
222

223 % The ’costPerOpMatrix ’ is a 2D matrix with 4 columns:
224 % col 1: an operation o
225 % 2: a match m that covers o
226 % 3: a block b in which m can be placed
227 % 4: the cost incurred by o if m is selected and placed in b
228 % For simplicity , we first create a list and then the matrix using the list.
229 %
230 % Eqs. 6.6 and 6.7 in dissertation
231 array[int] of int: costPerOpList =
232 [if k = 1 then o
233 else if k = 2 then m
234 else if k = 3 then b
235 else let
236 { int: d = card(operationsCoveredByMatch[m])
237 , int: q = latencyOfMatch[m] div d
238 , int: r = latencyOfMatch[m] mod d
239 } in if operationsCoveredByMatch[m][r+1] > o
240 then (q+1) * execFrequencyOfBlockInFunction[b]
241 else q * execFrequencyOfBlockInFunction[b]
242 endif
243 endif
244 endif
245 endif
246 | o in allOperationsInFunction
247 , m in allMatches
248 , b in if card(entryBlockOfMatch[m]) > 0 then entryBlockOfMatch[m]
249 else allBlocksInFunction
250 endif
251 , k in 1..4
252 where o in operationsCoveredByMatch[m]
253];
254 int: numCostPerOpMatrixRows = card(index_set(costPerOpList)) div 4;
255 array[1..numCostPerOpMatrixRows , 1..4] of int: costPerOpMatrix =
256 array2d(1..numCostPerOpMatrixRows , 1..4, costPerOpList);

258 g minizinc implementation

257

258 % A set with all the possible costs that can be incurred by any operation.
259 set of int: allOpCosts = { costPerOpMatrix[i, 4]
260 | i in 1..numCostPerOpMatrixRows
261 };
262

263 % The set of all non-phi instruction use operands.
264 set of int: nonPhiUseOperands =
265 { p
266 | m in allMatches diff phiInstrMatches
267 , p in operandsUsedByMatch[m]
268 };
269

270 % The set of operands which are either used or defined by kill instructions.
271 set of int: killOperands =
272 array_union([operandsDefinedByMatch[m] | m in killInstrMatches]
273 ++
274 [operandsUsedByMatch[m] | m in killInstrMatches]
275);
276

277

278 %===========
279 % VARIABLES
280 %===========
281

282 % Match selection.
283 array[allMatches] of var bool: sel;
284

285 % Blocks wherein the data are placed.
286 array[allDataInFunction] of var allBlocksInFunction: dplace;
287

288 % The block in which a particular operation is placed.
289 array[allOperationsInFunction] of var allBlocksInFunction: oplace;
290

291 % Data locations.
292 array[allDataInFunction] of var allLocValues: loc;
293

294 % Data selected for the operands.
295 array[allOperands] of var allDataInFunction: alt;
296

297 % Block ordering (succ[b] is the block appearing immeditely after block b
298 % in the generated code).
299 array[allBlocksInFunction] of var allBlocksInFunction: succ;
300

301 % Cost.
302 var int: totalcost;
303 array[allOperationsInFunction] of var allOpCosts: opcosts;
304

305

306 %================
307 % DUAL VARIABLES
308 %================
309

310 % The match that covers a particular operation.
311 array[allOperationsInFunction] of var allMatches: omatch;

259

312

313 % The match that defines a particular datum.
314 array[allDataInFunction] of var allMatches: dmatch;
315

316 % For selected , non-null, non-phi instruction use operands:
317 % block where the datum of a given operand is used.
318 % For non-selected , non-null, non-phi instruction use operands:
319 % block where the datum of a given operand is defined.
320 % For other operands:
321 % 1.
322 array[allOperands] of var allBlocksInFunction: uplace;
323

324

325 %====================
326 % GLOBAL CONSTRAINTS
327 %====================
328

329 include "globals.mzn";
330

331

332 %===========
333 % FUNCTIONS
334 %===========
335

336 % Bypasses the alt[.] variable if the given operand only has one
337 % alternative. Valid under the assumption that its match was selected.
338 var allDataInFunction: Alt(allOperands: p) =
339 let { allDataInFunction: d = min(operandAlternatives[p]) }
340 in if card(operandAlternatives[p]) = 1 then d else alt[p] endif;
341

342 % True if the value of a given operand for sure must not be in the
343 % intermediate value nor in the killed location.
344 test valueOfOpMustBeAvailable(allOperands: p) =
345 exists (i in index_set_1of2(validDataLocRangesInMatch))
346 (validDataLocRangesInMatch[i, 2] = p /\
347 validDataLocRangesInMatch[i, 4] < locValueForInt
348 % Since locValueForInt < locValueForKilled , this also entails that the
349 % range does not include locValueForKilled
350);
351

352 % True if a datum for sure must not be in the intermediate value nor in the
353 % killed location.
354 test valueMustBeAvailable(allDataInFunction: d) =
355 forall (m in defsetOfDatum[d])
356 (not (m in killInstrMatches) /\
357 exists (use2 in operandsDefinedByMatch[m] intersect
358 operandsExteriorToMatch[m]
359)
360 (operandAlternatives[use2] = {d})
361);
362

363

364 %==================
365 % BASE CONSTRAINTS
366 %==================

260 g minizinc implementation

367

368 % Constrain locations of data representing values.
369 constraint
370 forall (d in allDataInFunction)
371 (let { set of int: locs = { validDataLocsInFunction[i, 2]
372 | i in index_set_1of2(validDataLocsInFunction)
373 where validDataLocsInFunction[i, 1] = d
374 }
375 }
376 in if card(locs) > 0 then loc[d] in locs else true endif
377);
378

379 % Constrain locations of data that must be within a specific range.
380 constraint
381 forall (i in index_set_1of2(validDataLocRangesInFunction))
382 (let { int: d = validDataLocRangesInFunction[i, 1]
383 , int: l = validDataLocRangesInFunction[i, 2]
384 , int: u = validDataLocRangesInFunction[i, 3]
385 }
386 in loc[d] in l..u
387);
388

389 % Constrain locations of data which must be assigned the same location.
390 constraint
391 forall (i in index_set_1of2(sameDataLocsInFunction)) (
392 let { int: p1 = sameDataLocsInFunction[i, 1]
393 , int: p2 = sameDataLocsInFunction[i, 2]
394 }
395 in loc[Alt(p1)] = loc[Alt(p2)]
396);
397

398 % Constrain alternatives of operands.
399 constraint
400 forall (p in allOperands)
401 (alt[p] in operandAlternatives[p]);
402

403 % All operands exterior to a match (excluding kill matches), and which are
404 % not states, must not be located in the intermediate value location nor
405 % the killed location.
406 constraint
407 forall (m in allMatches diff killInstrMatches
408 , p in operandsExteriorToMatch[m]
409 where not (operandAlternatives[p] subset statesInFunction)
410 /\ not valueOfOpMustBeAvailable(p)
411)
412 (if forall (d in operandAlternatives[p])
413 (valueMustBeAvailable(d))
414 then true
415 else sel[m] -> (loc[Alt(p)] != locValueForInt /\
416 loc[Alt(p)] != locValueForKilled
417)
418 endif
419);
420

421 % All operands intermediate to a match must be located in the intermediate

261

422 % value location.
423 constraint
424 forall (m in allMatches
425 , p in operandsIntermediateToMatch[m]
426 where not (operandAlternatives[p] subset statesInFunction)
427)
428 (sel[m] -> loc[Alt(p)] = locValueForInt);
429

430 % If a match representing a phi instruction is selected , then its operands
431 % must be placed in the same location.
432 %
433 % Eq. 5.16 in dissertation
434 constraint
435 forall (m in phiInstrMatches
436 , p1 in operandsExteriorToMatch[m]
437)
438 (let { int: p2 = min(operandsExteriorToMatch[m]) }
439 in if p1 != p2 then sel[m] -> loc[Alt(p1)] = loc[Alt(p2)]
440 else true
441 endif
442);
443

444 % Constrain locations of operands representing values for selected matches.
445 %
446 % Eq. 5.15 in dissertation
447 constraint
448 forall (m in allMatches
449 , p in operandsDefinedByMatch[m] union operandsUsedByMatch[m]
450)
451 (let { set of int: locs = { validDataLocsInMatch[i, 3]
452 | i in index_set_1of2(validDataLocsInMatch)
453 where validDataLocsInMatch[i, 1] = m
454 /\
455 validDataLocsInMatch[i, 2] = p
456 }
457 }
458 in if card(locs) > 0
459 then sel[m] -> loc[Alt(p)] in locs
460 else true
461 endif
462);
463

464 % Constrain locations of operands that must be within a specific range.
465 %
466 % If no entry appears in validDataLocRangesInMatch for a given match and
467 % operand, then it means no location restrictions are applied.
468 constraint
469 forall (i in index_set_1of2(validDataLocRangesInMatch)) (
470 let { int: m = validDataLocRangesInMatch[i, 1]
471 , int: p = validDataLocRangesInMatch[i, 2]
472 , int: l = validDataLocRangesInMatch[i, 3]
473 , int: u = validDataLocRangesInMatch[i, 4]
474 }
475 in sel[m] -> loc[Alt(p)] in l..u
476);

262 g minizinc implementation

477

478 % For selected matches that require two or more of its operands to have the
479 % same location , enforce them to be the same.
480 %
481 % Eq 1.16 in dissertation
482 constraint
483 forall (i in index_set_1of2(sameDataLocsInMatch)) (
484 let { int: m = sameDataLocsInMatch[i, 1]
485 , int: p1 = sameDataLocsInMatch[i, 2]
486 , int: p2 = sameDataLocsInMatch[i, 3]
487 }
488 in sel[m] -> loc[Alt(p1)] = loc[Alt(p2)]
489);
490

491 % If a match representing a phi instruction is selected , then its data must
492 % be defined in the blocks indicated by the definition edges.
493 %
494 % Eq. 5.18 in dissertation
495 constraint
496 forall (i in index_set_1of2(inputDefEdgesInMatch)) (
497 let { int: m = inputDefEdgesInMatch[i, 1]
498 , int: b = inputDefEdgesInMatch[i, 2]
499 , int: p = inputDefEdgesInMatch[i, 3]
500 }
501 in sel[m] -> dplace[Alt(p)] = b
502);
503 constraint
504 forall (i in index_set_1of2(outputDefEdgesInMatch)) (
505 let { int: m = outputDefEdgesInMatch[i, 1]
506 , int: b = outputDefEdgesInMatch[i, 2]
507 , int: p = outputDefEdgesInMatch[i, 3]
508 }
509 in sel[m] -> dplace[Alt(p)] = b
510);
511

512 % A datum with a definition edge must be defined in the block of that edge.
513 %
514 % Eq. 5.9 in dissertation
515 constraint
516 forall (i in index_set_1of2(defEdgesInFunction)) (
517 let { int: b = defEdgesInFunction[i, 1]
518 , int: d = defEdgesInFunction[i, 2]
519 }
520 in dplace[d] = b
521);
522

523 % If a match is selected , then all operations covered by that match must be
524 % placed in the same block.
525 %
526 % Eq. 5.4 in dissertation
527 constraint
528 forall (m in allMatches
529 , o in operationsCoveredByMatch[m]
530 where o != opOfM[m]
531)

263

532 (sel[m] -> oplace[opOfM[m]] = oplace[o]);
533

534 % If a selected match m has an entry block b, then all operations covered
535 % by m must be placed in b.
536 %
537 % If a match has no entry block, then this set will be empty and hence there
538 % will be no such constraint. It is assumed that there will be at most one
539 % entry.
540 %
541 % Eq. 5.5 in dissertation
542 constraint
543 forall (m in allMatches
544 , b in entryBlockOfMatch[m]
545 , o in operationsCoveredByMatch[m]
546)
547 (sel[m] -> oplace[o] = b);
548

549 % Data defined by a selected match m must be defined either in one of the
550 % blocks spanned by m, or the block wherein the operations covered by m are
551 % placed.
552 %
553 % Eq. 5.14 in dissertation
554 constraint
555 forall (m in allMatches
556 , p in operandsDefinedByMatch[m]
557)
558 (sel[m] -> if card(spannedBlocksInMatch[m]) > 0
559 then dplace[Alt(p)] in spannedBlocksInMatch[m]
560 else forall (o in operationsCoveredByMatch[m])
561 (dplace[Alt(p)] = oplace[o])
562 endif
563);
564

565 % No operations may be placed in a block which is consumed by some selected
566 % match.
567 %
568 % Eq. 5.8 in dissertation
569 constraint
570 forall (m in allMatches
571 , o in allOperationsInFunction diff operationsCoveredByMatch[m]
572 , b in consumedBlocksInMatch[m]
573)
574 (sel[m] -> oplace[o] != b);
575

576 % For each selected match m that apply fall-through, enforce either:
577 % - that the fall-through block of m is the immediate successor of the
578 % entry block of m, or
579 % - that the fall-through block of m is one block away from the entry
580 % block of m and the block in between contains no
581 % non-null-instructions.
582 %
583 % Eqs. 5.19�5.22 in dissertation
584 constraint
585 forall (i in index_set_1of2(fallThroughBlockOfMatch))
586 (let { int: m = fallThroughBlockOfMatch[i, 1]

264 g minizinc implementation

587 , int: fall_b = fallThroughBlockOfMatch[i, 2]
588 }
589 in sel[m] -> falls_through(m, fall_b)
590);
591

592 predicate falls_through(allMatches: m, allBlocksInFunction: fall_b) =
593 let { int: entry_b = min(entryBlockOfMatch[m])
594 , var int: succ_b = succ[entry_b]
595 }
596 in succ_b != entryBlockOfFunction /\
597 (succ_b = fall_b \/
598 (succ[succ_b] = fall_b /\
599 forall (o in allOperationsInFunction)
600 (oplace[o] != succ_b \/
601 omatch[o] in nullInstrMatches
602)
603)
604);
605

606 % Enforce that, for each operation o, exactly one match must be selected
607 % such that o is covered.
608 %
609 % THIS HAS BEEN REPLACED WITH DUAL VARIABLE CONSTRAINT.
610

611 % Enforce that every datum is defined in a block such that the block
612 % dominates all blocks wherein the datum is used. This constraint shall not
613 % be applied to the generic phi patterns , nor to null instructions.
614 %
615 % This used to be enforced by the following constraint:
616 %
617 % constraint
618 % forall (m in allMatches
619 % , p in operandsUsedByMatch[m]
620 % where not (m in phiInstrMatches)
621 %)
622 % (dplace[alt[p]] in domSetsOfBlocksInFunction[place[m]]);
623 %
624 % but it has been reformulated using table constraints to avoid the use of
625 % set variables.
626 %
627 % This assumes that matches which use some data cover at least one
628 % operation , which should always hold.
629 %
630 % Eq. 6.2 in dissertation
631 constraint
632 forall (p in nonPhiUseOperands)
633 (table([uplace[p], dplace[Alt(p)]], domRelMatrix));
634

635 % Eq. 6.3 in dissertation
636 constraint
637 forall (m in allMatches diff phiInstrMatches
638 , p in operandsUsedByMatch[m]
639 , o in operationsCoveredByMatch[m]
640)
641 (sel[m] -> oplace[o] = uplace[p]);

265

642

643 % Eq. 6.4 in dissertation
644 constraint
645 forall (m in allMatches diff phiInstrMatches
646 , p in operandsUsedByMatch[m]
647)
648 (not sel[m] -> uplace[p] = dplace[Alt(p)]);
649

650 % Eq. 6.5 in dissertation
651 constraint
652 forall (p in allOperands diff nonPhiUseOperands)
653 (uplace[p] = 1);
654

655 % A kill match is selected if and only if the location of the defined datum
656 % is in the killed location.
657 %
658 % Eq. 5.17 in dissertation
659 constraint
660 forall (m in killInstrMatches
661 , p in operandsDefinedByMatch[m]
662)
663 (sel[m] <-> loc[Alt(p)] = locValueForKilled);
664

665 % Ensure that succ forms a circuit (thus resulting in an ordering of
666 % blocks).
667 %
668 % Eq. 5.19 in dissertation
669 constraint
670 if card(allBlocksInFunction) > 1
671 then circuit(succ) :: domain
672 else true
673 endif;
674

675 % Forbid matches in an illegal combination from all being selected.
676 %
677 % Eq. 5.3 in dissertation
678 constraint
679 forall (c in illegalMatchCombinations)
680 (sum (m in c) (bool2int(sel[m])) < card(c));
681

682 % Constrain the cost that can be incurred by each operation.
683 %
684 % Eq. 6.10 in dissertation
685 constraint
686 forall (o in allOperationsInFunction)
687 (table([o, omatch[o], oplace[o], opcosts[o]], costPerOpMatrix));
688

689 % The total cost is the sum of the costs incurred by all operations.
690 %
691 % Eq. 6.11 in dissertation
692 constraint
693 totalcost = sum(opcosts);
694

695 % Constraint the lower bound of the cost.
696 %

266 g minizinc implementation

697 % Eq. 6.34 in dissertation
698 constraint
699 if costLowerBound > 0
700 then totalcost >= costLowerBound
701 else true
702 endif;
703

704 % Constraint the upper bound of the cost (retrieved from LLVM).
705 %
706 % Eq. 6.34 in dissertation
707 constraint
708 if costUpperBound > 0
709 then totalcost < costUpperBound
710 else true
711 endif;
712

713

714 %===========================
715 % DUAL VARIABLE CONSTRAINTS
716 %===========================
717

718 % For each operation o, exactly one match must be selected such that o is
719 % covered.
720 %
721 % This replaces the constraint that, for each operation o, exactly one match
722 % must be selected such that o is covered:
723 %
724 % constraint
725 % forall (o in allOperationsInFunction)
726 % (let { set of int: mset = { m
727 % | m in allMatches
728 % where o in operationsCoveredByMatch[m]
729 % }
730 % }
731 % in sum (m in mset) (bool2int(sel[m])) = 1
732 %);
733 %
734 % Eq. 5.1 in dissertation
735 constraint
736 forall (o in allOperationsInFunction)
737 (omatch[o] in matchsetOfOp[o]
738 /\
739 forall (m in matchsetOfOp[o])
740 (omatch[o] = m <-> sel[m])
741);
742

743 % For each datum d, exactly one match must be selected such that d is
744 % defined.
745 %
746 % This replaces the constraint that that, for each datum d, exactly one
747 % match must be selected such that d is defined:
748 %
749 % constraint
750 % forall (d in allDataInFunction)
751 % (let { set of int: mset = { m | m in allMatches

267

752 % , p in operandsDefinedByMatch[m]
753 % where d in operandAlternatives[p]
754 % }
755 % }
756 % in sum (m in mset) (bool2int(sel[m])) = 1
757 %);
758 %
759 % This is an implied constraint , but it also enforces that the patterns for
760 % defining the function input and constants are selected. Such patterns do
761 % not cover any operations , they are not entailed in the above constraint
762 % for exactly covering each operation.
763 %
764 % Eq. 5.2 in dissertation
765 constraint
766 forall (d in allDataInFunction)
767 (dmatch[d] in defsetOfDatum[d]
768 /\
769 forall (m in defsetOfDatum[d])
770 (dmatch[d] = m <-> sel[m])
771);
772

773

774 %=======================
775 % DOMINANCE CONSTRAINTS
776 %=======================
777

778 % Constrain the loc value for all data that are states.
779 %
780 % Eq. 6.27 in dissertation
781 constraint
782 forall (d in statesInFunction)
783 (loc[d] = locValueForInt);
784

785 % Fix operand value if match was not selected.
786 %
787 % Eq. 6.28 in dissertation
788 constraint
789 forall (m in allMatches
790 , p in operandsDefinedByMatch[m] union operandsUsedByMatch[m]
791 where card(operandAlternatives[p]) > 1
792)
793 (not sel[m] -> alt[p] = min(operandAlternatives[p]));
794

795 % Break symmetries introduced by interchangeable data.
796 %
797 % This could remove potential optimal solutions in situations where data is
798 % interchangeable WITHIN a group of matches, but not BETWEEN groups of
799 % matches. Have yet to see such an occurrance , though.
800 %
801 % Eq. 6.30 in dissertation
802 constraint
803 forall (chain in interchangeableDataInFunction)
804 (let { set of int: xset = { p | p in nonPhiUseOperands
805 where operandAlternatives[p] = chain
806 }

268 g minizinc implementation

807 }
808 in if card(xset) > 1
809 then value_precede_chain(chain, [alt[p] | p in xset])
810 else true
811 endif
812);
813

814 % A consequence of symmetry breaking (concerns selection of null copies).
815 %
816 % Eqs. 6.31 and 6.32 in dissertation
817 constraint
818 forall (chain in interchangeableDataInFunction
819 where forall (d in chain)
820 (defsetOfDatum[d] subset copyInstrMatches)
821)
822 (let { array[int] of int: copies =
823 [min(defsetOfDatum[d] intersect
824 nullInstrMatches diff
825 killInstrMatches
826)
827 | d in chain
828 where card(defsetOfDatum[d] intersect
829 nullInstrMatches diff
830 killInstrMatches
831) > 0
832]
833 }
834 in increasing (m in copies)
835 (sel[m])
836);
837

838 % A consequence of symmetry breaking (concerns selection of kill matches).
839 %
840 % Eq. 6.33 in dissertation
841 constraint
842 forall (chain in interchangeableDataInFunction
843 where forall (d in chain)
844 (defsetOfDatum[d] subset copyInstrMatches)
845)
846 (let { array[int] of int: kills =
847 [min(defsetOfDatum[d] intersect killInstrMatches)
848 | d in chain
849 where card(defsetOfDatum[d] intersect killInstrMatches) > 0
850]
851 }
852 in if length(kills) > 0
853 then increasing (m in kills)
854 (sel[m])
855 else true
856 endif
857);
858

859

860 %=====================
861 % IMPLIED CONSTRAINTS

269

862 %=====================
863

864 % If all matches covering an operation o are not phi instruction , do not
865 % span any blocks, use datum du, and define datum dd, then the block
866 % defining du must dominate the block defining dd, and o must be placed in
867 % the block defining dd.
868 %
869 % Eqs. 6.12 and 6.13 in dissertation
870 constraint
871 forall (o in allOperationsInFunction
872 where forall (m in matchsetOfOp[o])
873 (not (m in phiInstrMatches) /\
874 card(spannedBlocksInMatch[m]) = 0
875)
876)
877 (let { set of allMatches: M = matchsetOfOp[o]
878 , int: mo = min({ m1 | m1 in M
879 where forall (m2 in M)
880 (card(operationsCoveredByMatch[m1]) <=
881 card(operationsCoveredByMatch[m2])
882)
883 })
884 , set of allDataInFunction: DD =
885 { d | p in operandsDefinedByMatch[mo]
886 , d in operandAlternatives[p]
887 }
888 , set of allDataInFunction: DU = { d | p in operandsUsedByMatch[mo]
889 , d in operandAlternatives[p]
890 }
891 }
892 in forall (dd in DD, du in DU)
893 (if forall (m in M)
894 (exists (p in operandsDefinedByMatch[m])
895 (operandAlternatives[p] = {dd})
896 /\
897 exists (p in operandsUsedByMatch[m])
898 (operandAlternatives[p] = {du})
899)
900 then table([dplace[dd], dplace[du]], domRelMatrix) /\
901 oplace[o] = dplace[dd]
902 else true
903 endif
904)
905);
906

907 % If all matches in the matchset covering a particular operation have
908 % identical entry blocks, and use datum d, then the block defining d must
909 % dominate the entry block.
910 %
911 % Eq. 6.16 in dissertation
912 constraint
913 forall (M in matchsetOfOp
914 , d in allDataInFunction
915 where forall (m in M)
916 (not (m in phiInstrMatches)

270 g minizinc implementation

917 /\
918 card(spannedBlocksInMatch[m]) > 0
919)
920)
921 (let { int: Entry = min(entryBlockOfMatch[min(M)]) }
922 in if forall (m in M)
923 (min(entryBlockOfMatch[m]) = Entry /\
924 exists (p in operandsUsedByMatch[m])
925 (operandAlternatives[p] = {d})
926)
927 then table([Entry, dplace[d]], domRelMatrix)
928 else true
929 endif
930);
931

932 % If all matches in the matchset that cover a particular operation have
933 % identical spanned blocks, and define datum d, then d must be placed in a
934 % spanned block.
935 %
936 % Eq. 6.14 in dissertation
937 constraint
938 forall (M in matchsetOfOp
939 , d in allDataInFunction ,
940 where forall (m in M)
941 (card(spannedBlocksInMatch[m]) > 0)
942)
943 (let { set of int: Spanned = spannedBlocksInMatch[min(M)] }
944 in if forall (m in M)
945 (spannedBlocksInMatch[m] = Spanned /\
946 exists (p in operandsDefinedByMatch[m])
947 (operandAlternatives[p] = {d})
948)
949 then dplace[d] in Spanned
950 else true
951 endif
952);
953

954 % If all matches for an operation o have identical entry blocks, then o
955 % must be placed in the entry block.
956 %
957 % Eq. 6.15 in dissertation
958 constraint
959 forall (o in allOperationsInFunction
960 where forall (m in matchsetOfOp[o])
961 (card(spannedBlocksInMatch[m]) > 0)
962)
963 (let { int: Entry = min(entryBlockOfMatch[min(matchsetOfOp[o])]) }
964 in if forall (m in matchsetOfOp[o])
965 (min(entryBlockOfMatch[m]) = Entry)
966 then oplace[o] = Entry
967 else true
968 endif
969);
970

971 % If all matches covering an operation o are all phi instructions and define

271

972 % the same datum, then o must be placed in the same block as the datum.
973 %
974 % Eq. 6.17 in dissertation
975 constraint
976 forall (i in index_set_1of2(defEdgesInFunction)) (
977 let { int: b = defEdgesInFunction[i, 1]
978 , int: d = defEdgesInFunction[i, 2]
979 }
980 in if defsetOfDatum[d] subset phiInstrMatches
981 then forall (o in operationsCoveredByMatch[min(defsetOfDatum[d])])
982 (oplace[o] = b)
983 else true
984 endif
985);
986

987 % If for any two given blocks p and q, and fallThroughBlockOfMatch contains
988 % [_, p, q] but does not contain [_, p, q’] or [_, p’, q], then succ[p] = q
989 % can only help, never hurt.
990 %
991 % Eq. 6.26 in dissertation
992 constraint
993 let { array[allBlocksInFunction] of set of allBlocksInFunction: fwd =
994 array1d(allBlocksInFunction
995 , [{ s | i in index_set_1of2(fallThroughBlockOfMatch)
996 , m in {fallThroughBlockOfMatch[i, 1]}
997 , s in {fallThroughBlockOfMatch[i, 2]}
998 where entryBlockOfMatch[m] = {b}
999 }
1000 | b in allBlocksInFunction
1001]
1002)
1003 , array[allBlocksInFunction] of set of allBlocksInFunction: bwd =
1004 array1d(allBlocksInFunction
1005 , [{ s | i in index_set_1of2(fallThroughBlockOfMatch)
1006 , m in {fallThroughBlockOfMatch[i, 1]}
1007 , s in entryBlockOfMatch[m]
1008 where fallThroughBlockOfMatch[i, 2] = b
1009 }
1010 | b in allBlocksInFunction
1011]
1012)
1013 }
1014 in forall (p in allBlocksInFunction
1015 , q in allBlocksInFunction
1016)
1017 (if fwd[p] = {q} /\ bwd[q] = {p}
1018 then succ[p] = q
1019 else true
1020 endif
1021);
1022

1023 % For non-phi matches, no spanned blocks:
1024 % if selected , blocks of used and defined data must be equal.
1025 %
1026 % Eqs. 6.18�6.20 in dissertation

272 g minizinc implementation

1027 constraint
1028 forall (m in allMatches diff phiInstrMatches
1029 where card(spannedBlocksInMatch[m]) = 0
1030)
1031 (let { array[int] of int: uses = [p | p in operandsUsedByMatch[m]]
1032 , array[int] of int: defs = [p | p in operandsDefinedByMatch[m]]
1033 }
1034 in forall (i in index_set(uses)
1035 , j in index_set(uses)
1036 where i < j
1037)
1038 (sel[m] -> uplace[uses[i]] = uplace[uses[j]])
1039 /\
1040 forall (i in index_set(defs)
1041 , j in index_set(defs)
1042 where i < j
1043)
1044 (sel[m] -> dplace[Alt(defs[i])] = dplace[Alt(defs[j])])
1045 /\
1046 forall (i in index_set(uses)
1047 , j in index_set(defs)
1048)
1049 (sel[m] -> uplace[uses[i]] = dplace[Alt(defs[j])])
1050);
1051

1052 % For non-phi matches, spanned blocks:
1053 % if selected , blocks of use of inputs must be all equal.
1054 %
1055 % Eq. 6.21 in dissertation
1056 constraint
1057 forall (m in allMatches diff phiInstrMatches
1058 where card(spannedBlocksInMatch[m]) > 0
1059)
1060 (let { array[int] of int: use = [p | p in operandsUsedByMatch[m]
1061 diff
1062 operandsDefinedByMatch[m]
1063]
1064 }
1065 in forall (i in index_set(use)
1066 , j in index_set(use)
1067 where i < j
1068)
1069 (sel[m] -> uplace[use[i]] = uplace[use[j]])
1070);
1071

1072 % [MC 2]
1073 %
1074 % If all matches in the matchset covering a particular operation uses some
1075 % datum d as input, then d cannot be placed in the intermediate value nor
1076 % killed location.
1077 %
1078 % Eq. 6.22 in dissertation
1079 constraint
1080 forall (M in matchsetOfOp)
1081 (let { int: mo = min(M)

273

1082 , set of int: uses1 = operandsUsedByMatch[mo] diff
1083 operandsDefinedByMatch[mo]
1084 }
1085 in forall (use1 in uses1)
1086 (let { set of int: data1 = operandAlternatives[use1] }
1087 in if forall (d in data1)
1088 (not (d in statesInFunction))
1089 /\
1090 forall (m in M where m != mo)
1091 (exists (use2 in operandsUsedByMatch[m] diff
1092 operandsDefinedByMatch[m]
1093)
1094 (operandAlternatives[use2] = data1)
1095)
1096 /\
1097 forall (d in data1)
1098 (not valueMustBeAvailable(d))
1099 then exists (d in data1)
1100 (loc[d] != locValueForInt /\ loc[d] != locValueForKilled)
1101 else true
1102 endif
1103)
1104);
1105

1106 % If all matches in the matchset that defines a non-state datum d, are
1107 % active, and define it in an exterior operand, then d must not be placed
1108 % in the intermediate value nor killed location.
1109 %
1110 % This constraint does not dominate [MC 2], nor vice versa.
1111 %
1112 % Eq. 6.23 in dissertation
1113 constraint
1114 forall (d in allDataInFunction diff statesInFunction)
1115 (if valueMustBeAvailable(d)
1116 then loc[d] != locValueForInt /\ loc[d] != locValueForKilled
1117 else true
1118 endif
1119);
1120

1121 % If an exterior operand does not take its min value, then its match must
1122 % be selected and hence the datum cannot be in the intermediate value nor
1123 % killed location.
1124 %
1125 % Eq. 6.29 in dissertation
1126 constraint
1127 forall (m in allMatches
1128 , p in operandsUsedByMatch[m] intersect operandsExteriorToMatch[m]
1129 where card(operandAlternatives[p]) > 1
1130 /\ not valueOfOpMustBeAvailable(p)
1131)
1132 (alt[p] != min(operandAlternatives[p])
1133 ->
1134 (loc[Alt(p)] != locValueForInt /\ loc[Alt(p)] != locValueForKilled)
1135);
1136

274 g minizinc implementation

1137 % Constrain the location of d to be where its definers can put it.
1138 %
1139 % Eq. 6.25 in dissertation
1140 constraint
1141 forall (d in allDataInFunction diff statesInFunction)
1142 (let { array[int] of int: P =
1143 [p | m in defsetOfDatum[d] diff killInstrMatches
1144 , p in operandsDefinedByMatch[m]
1145 where d in operandAlternatives[p]
1146]
1147 , array[int] of int: I =
1148 [i | i in index_set_1of2(validDataLocRangesInMatch)
1149 where validDataLocRangesInMatch[i, 2] in {p | p in P}
1150]
1151 }
1152 in if length(P) = length(I)
1153 then let { set of int: L =
1154 { l | l in canonicalDataLocs
1155 , i in I
1156 where l in validDataLocRangesInMatch[i, 3]
1157 ..
1158 validDataLocRangesInMatch[i, 4]
1159 }
1160 }
1161 in if card(L) < card(canonicalDataLocs)
1162 then loc[d] in L union {locValueForInt , locValueForKilled}
1163 else true
1164 endif
1165 else true
1166 endif
1167);
1168

1169 % Constrain the location of d to be where its users can access it. Valid for
1170 % such d that are used at least once.
1171 %
1172 % Eq. 6.24 in dissertation
1173 constraint
1174 forall (d in allDataInFunction)
1175 (let { array[int] of int: P =
1176 [p | p in array_union(operandsUsedByMatch) diff killOperands
1177 where d in operandAlternatives[p]
1178]
1179 , array[int] of int: I =
1180 [i | i in index_set_1of2(validDataLocRangesInMatch)
1181 where validDataLocRangesInMatch[i, 2] in {p | p in P}
1182]
1183 }
1184 in if length(P) > 0 /\ length(P) = length(I)
1185 then let { set of int: L =
1186 { l | l in canonicalDataLocs
1187 , i in I
1188 where l in validDataLocRangesInMatch[i, 3]
1189 ..
1190 validDataLocRangesInMatch[i, 4]
1191 }

275

1192 }
1193 in if card(L) < card(canonicalDataLocs)
1194 then loc[d] in L union {locValueForInt , locValueForKilled}
1195 else true
1196 endif
1197 else true
1198 endif
1199);
1200

1201

1202 %==================
1203 % SOLVE AND OUTPUT
1204 %==================
1205

1206 solve
1207 :: seq_search(
1208 [% Try the smallest cost for the operation with the largest
1209 % difference between its two smallest values.
1210 int_search(opcosts, max_regret , indomain_min , complete)
1211 % Remaining decisions are left to the solver.
1212])
1213 minimize totalcost;
1214

1215 % oplace, omatch, dmatch are handy for debugging
1216 output ["sel=", show(sel), "\n"
1217 , "alt=", show([if not fix(sel[matchOfP[p]])
1218 then datumValueForNull
1219 else alt[p] endif
1220 | p in allOperands
1221]), "\n"
1222 , "dplace=", show(dplace), "\n"
1223 , "loc=", show(loc), "\n"
1224 , "place=", show([if not fix(sel[m])
1225 then blockValueForNull
1226 else if card(operationsCoveredByMatch[m]) = 0
1227 then min(entryBlockOfMatch[m])
1228 else oplace[opOfM[m]]
1229 endif
1230 endif
1231 | m in allMatches
1232]), "\n"
1233 , "oplace=", show(oplace), "\n"
1234 , "omatch=", show(omatch), "\n"
1235 , "dmatch=", show(dmatch), "\n"
1236 , "succ=", show(succ), "\n"
1237 , "entry=", show(entryBlockOfFunction), "\n"
1238 , "block_value_for_null=", show(blockValueForNull), "\n"
1239 , "loc_value_for_int=", show(locValueForInt), "\n"
1240 , "loc_value_for_killed=", show(locValueForKilled), "\n"
1241 , "alt_value_for_null=", show(datumValueForNull), "\n"
1242 , "cost=", show(execFrequencyGCD * totalcost), "\n"
1243];

References

[1] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. “Efficient and
Language-Independent Mobile Programs”. In: Proceedings of PLDI’96. ACM,
1996, pp. 127–136.

[2] A. Aggoun and N. Beldiceanu. “Extending CHIP in Order to Solve Com-
plex Scheduling and Placement Problems”. In: Mathematical and Computer

Modelling 17.7 (1993), pp. 57–73.
[3] M. Ahn, J. M. Youn, Y. Choi, D. Cho, and Y. Paek. “Iterative Algorithm for

Compound Instruction Selection with Register Coalescing”. In: Proceedings

of DSD’09. IEEE Computer Society, 2009, pp. 513–520.
[4] A. V. Aho and S. C. Johnson. “Optimal Code Generation for Expression

Trees”. In: Journal of the ACM 23.3 (1976), pp. 488–501.
[5] A. V. Aho, S. C. Johnson, and J. D. Ullman. “Code Generation for Expressions

with Common Subexpressions”. In: Proceedings of POPL’76. ACM, 1976,
pp. 19–31.

[6] A. V. Aho and M. J. Corasick. “Efficient String Matching: An Aid to Bib-
liographic Search”. In: Communications of the ACM 18.6 (1975), pp. 333–
340.

[7] A. V. Aho and M. Ganapathi. “Efficient Tree Pattern Matching: An Aid to
Code Generation”. In: Proceedings of POPL’85. ACM, 1985, pp. 334–340.

[8] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. “Code Generation Using Tree
Matching and Dynamic Programming”. In: ACM Transactions on Programming

Languages and Systems 11.4 (1989), pp. 491–516.
[9] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,

Techniques, & Tools. 2nd ed. Pearson, 2006. Chap. 4, pp. 197–209.
[10] P. Aigrain, S. L. Graham, R. R. Henry, M. K. McKusick, and E. Pelegrı-Llopart.

“Experience with a Graham-Glanville Style Code Generator”. In: Proceedings

of CC’84. ACM, 1984, pp. 13–24.
[11] O. Almer, R. Bennett, I. Böhm, A. Murray, X. Qu, M. Zuluaga, B. Franke, and

N. Topham. “An End-to-End Design Flow for Automated Instruction Set
Extension and Complex Instruction Selection based on GCC”. In: Proceedings

of GROW’09. 2009, pp. 49–60.
[12] U. Ammann, K. V. Nori, K. Jensen, and H. Nägeli. The PASCAL (P) Com-

piler Implementation Notes. Tech. rep. Eidgenössische Technishe Hochschule,
Zürich, Switzerland: Instituts für Informatik, 1974.

277

278 references

[13] U. Ammann. On Code Generation in a PASCAL Compiler. Tech. rep. Eidgenös-
sische Technishe Hochschule, Zürich, Switzerland: Instituts für Informatik,
1977.

[14] B. Anckaert, B. Sutter, D. Chanet, and K. Bosschere. “Steganography for
Executables and Code Transformation Signatures”. In: Proceedings of ICICS’05.
Springer, 2005, pp. 425–439.

[15] P. Andrade. GNU lightning. 2015. url: www.gnu.org/software/lightning
(accessed 2015-06-03).

[16] A. Appel, J. Davidson, and N. Ramsey. The Zephyr Compiler Infrastructure.
Tech. rep. Charlottesville, Virginia, USA: University of Virginia, 1998.

[17] P. Arató, S. Juhász, Z. A. Mann, A. Orbán, and D. Papp. “Hardware-Software
Partitioning in Embedded System Design”. In: Proceedings of ISP’03. IEEE
Computer Society, 2003, pp. 197–202.

[18] G. Araujo and S. Malik. “Optimal Code Generation for Embedded Memory
Non-Homogeneous Register Architectures”. In: Proceedings of ISSS’95. ACM,
1995, pp. 36–41.

[19] G. Araujo, S. Malik, and M. T.-C. Lee. “Using Register-Transfer Paths in
Code Generation for Heterogeneous Memory-Register Architectures”. In:
Proceedings of DAC’96. ACM, 1996, pp. 591–596.

[20] ARM Cortex-M7 Devices: Generic User Guide. ARM DUI 0646A. ARM. Mar. 19,
2015.

[21] ARM11 MPCore Processor. ARM DDI 0360F. Version r2p0. ARM. Oct. 15,
2018.

[22] M. Arnold. Matching and Covering with Multiple-Output Patterns. Tech. rep.
Delft, The Netherlands: Delft University of Technology, 1999.

[23] M. Arnold and H. Corporaal. “Automatic Detection of Recurring Operation
Patterns”. In: Proceedings of CODES’99. ACM, 1999, pp. 22–26.

[24] M. Arnold and H. Corporaal. “Designing Domain-Specific Processors”. In:
Proceedings of CODES’01. ACM, 2001, pp. 61–66.

[25] M. A. Arslan. “Code Generation for Custom Architectures using Constraint
Programming”. Doctoral thesis. Lund, Sweden: Lund University, 2016.

[26] M. A. Arslan and K. Kuchcinski. “Instruction Selection and Scheduling
for DSP Kernels”. In: Microprocessors and Microsystems 38.8, Part A (2014),
pp. 803–813.

[27] M. A. Arslan and K. Kuchcinski. “Instruction Selection and Scheduling for
DSP Kernels on Custom Architectures”. In: Proceedings of DSD’13. IEEE
Computer Society, 2013.

[28] K. Atasu, G. Dündar, and C. özturan. “An Integer Linear Programming
Approach for Identifying Instruction-Set Extensions”. In: Proceedings of

CODES+ISSS’05. ACM, 2005, pp. 172–177.

www.gnu.org/software/lightning

references 279

[29] K. Atasu, L. Pozzi, and P. Ienne. “Automatic Application-Specific Instruction-
Set Extensions Under Microarchitectural Constraints”. In: Proceedings of

DAC’03. ACM, 2003, pp. 256–261.
[30] M. Auslander and M. Hopkins. “An Overview of the PL.8 Compiler”. In:

Proceedings of CC’82. ACM, 1982, pp. 22–31.
[31] M. W. Bailey and J. W. Davidson. “Automatic Detection and Diagnosis of

Faults in Generated Code for Procedure Calls”. In: Transactions on Software

Engineering 29.11 (2003), pp. 1031–1042.
[32] A. Balachandran, D. M. Dhamdhere, and S. Biswas. “Efficient Retargetable

Code Generation Using Bottom-Up Tree Pattern Matching”. In: Computer

Languages 15.3 (1990), pp. 127–140.
[33] M. Balakrishnan, P. C. P. Bhatt, and B. B. Madan. “An Efficient Retargetable

Microcode Generator”. In: Proceedings of MICRO’86. ACM, 1986, pp. 44–53.
[34] S. Bansal and A. Aiken. “Automatic Generation of Peephole Superoptimizers”.

In: Proceedings of ASPLOS’06. ACM, 2006, pp. 394–403.
[35] P. Baptiste, C. Le Pape, and W. Nuĳten. Constraint-Based Scheduling. Kluwer

Academic Publishers, 2001.
[36] S. Bashford and R. Leupers. “Constraint Driven Code Selection for Fixed-

Point DSPs”. In: Proceedings of DAC’99. ACM, 1999, pp. 817–822.
[37] L. Bauer, M. Shafique, and J. Henkel. “Run-Time Instruction Set Selection

in a Transmutable Embedded Processor”. In: Proceedings of DAC’08. IEEE
Computer Society, 2008, pp. 56–61.

[38] A. Bednarski and C. W. Kessler. “Optimal Integrated VLIW Code Generation
with Integer Linear Programming”. In: Proceedings of Euro-Par’06. Springer,
2006, pp. 461–472.

[39] P. van Beek. “Backtrack Search Algorithms”. In: Handbook of Constraint

Programming. Elsevier, 2006. Chap. 4, pp. 85–134.
[40] M. O. Beg. “Combinatorial Problems in Compiler Optimization”. Doctoral

thesis. Ontario, Canada: University of Waterloo, 2013.
[41] N. Beldiceanu and M. Carlsson. “Sweep as a Generic Pruning Technique

Applied to the Non-Overlapping Rectangles Constraint”. In: Proceedings of

CP’01. Springer, 2001, pp. 377–391.
[42] N. Beldiceanu and E. Contejean. “Introducing Global Constraints in CHIP”.

In: Mathematical and Computer Modelling 20.12 (1994), pp. 97–123.
[43] E. Bendersky. A Deeper Look into the LLVM Code Generator: Part 1. Feb. 25,

2013. url: eli.thegreenplace.net/2013/02/25/a-deeper-look-into-the-
llvm-code-generator-part-1 (accessed 2013-05-10).

eli.thegreenplace.net/2013/02/25/a-deeper-look-into-the-llvm-code-generator-part-1
eli.thegreenplace.net/2013/02/25/a-deeper-look-into-the-llvm-code-generator-part-1

280 references

[44] R. V. Bennett, A. C. Murray, B. Franke, and N. Topham. “Combining Source-
to-Source Transformations and Processor Instruction Set Extensions for the
Automated Design-Space Exploration of Embedded Systems”. In: Proceedings

of LCTES’07. ACM, 2007, pp. 83–92.
[45] C. Bessiere. “Constraint Propagation”. In: Handbook of Constraint Programming.

Elsevier, 2006. Chap. 3, pp. 29–83.
[46] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of

Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[47] I. Boehm. HBURG. 2007. url: www. bytelabs.org / hburg. html (accessed
2014-02-11).

[48] B. Borchardt. “Code Selection by Tree Series Transducers”. In: Proceedings of

CIAA’04. Springer, 2004, pp. 57–67.
[49] A. Bougacha. [LLVMdev] [RFC] Integer Saturation Intrinsics. 2015-01-14.

url: groups.google.com/forum/#!topic/llvm-dev/fHThmnh8zkI (accessed
2015-06-09).

[50] D. Boulytchev. “BURS-Based Instruction Set Selection”. In: Proceedings of

PSI’06. Springer, 2007, pp. 431–437.
[51] D. Boulytchev and D. Lomov. “An Empirical Study of Retargetable Compil-

ers”. In: Proceedings of PSI’01. Springer, 2001, pp. 328–335.
[52] F. Brandner. “Completeness of Automatically Generated Instruction Selec-

tors”. In: Proceedings of ASAP’10. IEEE Computer Society, 2010, pp. 175–
182.

[53] F. Brandner, D. Ebner, and A. Krall. “Compiler Generation from Structural
Architecture Descriptions”. In: Proceedings of CASES’07. ACM, 2007, pp. 13–
22.

[54] M. Bravenboer and E. Visser. “Rewriting Strategies for Instruction Selection”.
In: Proceedings of RTA’02. Springer, 2002, pp. 237–251.

[55] P. Brisk, A. Kaplan, R. Kastner, and M. Sarrafzadeh. “Instruction Generation
and Regularity Extraction for Reconfigurable Processors”. In: Proceedings of

CASES’02. ACM, 2002, pp. 262–269.
[56] P. Brisk, A. Nahapetian, and M. Sarrafzadeh. “Instruction Selection for

Compilers That Target Architectures with Echo Instructions”. In: Proceedings

of M-SCOPES’04. Springer, 2004, pp. 229–243.
[57] P. Brown. “A Survey of Macro Processors”. In: Annual Review in Automatic

Programming 6.2 (1969), pp. 37–88.
[58] M. Bruan, S. Buchwald, and A. Zwinkau. “Firm—A Graph-Based Intermedi-

ate Representation”. In: Proceedings of WIR’11. 2011, pp. 61–68.

www.bytelabs.org/hburg.html
groups.google.com/forum/#!topic/llvm-dev/fHThmnh8zkI

references 281

[59] J. Bruno and R. Sethi. “Code Generation for a One-Register Machine”. In:
Journal of the ACM 23.3 (1976), pp. 502–510.

[60] S. Buchwald and A. Zwinkau. “Instruction Selection by Graph Transforma-
tion”. In: Proceedings of CASES’10. ACM, 2010, pp. 31–40.

[61] J. Cai, R. Paige, and R. Tarjan. “More Efficient Bottom-Up Multi-pattern
Matching in Trees”. In: Theoretical Computer Science 106.1 (1992), pp. 21–60.

[62] P. Canalda, L. Cognard, A. Despland, M. Jourdan, M. Mazaud, D. Parigot,
F. Thomasset, and D. de Voluceau. PAGODE: A Realistic Back-End Generator.
Tech. rep. Rocquencourt, France: INRIA, 1995.

[63] Z. Cao, Y. Dong, and S. Wang. “Compiler Backend Generation for Application
Specific Instruction Set Processors”. In: Proceedings of APLAS’11. Springer,
2011, pp. 121–136.

[64] R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte. “Com-
binatorial Spill Code Optimization and Ultimate Coalescing”. In: Proceedings

of LCTES’14. ACM, 2014, pp. 23–32.
[65] R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and C. Schulte. “Register

Allocation and Instruction Scheduling in Unison”. In: Proceedings of CC’16.
ACM, 2016, pp. 263–264.

[66] R. Castañeda Lozano, G. Hjort Blindell, M. Carlsson, F. Drejhammar,
and C. Schulte. “Constraint-based Code Generation”. In: Proceedings of

M-SCOPES’13. Springer, 2013, pp. 93–95.
[67] R. G. Cattell. “Automatic Derivation of Code Generators from Machine

Descriptions”. In: Transactions on Programming Languages and Systems 2.2
(1980), pp. 173–190.

[68] R. G. G. Cattell. A Survey and Critique of Some Models of Code Generation. Tech.
rep. Pittsburgh, Pennsylvania, USA: School of Computer Science, Carnegie
Mellon University, 1979.

[69] R. G. G. Cattell. “Formalization and Automatic Derivation of Code Gen-
erators”. Doctoral thesis. Pittsburgh, Pennsylvania, USA: Carnegie Mellon
University, 1978.

[70] R. G. Cattell, J. M. Newcomer, and B. W. Leverett. “Code Generation in
a Machine-Independent Compiler”. In: Proceedings of CC’79. ACM, 1979,
pp. 65–75.

[71] P. E. Ceruzzi. A History of Modern Computing. 2nd ed. MIT Press, 2003.
[72] D. R. Chase. “An Improvement to Bottom-Up Tree Pattern Matching”. In:

Proceedings of POPL’87. ACM, 1987, pp. 168–177.
[73] T. Chen, F. Lai, and R. Shang. “A Simple Tree Pattern Matching Algorithm for

Code Generator”. In: Proceedings of COMPSAC’95. IEEE Computer Society,
1995, pp. 162–167.

282 references

[74] D. Cho, A. Ravi, G.-R. Uh, and Y. Paek. “Instruction Re-selection for Iterative
Modulo Scheduling on High Performance Multi-issue DSPs”. In: Emerging

Directions in Embedded and Ubiquitous Computing. Springer, 2006, pp. 741–754.
[75] T. W. Christopher, P. J. Hatcher, and R. C. Kukuk. “Using Dynamic Pro-

gramming to Generate Optimized Code in a Graham-Glanville Style Code
Generator”. In: Proceedings of CC’84. ACM, 1984, pp. 25–36.

[76] G. G. Chu. “Improving Combinatorial Optimization”. Doctoral thesis. The
University of Melbourne, Australia, 2011.

[77] G. Chu and P. J. Stuckey. “Dominance breaking constraints”. In: Constraints

20.2 (2015), pp. 155–182.
[78] G. Chu and P. J. Stuckey. Structure Based Extended Resolution for Constraint

Programming. June 19, 2013. url: arxiv.org/abs/1306.4418.
[79] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. “Scalable Subgraph Mapping

for Acyclic Computation Accelerators”. In: Proceedings of CASES’06. ACM,
2006, pp. 147–157.

[80] N. Clark, H. Zhong, and S. Mahlke. “Processor Acceleration Through Auto-
mated Instruction Set Customization”. In: Proceedings of MICRO’03. IEEE
Computer Society, 2003, pp. 129–140.

[81] C. Click and M. Paleczny. “A Simple Graph-based Intermediate Representa-
tion”. In: Proceedings of IR’95. ACM, 1995, pp. 35–49.

[82] C. Click. “Combining Analyses, Combining Optimizations”. Doctoral thesis.
Houston, Texas, USA: Rice University, 1995. Chap. 7.

[83] R. Cole and R. Hariharan. “Tree Pattern Matching and Subset Matching
in Randomized O(n log3 m) Time”. In: Proceedings of STOC’97. ACM, 1997,
pp. 66–75.

[84] J. Cong, Y. Fan, G. Han, and Z. Zhang. “Application-Specific Instruction
Generation for Configurable Processor Architectures”. In: Proceedings of

FPGA’04. ACM, 2004, pp. 183–189.
[85] S. A. Cook. “The Complexity of Theorem-Proving Procedures”. In: Proceed-

ings of STOC’71. ACM, 1971, pp. 151–158.
[86] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. “An Improved Algorithm

for Matching Large Graphs”. In: Proceedings of GbRPR’01. Springer, 2001,
pp. 149–159.

[87] R. Cordone, F. Ferrandi, D. Sciuto, and R. Wolfler Calvo. “An Efficient
Heuristic Approach to Solve the Unate Covering Problem”. In: Proceedings of

DATE’00. IEEE Computer Society, 2000, pp. 364–371.
[88] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms. 3rd ed. MIT Press, 2009.

arxiv.org/abs/1306.4418

references 283

[89] CoSy Compilers: Overview of Construction and Operation. ACE Associated
Compiler Experts. 2003.

[90] T. Crick, M. Brain, M. Vos, and J. Fitch. “Generating Optimal Code Using
Answer Set Programming”. In: Proceedings of LPNMR’09. Springer, 2009,
pp. 554–559.

[91] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck.
“Efficiently Computing Static Single Assignment Form and the Control
Dependence Graph”. In: ACM Transactions on Programming Languages and

Systems 13.4 (1991), pp. 451–490.
[92] A. Darwiche and K. Pipatsrisawat. “Complete Algorithms”. In: Handbook of

Satisfiability. IOS Press, 2009. Chap. 3, pp. 99–130.
[93] J. W. Davidson and C. W. Fraser. “Code Selection Through Object Code

Optimization”. In: ACM Transactions on Programming Languages and Systems

6.4 (1984), pp. 505–526.
[94] J. W. Davidson and C. W. Fraser. “Eliminating Redundant Object Code”. In:

Proceedings of POPL’82. ACM, 1982, pp. 128–132.
[95] J. W. Davidson and C. W. Fraser. “The Design and Application of a Retar-

getable Peephole Optimizer”. In: Transactions on Programming Languages and

Systems 2.2 (1980), pp. 191–202.
[96] J. Demeulenaere, R. Hartert, C. Lecoutre, G. Perez, L. Perron, J.-C. Régin,

and P. Schaus. “Compact-Table: Efficiently Filtering Table Constraints with
Reversible Sparse Bit-Sets”. In: Proceedings of CP’16. Springer, 2016, pp. 207–
223.

[97] A. Despland, M. Mazaud, and R. Rakotozafy. “Code Generator Generation
Based on Template-Driven Target Term Rewriting”. In: Proceedings of RTA’87.
Springer, 1987, pp. 105–120.

[98] A. Despland, M. Mazaud, and R. Rakotozafy. “Using Rewriting Techniques
to Produce Code Generators and Proving Them Correct”. In: Science of

Computer Programming 15.1 (1990), pp. 15–54.
[99] L. P. Deutsch and A. M. Schiffman. “Efficient Implementation of the Smalltalk-

80 System”. In: Proceedings of POPL’84. ACM, 1984, pp. 297–302.
[100] J. Dias and N. Ramsey. “Automatically Generating Instruction Selectors

Using Declarative Machine Descriptions”. In: Proceedings of POPL’10. ACM,
2010, pp. 403–416.

[101] J. Dias and N. Ramsey. “Converting Intermediate Code to Assembly Code
Using Declarative Machine Descriptions”. In: Proceedings of CC’06. Springer,
2006, pp. 217–231.

[102] A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. “ASM-Based Mechanized
Verification of Compiler Back-Ends”. In: Proceedings of ASM’98. Springer,
1998, pp. 50–67.

284 references

[103] M. K. Donegan, R. E. Noonan, and S. Feyock. “A Code Generator Generator
Language”. In: Proceedings of CC’79. ACM, 1979, pp. 58–64.

[104] M. K. Donegan. “An Approach to the Automatic Generation of Code Gener-
ators”. Doctoral thesis. Houston, Texas, USA: Rice University, 1973.

[105] M. Dorigo and T. Stützle. “Ant Colony Optimization: Overview and Recent
Advances”. In: Handbook of Metaheuristics. 2nd ed. Vol. 146. Springer, 2010.
Chap. 8, pp. 227–263.

[106] M. Dubiner, Z. Galil, and E. Magen. “Faster Tree Pattern Matching”. In:
Journal of the ACM 41.2 (1994), pp. 205–213.

[107] J. Earley. “An Efficient Context-Free Parsing Algorithm”. In: Communications

of the ACM 13.2 (1970), pp. 94–102.
[108] D. Ebner, F. Brandner, B. Scholz, A. Krall, P. Wiedermann, and A. Kadlec.

“Generalized Instruction Selection Using SSA-Graphs”. In: Proceedings of

LCTES’08. ACM, 2008, pp. 31–40.
[109] E. Eckstein, O. König, and B. Scholz. “Code Instruction Selection Based on

SSA-Graphs”. In: Proceedings of M-SCOPES’03. Springer, 2003, pp. 49–65.
[110] T. J. Edler von Koch, I. Böhm, and B. Franke. “Integrated Instruction Selection

and Register Allocation for Compact Code Generation Exploiting Freeform
Mixing of 16- and 32-bit Instructions”. In: Proceedings of CGO’10. ACM, 2010,
pp. 180–189.

[111] B. Efron and R. Tibshirani. An Introduction to the Boostrap. Chapman and
Hall, 1994.

[112] M. Elson and S. T. Rake. “Code-Generation Technique for Large-Language
Compilers”. In: IBM Systems Journal 9.3 (1970), pp. 166–188.

[113] H. Emmelmann, F.-W. Schröer, and R. Landwehr. “BEG: A Generator for
Efficient Back Ends”. In: Proceedings of PLDI’89. ACM, 1989, pp. 227–237.

[114] H. Emmelmann. “Code Selection by Regularly Controlled Term Rewriting”.
In: Code Generation—Concepts, Tools, Techniques. Springer, 1992, pp. 3–29.

[115] H. Emmelmann. “Testing Completeness of Code Selector Specifications”. In:
Proceedings of CC’92. Springer, 1992, pp. 163–175.

[116] J. Engelfriet, Z. Fülöp, and H. Vogler. “Bottom-Up and Top-Down Tree Series
Transformations”. In: Journal of Automata, Languages and Combinatorics 7.1
(July 2001), pp. 11–70.

[117] D. R. Engler. “VCODE: A Retargetable, Extensible, Very Fast Dynamic Code
Generation System”. In: Proceedings of PLDI’96. ACM, 1996, pp. 160–170.

[118] D. R. Engler and T. A. Proebsting. “DCG: An Efficient, Retargetable Dynamic
Code Generation System”. In: Proceedings of ASPLOS’94. ACM, 1994, pp. 263–
272.

references 285

[119] M. V. Eriksson, O. Skoog, and C. W. Kessler. “Optimal vs. Heuristic Integrated
Code Generation for Clustered VLIW Architectures”. In: Proceedings of M-

SCOPES’08. ACM, 2008, pp. 11–20.
[120] M. Eriksson and C. Kessler. “Integrated Code Generation for Loops”. In:

ACM Transactions on Embedded Computing Systems 11S.1 (June 2012), 19:1–
19:24.

[121] M. A. Ertl. “Optimal Code Selection in DAGs”. In: Proceedings of POPL’99.
ACM, 1999, pp. 242–249.

[122] M. A. Ertl, K. Casey, and D. Gregg. “Fast and Flexible Instruction Selection
with On-Demand Tree-Parsing Automata”. In: Proceedings of PLDI’06. ACM,
2006, pp. 52–60.

[123] W. Fan, J. Li, J. Luo, Z. Tan, X. Wang, and Y. Wu. “Incremental Graph Pattern
Matching”. In: Proceedings of SIGMOD’11. ACM, 2011, pp. 925–936.

[124] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. “Graph Pattern Matching:
From Intractable to Polynomial Time”. In: Proceedings of the VLDB Endowment

3.1-2 (2010), pp. 264–275.
[125] S. Farfeleder, A. Krall, E. Steiner, and F. Brandner. “Effective Compiler

Generation by Architecture Description”. In: Proceedings of LCTES’06. ACM,
2006, pp. 145–152.

[126] R. Farrow. “Experience with an Attribute Grammar-based Compiler”. In:
Proceedings of POPL’82. ACM, 1982, pp. 95–107.

[127] A. Fauth, M. Freericks, and A. Knoll. “Generation of Hardware Machine
Models from Instruction Set Descriptions”. In: Proceedings of the Workshop on

VLSI Signal Processing. IEEE Computer Society, 1993, pp. 242–250.
[128] A. Fauth, J. Van Praet, and M. Freericks. “Describing Instruction Set Proces-

sors Using nML”. In: Proceedings of EDTC’95. IEEE Computer Society, 1995,
pp. 503–507.

[129] A. Fauth, G. Hommel, A. Knoll, and C. Müller. “Global Code Selection of
Directed Acyclic Graphs”. In: Proceedings of CC’94. Springer, 1994, pp. 128–
142.

[130] J. Feldman and D. Gries. “Translator Writing Systems”. In: Communications

of the ACM 11.2 (1968), pp. 77–113.
[131] C. Ferdinand, H. Seidl, and R. Wilhelm. “Tree Automata for Code Selection”.

In: Acta Informatica 31.9 (1994), pp. 741–760.
[132] M. Fernández and N. Ramsey. “Automatic Checking of Instruction Specifica-

tions”. In: Proceedings of ICSE’97. ACM, 1997, pp. 326–336.
[133] T. Feydy and P. J. Stuckey. “Lazy Clause Generation Reengineered”. In:

Proceedings of CP’09. Springer, 2009, pp. 352–366.

286 references

[134] P. J. Fleming and J. J. Wallace. “How Not to Lie with Statistics: The Correct
Way to Summarize Benchmark Results”. In: Communications of the ACM 29.3
(1986), pp. 218–221.

[135] A. Floch, C. Wolinski, and K. Kuchcinski. “Combined Scheduling and
Instruction Selection for Processors with Reconfigurable Cell Fabric”. In:
Proceedings of ASAP’10. IEEE Computer Society, 2010, pp. 167–174.

[136] R. W. Floyd. “Algorithm 97: Shortest Path”. In: Communications of the ACM

5.6 (1962), p. 345.
[137] C. W. Fraser. “A Language for Writing Code Generators”. In: Proceedings of

PLDI’89. ACM, 1989, pp. 238–245.
[138] C. W. Fraser and A. L. Wendt. “Automatic Generation of Fast Optimizing

Code Generators”. In: Proceedings of PLDI’88. ACM, 1988, pp. 79–84.
[139] C. W. Fraser. “A Compact, Machine-Independent Peephole Optimizer”. In:

Proceedings of POPL’79. ACM, 1979, pp. 1–6.
[140] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. “Engineering a Simple,

Efficient Code-Generator Generator”. In: Letters on Programming Languages

and Systems 1.3 (1992), pp. 213–226.
[141] C. W. Fraser, R. R. Henry, and T. A. Proebsting. “BURG—Fast Optimal

Instruction Selection and Tree Parsing”. In: SIGPLAN Notices 27.4 (1992),
pp. 68–76.

[142] C. W. Fraser and T. A. Proebsting. “Finite-State Code Generation”. In:
Proceedings of PLDI’99. ACM, 1999, pp. 270–280.

[143] C. W. Fraser. “A Knowledge-Based Code Generator Generator”. In: Proceed-

ings of the Symposium on Artificial Intelligence and Programming Languages.
ACM, 1977, pp. 126–129.

[144] C. W. Fraser. “Automatic Generation of Code Generators”. Doctoral thesis.
New Haven, Connecticut, USA: Yale University, 1977.

[145] S. Fröhlich, M. Gotschlich, U. Krebelder, and B. Wess. “Dynamic Trellis
Diagrams for Optimized DSP Code Generation”. In: Proceedings of ISCAS’99.
IEEE Computer Society, 1999, pp. 492–495.

[146] B. Gallagher. The State of the Art in Graph-Based Pattern Matching. Tech. rep.
Livermore, California, USA: Lawrence Livermore National Laboratory, 2006.

[147] C. Galuzzi and K. Bertels. “The Instruction-Set Extension Problem: A Survey”.
In: Transactions on Reconfigurable Technology and Systems 4.2 (May 2011), 18:1–
18:28.

[148] M. Ganapathi. “Prolog Based Retargetable Code Generation”. In: Computer

Languages 14.3 (1989), pp. 193–204.
[149] M. Ganapathi. “Retargetable Code Generation and Optimization Using

Attribute Grammars”. Doctoral thesis. Madison, Wisconsin, USA: The Uni-
versity of Wisconsin–Madison, 1980.

references 287

[150] M. Ganapathi and C. N. Fischer. “Affix Grammar Driven Code Generation”.
In: Transactions on Programming Languages and Systems 7.4 (1985), pp. 560–599.

[151] M. Ganapathi and C. N. Fischer. “Description-Driven Code Generation Using
Attribute Grammars”. In: Proceedings of POPL’82. ACM, 1982, pp. 108–119.

[152] M. Ganapathi and C. N. Fischer. Instruction Selection by Attributed Parsing.
Tech. rep. Stanford, California, USA: Stanford University, 1984.

[153] M. Ganapathi, C. N. Fischer, and J. L. Hennessy. “Retargetable Compiler
Code Generation”. In: ACM Computing Surveys 14.4 (1982), pp. 573–592.

[154] M. R. Garey and D. S. Johnson. Computers and Intractability. W. H. Freeman
and Company, 1979.

[155] C. H. Gebotys. “An Efficient Model for DSP Code Generation: Performance,
Code Size, Estimated Energy”. In: Proceedings of ISSS’97. IEEE Computer
Society, 1997, pp. 41–47.

[156] F. Gecseg and M. Steinby. Tree Automata. Akadémiai Kiadó, 1984.
[157] D. Genin, J. De Moortel, D. Desmet, and E. Van de Velde. “System De-

sign, Optimization and Intelligent Code Generation for Standard Digital
Signal Processors”. In: Proceedings of ISCAS’90. IEEE Computer Society, 1989,
pp. 565–569.

[158] I. P. Gent, K. E. Petrie, and J.-F. Puget. “Symmetry in Constraint Program-
ming”. In: Handbook of Constraint Programming. Elsevier, 2006. Chap. 10,
pp. 329–376.

[159] M. P. Gerlek, E. Stoltz, and M. Wolfe. “Beyond Induction Variables: Detecting
and Classifying Sequences Using a Demand-driven SSA Form”. In: ACM

Transactions on Programming Languages and Systems 17.1 (1995), pp. 85–122.
[160] C. Gervet. “Constraints over Structured Domains”. In: Handbook of Constraint

Programming. Elsevier, 2006. Chap. 17, pp. 605–638.
[161] R. Giegerich. “A Formal Framework for the Derivation of Machine-Specific

Optimizers”. In: Transactions on Programming Languages and Systems 5.3 (1983),
pp. 478–498.

[162] R. Giegerich and K. Schmal. “Code Selection Techniques: Pattern Matching,
Tree Parsing, and Inversion of Derivors”. In: Proceedings of ESOP’88. Springer,
1998, pp. 247–268.

[163] R. S. Glanville and S. L. Graham. “A New Method for Compiler Code
Generation”. In: Proceedings of POPL’78. Springer, 1978, pp. 231–254.

[164] E. I. Goldberg, L. P. Carloni, T. Villa, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. “Negative Thinking in Branch-and-Bound: The Case of Unate
Covering”. In: Transactions of Computer-Aided Design of Integrated Ciruits and

Systems 19.3 (2006), pp. 281–294.

288 references

[165] K. J. Gough. Bottom-Up Tree Rewriting Tool MBURG. Tech. rep. Brisbane,
Australia: Faculty of Information Technology, Queensland University of
Technology, July 18, 1995.

[166] K. J. Gough and J. Ledermann. “Optimal Code-Selection using MBURG”. In:
Proceedings of ACSC’97. Sydney, Australia, 1997.

[167] K. Gough. “Reconceptualizing Bottom-Up Tree Rewriting”. In: Patterns,

Programming and Everything. Springer, 2012, pp. 31–44.
[168] S. L. Graham. “Table-Driven Code Generation”. In: Computer 13.8 (1980),

pp. 25–34.
[169] S. L. Graham, R. R. Henry, and R. A. Schulman. “An Experiment in Table

Driven Code Generation”. In: Proceedings of CC’82. ACM, 1982, pp. 32–43.
[170] T. Granlund and R. Kenner. “Eliminating Branches Using a Superoptimizer

and the GNU C Compiler”. In: Proceedings of PLDI’92. ACM, 1992, pp. 341–
352.

[171] G. Grasso, N. Leone, and F. Ricca. “Answer Set Programming: Language,
Applications and Development Tools”. In: Web Reasoning and Rule Systems.
Springer, 2013, pp. 19–34.

[172] Y. Guo, G. J. Smit, H. Broersma, and P. M. Heysters. “A Graph Covering
Algorithm for a Coarse Grain Reconfigurable System”. In: Proceedings of

LCTES’03. ACM, 2003, pp. 199–208.
[173] S. Z. Hanono. “AVIV: A Retargetable Code Generator for Embedded Pro-

cessors”. Doctoral thesis. Cambridge, Massachusetts, USA: Massachusetts
Institute of Technology, 1999.

[174] S. Hanono and S. Devadas. “Instruction Selection, Resource Allocation, and
Scheduling in the AVIV Retargetable Code Generator”. In: Proceedings of

DAC’98. ACM, 1998, pp. 510–515.
[175] D. R. Hanson and C. W. Fraser. A Retargetable C Compiler: Design and Imple-

mentation. Addison-Wesley, 1995.
[176] R. M. Haralick and G. L. Elliott. “Increasing Tree Search Efficiency for Con-

straint Satisfaction Problems”. In: Artificial Intelligence 14.3 (1980), pp. 263–
313.

[177] W. H. Harrison. “A New Strategy for Code Generation the General-Purpose
Optimizing Compiler”. In: Transactions Software Engineering 5.4 (1979),
pp. 367–373.

[178] T. Harwood, K. Kumar, and N. Bereton. JBURG. 2013. url: jburg.sourceforge.
net (accessed 2014-02-11).

[179] P. J. Hatcher and T. W. Christopher. “High-Quality Code Generation via
Bottom-Up Tree Pattern Matching”. In: Proceedings of POPL’86. ACM, 1986,
pp. 119–130.

jburg.sourceforge.net
jburg.sourceforge.net

references 289

[180] P. Hatcher. “The Equational Specification of Efficient Compiler Code Gener-
ation”. In: Computer Languages 16.1 (1991), pp. 81–95.

[181] P. Hatcher and J. W. Tuller. “Efficient Retargetable Compiler Code Gen-
eration”. In: Proceedings of ICCL’88. IEEE Computer Society, 1988, pp. 25–
30.

[182] R. R. Henry. Encoding Optimal Pattern Selection in Table-Driven Bottom-Up

Tree-Pattern Matcher. Tech. rep. Seattle, Washington, USA: University of
Washington, 1989.

[183] R. R. Henry. “Graham-Glanville Code Generators”. Doctoral thesis. Berkeley,
California, USA: EECS Department, University of California, May 1984.

[184] P. van Hentenryck, V. Saraswat, and Y. Deville. “Design, Implementation,
and Evaluation of the Constraint Language cc(FD)”. In: The Journal of Logic

Programming 37.1 (1998), pp. 139–164.
[185] T. Hino, Y. Suzuki, T. Uchida, and Y. Itokawa. “Polynomial Time Pattern

Matching Algorithm for Ordered Graph Patterns”. In: Proceedings of ILP’12.
Springer, 2012, pp. 86–101.

[186] G. Hjort Blindell. Instruction Selection: Principles, Methods, and Applications.
Springer, 2016.

[187] G. Hjort Blindell. Survey on Instruction Selection: An Extensive and Modern

Literature Study. Tech. rep. Stockholm, Sweden: KTH Royal Institute of
Technology, 2013.

[188] G. Hjort Blindell, M. Carlsson, R. Castañeda Lozano, and C. Schulte. “Com-
plete and Practical Univeral Instruction Selection”. In: ACM Transactions on

Embedded Computing Systems 16.5s (2017), 119:1–119:18.
[189] G. Hjort Blindell, R. Castañeda Lozano, M. Carlsson, and C. Schulte. “Model-

ing Universal Instruction Selection”. In: Proceedings of CP’15. Springer, 2015,
pp. 609–626.

[190] G. Hjort Blindell, C. Menne, and I. Sander. “Synthesizing Code for GPGPUs
from Abstract Formal Models”. In: Languages, Design Methods, and Tools for

Electronic System Design. Vol. 361. Lecture Notes in Electrical Engineering.
Springer, 2016, pp. 115–134.

[191] W.-J. van Hoeve. “The Alldifferent Constraint: A Survey”. In: Proceedings of

the Annual Workshop of the ERCIM Working Group on Constraints. 2001.
[192] W.-J. van Hoeve and I. Katriel. “Global Constraints”. In: Handbook of Constraint

Programming. Elsevier, 2006. Chap. 6, pp. 169–208.
[193] C. M. Hoffmann and M. J. O’Donnell. “Pattern Matching in Trees”. In: Journal

of the ACM 29.1 (1982), pp. 68–95.
[194] J. N. Hooker. “Resolution vs. Cutting Plane Solution of Inference Problems:

Some Computational Experience”. In: Operations Research Letters 7.1 (Feb.
1988), pp. 1–7.

290 references

[195] R. Hoover and K. Zadeck. “Generating Machine Specific Optimizing Com-
pilers”. In: Proceedings of POPL’96. ACM, 1996, pp. 219–229.

[196] A. Hormati, N. Clark, and S. Mahlke. “Exploiting Narrow Accelerators with
Data-Centric Subgraph Mapping”. In: Proceedings of CGI’07. IEEE Computer
Society, 2007, pp. 341–353.

[197] R. N. Horspool. “An Alternative to the Graham-Glanville Code-Generation
Method”. In: Software 4.3 (May 1987), pp. 33–39.

[198] I. Huang and A. M. Despain. “Synthesis of Application Specific Instruction
Sets”. In: Transactions on Computer Aided Design of Integrated Circuits and

Systems 14.6 (June 1995), pp. 663–675.
[199] Intel Reports Record Third-Quarter Revenue of $14.6 Billion. Intel. Oct. 14,

2014. url: newsroom.intel.com/news-releases/intel-reports-record-third-
quarter-revenue-of-14-6-billion/ (accessed 2017-09-23).

[200] Intel 64 and IA-32 Architectures: Software Developer’s Manual. Intel. Apr. 2015.
[201] J. Janoušek and J. Málek. “Target Code Selection by Tilling AST with the Use

of Tree Pattern Pushdown Automaton”. In: Proceedings of SLATE’14. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 159–165.

[202] D. B. Johnson. “Finding All the Elementary Circuits of a Directed Graph”.
In: SIAM Journal on Computing 4.1 (1975), pp. 77–84.

[203] S. C. Johnson. “A Portable Compiler: Theory and Practice”. In: Proceedings of

POPL’78. ACM, 1978, pp. 97–104.
[204] S. C. Johnson. “A Tour Through the Portable C Compiler”. In: Unix Program-

mer’s Manual. 7th ed. Vol. 2B. AT&T Bell Laboratories, 1981. Chap. 33.
[205] R. Joshi, G. Nelson, and K. Randall. “Denali: A Goal-Directed Superopti-

mizer”. In: Proceedings of PLDI’02. ACM, 2002, pp. 304–314.
[206] R. Joshi, G. Nelson, and Y. Zhou. “Denali: A Practical Algorithm for Gener-

ating Optimal Code”. In: Transactions on Programming Languages and Systems

28.6 (2006), pp. 967–989.
[207] K. Kang. “A Study on Generating an Efficient Bottom-Up Tree Rewrite

Machine for JBURG”. In: Proceedings of ICCSA’04. Springer, 2004, pp. 65–72.
[208] K. Kang and K. Choe. On the Automatic Generation of Instruction Selector Using

Bottom-Up Tree Pattern Matching. Tech. rep. Daejeon, South Korea: Korea
Advanced Institute of Science and Technology, 1995.

[209] R. M. Karp, R. E. Miller, and A. L. Rosenberg. “Rapid Identification of
Repeated Patterns in Strings, Trees and Arrays”. In: Proceedings of STOC’72.
ACM, 1972, pp. 125–136.

[210] R. Kastner, A. Kaplan, S. O. Memik, and E. Bozorgzadeh. “Instruction
Generation for Hybrid Reconfigurable Systems”. In: Transactions on Design

Automation of Electronic Systems 7.4 (2002), pp. 605–627.

newsroom.intel.com/news-releases/intel-reports-record-third-quarter-revenue-of-14-6-billion/
newsroom.intel.com/news-releases/intel-reports-record-third-quarter-revenue-of-14-6-billion/

references 291

[211] L. G. Kaya and J. N. Hooker. “A Filter for the Circuit Constraint”. In:
Proceedings of CP’06. Springer, 2006, pp. 706–710.

[212] C. W. Kessler and A. Bednarski. “A Dynamic Programming Approach to
Optimal Integrated Code Generation”. In: Proceedings of LCTES’01. ACM,
2001, pp. 165–174.

[213] C. W. Kessler and A. Bednarski. “Optimal Integrated Code Generation for
Clustered VLIW Architectures”. In: Proceedings of LCTES/M-SCOPES’02.
ACM, 2002, pp. 102–111.

[214] P. B. Kessler. “Discovering Machine-Specific Code Improvements”. In: Pro-

ceedings of CC’86. ACM, 1986, pp. 249–254.
[215] R. R. Kessler. “PEEP: An Architectural Description Driven Peephole Opti-

mizer”. In: Proceedings of CC’84. ACM, 1984, pp. 106–110.
[216] K. Keutzer. “DAGON: Technology Binding and Local Optimization by DAG

Matching”. In: Proceedings of DAC’87. ACM, 1987, pp. 341–347.
[217] R. El-Khalil and A. D. Keromytis. “Hydan: Hiding Information in Program

Binaries”. In: Proceedings of ICICS’04. Springer, 2004, pp. 187–199.
[218] U. Khedker. “Workshop on Essential Abstractions in GCC”. Lecture. GCC

Resource Center, Department of Computer Science and Engineering, IIT
Bombay. Bombay, India, June 30–July 3, 2012.

[219] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated
Annealing”. In: Science 220.4598 (1983), pp. 671–680.

[220] D. E. Knuth. “On the Translation of Languages From Left to Right”. In:
Information and Control 8 (6 Dec. 1965), pp. 607–639.

[221] D. E. Knuth. “Semantics of Context-Free Languages”. In: Mathematical Systems

Theory 2.2 (1968), pp. 127–145.
[222] D. E. Knuth, J. H. J. Morris, and V. R. Pratt. “Fast Pattern Matching in Strings”.

In: SIAM Journal of Computing 6.2 (1977), pp. 323–350.
[223] D. Koes. “Towards a More Principled Compiler: Register Allocation and

Instruction Selection Revisited”. Doctoral thesis. Pittsburgh, Pennsylvania,
USA: Carnegie Mellon University, 2009.

[224] D. R. Koes and S. C. Goldstein. “Near-Optimal Instruction Selection on
DAGs”. In: Proceedings of CGO’08. ACM, 2008, pp. 45–54.

[225] R. E. Korf. “Optimal Rectangle Packing: New Results”. In: Proceedings of

ICAPS’04. AAAI Press, 2004, pp. 142–149.
[226] W. Kreuzer, W. Gotschlich, and B. Wess. “REDACO: A Retargetable Data Flow

Graph Compiler for Digital Signal Processors”. In: Proceedings of ICSPAT’96.
Miller Freeman, 1996, pp. 742–746.

292 references

[227] A. Krishnaswamy and R. Gupta. “Profile Guided Selection of ARM and
Thumb Instructions”. In: Proceedings of LCTES/M-SCOPES’02. ACM, 2002,
pp. 56–64.

[228] E. B. Krissinel and K. Henrick. “Common Subgraph Isomorphism Detection
by Backtracking Search”. In: Software–Practice & Experience 34.6 (2004),
pp. 591–607.

[229] D. W. Krumme and D. H. Ackley. “A Practical Method for Code Generation
Based on Exhaustive Search”. In: Proceedings of CC’82. ACM, 1982, pp. 185–
196.

[230] P. Kulkarni, W. Zhao, S. Hines, D. Whalley, X. Yuan, R. v. Engelen, K.
Gallivan, J. Hiser, J. Davidson, B. Cai, M. Bailey, H. Moon, K. Cho, and
Y. Paek. “VISTA: VPO Interactive System for Tuning Applications”. In:
Transactions on Embedded Computer Systems 5.4 (Nov. 2006), pp. 819–863.

[231] A. H. Land and A. G. Doig. “An Automatic Method of Solving Discrete
Programming Problems”. In: Econometrica 28.3 (1960), pp. 497–520.

[232] R. Landwehr, H.-S. Jansohn, and G. Goos. “Experience with an Automatic
Code Generator Generator”. In: Proceedings of CC’82. ACM, 1982, pp. 56–66.

[233] M. Langevin and E. Cerny. “An Automata-Theoretic Approach to Local
Microcode Generation”. In: Proceedings of EDAC’93. IEEE Computer Society,
1993, pp. 94–98.

[234] D. Lanneer, F. Catthoor, G. Goossens, M. Pauwels, J. Van Meerbergen, and
H. De Man. “Open-Ended System for High-Level Synthesis of Flexible Signal
Processors”. In: Proceedings of EURO-DAC’90. IEEE Computer Society, 1990,
pp. 272–276.

[235] C. Lattner and V. Adve. “LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis & Transformation”. In: Proceedings of CGO’04. IEEE Computer
Society, 2004, pp. 75–86.

[236] J.-L. Laurière. “A Language and a Program for Stating and Solving Combi-
natorial Problems”. In: Artificial Intelligence 10.1 (1978), pp. 29–127.

[237] Y. C. Law and J. H. M. Lee. “Global Constraints for Integer and Set Value
Precedence”. In: Proceedings of CP’04. Springer, 2004, pp. 362–376.

[238] C. Lecoutre. “STR2: Optimized Simple Tabular Reduction for Table Con-
straints”. In: Constraints 16.4 (2011), pp. 341–371.

[239] C. Lecoutre, C. Likitvivatanavong, and R. Yap. “STR3: A Path-optimal
Filtering Algorithm for Table Constraints”. In: Artifial Intelligence 220 (2015),
pp. 1–27.

[240] C. Lecoutre and R. Szymanek. “Generalized Arc Consistency for Positive
Table Constraints”. In: Proceedings of CP’06. Springer, 2006, pp. 284–298.

references 293

[241] C. Lee, M. Potkonjak, and W. H. Mangione-Smith. “MediaBench: A Tool for
Evaluating and Synthesizing Multimedia and Communications Systems”.
In: MICRO’97. IEEE, 1997, pp. 330–335.

[242] R. Leupers. “Code Generation for Embedded Processors”. In: Proceedings of

ISSS’00. IEEE Computer Society, 2000, pp. 173–178.
[243] R. Leupers. “Code Selection for Media Processors with SIMD Instructions”.

In: Proceedings of DATE’00. ACM, 2000, pp. 4–8.
[244] R. Leupers and S. Bashford. “Graph-Based Code Selection Techniques for

Embedded Processors”. In: Transactions on Design Automation of Electronic

Systems 5 (4 2000), pp. 794–814. issn: 1084-4309.
[245] R. Leupers and P. Marwedel. “Instruction Selection for Embedded DSPs

with Complex Instructions”. In: Proceedings of EURO-DAC/EURO-VHDL’96.
IEEE Computer Society, 1996, pp. 200–205.

[246] R. Leupers and P. Marwedel. “Retargetable Code Generation Based on
Structural Processor Description”. In: Design Automation for Embedded Systems

3.1 (1998), pp. 75–108.
[247] R. Leupers and P. Marwedel. Retargetable Compiler Technology for Embedded

Systems. Kluwer Academic Publishers, 2001.
[248] R. Leupers and P. Marwedel. “Retargetable Generation of Code Selectors

from HDL Processor Models”. In: Proceedings of EDTC’97. IEEE Computer
Society, 1997, pp. 140–144.

[249] R. Leupers and P. Marwedel. “Time-Constrained Code Compaction for
DSPs”. In: Proceedings of ISSS’95. ACM, 1995, pp. 54–59.

[250] B. W. Leverett, R. G. G. Cattell, S. O. Hobbs, J. M. Newcomer, A. H. Reiner,
B. R. Schatz, and W. A. Wulf. “An Overview of the Production-Quality
Compiler-Compiler Project”. In: Computer 13.8 (1980), pp. 38–49.

[251] S. Liao, K. Keutzer, S. Tjiang, and S. Devadas. “A New Viewpoint on
Code Generation for Directed Acyclic Graphs”. In: Transactions on Design

Automation of Electronic Systems 3.1 (1998), pp. 51–75.
[252] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang. “Instruction Selection Using

Binate Covering for Code Size Optimization”. In: Proceedings of ICCAD’95.
IEEE Computer Society, 1995, pp. 393–399.

[253] C. Liem, T. May, and P. Paulin. “Instruction-Set Matching and Selection for
DSP and ASIP Code Generation”. In: Proceedings of EDAC/ETC/EUROASIC’94.
IEEE Computer Society, 1994, pp. 31–37.

[254] E. M. Loiola, N. M. Maia de Abreu, P. O. Boaventura-Netto, P. Hahn, and
T. Querido. “A Survey for the Quadratic Assignment Problem”. In: European

Journal of Operational Research 176.2 (2007), pp. 657–690.

294 references

[255] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. “A Fast and
Simple Algorithm for Bounds Consistency of the All Different Constraint”.
In: Proceedings of ĲCAI’03. Morgan Kaufmann Publishers Inc., 2003, pp. 245–
250.

[256] M. Lorenz, R. Leupers, P. Marwedel, T. Drager, and G. Fettweis. “Low-Energy
DSP Code Generation Using a Genetic Algorithm”. In: Proceedings of ICCD’01.
IEEE Computer Society, 2001, pp. 431–437.

[257] M. Lorenz and P. Marwedel. “Phase Coupled Code Generation for DSPs Us-
ing a Genetic Algorithm”. In: Proceedings of DATE’04. Vol. 2. IEEE Computer
Society, Feb. 2004, pp. 1270–1275.

[258] M. Löwe and H. Ehrig. “Algebraic Approach to Graph Transformation Based
on Single Pushout Derivations”. In: Proceedings of WG’90. Springer, 1991,
pp. 338–353.

[259] E. S. Lowry and C. W. Medlock. “Object Code Optimization”. In: Communi-

cations of the ACM 12.1 (1969), pp. 13–22.
[260] H. Lunell. “Code Generator Writing Systems”. Doctoral thesis. Linköping,

Sweden: Linköping University, 1983.
[261] M. Madhavan, P. Shankar, S. Rai, and U. Ramakrishna. “Extending Graham-

Glanville Techniques for Optimal Code Generation”. In: Transactions on

Programming Languages and Systems 22.6 (2000), pp. 973–1001.
[262] M. Mahmood, F. Mavaddat, and M. Elmastry. “Experiments with an Efficient

Heuristic Algorithm for Local Microcode Generation”. In: Proceedings of

ICCD’90. IEEE Computer Society, 1990, pp. 319–323.
[263] J.-B. Mairy, P. van Hentenryck, and Y. Deville. “Optimal and Efficient Filtering

Algorithms for Table Constraints”. In: Constraints 19.1 (2014), pp. 77–120.
[264] I. J. Maltz. “Implementation of a Code Generator Preprocessor”. MA thesis.

Berkeley, California, USA: University of California, 1978.
[265] J. Marques-Silva, I. Lynce, and S. Malik. “Conflict-Driven Clause Learning

SAT Solvers”. In: Handbook of Satisfiability. IOS Press, 2009. Chap. 4, pp. 131–
153.

[266] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot. “Constraint
Programming Approach to Reconfigurable Processor Extension Genera-
tion and Application Compilation”. In: ACM Transactions on Reconfigurable

Technology and Systems 5.2 (2012), 10:1–10:38.
[267] K. Martin, C. Wolinski, K. Kuchcinski, A. Floch, and F. Charot. “Constraint-

Driven Instructions Selection and Application Scheduling in the DURASE
System”. In: Proceedings of ASAP’09. IEEE Computer Society, 2009, pp. 145–
152.

[268] P. Marwedel. “Code Generation for Core Processors”. In: Proceedings of

DAC’97. IEEE Computer Society, 1997, pp. 232–237.

references 295

[269] P. Marwedel. “The MIMOLA Design System: Tools for the Design of Digital
Processors”. In: Proceedings of DAC’84. IEEE Computer Society, 1984, pp. 587–
593.

[270] P. Marwedel. “Tree-Based Mapping of Algorithms to Predefined Structures”.
In: Proceedings of ICCAD’93. IEEE Computer Society, 1993, pp. 586–593.

[271] H. Massalin. “Superoptimizer: A Look at the Smallest Program”. In: Proceed-

ings of ASPLOS’87. IEEE Computer Society, 1987, pp. 122–126.
[272] C. McCreesh. “Solving hard Subgraph Problems in Parallel”. Doctoral thesis.

Glasgow, United Kingdom: University of Glasgow, 2017.
[273] C. McCreesh and P. Prosser. “A Parallel, Backjumping Subgraph Isomorphism

Algorithm Using Supplemental Graphs”. In: Proceedings of CP’15. Springer,
2015, pp. 295–312.

[274] W. M. McKeeman. “Peephole Optimization”. In: Communications of the ACM

8.7 (July 1965), pp. 443–444.
[275] P. L. Miller. “Automatic Creation of a Code Generator from a Machine

Description”. MA thesis. Cambridge, Massachusetts, USA: Massachusetts
Institute of Technology, 1971.

[276] S. Mouthuy, Y. Deville, and G. Dooms. “Global Constraint for the Set
Covering Problem”. In: Proceedings of JFPC’07. INRIA, Domaine de Voluceau,
Rocquencourt, Yvelines, France, June 2007, pp. 183–192.

[277] C. Müller. Code Selection from Directed Acyclic Graphs in the Context of Domain

Specific Digital Signal Processors. Tech. rep. Berlin, Germany: Humboldt-
Universität, 1994.

[278] A. C. Murray. “Customising Compilers for Customisable Processors”. Doc-
toral thesis. Edinburgh, Scotland: University of Edinburgh, 2012.

[279] A. Murray and B. Franke. “Compiling for Automatically Generated Instruc-
tion Set Extensions”. In: Proceedings of CGO’12. ACM, 2012, pp. 13–22.

[280] N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
“MiniZinc: Towards a Standard CP Modelling Language”. In: Proceedings of

CP’07. Springer, 2007, pp. 529–543.
[281] J. M. Newcomer. “Machine-Independent Generation of Optimal Local Code”.

Doctoral thesis. Pittsburgh, Pennsylvania, USA: Carnegie Mellon University,
1975.

[282] A. Newell and H. A. Simon. The Simulation of Human Thought. Tech. rep.
Santa Monica, California, USA: Mathematics Devision, RAND Corporation,
June 1959.

[283] J. Neyman. “Outline of a Theory of Statistical Estimation Based on the
Classical Theory of Probability”. In: Philosophical Transactions of the Royal

Society of London 236.767 (1937), pp. 333–380.

296 references

[284] A. Nicolau and S. Novack. “An Efficient Global Resource Constrained
Technique for Exploiting Instruction Level Parallelism”. In: Proceedings of

ICPP’92. 1992, pp. 297–301.
[285] R. Niemann and P. Marwedel. “An Algorithm for Hardware/Software Parti-

tioning Using Mixed Integer Linear Programming”. In: Design Automation

for Embedded Systems 2.2 (1997), pp. 165–193. issn: 0929-5585.
[286] S. Novack, A. Nicolau, and N. Dutt. “A Unified Code Generation Approach

Using Mutation Scheduling”. In: Code Generation for Embedded Processors.
Vol. 317. Springer, 2002. Chap. 12, pp. 203–218.

[287] S. Novack and A. Nicolau. “Mutation Scheduling: A Unified Approach to
Compiling for Fine-Grain Parallelism”. In: Proceedings of LCPC’94. Springer,
1995, pp. 16–30.

[288] L. Nowak and P. Marwedel. “Verification of Hardware Descriptions by Re-
targetable Code Generation”. In: Proceedings of DAC’89. ACM, 1989, pp. 441–
447.

[289] A. Nymeyer and J.-P. Katoen. “Code Generation Based on Formal Bottom-Up
Rewrite Systems Theory and Heuristic Search”. In: Acta Informatica 34.4
(1997), pp. 597–635.

[290] A. Nymeyer, J.-P. Katoen, Y. Westra, and H. Alblas. “Code Generation = A∗
+ BURS”. In: Proceedings of CC’06. Springer, 1996, pp. 160–176.

[291] M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
[292] O. Ohrimenko, P. J. Stuckey, and M. Codish. “Propagation � Lazy Clause

Generation”. In: Proceedings of Principles and Practice of Constraint Programming.
Springer, 2007, pp. 544–558.

[293] A. Oplobedu, J. Marcovitch, and Y. Tourbier. “CHARME: Un Langage
Industriel de Programmation par Contraintes, Illustrè par Un Application
chez Renault”. In: Proceedings of the 9th International Workshop on Expert

Systems and their Applications. Vol. 1. 1989, pp. 55–70.
[294] R. J. Orgass and W. M. Waite. “A Base for a Mobile Programming System”.

In: Communications of the ACM 12.9 (1969), pp. 507–510.
[295] M. Paleczny, C. Vick, and C. Click. “The Java HotspotTM Server Compiler”.

In: Proceedings of JVM’01. USENIX Association, 2001.
[296] P. G. Paulin, C. Liem, T. C. May, and S. Sutarwala. “DSP Design Tool

Requirements for Embedded Systems: A Telecommunications Industrial
Perspective”. In: Journal of VLSI Signal Processing Systems for Signal, Image

and Video Technology 9.1–2 (1995), pp. 23–47.
[297] P. P. Paulin, C. Liem, T. May, and S. Sutarwala. “CodeSyn: A Retargetable

Code Synthesis System”. In: Proceedings of HLSS’94. IEEE Computer Society,
1994, pp. 94–95.

references 297

[298] E. Pelegrı-Llopart and S. L. Graham. “Optimal Code Generation for Expres-
sion Trees: An Application of BURS Theory”. In: Proceedings of POPL’88.
ACM, 1988, pp. 294–308.

[299] T. J. Pennello. “Very Fast LR Parsing”. In: Proceedings of CC’86. ACM, 1986,
pp. 145–151.

[300] G. Perez and J.-C. Régin. “Improving GAC-4 for Table And MDD Constraints”.
In: Proceedings of CP’14. Springer, 2014, pp. 606–621.

[301] D. R. Perkins and R. L. Sites. “Machine-Independent PASCAL Code Opti-
mization”. In: Proceedings CC’79. ACM, 1979, pp. 201–207.

[302] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. “Measuring Program
Similarity: Experiments with SPEC CPU Benchmark Suites”. In: Proceedings

of ISPASS’05. IEEE, 2005, pp. 10–20.
[303] T. A. Proebsting. “BURS Automata Generation”. In: Transactions on Program-

ming Language Systems 17.3 (1995), pp. 461–486.
[304] T. A. Proebsting. “Code Generation Techniques”. Doctoral thesis. Madison,

Wisconsin, USA: The University of Wisconsin–Madison, Nov. 1992.
[305] T. A. Proebsting. Least-Cost Instruction Selection in DAGs is NP-Complete. 1995.

url: web.archive.org/web/20081012050644/http://research.microsoft.com/
~toddpro/papers/proof.htm (accessed 2013-04-23).

[306] T. A. Proebsting. “Simple and Efficient BURS Table Generation”. In: Proceed-

ings of PLDI’92. ACM, 1992, pp. 331–340.
[307] T. A. Proebsting and B. R. Whaley. “One-Pass, Optimal Tree Parsing—With

or Without Trees”. In: Proceedings of CC’06. Springer, 1996, pp. 294–306.
[308] P. W. Purdom Jr. and C. A. Brown. “Fast Many-to-One Matching Algorithms”.

In: Proceedings of RTA’85. Springer, 1985, pp. 407–416.
[309] C.-G. Quimper, A. Golynski, A. López-Ortiz, and P. van Beek. “An Efficient

Bounds Consistency Algorithm for the Global Cardinality Constraint”. In:
Constraints 10.2 (2005), pp. 115–135.

[310] F. M. Quintão Pereira and J. Palsberg. “Register Allocation by Puzzle Solving”.
In: Proceedings of PDLI’08. ACM, 2008, pp. 216–226.

[311] R. Ramesh and I. V. Ramakrishnan. “Nonlinear Pattern Matching in Trees”.
In: Journal of the ACM 39.2 (1992), pp. 295–316.

[312] N. Ramsey. C– Downloads. 2006. url: www.cs.tufts.edu/~nr/c�/code.html
(accessed 2018-01-31).

[313] N. Ramsey and J. W. Davidson. “Machine Descriptions to Build Tools for
Embedded Systems”. In: Proceedings of LCTES’98. Springer, 1998, pp. 176–192.

[314] N. Ramsey and J. Dias. “Resourceable, Retargetable, Modular Instruction
Selection Using a Machine-Independent, Type-Based Tiling of Low-Level
Intermediate Code”. In: Proceedings of POPL’11. ACM, 2011, pp. 575–586.

web.archive.org/web/20081012050644/http://research.microsoft.com/~toddpro/papers/proof.htm
web.archive.org/web/20081012050644/http://research.microsoft.com/~toddpro/papers/proof.htm
www.cs.tufts.edu/~nr/c--/code.html

298 references

[315] B. R. Rau and J. A. Fisher. “Instruction-Level Parallel Processing: History,
Overview, and Perspective”. In: Journal of Supercomputing 7.1–2 (May 1993),
pp. 9–50.

[316] C. R. Reeves. “Genetic Algorithms”. In: Handbook of Metaheuristics. 2nd ed.
Vol. 146. Springer, 2010. Chap. 5, pp. 109–139.

[317] J.-C. Régin. “A Filtering Algorithm for Constraints of Difference in CSPs”.
In: Proceedings of AAAI’94. AAAI Press, 1994, pp. 362–367.

[318] J.-C. Régin. “Generalized Arc Consistency for Global Cardinality Constraint”.
In: Proceedings of AAAI’96. AAAI Press, 1996, pp. 209–215.

[319] J. F. Reiser. “Compiling Three-Address Code for C Programs”. In: The Bell

System Technical Journal 60.2 (1981), pp. 159–166.
[320] K. Ripken. Formale Beschreibung von Maschinen, Implementierungen und Opti-

mierender Maschinencodeerzeugung aus Attributierten Programmgraphen. Tech.
rep. Munich, Germany: Institut für Informatik, Technical University of
Munich, July 1977.

[321] F. Rossi, P. van Beek, and T. Walsh, eds. Handbook of Constraint Programming.
Elsevier, 2006.

[322] R. L. Rudell. “Logic Synthesis for VLSI Design”. Doctoral thesis. Berkeley,
California, USA: University of California, 1989.

[323] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. 3rd ed.
Pearson Education, 2010.

[324] E. D. Sacerdoti. “Planning in a Hierarchy of Abstraction Spaces”. In: Proceed-

ings of ĲCAI’73. Morgan Kaufmann, 1973, pp. 412–422.
[325] S. Sakai, M. Togasaki, and K. Yamazaki. “A Note on Greedy Algorithms

for the Maximum Weghted Independent Set Problem”. In: Discrete Applied

Mathematics 126.2-3 (2003), pp. 313–322.
[326] V. Sarkar, M. J. Serrano, and B. B. Simons. “Register-Sensitive Selection,

Duplication, and Sequencing of Instructions”. In: Proceedings of ICS’01. ACM,
2001, pp. 277–288.

[327] L. J. Savage. “The Theory of Statistical Decision”. In: Journal of the American

Statistical Association 46.253 (1951), pp. 55–67.
[328] S. Schäfer and B. Scholz. “Optimal Chain Rule Placement for Instruction

Selection Based on SSA Graphs”. In: Proceedings of M-SCOPES’07. ACM,
2007, pp. 91–100.

[329] H. Scharwaechter, J. M. Youn, R. Leupers, Y. Paek, G. Ascheid, and H. Meyr.
“A Code-Generator Generator for Multi-Output Instructions”. In: Proceedings

of CODES+ISSS’07. ACM, 2007, pp. 131–136.
[330] B. Scholz and E. Eckstein. “Register Allocation for Irregular Architectures”.

In: Proceedings of LCTES/M-SCOPES’02. ACM, 2002, pp. 139–148.

references 299

[331] C. Schulte and M. Carlsson. “Finite Domain Constraint Programming Sys-
tems”. In: Handbook of Constraint Programming. Elsevier, 2006. Chap. 14,
pp. 495–526.

[332] A. Schutt, T. Feydy, P. J. Stuckey, and M. G. Wallace. “Explaining the
Cumulative Propagator”. In: Constraints 16.3 (2011), pp. 250–282.

[333] A. Schutt and P. J. Stuckey. “Explaining Producer/Consumer Constraints”.
In: Proceedings of CP’2016. 2016, pp. 438–454.

[334] R. P. Sen. Operations Research: Algorithms and Applications. PHI Learning, 2010.
[335] R. Shamir and D. Tsur. “Faster Subtree Isomorphism”. In: Journal of Algorithms

33.2 (1999), pp. 267–280.
[336] P. Shankar, A. Gantait, A. R. Yuvaraj, and M. Madhavan. “A New Algorithm

for Linear Regular Tree Pattern Matching”. In: Theoretical Computer Science

242.1-2 (2000), pp. 125–142.
[337] J. Shu, T. C. Wilson, and D. K. Banerji. “Instruction-Set Matching and GA-

based Selection for Embedded-Processor Code Generation”. In: Proceedings

of VLSID’96. IEEE Computer Society, 1996, pp. 73–76.
[338] D. C. Simoneaux. “High-Level Language Compiling for User-Defineable Ar-

chitectures”. Doctoral thesis. Monterey, California, USA: Naval Postgraduate
School, 1975.

[339] B. M. Smith. “Modelling”. In: Handbook of Constraint Programming. Elsevier,
2006. Chap. 11, pp. 377–406.

[340] A. Snyder. “A Portable Compiler for the Language C”. MA thesis. Cambridge,
Massachusetts, USA, 1975.

[341] C. Solnon. “AllDifferent-based Filtering for Subgraph Isomorphism”. In:
Artificial Intelligence (2010), pp. 850–864.

[342] S. Sorlin and C. Solnon. “A Global Constraint for Graph Isomorphism
Problems”. In: Proceedings of CPAIOR’04. Springer, 2004, pp. 287–301.

[343] V. Srinivasan and T. Reps. “Synthesis of Machine Code from Semantics”. In:
Proceedings of PLDI’15. ACM, 2015, pp. 596–607.

[344] R. Stallman. Internals of GNU CC. Version 1.21. Free Software Foundation,
Inc. Apr. 24, 1988. url: trinity.engr.uconn.edu/~vamsik/internals.pdf
(accessed 2013-05-29).

[345] J. Stanier and D. Watson. “Intermediate Representations in Imperative
Compilers: A Survey”. In: ACM Computing Surveys 45.3 (July 2013), 26:1–
26:27.

[346] A. Sudarsanam, S. Malik, and M. Fujita. “A Retargetable Compilation Method-
ology for Embedded Digital Signal Processors Using a Machine-Dependent
Code Optimization Library”. In: Design Automation for Embedded Systems

4.2–3 (1999), pp. 187–206.

trinity.engr.uconn.edu/~vamsik/internals.pdf

300 references

[347] D. Sweetman. See MIPS Run. 2nd ed. Morgan Kaufmann, 2006.
[348] H. Tanaka, S. Kobayashi, Y. Takeuchi, K. Sakanushi, and M. Imai. “A Code Se-

lection Method for SIMD Processors with PACK Instructions”. In: Proceedings

of M-SCOPES’03. Springer, 2003, pp. 66–80.
[349] A. S. Tanenbaum, H. van Staveren, E. G. Keizer, and J. W. Stevenson. “A

Practical Tool Kit for Making Portable Compilers”. In: Communications of the

ACM 26.9 (1983), pp. 654–660.
[350] A. K. Tirrell. “A Study of the Application of Compiler Techniques to the

Generation of Micro-Code”. In: Proceedings of SIGPLAN/SIGMICRO Interface

Meeting. ACM, 1973, pp. 67–85.
[351] S. W. K. Tjiang. An Olive Twig. Tech. rep. Synopsys Inc., 1993.
[352] S. W. K. Tjiang. Twig Reference Manual. Tech. rep. Murray Hill, New Jersey,

USA: AT&T Bell Laboratories, 1986.
[353] TMS320C55x DSP Mnemonic Instruction Set Reference Guide. SPRU374G. Texas

Instruments. Oct. 2002.
[354] J. R. Ullmann. “An Algorithm for Subgraph Isomorphism”. In: Journal of the

ACM 23.1 (1976), pp. 31–42.
[355] P. Van Beek. Private correspondence. Nov. 2014.
[356] J. Van Praet, D. Lanneer, W. Geurts, and G. Goossens. “Processor Modeling

and Code Selection for Retargetable Compilation”. In: Transactions on Design

Automation of Electronic Systems 6.3 (2001), pp. 277–307.
[357] J. Van Praet, G. Goossens, D. Lanneer, and H. De Man. “Instruction Set

Definition and Instruction Selection for ASIPs”. In: Proceedings of ISSS’94.
IEEE Computer Society, 1994, pp. 11–16.

[358] B.-S. Visser. “A Framework for Retargetable Code Generation Using Simu-
lated Annealing”. In: Proceedings of EUROMICRO’99. IEEE Computer Society,
1999, pp. 1458–1462.

[359] E. Visser. “A Survey of Strategies in Rule-Based Program Transformation
Systems”. In: Journal of Symbolic Computation 40.1 (2005), pp. 831–873.

[360] E. Visser. “Stratego: A Language for Program Transformation Based on
Rewriting Strategies - System Description of Stratego 0.5”. In: Proceedings of

RTA’01. Springer, 2001, pp. 357–361.
[361] S. G. Wasilew. “A Compiler Writing System with Optimization Capabilities

for Complex Object Order Structures”. Doctoral thesis. Evanston, Illinois,
USA: Northwestern University, 1972.

[362] S. W. Weingart. “An Efficient and Systematic Method of Compiler Code
Generation”. Doctoral thesis. New Haven, Connecticut, USA: Yale University,
1973.

references 301

[363] B. Weisgerber and R. Wilhelm. “Two Tree Pattern Matchers for Code Selec-
tion”. In: Proceedings of CCHSC’89. Springer, 1989, pp. 215–229.

[364] A. L. Wendt. “Fast Code Generation Using Automatically-Generated Decision
Trees”. In: Proceedings of PLDI’90. ACM, 1990, pp. 9–15.

[365] B. Wess. “Automatic Instruction Code Generation Based on Trellis Diagrams”.
In: Proceedings of ISCAS’92. IEEE Computer Society, 1992, pp. 645–648.

[366] B. Wess. “Code Generation Based on Trellis Diagrams”. In: Code Generation

for Embedded Processors. Ed. by P. Marwedel and G. Goossens. Springer, 1995.
Chap. 11, pp. 188–202.

[367] T. R. Wilcox. “Generating Machine Code for High-Level Programming
Languages”. Doctoral thesis. Ithaca, New York, USA: Cornell University,
1971.

[368] T. Wilson, G. Grewal, B. Halley, and D. Banerji. “An Integrated Approach to
Retargetable Code Generation”. In: Proceedings of ISSS’94. IEEE Computer
Society, 1994, pp. 70–75.

[369] C. Wolinski and K. Kuchcinski. “Computation Patterns Identification for
Instruction Set Extensions Implemented as Reconfigurable Hardware”. In:
Proceedings of ERSA’07. CSREA Press, 2007, pp. 175–181.

[370] L. A. Wolsey. Integer Programming. Wiley, 1998.
[371] S. Wu and S. Li. “Instruction Selection for ARM/Thumb Processors Based

on a Multi-objective Ant Algorithm”. In: Computer Science – Theory and

Applications. Springer, 2006, pp. 641–651.
[372] W. A. Wulf, R. K. Johnsson, C. B. Weinstock, S. O. Hobbs, and C. M. Geschke.

The Design of an Optimizing Compiler. Elsevier, 1975.
[373] H.-T. L. Wuu and W. Yang. “A Simple Tree Pattern-Matching Algorithm”. In:

Proceedings of ATC’00. Chiyayi, Taiwan, 2000, pp. 1–8.
[374] M. Xie, C. Pan, J. Hu, C. Xue, and Q. Zhuge. “Non-Volatile Registers Aware

Instruction Selection for Embedded Systems”. In: Proceedings of RTCSA’14.
IEEE Computer Society, Aug. 2014, pp. 1–9.

[375] W. Yang. “A Fast General Parser for Automatic Code Generation”. In: Pro-

ceedings of MTPP’10. Springer, 2010, pp. 30–39.
[376] J. S. Yates and R. A. Schwartz. “Dynamic Programming and Industrial-

Strength Instruction Selection: Code Generation by Tiring, but not Exhaustive,
Search”. In: SIGPLAN Notices 23.10 (1988), pp. 131–140.

[377] J. M. Youn, J. Lee, Y. Paek, J. Lee, H. Scharwaechter, and R. Leupers.
“Fast Graph-Based Instruction Selection for Multi-Output Instructions”.
In: Software—Practice & Experience 41.6 (2011), pp. 717–736.

[378] R. Young. “The Coder: A Program Module for Code Generation in High
Level Language Compilers”. MA thesis. Urbana-Champaign, Illinois, USA:
Computer Science Department, University of Illinois, 1974.

302 references

[379] K. H. Yu and Y. H. Hu. “Artificial Intelligence in Scheduling and Instruction
Selection for Digital Signal Processors”. In: Applied Artificial Intelligence 8.3
(1994), pp. 377–392.

[380] K. H. Yu and Y. H. Hu. “Efficient Scheduling and Instruction Selection for
Programmable Digital Signal Processors”. In: Transactions on Signal Processing

42.12 (1994), pp. 3549–3552.
[381] P. Yu and T. Mitra. “Scalable Custom Instructions Identification for Instruction-

Set Extensible Processors”. In: Proceedings of CASES’04. ACM, 2004, pp. 69–
78.

[382] G. Zimmermann. “The MIMOLA Design System: A Computer Aided Digital
Processor Design Method”. In: Proceedings of DAC’79. IEEE Computer Society,
1979, pp. 53–58.

[383] W. Zimmermann and T. Gaul. “On the Construction of Correct Compiler
Back-Ends: An ASM-Approach”. In: Journal of Universal Computer Science 3.5
(1997), pp. 504–567.

[384] J. Ziv and A. Lempel. “A Universal Algorithm for Sequential Data Compres-
sion”. In: Transactions on Information Theory 23.3 (1977), pp. 337–343.

[385] V. Živojnović, J. Martınez Velarde, C. Schläger, and H. Meyr. “DSPstone: A
DSP-Oriented Benchmarking Methodology”. In: Proceedings of ICSPAT’94.
DSP Assoc., 1994, pp. 715–720.

Index

λ-RTL 150, 151
ϕ-function 36, 63, 64, 67, 76, 234, 235
ϕ-node 67, 76, 80, 97, 98
ϕ-pattern 67, 79, 80
k-means clustering 11
α-β pruning 144

δ-LR graph 194

Σ-term 179, 180
ordered 180

ϕ-match 67, 73, 74, 76, 79–81, 94, 98,
101, 104, 106, 132

A∗ search 174, 175
ACK 148, 244
action 22, 23, 161, 162, 163, 164, 170,

171, 185
address generation 228
addressing mode 11, 17, 18, 75, 89,

161, 169, 184
affix grammar 169

all-different constraint 46, 51, 52
alphabet 179, 180

ranked 179

alternative value 78, 79, 80, 82, 83, 99,
105, 106

AMOP 142

anchor node 208

ant colony optimization 199

ARM 17, 18, 146, 226
ASIP 34, 219, 240
ASP 147

assembly code 1, 3, 4, 17, 18, 22,
83, 135, 138–142, 144–149, 151,
152, 155, 157, 160, 162–164,
168–175, 185, 188, 189, 191,
194, 198–200, 203, 209–212,
215, 218–224, 226, 228, 229,
236, 240, 241

AST 138, 139, 144, 148, 152, 153, 155,
158, 173

attribute 169, 170, 171, 173, 188
inherited 169, 170, 171
synthesized 169, 170, 171

attribute grammar 168, 169, 170, 171
AVIV 228, 229, 246
AVX 18, 135

see also Intel

backend 3, 4, 139, 144
base 181

base pattern 181, 182
baseline 12, 13, 82, 87, 88, 108, 111,

112, 115–117, 120, 123, 125
basic block 5, 15

see also block
BEG 188, 245
bigraph 249

see also bipartite
binate covering 205, 219, 220

see also unate covering
BLISS-11 173

block iv, 1, 3, 5, 7, 15, 18, 20, 33–37,
43, 59–61, 63–66, 69, 70, 73–75,
79–81, 83–90, 93–99, 102, 104,
112, 124, 125, 127–132, 134,
139, 147, 148, 203, 228, 230,
232–236, 240, 242, 247
see also basic block

consume 75, 90
dominate 73, 74, 93, 94, 97
empty 84, 85–87, 102
span 74, 75, 97, 98, 104, 112

block DAG 20, 27–30,
32–35, 205, 206–216, 218–221,
223–230, 233, 234

303

304 index

block node 61, 63, 66, 68, 74, 75, 80, 85,
98

block ordering iv, v, 1, 2, 4, 7, 43,
47, 71, 83, 84, 92, 102, 124, 133,
134

bootstrapping 138

bounds consistency 51, 52
box node 207, 208, 209
branch and bound 53, 102, 144, 172,

240
branch extension 83, 85, 86–88
branching strategy 52, 53, 93, 103
built-in operation 198

bundle 229, 240, 242
bundling 240
BURG 195, 196, 214, 245
BURGer phenomenon 195

BURS 174, 175, 193, 194, 195, 198
BURS grammar 193, 195
BURS state 194

byte code 145

C 142, 144, 159, 188, 210
C−− 188
C# 188
callee 77

caller 77

calling convention 77

CBC 212, 245
CBURG 195, 218, 247
CGG 174

CGL 184

CGPL 142

chain rule trimming 196

chaining graph 240

CHESS 240, 245
child 24, 26, 27, 158, 169, 179, 185, 195,

196, 201, 208, 250

see also node
choice function 198

chromosome 200

see also gene
CHUFFED 11, 45, 110

CI 13, 82, 87, 88, 108, 111, 112, 115–117,
119, 120, 123, 125

circuit constraint 47, 52, 84
CISC 169

Click-Paleczny graph 37, 69, 235, 236
CNF 206, 220
code generation iv, 2, 3, 5, 7, 8, 32, 33,

42, 64, 127, 134, 135, 137, 139,
140, 142, 143, 145, 146, 151,
157, 159, 176, 188, 195, 198,
221, 222, 224, 225, 227, 240,
241

integrated 32, 221, 224, 225, 240
interpretative 137

code generator 149, 165, 209
CODESYN 213, 245
combiner 148, 149, 151
compiler iv, 1, 2, 3, 13,

18, 19, 21, 34, 36, 60, 88, 102,
123, 128, 133–135, 138–140,
142–145, 147–149, 151, 152,
158, 159, 161, 171, 173, 174,
184, 188, 190, 195, 196, 209,
210, 223, 228, 229, 231, 234,
241, 242

compiler intrinsic 18

computation node 63, 64–66, 69, 90
condition code 17

see also status flag
condition flag 17

see also status flag
conflict graph 216, 219

see also interference graph
constant folding 3, 171
constraint 10, 11, 33, 34,

45, 46–51, 53–57, 63, 71–74, 76,
77, 80, 81, 83–86, 90, 91, 93, 94,
96–104, 111, 112, 114–117, 128,
131, 208, 219–223, 225–227

binary 46

dominance breaking 48, 54, 55,
57, 93, 100, 114–117

global 33, 46, 49, 226

index 305

implied 54, 55, 57, 72, 80, 93,
97–99, 111, 112, 115, 117

symmetry breaking 54, 55, 57, 93,
100, 114–117

constraint model 7, 8, 10–12, 14, 34,
45, 46, 48, 50, 51, 53–57, 59, 60,
68, 70–74, 76, 78–80, 82, 87–93,
97, 100, 102, 103, 108–112,
114–117, 119–121, 127, 129,
131, 133–135, 225–227

compositional 46

constraint solver 11, 45, 50, 56, 57,
93, 102, 103, 107, 108, 110, 123,
226
see also solver

constraint store 50

see also store
stronger 50

context-free grammar 22, 161, 169,
170
see also grammar

control node 61, 63, 64, 85, 86, 90
control-flow edge 66, 85
control-flow graph 60, 61, 63, 67, 69,

139
conversion pattern 158

cookie 160

copy extension 64, 66, 76, 78, 85, 91
copy match 76, 77, 101, 106
copy node 76, 77, 81, 91, 101, 102, 106
Cortex-M7 18

see also ARM
cost variable 50, 55, 88, 89, 95, 96, 102,

109
COSY 188, 189, 245
cover 20, 21, 22, 24, 27–30, 32, 33,

60, 64, 71, 90, 91, 135, 156, 187,
226

exact 20, 21, 32, 33, 64, 71, 91, 156

least-cost 21, 24, 28, 30, 32, 187,
206

CO graph 229

CP iv, v, 2, 7, 10, 13, 33, 34, 45, 50, 53,
56, 102, 133, 134, 221, 225, 226,

228
cumulative constraint 48, 52, 128
CV 11, 82, 87, 108, 109, 111, 112,

115–117, 120, 123, 125
cycle 47, 73, 84, 213, 233, 239, 249, 250

Hamiltonian 47, 84, 249

DAG 15, 20, 28, 32, 40,
43, 133, 176, 182, 205–209, 213,
215, 229, 231, 234, 238, 239,
249, 251

DAG covering 7, 15, 27, 28, 34, 175, 201,
205, 206, 209, 211, 215, 220,
228, 230–234, 240, 242, 247

DAGON 212

data copying 6, 7, 33, 43, 60, 70, 71, 75,
77, 92, 133, 224

data-flow edge 36, 60, 63, 64, 66, 67,
71, 76, 91, 235

data-flow graph 20, 36, 139, 147, 155,
156, 235

datum 71, 72–76, 78–81, 90, 93, 94,
97–102, 104–106, 127–132, 135

available 99, 100
copy-related 78, 79, 82, 100
define 71, 72–76, 79–81, 90, 93, 94,

97, 98, 100, 105, 106, 127–129,
132, 135

interchangeable 100, 101
killed 81, 99, 102, 129
use 71, 72–76, 79–81, 93, 94, 97,

98, 100, 105, 106, 127, 130–132
Davidson-Fraser approach 20, 148,

149, 151–153, 158, 241
DBURG 195, 214, 246
DCG 196, 245
dead code elimination 3
DEC-10 144
decision variable 31, 32, 38, 237

see also variable
definition edge 63, 64, 66, 73, 75, 76,

79–81, 98, 101, 104
delta cost 194

dependency graph 73

306 index

diffn constraint 49

see also no-overlap constraint
discrimination net 158

divide-then-multiply method 96, 108,
109, 111
see also multiply-then-divide
method

DMACS 140, 141, 142, 244
domain 45, 47, 50–56, 89, 96, 103, 107,

109
domain consistency 51, 52
DP 24, 184, 185, 187,

188, 190, 195, 197, 200, 203,
213–216, 224, 226, 229

DSP 1, 11, 18, 34,
35, 134, 146, 151, 188, 200, 222,
223, 225, 228–230, 236, 240

DTB pattern 83, 86, 87, 88

echo instruction 218, 219
edge 20, 27, 29, 30, 32, 36, 40–42, 47, 57,

60, 61, 63, 66, 69, 73, 75, 76, 85,
91, 98, 178, 182, 189, 190, 193,
200, 201, 203, 207, 208, 213,
215, 216, 224, 226, 235, 240,
249, 250

inbound 71, 75, 249

see also ingoing
ingoing 66, 249

see also inbound
outbound 71, 75, 76, 85, 249

see also outgoing
outgoing 66, 207, 249

see also outbound
edge number 66, 69, 76

inbound 66, 69
outbound 66, 69

edge splitting 27, 29, 32, 34, 212, 230
entry block 15, 63, 66, 67, 72–74, 84, 85,

98, 103
equational logic 198

ERI 225, 226
expand procedure 19, 137

expander 148, 149–151

expression tree 20, 22–24, 26,
27, 29, 32, 33, 37, 139, 144, 148,
155, 156, 159, 160, 163, 165,
168, 171–178, 181, 184, 185,
187–193, 197–203, 205, 206,
211–213, 223, 226, 229, 234,
236, 240

extension node 91, 92
extensional constraint 47

see also table constraint
exterior value 75, 99

failure 51, 52, 53, 56, 57
fall-through 83, 84–86, 104
FBB 240

FHC 143, 244
filtering algorithm 50, 52

see also propagator
finite state automaton 141, 150

see also state machine
finite tree automaton 199
FIRM 69

first-fail principle 52, 103
fitness function 200, 228, 241
fixpoint 50, 51, 52
FLEXWARE 213

foot print 211

forest 181, 234, 250

free search 103

frontend 3, 142, 211
FRT 34, 225, 226
function iv, 2, 3, 6, 7, 11–13, 15,

18–21, 29, 35–37, 43, 59–65, 67,
69, 70, 72, 73, 77, 80–85, 87–91,
93, 107–112, 116, 117, 119–121,
123–125, 128–131, 134, 135,
137, 139, 142, 143, 145–148,
150–152, 156, 157, 161, 168,
172–174, 197–199, 211, 213,
219, 220, 222, 224, 226, 229,
230, 232–237, 247

function graph 20, 30, 32, 36, 37, 40,
41, 59, 60, 65, 233, 236, 240

index 307

GA 199, 200, 227, 228, 241
GBURG 145, 195, 246
GCC 148, 150–152, 210, 244
GCL 138
gene 200, 228
Glanville-Graham approach 161,

168–171, 174, 180, 195
GLASGOW 68

global cardinality constraint 33, 46,
52, 54, 226

global code motion iv, v, 1, 2, 3, 5, 7,
36, 42, 60, 65, 70, 71, 73, 84, 92,
124, 125, 133, 134, 233, 236

global code mover 5
global set covering constraint 226
GMI 13, 82, 87,

88, 108, 111, 112, 115–117, 119,
120, 123, 125, 134

GNU LIGHTNING 145, 247
GPBURG 188, 195, 246
grammar 22, 23, 24, 29,

39, 161, 162, 163, 165, 168–172,
174, 175, 185, 190, 193, 195,
197, 214, 238, 239
see also machine grammar

ambiguous 165

normal form 23, 24, 39, 162, 163,
184, 185, 187, 237

graph iv, 2, 5, 7, 11, 13, 20, 28–30, 36,
40, 42, 45, 47, 57, 59–61, 63–67,
72, 76, 81, 85, 92, 134, 139, 141,
176, 213, 216, 219, 223, 229,
232–234, 239, 240, 249, 250

bipartite 63, 249

see also bigraph
connected 249, 250
directed 57, 141, 249, 250
simple 249, 250
strongly connected 250

undirected 249, 250
weakly connected 250

graph covering 7, 15, 34, 36, 175, 216,
230, 233, 234, 241, 242, 247

graph homomorphism 250

see also homomorphism
graph isomorphism 250

GRiP 242

GWMIN2 218

Haskell 11, 67, 196
HBURG 195, 196, 245
Hexagon vi, 11, 17, 117, 124, 134, 135
hierarchical planning 210

homomorphism 198
see also graph homomorphism

Horn clause 33, 222, 223

IBM 141, 213
IBURG 188, 195, 212, 223, 245
ICL 139

if-conversion 89, 90, 135
ILP 31, 221

immediately subsume 180

see also subsume
implication graph 57

independent set 30

index map 183

input datum 79

instruction iv, 1–7, 10–12, 15,
17–24, 27–30, 32–37, 39, 43, 59,
60, 64, 65, 67, 69, 70, 72, 75–78,
81–92, 101, 107, 117, 121,
123–125, 127–129, 133–135,
137, 139–153, 155, 157–159,
161–163, 165, 168–175,
188–191, 195, 196, 198, 201,
203, 205, 206, 209–215, 217,
218, 220, 222–229, 231–233,
235–242, 247

SIMD iv, 5, 6, 18, 32–34, 43, 69, 76,
123–125, 133–135, 223, 224

instruction characteristic 7, 10, 15, 17,
18, 205, 247

disjoint-output 7, 17, 18, 32, 69,
203, 223, 227, 231, 247

inter-block 7, 17, 18, 36, 43, 203,
210, 232, 233, 239, 240, 247

308 index

interdependent 7, 17, 18, 210, 222,
240, 247

multi-output 7, 17, 18, 28, 30, 32,
35, 39, 145, 172, 196, 203, 205,
206, 210, 211, 215, 217, 223,
231, 237, 238, 247

single-output 7, 17, 19, 24, 35, 37,
145, 211, 218, 231, 236, 247

instruction compaction 32, 33, 228
instruction scheduling iv, v, 2, 4, 8,

10, 32, 34, 42, 49, 127, 129, 130,
134, 135, 198, 200, 206, 210,
221, 223, 228, 241, 242

instruction selection iv,
v, 1, 2, 4–7, 10, 13, 15, 18, 20,
21, 28–32, 34, 36–38, 40–42, 55,
59, 68, 70, 71, 88, 89, 92, 102,
124, 125, 127, 128, 133–135,
139, 143–145, 148, 152, 153,
155–157, 161, 169, 172, 174,
177, 179, 184, 188–190, 195,
197–201, 203, 205, 209–211,
213, 215–218, 220–224, 226,
228, 229, 231–234, 236, 239,
241, 242, 247

global iv, 2, 7, 20, 32, 59, 70, 71,
92, 102, 124, 134, 233, 242, 247

local iv, 20, 203, 233, 236, 242, 247
instruction selector 5–7,

15, 17–20, 65, 78, 89, 138–140,
142–145, 148, 149, 151, 152,
155, 158–160, 165, 168, 169,
171–176, 184, 189, 192, 197,
198, 203, 209–213, 216, 223,
228, 233, 237, 239, 240

instruction set iv, 2, 3, 11,
12, 17, 18, 22, 24, 27, 29, 33, 35,
91, 104, 117, 119, 121, 134, 135,
150, 165, 184, 196, 199, 203,
206, 211, 225, 229, 231, 239

Intel 11
interference graph 30, 31, 216

see also conflict graph
intermediate value 75

IP 31, 32, 33, 38, 45, 215, 221, 222–225
IR 3, 11, 18–20, 27, 36, 60, 67, 69, 81,

87, 107, 123, 124, 139, 140, 144,
149, 150, 152, 153, 155, 157,
158, 189, 211, 234, 235

ISE 34, 219

ISFG 151

isomorphism 28, 250

see also subgraph isomor-
phism

JALAPEÑO 213, 246
Java 145, 188, 213
JBURG 188, 195, 245
JHSC 236, 246
JIT compilation 145

kill match 81, 99, 102, 103, 105, 106
kill pattern 81

Knuth-Morris-Pratt algorithm 177

LAD 68

LBURG 195, 196, 245
LCC 196, 245
LCG 11, 45, 56, 57, 110
leaf 157–159, 171, 172, 178, 193, 200,

201, 229, 250

see also node
list scheduling 228, 241
literal 56, 57
live range 129, 130–132, 234
LLVM 11, 18, 29, 65, 67, 81,

87, 107, 110, 111, 123, 124, 134,
209, 210, 226, 246

location 75, 76–78, 81, 99, 100,
104–107, 117, 119, 120

canonical 107, 117, 119, 120
location set 75, 81, 107
loop 232, 249

see also loop edge
loop edge 182, 249

see also loop
loop unrolling 3, 125, 134
LR parser 165, 169, 171, 187

index 309

LR parsing 163, 168, 171, 172, 174, 177,
187, 194, 197

LR graph 193, 194

machine code 4, 145
machine description 22, 67,

137, 138, 140, 142, 143, 146,
149–151, 158, 159, 170, 174,
184, 196, 198, 199, 209, 210,
223, 229, 240

machine grammar 20, 22, 30, 32, 39,
40, 162, 163, 165, 168–171, 174,
175, 184, 185, 187–189, 191,
195, 197, 214, 217, 219, 223,
237
see also grammar

machine invariant 148, 149, 150
machine operation 174

macro 18, 19, 137, 138–145, 148, 152,
155, 189, 190

macro expander 19, 137, 138, 145,
148–150, 159, 189, 209

macro expansion 7, 15, 18, 19,
20, 137, 139, 145, 148, 151, 152,
155, 159, 189, 201, 203, 210, 247

naive 19, 20, 138, 145, 149, 153
magic sequence problem 54

mapping candidate set 40

match 19, 20, 21, 24,
28–30, 32–34, 39–41, 50, 55, 60,
67–69, 71–82, 84–86, 88–100,
102–106, 117, 127–131, 137,
156, 157–160, 163, 173, 177,
178, 183, 208–211, 215–217,
219–221, 224, 226, 227, 229,
237–239

complex 39, 40, 238, 239
dominate 103, 104, 117
illegal 104, 105, 106
redundant 106, 117

match duplication 78, 79, 82, 83
match set 20, 32, 33, 64, 73,

74, 78–80, 86, 103, 104, 106,
156, 179, 180–182, 184, 185,

190–192, 200, 214, 216, 217,
219, 221, 227, 229

matching problem 15, 19, 20, 137, 155,
156, 203
see also pattern matching

maximum munch 29, 103, 165, 199
MBURG 188, 195, 246
means-end analysis 173, 174, 210
MEDIABENCH 11

microcode 229

microcode generation 229, 239
middle-end 3

see also optimizer
MIML 140, 141, 142
MIMOLA 223, 229

minimax approach 103

MINIZINC 11, 14, 92
MIPS 17, 24, 218, 226
MIS 30, 205, 216, 219
ML 150

MSS 229

MSSC 229, 245
MSSQ 229, 240, 246
MSSV 229, 245
multigraph 249

multiply-then-divide method 96, 108,
109, 111
see also divide-then-multiply
method

mutation scheduling 241, 242, 247
mutation set 241, 242
MWIS 30, 31, 205, 216, 217–219

nML 240
no-good 57

no-overlap constraint 49, 52, 130
see also diffn constraint

node 20, 24, 26, 27, 29–34,
36, 37, 39–42, 47, 52, 53, 57,
59–61, 63, 64, 66–69, 73, 74, 77,
79, 106, 123, 141, 144, 148–153,
155, 156, 158–160, 163, 169,
174–176, 179, 182, 183, 185,
187, 189, 190, 193–195, 200,

310 index

201, 205, 207–216, 218–221,
223–229, 235–237, 239, 240,
249, 250

adjacent 225, 249, 250
connected 249

fixed 29, 215

split 228

transfer 228, 229
node duplication 27, 29, 31, 34, 37,

212, 215, 230, 236
NOLTIS 215, 247
nonterminal 22, 23, 24, 26, 29,

32, 161, 162–165, 169–171, 175,
185, 187, 190–192, 195, 196,
214, 219

null match 84, 104, 106
null-copy match 76, 101, 102, 106
null-copy pattern 76

null-def pattern 72

null-extend pattern 92

null-jump pattern 85

nullary symbol 179, 183, 191, 192

objective function 33, 50, 71, 88, 89,
95, 96, 102, 103, 108–111

OCAMLBURG 188, 195, 245
offline cost analysis 172, 190, 191,

194–196, 199, 203
OLIVE 188, 218, 245
OMML 140, 141
Omniware 145, 245
operand 80, 81, 94, 99–101, 130
operation iv, 3–5, 15, 17–20, 22, 23,

26, 30, 32, 34, 36, 37, 60, 61, 63,
64, 65, 66, 69, 71, 72, 74–76, 78,
85, 86, 90, 91, 95–100, 103, 104,
109, 124, 135, 161, 162, 195,
224, 225, 235, 236, 240

OPTIMIST 224, 246
optimizer 3

see also middle-end
OVA 200, 201

PAGODE 198, 245

parent 157, 169, 205, 250

see also node
parse tree 164, 165, 169, 171, 172
parser cactus 172

PAS 173

Pascal 138, 171
path 249, 250
pattern 18, 20, 22, 24, 28–36, 39, 40,

43, 59, 60, 67, 69, 70, 72, 76, 81,
86, 90, 91, 112, 133, 146, 152,
156, 157–165, 169, 171–183,
185, 187–192, 194, 197, 200,
201, 203, 206–220, 223, 224,
226–228, 231, 233, 238–240
see also pattern graph

complex 31, 217, 218, 223, 227,
228

partial 215, 216, 227
proxy 30, 31, 217, 218
simple 30, 217, 218

pattern DAG 20, 27, 28, 35, 39, 205, 206,
210, 215, 216, 218, 223, 234
see also pattern

pattern graph 20, 36, 40–43, 65, 234
see also pattern

pattern matcher 151, 176, 177, 190,
196, 200, 213, 229

pattern matching 10, 11, 20,
23, 24, 28, 30, 32, 34, 40, 59, 66,
68, 76, 80, 85, 156, 157–159,
162, 163, 173–178, 183, 185,
188, 190, 192, 198, 199, 206,
211, 213, 216, 217, 219, 221,
224, 226, 234, 239
see also matching problem

pattern selection 20, 21, 23,
24, 29, 31–34, 42, 46, 50, 156,
157, 161–163, 168, 172, 175,
176, 183, 184, 191–197, 199,
205, 206, 209–211, 213–216,
218–221, 224, 226, 227, 231,
233, 234, 236, 240
see also selection problem

goal-driven 172

index 311

optimal 21, 24, 29, 50, 155, 157, 171,
183, 184, 191–195, 197, 199,
200, 203, 205, 206, 208–210,
214–216, 226, 229, 231, 247

pattern selector 176, 190, 197, 199, 217
pattern set 20, 67,

72, 76, 81, 85, 86, 91, 92, 112,
124, 125, 156, 157, 158, 179,
181–184, 192, 207, 209, 218

simple 181, 182, 183
pattern tree 20, 27,

37, 155, 173, 177–181, 184, 194,
203, 205–210, 213, 215, 218,
223, 236, 237
see also pattern

inconsistent 180

independent 181, 183, 192
PBQP 38, 39, 40, 233, 236, 237–239
PCC 142, 159, 160, 161, 244
PDP-11 158
peephole optimization 19, 146, 147,

148, 152, 153, 203, 210, 247
peephole optimizer 19, 146, 148, 149,

151, 152
percentile bootstrapping 13
PL/1 138
PL/C 139
PO 146, 147, 148
Polish notation 22, 157, 161, 202

reverse 157

see also postfix notation
postfix notation 157

see also Polish notation
PowerPC 150
PQCC 173, 174, 244
predicate 168, 170, 171, 188
presolving 50, 54, 55, 82, 87, 93, 103,

108, 112, 115–117, 119–121
principle 7, 10, 15, 18, 20, 27,

36, 137–139, 152, 153, 155, 172,
175, 201, 203, 205, 209, 231,
232, 242, 247

product automaton 168

production 22, 23, 24, 26, 30,
39, 161, 162, 163, 165, 168, 169,
174, 185, 193, 195, 217, 237

program iv, 1, 3–5, 7, 8, 10,
18, 19, 60, 63, 65, 66, 69, 70, 74,
80, 100, 145, 146, 171, 209, 219,
234, 237, 239–242

Prolog 171
propagation 34, 50, 51, 52, 54–56, 72,

77, 93, 95, 97, 110, 112, 227
propagator 50, 51, 52

see also filtering algorithm
decreasing 50

monotonic 50

pushdown automaton 199
Python 11

QAP 38, 237

quantifier-free bit-vector logic 147

recognizer 149, 150
recomputation 89, 91, 135, 241

see also rematerialization
RECORD 188, 245
REDACO 188, 245
reduce-reduce conflict 165, 168
refactoring 169, 170, 189
register 4, 5, 21, 32, 34, 75–77, 89,

91, 107, 117, 121, 127–130, 140,
143, 144, 146, 148, 150, 160,
163, 165, 169, 170, 172, 173,
188, 190, 200, 201, 209, 212,
213, 220, 225, 227–229, 241

spilling 32, 127, 148, 213
register allocation iv, v, 2, 4, 8,

10, 31–34, 38, 49, 127, 128, 130,
131, 134, 135, 140, 143, 144,
148, 188, 189, 198, 200, 201,
206, 210, 213, 218, 221, 223,
225, 228, 236, 241

global 128, 130
local 128, 130, 131

register allocator 127, 148, 165, 218

312 index

register class 140, 141, 142, 184, 190,
201, 227

register pressure 213, 241, 242
regret 103

rematerialization 241, 242
see also recomputation

rewriting strategy 199
RISC 17

root 144, 159, 171–173, 180, 182, 187,
190, 191, 197, 201, 203, 205,
208, 215, 229, 250

see also node
RT 146, 223, 225, 226

unobservable 146

RTL 146, 147–152, 174, 223
rule 22, 23, 24, 26, 27,

29–31, 39, 40, 159, 160, 161,
162–165, 168–172, 174–176,
185, 187–193, 195–199, 214,
217, 218, 223, 237–239

base 23, 24, 26, 27, 162, 163, 185,
195, 196

chain 23, 24, 39, 162, 175, 176, 185,
187, 237

complex 30, 31, 39, 40, 217, 218,
238, 239

proxy 30, 39, 40, 217, 238, 239
rewrite 159, 160, 193, 239

simple 30, 40, 217, 238
split 30, 217

rule pattern 22, 24, 29, 162

rule reduction 23, 24, 164, 165, 171,
175, 185, 187, 192

rule result 22, 24, 30, 39, 162, 185, 187

SAT 45, 56, 206, 207, 209, 220
saturation arithmetic 4, 18
sea-of-nodes IR 36, 59, 234, 235
search 50, 51–53, 56, 57, 97, 103, 144,

172, 210, 240
search space 50–55, 57, 79,

85–87, 100, 102, 103, 110, 144,
210, 211, 226

search tree 52, 53

selection problem 15, 19, 20, 137, 155,
156, 203
see also pattern selection

semantic analysis 3
semantic blocking 165, 170
semantic comparator 211

semantic primitive 211
semantic qualifier 165
shift 164, 165
shift-reduce conflict 165, 168
SIMCMP 138, 244
SIMD pair 224

simulated annealing 240

SLM instruction 139

Smalltalk-80 145
solution 10, 13, 40, 45, 46, 49–55, 64,

73, 79, 80, 82, 84, 87–91, 94, 95,
97, 100–102, 104, 107, 109, 110,
120, 123–125, 221, 239

solver 50, 51, 52
source 66, 75, 98, 249

SPAM 188, 245
Sparc 150
SPECINT 2000 147

speedup 12, 13
SSA 36, 60, 63, 234, 235
SSA graph 36, 40, 60, 63, 69, 235, 236,

239
SSE 18

see also Intel
state 26, 27, 190, 191, 193–197
state machine 141, 142, 149, 178, 193

see also finite state automaton
state node 65, 66, 71, 75, 79, 98–100
state table 26, 27, 195, 196
state trimming 196

state-flow edge 65, 66, 71
status flag 17, 146
steganography 147

stop node 207, 208
storage class 189, 190
storage location 225

virtual 225

index 313

store 50, 51, 52
see also constraint store

STRATEGO 199

strictly subsume 180, 181, 182
see also subsume

subgraph 20, 28, 41, 69, 91, 156,
208–210, 219, 229, 249, 250

subgraph isomorphism 10, 28, 29, 68,
206, 219, 227, 234, 250

see also isomorphism
subinstruction 227

subject 12, 13, 82, 87, 88, 108, 111, 112,
115–117, 120, 123–125

subpattern 182, 183
subsume 180, 181, 182

see also strictly subsume
subsumption graph 182, 192

immediate 182

subsumption order 182, 183
subtree 157–160, 171–173, 179, 182,

183, 187, 191, 193, 194, 197,
214, 250

see also tree
super node 32, 213, 223
SUPEROPTIMIZER 147

superoptimizer 147

symbol 22, 161–165, 170, 179, 181, 182,
193

goal 162, 163, 164
syntactic analysis 3, 155, 161, 163
syntactic blocking 165, 169

T-operator 173

table constraint 47, 52
TABLEGEN 209, 210
tag 107

target 66, 75, 98, 249

target machine vi, 3, 4–6, 19–22, 35, 67,
75–77, 83, 86, 89, 90, 117, 119,
121, 128, 137–143, 145–148,
150, 151, 155–158, 162, 169,
172, 173, 188, 190, 198, 199,
201, 203, 209, 218, 220–222,
224–228, 230, 233, 237, 239, 241

TEL 139

template 18, 19, 137, 138, 152, 174
temporary 4, 148, 229, 232
terminal 22, 23, 24, 26, 27, 161, 162–165,

168, 169, 193, 195, 196
TI 18
tile 150, 151
TMS320C2x 222

see also TI
TMS320C55x 18

see also TI
TOAST 210

toe print 211

topological sort 183, 250, 251
transitive closure 175, 176, 237
tree 20, 32,

34, 43, 133, 139, 155, 157, 158,
163, 168, 169, 172, 177, 179,
181–183, 191, 193, 197, 200,
202, 203, 205, 206, 209–215,
217, 223, 226, 228, 229, 231,
234, 250

directed 250

rooted directed 250

tree covering 7, 15, 20, 24, 27,
28, 145, 155, 172, 174–177, 200,
201, 203, 205, 206, 211, 213,
216, 228, 231, 233, 234, 237,
242, 247

tree parsing 163, 168, 174, 198
tree rewriting 159, 172, 175, 193
tree series transducer 199

trellis diagram 200, 201, 228, 229, 241,
247

TWIG 184, 187, 188, 194, 244

U-CODE 142

UCG 199, 245
UF graph 64, 65, 67–69, 71, 73,

75, 76, 78, 79, 85, 86, 90, 91, 95,
100, 123

UGEN 142

UI LR graph 193, 194

314 index

unate covering 205, 219, 220, 221, 226
see also binate covering

undagging 211, 212, 223
UNH-CODEGEN 196, 245
unit propagation 57

universal instruction selection iv,
2, 7, 11, 13, 15, 20, 71, 123–125,
133, 134

universal representation 14, 59, 60,
68, 70, 90, 134

UNIX 159
UP graph 67, 68, 71, 74–76, 79

value consistency 51

value mutation 241, 242
value node 63, 64–67, 69, 71, 74–76, 79,

81, 91, 98, 106
value reuse 7, 71, 78, 79, 81–83, 92, 133
value-precede-chain constraint 48,

52, 101
variable 10, 31, 32, 33, 38–40, 45,

46–57, 60, 71, 72, 74, 75, 80, 83,
84, 92–94, 96, 100, 101, 103,
107, 127, 129, 131, 206–209,

220, 221, 224–227, 230, 234,
237, 238
see also decision variable

assigned 45, 51, 53
VAX 169, 170, 187
VCODE 145, 245
version 229

vertex 249

see also node
VF2 29, 40, 68, 69, 219
VISTA 152, 247
VLIW 34, 128, 200, 227, 229, 241
VLSI 220

WBURG 195, 196, 245

X86 17, 18, 134, 135, 150
see also Intel

XL 142

YC 148

ZEPHYRVPO 148, 244
zero-centered normalization 12, 13

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Thesis Statement
	Motivation
	Contributions
	Publications
	Research Methodology
	Evaluation Methodology
	Outline

	Existing Instruction Selection Techniques and Representations
	Instruction Characteristics
	Macro Expansion
	Tree Covering
	DAG Covering
	Graph Covering
	Limitations of Existing Approaches

	Constraint Programming
	Modeling
	Solving
	Lazy Clause Generation

	Universal Representation
	Design Requirements
	Program Representation
	Instruction Representation
	Pattern Matching
	Comparison with Other Sea-of-Nodes IRs
	Summary

	Constraint Model
	Modeling Global Instruction Selection
	Modeling Global Code Motion
	Modeling Data Copying
	Modeling Value Reuse
	Modeling Block Ordering
	Objective Function
	Limitations
	Summary

	Solving Techniques
	Refining the Define-Before-Use Constraint
	Refining the Objective Function
	Implied Constraints
	Symmetry and Dominance Breaking Constraints
	Tightening the Cost Bounds
	Branching Strategies
	Presolving
	Experimental Evaluation
	Summary

	Experimental Evaluation Using the State of the Art
	Unison LLVM
	Impact of SIMD instructions

	Proposed Model Extensions
	Integrating Instruction Scheduling
	Integrating Register Allocation

	Conclusions and Future Work
	Conclusions
	Future Work

	Macro Expansion
	The Principle
	Naive Macro Expansion
	Improving Code Quality with Peephole Optimization
	Limitations of Macro Expansion
	Summary

	Tree Covering
	The Principle
	First Techniques to Use Tree-Based Pattern Matching
	Using LR Parsing to Cover Trees Bottom-Up
	Using Recursion to Cover Trees Top-Down
	Separating Pattern Matching from Pattern Selection
	Other Tree-Based Approaches
	Limitations of Tree Covering
	Summary

	DAG Covering
	The Principle
	Optimal Pattern Selection on DAGs Is NP-Complete
	Straightforward, Greedy Techniques
	Techniques Based on Exhaustive Search
	Extending Tree Covering Techniques to DAGs
	Modeling Instruction Selection as an M(W)IS Problem
	Modeling Instruction Selection as a Unate/Binate Covering Problem
	Modeling Instruction Selection Using IP
	Modeling Instruction Selection Using CP
	Other DAG-Based Approaches
	Limitations of DAG Covering
	Summary

	Graph Covering
	The Principle
	Sea-of-Nodes IRs
	Extending Tree Covering Techniques to Graphs
	Modeling Instruction Selection as a PBQP
	Other Graph-Based Approaches
	Summary

	List of Techniques
	Graph Definitions
	MiniZinc Implementation
	References
	Index

