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Abstract

Medical research requires detailed and accurate information on indi-
vidual patients. This is especially so in the context of pharmacovig-
ilance which amongst others seeks to identify previously unknown
adverse drug reactions. Here, the clinical stories are often the start-
ing point for assessing whether there is a causal relationship between
the drug and the suspected adverse reaction. Reliable automatic de-
identification of medical case narratives could allow to share this pa-
tient data without compromising the patient’s privacy. Current re-
search on de-identification focused on solving the task of labelling the
tokens in a narrative with the class of sensitive information they be-
long to.

In this Master’s thesis project, we explore an inverse approach to
the task of de-identification. This means that de-identification of med-
ical case narratives is instead understood as identifying tokens which
do not need to be removed from the text in order to ensure patient
confidentiality. Our results show that this approach can lead to a more
reliable method in terms of higher recall. We achieve a recall of sensi-
tive information of 99.1% while the precision is kept above 51% for
the 2014-i2b2 benchmark data set. The model was also fine-tuned
on case narratives from reports of suspected adverse drug reactions,
where a recall of sensitive information of more than 99% was achieved.
Although the precision was only at a level of 55%, which is lower
than in comparable systems, an expert could still identify informa-
tion which would be useful for causality assessment in pharmacovigi-
lance in most of the case narratives which were de-identified with our
method. In more than 50% of the case narratives no information useful
for causality assessment was missing at all.



Sammanfattning

Tillgdng till detaljerade kliniska data &r en forutsattning for att bedriva
medicinsk forskning och i forlangningen hjdlpa patienter. Saker avi-
dentifiering av medicinska fallbeskrivningar kan gora det mojligt att
dela sddan information utan att &ventyra patienters skydd av personli-
ga data. Tidigare forskning inom omradet har sokt angripa problemet
genom att mérka ord i en text med vilken typ av kdnslig information
de formedlar. I detta examensarbete utforskar vi mojligheten att an-
gripa problemet pd omvént vis genom att identifiera de ord som inte
behover avldgsnas for att sdkerstilla skydd av kénslig patientinfor-
mation. Vara resultat visar att detta kan avidentifiera en storre andel
av den kansliga informationen: 99, 1% av all kéanslig information avi-
dentifieras med véar metod, samtidigt som 51% av alla uteslutna ord
verkligen formedlar kénslig information, vilket undersokts for 2014-
i2b2 jamforelse datamédngden. Algoritmen anpassades dven till fallbe-
skrivningar frdn biverkningsrapporter, och i detta fall avidentifierades
99, 1% av all kédnslig information medan 55% av alla uteslutna ord for-
medlar kénslig information. Aven om denna senare andel &r lagre dn
for jamforbara system sa kunde en expert hitta information som dr an-
vandbar for kausalitetsvardering i flertalet av de avidentifierade rap-
porterna; i mer dn hilften av de avidentifierade fallbeskrivningarna
saknades ingen information med varde for kausalitetsvardering.
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Chapter 1

Introduction

Medical research requires detailed clinical data. Insight into patient
history can be used by researchers or practitioners to investigate treat-
ments, drugs and diseases. Thus, sharing patient data can help re-
searchers to better analyse these. In adverse drug reaction research,
where the causality between a suspected adverse reaction and a drug
has to be assessed, the case narratives from this patient data can be
especially crucial [27]. Case narratives can best help to discover yet
unknown adverse drug reactions and to study new explanations for
adverse drug reactions [66]. Some information useful for causality as-
sessment is only reported in the case narratives such as the descrip-
tions of the course of the events or adverse drug reaction severity [27].

The Uppsala Monitoring Centre is an independent foundation that
is responsible for the scientific and technical operations of the World
Health Organisation (WHO) Programme for International Drug Mon-
itoring. Patient safety and the safe and effective use of medicines are
the Uppsala Monitoring Centre’s goal. Their database VigiBase [36]
is one example of a collection of data valuable for medical research.
It contains over 15 million individual case safety reports in which sus-
pected adverse drug reactions are reported. These reports contain both
information in structured format and in form of free-text case narra-
tives. The reports are provided by national centres, which are recog-
nised by their country’s government as national organisations or other
entities to participate in the WHO Programme for International Drug
Monitoring.

In order for hospitals, practitioners, or national centres for drug
monitoring to be able to share electronic records and case narratives in
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particular, they will have to ensure patient confidentiality. This is the
case if information that can be used to identify the patient has been
removed from the case narratives. The information that has to be re-
moved is often called protected health information (PHI). Many coun-
tries forbid sharing reports unless the PHI is removed. In the United
States, PHI is defined in the Health Insurance Portability and Account-
ability Act (HIPAA) [61]. In this act, 18 types of PHI are listed includ-
ing names, different identification numbers, contact information and
dates [1]. This also applies for the WHO's international drug monitor-
ing programme: in order for national centres, which collect the data on
a national level, to be allowed to share the case narratives within the
WHO programme, they have to first de-identify the case narratives.

Manual de-identification is not practical for several reasons. First of
all, only a restricted number of people have the right to access the data
as it contains confidential information. Secondly, when presented with
a large amount of data, manual de-identification will be costly both in
terms of time and financial costs. Finally, humans are prone to make
errors. Ferrdndez et al. [17], for example, report an agreement between
annotators of 83% when considering exact agreement and 91% for in-
exact agreement during their annotation process. Therefore, the devel-
opment of automatic de-identification methods is important.

Currently, the standard is to identify the sensitive terms (PHI) in
order to remove them. We evaluate the use of an inverse approach in
which starting from all words being “removed”, “safe” words (non-
PHI) are identified and added to the de-identified text. This has previ-
ously only been explored to some extent [7, 17]. Our presented method
will use deep learning, in which representations in form of neural net-
works with multiple layers are learnt at the same time as the classi-
tier, as deep learning methods have been showing good results for
de-identification in the past [12, 32]. We propose a combination of dic-
tionary look-ups and deep neural networks to identify the safe words,
where “safe” means that the word is safe to be left in the de-identified
case narrative.

1.1 Purpose and Problem Statement

The goal of this thesis project was to develop an automatic de-iden-
tification method that is reliable, in the sense that it has a high recall
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of PHI, while still preserving useful information for causality assess-
ment. Achieving a high recall means that the method identifies a high
percentage of the protected health information which is present in the
case narratives. This would make it possible to apply automatic de-
identification in practice to de-identify free-text case narratives in or-
der to share them between organisations.

Specifically, in this thesis, we investigate the following question:

e can an automated de-identification method using an inverse ap-
proach achieve a recall of protected health information within
case narratives of close to 100% while preserving useful informa-
tion?



Chapter 2

Background

This chapter gives an introduction to de-identification and the field
of pharmacovigilance. In Section 2.1, pharmacovigilance is described.
This includes an introduction to causality assessment within adverse
drug reaction monitoring, as well as the WHO programme for drug
monitoring and the global database VigiBase containing reports of sus-
pected adverse drug reactions. Section 2.2 gives a definition of pro-
tected health information. Section 2.3 presents the related work on
de-identification methods which aim to remove protected health in-
formation from free text.

2.1 Pharmacovigilance

The World Health Organization defined pharmacovigilance as

“[t]he science and activities relating to the detection, assess-
ment, understanding and prevention of adverse effects or
any other drug-related problem” [46].

Within the WHO International Drug Monitoring Programme, ad-
verse drug reactions are monitored by national centres in the partic-
ipating countries. In this section, we first summarise the procedure
of causality assessment. Furthermore, the WHO Programme is de-
scribed, as well as the international database in which reports of sus-
pected adverse drug reactions are stored. This database is called Vi-
giBase.
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2.1.1 Causality Assessment

In adverse drug reaction research, it is important to assess the likeli-
hood that a drug could be the cause for the suspected adverse reaction.
This is referred to as causality assessment. Different criteria for causal-
ity assessment and signal detection, with the aim of detecting potential
problems with drugs, have been described in the literature. Some of
these criteria are presented in the following.

In [22], Sir Austin Bradford Hill describes which aspects should be
considered when a person tries to decide whether an association be-
tween two variables is most likely due to causation. His criteria are
commonly used in causality assessment for adverse drug reactions.
He gives the following nine criteria which we adapted to pharma-
covigilance based on the presentation in the video lecture on “The
logic of causality” by Savage [55]:

1. Strength of association. How strong is the association? For ex-
ample, does the adverse drug reaction appear 200 times as often
as for people who do not take the drug or only 10 times as often?

2. Consistency. Has the suspected adverse drug reaction to a cer-
tain drug been reported by different people, in different places,
and/or at different times?

3. Specificity. Is there a specificity of the association between the
drug and the adverse reaction in question? For example, are sim-
ilar associations with the adverse reaction with other drugs used
for the same indication reported, in which case it might not be the
drug that is the cause? Do we see associations between the same
drug with a wide range of adverse reactions that are unlikely to
be manifestations of the same underlying medical condition?

4. Temporality. Is the time line possible or plausible? Was the drug
taken before the adverse drug reaction appeared? And was there
plausible time for the adverse drug reaction to develop, e.g., a
tumour does not develop in one day?

5. Dose-response relationship. Does a higher dose lead to a higher
effect? Or is this not the case?

6. Plausibility. Is the association between the adverse drug reaction
and the drug plausible from a scientific perspective? This can be
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helpful but Bradford Hill points out that we cannot demand it as
the association could be new to science.

7. Coherence. Does the association not conflict with any generally
known facts?

8. Experiment and experimental evidence. Can experiments repro-
duce the observation? Can a de- and a rechallenge support the
causality hypothesis?

9. Analogy. Are similar reactions known to be caused by similar
drugs?

Of these criteria, information on (3.), (4.), (5.) and even (8.) could
based on our own assessment be (exclusively) given in the case narra-
tive of a report of a suspected adverse reaction.

Edwards et al. [14] try to define the quality of reports for early sig-
nal detection. The authors assign different quality labels to the reports
based on the information they contain. A report that does not con-
tain all the essential information (identification of the source of the
case, identification of the case, description of the reaction, name of the
drug, treatment dates, reaction dates) is labelled “unassessable”. A re-
port that contains all this essential information is called “feasible”. A
“substantial” report includes in addition to the essential information
all of the following: sex, age, all drugs with doses and dates, indica-
tion for treatment/underlying diagnosis, and outcome of the adverse
drug reaction. A report that additionally reports a positive rechallenge
(reintroduction of the drug which again leads to the same adverse
drug reaction) is labelled “presumptive”. An “index case” is given
if the report is either “presumptive” or if it is not “presumptive” but
contains all the information needed for a “substantial” report and in
addition does not contain any “confounding variables” (that the un-
derlying disease or another drug that the patient is taking could have
caused the adverse drug reaction).

The authors then suggest that a signal could be produced if there
are three index cases or cases equivalent to index cases. For this, two
substantial cases or four feasible cases are considered equivalent to one
index case. The sensitivity or specificity of signal detection can in this
method be adjusted by changing the amount of index cases required. It
will, however, always be a trade-off between sensitivity and specificity.
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From this we can see which information is important for causality
assessment, could be given in the case narratives, and is sometimes
missing from the structured information. According to Edwards et
al.’s definition and our understanding, these are: description of reac-
tion, all drugs with doses and dates which the patient was taking, in-
dication for treatment/underlying diagnosis, and information about a
possible rechallenge.

In general, there is always an uncertainty whether the suspected
drug actually has caused the adverse reaction or not. According to
Meyboom et al. [37] a method for structured causality assessment can-
not reduce the uncertainty but it can categorise the uncertainty. The
authors further point out that causality assessment only has limited
scientific value as the methods have not been (and possibly cannot be)
validated.

In a questionnaire for causality assessment the following questions
could be asked as presented by Meyboom et al. [37]:

1. When was the drug given? Prior to the event?

2. Is the site of the adverse drug reaction the same as the site of
application of the drug?

3. Is the time between onset of the drug and adverse drug reaction
reasonable?

4. Did the adverse drug reaction occur immediately after the drug
administration?

5. Was there a rechallenge with positive result (adverse drug reac-
tion reoccurred)?

6. Was there a dechallenge with positive result (adverse drug reac-
tion disappeared)?

7. Were other drugs stopped simultaneously?

8. Has the patient previously had the same adverse reaction to the
drug?

9. Is the adverse reaction known with this drug?
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The answers to some of the questions could be (exclusively) given
in the free-text case narrative. The narrative could contain informa-
tion on the site of the adverse drug reaction, the timeline of the events
(time-to-onset, where the onset is the time of introduction of the drug,
etc.), (detailed) information on possible de- and rechallenges, informa-
tion on other drugs and doses, and the patients” medical history.

2.1.2 World Health Organization (WHO) International
Drug Monitoring Programme

After the adverse drug reaction disaster caused by the use of thalido-
mide during pregnancy in the 1960s, several countries started national
drug monitoring programmes and subsequently joined forces to start
the WHO International Drug Monitoring Programme in 1968 [36]. The
joined programme has the aim of detecting emerging risks to patients
earlier than is possible based on national data only. Within this pro-
gramme, the WHO Collaborating Centre in Uppsala, Sweden, the Up-
psala Monitoring Centre, is responsible for managing the technical,
operational, and scientific aspects. The programme’s aim is to detect
drug-related problems at an early point by collecting so called individ-
ual case safety reports in an international database, called VigiBase [36].

The reports of suspected adverse reactions in VigiBase include re-
ports from regulatory and voluntary sources [36]. This way of report-
ing suspected adverse drug reactions for example by health profes-
sionals to national centres is sometimes referred to as “spontaneous
reporting”. Edwards and Aronson [13] give an overview of the differ-
ent methods for surveillance of adverse drug reactions. They state that
spontaneous reporting is simple but suffers from under-reporting and
reporting bias. Furthermore, Pal et al. [47] suggest that spontaneous
reporting systems are a reasonable choice of method as they can allow
for a large information provision at a low cost.

The reports transmitted by the national centres to VigiBase can be
used to identify potential problems with drugs. This process of identi-
tying potential problems is called signal detection. A signal is

“[ilnformation that arises from one or multiple sources (in-
cluding observations and experiments), which suggest a
new potentially causal association, or a new aspect of a
known association, between an intervention and an event
or set of related events, either adverse or beneficial, that is
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judged to be of sufficient likelihood to justify verificatory
action” [67].

A signal does therefore not mean that there is evidence of a causal re-
lationship between the drug and the adverse reaction. Instead, it is a
hypothesis and is used to warn at an early point. In order to form a sig-
nal, typically, more than one report is needed. In pharmacovigilance,
a series of reports is needed in order to draw better conclusions about
the causality [37]. Together this series of reports can form a signal.

The data collected in VigiBase is monitored and analysed by re-
searchers at the Uppsala Monitoring Centre as well as users of the
database such as national pharmacovigilance centres. Based on such
analyses, the Uppsala Monitoring Centre issues signals which indicate
potential problems with drugs. The signals are sent to the national
pharmacovigilance centres and to the pharmaceutical companies that
hold the marketing authorisation for the concerned drugs [36].

2.1.3 VigiBase

VigiBase is the “unique WHO global database of individual case safety
reports” [64]. SQL is used to manage the data and VigiBase can be ac-
cessed through Internet applications as well as client-server applica-
tions and open database connectivity [36]. VigiBase is maintained and
developed by the Uppsala Monitoring Centre on behalf of the WHO.
The database is used to detect signals. Reports are sent to the database
in a standardised format, such as the ICH E2B format [36]. This for-
mat includes several free-text fields for case narratives. Older formats,
which are still used by some countries, do not include such fields. The
Uppsala Monitoring Centre has also developed a web-based case man-
agement system called VigiFlow [36].

VigiBase contains over 15 million reports [24]. Reports are collected
nationally by the national centres who share them in VigiBase [64].
Thereby, the database is regularly updated and growing. Having a
global collection of data can increase the probability of early signal de-
tection. The first reports were collected in 1968. Today, 127 countries
are members of the WHO Programme for International Drug Monitor-
ing, representing over 90% of the world’s population [64]. The reports
collected in VigiBase can come from health professionals, patients and
pharmaceutical companies [64]. Access to the database is granted to
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the member countries of the WHO programme and others with a legit-
imate interest in accessing this data for pharmacovigilance purposes
and with relevant knowledge to interpret the data [64].

A report mostly contains fields that are linked to pre-defined vo-
cabulary but it can further contain free-text fields for patient disease
background or a description of the adverse drug reaction [36]. The
so called “Narrative Include Clinical” is one of the free text fields of
the E2B format and it contains the case summary. The free-text case
narratives can be crucial for the causality assessment [27]. Karimi et
al. [27] list the severity and site of the adverse drug reaction, inter-
ventions, the specifications of the underlying disease, and patient eth-
nicity as information which could only be found in the VigiBase case
narratives. The authors further point out that information on dechal-
lenge, the withdrawal of the drug, or rechallenge, the re-introduction
of the drug treatment after withdrawal is sometimes exclusively given
in the case narratives. In an evaluation of samples of VigiBase reports
which they described as having normal length, 22% of the investigated
reports had information crucial to causality assessment included in the
case narratives. 26% had provided information in the case narratives
that “considerably affected the understanding of the clinical course of
the cases”. When longer case narratives were considered, 32% of the
case narratives included crucial information. Therefore, the authors
claim that the case narratives have to be included in interpretation of
the suspected adverse drug reaction cases in order to avoid misinter-
pretations [27].

Incoming reports to VigiBase are checked according to certain qual-
ity criteria (see also Section 2.1.1). The entries are linked to the WHO-
Drug reference source of Medical Product Information and to medical
terminology defined in the WHO Adverse Reaction Terminology or
the Medical Dictionary for Regulatory Activities (MedDRA) [36] (for
more information on MedDRA, see Section 4.2.2). The case reports
stored in VigiBase should in principle be de-identified but contain a
reference to the original case report located at a national centre [64].
Nevertheless, there exist reports in VigiBase, which are not completely
de-identified.

The advantages of spontaneous reporting are also the advantages
of VigiBase: the national centres continuously transmit new data. This
way of adverse drug reaction monitoring has low costs and can cover
a broad population. Nevertheless, the system suffers from the typical
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problems of spontaneous reporting, which is missing data and under-
reporting [36]. In general, the quality of spontaneous case reports can
differ as the reports may be incomplete [37].

2.2 Protected Health Information

In the United States” Health Insurance Portability and Accountability
Act, sensitive information which can be used to identify a patient’s
identity is called Protected Health Information (PHI) [1]. The term PHI
can, however, also be used in a wider sense and include information
that is not listed by HIPAA but which could be used to identify a per-
son’s identity. Examples of such PHI categories that are not included
in HIPAA are for example age under 90 or dates in form of common
holidays, which could possibly lead to a re-identification of the per-
son. These are amongst others included in the definition of PHI of the
2014-i2b2 de-identification challenge [60] (see Section 4.1.1 for more
information on the data set).

2.2.1 Health Insurance Portability and Accountability
Act

The list of PHI, as defined in the Health Insurance Portability and Ac-
countability Act in 45 C.FR. §164.514(b) [1], is presented in Table 2.1.
A summary of the HIPAA Privacy Rule can be found on the website
of the U.S. Department of Health and Human Services [61].

2.2.2 European Union

In the European Union (EU), a new regulation for data protection will
begin to apply in the end of May 2018. With regards to personal infor-
mation and handling of anonymous data, the following points from
the regulation [50] are interesting:

1. Personal data is defined as “any information relating to an iden-
tified or identifiable natural person”.

2. An identifiable natural person is defined as a person “who can
be identified, directly or indirectly”. It is stated that this could
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1. Names 11. Certificate/license num-
2. Geographic subdivisions bers
smaller than a State: street 12. Vehicle identifiers and se-
address, city, county, zip rial numbers, including li-
code, etc. cense plate numbers
3. Dates: all dates, except 13. Device identifiers and se-
year, e.g., birth date, ad- rial numl:?ers
mission date, discharge 14. Web Universal Resource
date, etc.; ages over 89 and Locators (URLs)
dates, including year, in- 15. Internet Protocol (IP) ad-
dicative of such age dres 5 nqmb_ers . .
16. Biometric identifiers, in-
4. Telephone numbers . . .
cluding finger and voice
5. Fax numbers .
. . prints
6. Electronic mail addresses 17. Full face photographic im-
7. Social security numbers ages and any comparable
8. Medical record numbers images
9. Health plan beneficiary  18. Any other unique identi-
numbers tying number, characteris-
10. Account numbers tic, or code

Figure 2.1: PHI according to HIPAA.

be done “by reference to an identifier such as a name, an iden-
tification number, location data, an online identifier”. But the
regulation also includes “factors specific to the physical, physio-
logical, genetic, mental, economic, cultural or social identity” of
the person as possibilities to identify him or her.

. The principles for data protection presented in this regulation do

“not apply to anonymous information”. This is in the following
explained to be “information which does not relate to an identi-
fied or identifiable natural person”. It is also stated that the reg-
ulation does not apply to “personal data rendered anonymous
in such a manner that the data subject is no longer identifiable”.
Thus, both data which is intrinsically anonymous or which has
been made anonymous can be handled without having to follow
the other rules of the regularisation. Here, anonymous means
that the person who is the data subject is no longer identifiable.
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4. The regulation explains how to “determine whether a natural
person is identifiable”. For this, one should consider “all the
means” which could be used by “the controller or by another
person” in an attempt to “identify the natural person directly or
indirectly”. The text also points out that this should be means
which are “reasonably likely” to be used. For this, “all objective
factors, such as the costs of and the amount of time required for
identification” should be considered. In this context, “the avail-
able technology at the time of the processing and technological
developments” should be taken into account.

From (2), it can be concluded that a de-identification method will
need to remove: names, identification number, location data, and on-
line identifiers. The EU regulation does not define which scale of lo-
cation information has to be removed, for example whether states and
countries are considered to be location data which has to be removed.
Online identifiers could be interpreted as being email addresses, IP
addresses, and websites. It is not clear which information has to be re-
moved with regards to the other factors mentioned in the regulation:
physical, physiological, genetic, mental, economic, cultural, and social
identity.

2.2.3 Comparison Between Countries

We can see that the difference between the HIPAA and the EU regu-
lation is that HIPAA gives clear guidelines, while the EU regulation
does not. The EU regulation instead keeps the definition of PHI more
general and moves the responsibility of defining which information is
enough to identify a person to the data handler. This way it is guaran-
teed that a person’s identity is protected in the case where removing
the HIPAA PHI is not enough to hide the identity. Imagine for exam-
ple the case in which only one person with the contained physical, eco-
nomic, and social characteristics exists in a certain country. It would
then not be enough to remove all HIPAA PHI in order to prevent the
re-identification of the person. This is due to the fact that HIPAA does
not include these four attributes of a person (physical, economic, and
social characteristics, and country names). The EU regulation allows
the data handler to decide which definition of PHI is reasonable in a
certain context.



14 CHAPTER 2. BACKGROUND

This should be seen in relation to the concept of “k-anonymity”.
In the context of privacy-preserving data mining, “k-anonymity” is a
method in which techniques such as generalisation and suppression
are used to make the data representation more general such that at
least k records share the same attributes [3]. This way, one can prevent
the identification of an individual by finding the only person with this
combination of attributes since there are always at least k individuals.

When evaluating an automatic de-identification method a defini-
tion of PHI according to HIPAA is however useful in order to allow
for performance comparisons. Nevertheless, a flexible method which
can be adjusted to remove more, less, or different attributes from the
text could be desirable for example for the use in EU countries.

Many other countries have passed laws related to the protection of
personal data. Here, we present the legislation in three of them: South
Africa, Japan, and India.

In the South African Act on Protection of Personal Information
from 2013 [59], “to de-identity” is defined as “to delete any informa-
tion that [...] (a) identifies the data subject; (b) can be used or manipu-
lated by a reasonably foreseeable method to identify the data subject;
or (c) can be linked by a reasonably foreseeable method to other infor-
mation that identifies the data subject”. If the processed data which in-
cludes personal information “has been de-identified to the extent that
it cannot be re-identConsistency.ified again”, then the Act on Protec-
tion of Personal Information does not apply. In the act, “to re-identify”
is defined as resurrecting any information that has been de-identified
(according to the previous definition of “to de-identify”). Therefore,
the new EU legislation is similar to this one. Both do not state what in-
formation would be enough to identify a data subject directly, or after
manipulation of the information or linkage of the information to other
information. The South African legislation does as the EU regulation
give the responsibility of defining what is information which can be
used to identify a person to the data handler. The act provides a com-
prehensive definition of the meaning of “personal information”. In the
context of medical data, we can note that “information relating to the
[...] medical history of the person” is considered personal information
and that this act does therefore apply.

In Japan, a new act on the protection of personal information is put
into full effect on 30" May 2017 [49]. In the act, “personal information”
is defined as “information relating to a living individual” which con-
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tains “name, date of birth, or other descriptions etc. [...] whereby a
specific individual can be identified” or which contains “an individual
identification code”. If these kind of ID numbers or descriptions have
been deleted (or masked) then the personal information is referred to
as “anonymously processed information”. After removing the infor-
mation, it should not be possible “to identify a specific individual”.
The act further states that a business operator handling anonymously
processed information can share the information. They have however
to inform the public about which “categories of information relating to
an individual [are] contained in the anonymously processed informa-
tion” when the anonymously processed information is produced and
before it is shared with a third party.

In India, there exist the Information Technology Act from 2000 [63]
and additional rules such as the “Information Technology (Reasonable
security practices and procedures and sensitive personal data or infor-
mation) Rules” from 2011 [25]. In the latter, “personal information”
is defined as “any information that relates to a natural person, which,
either directly or indirectly [...] is capable of identifying such [a] per-
son”. With indirectly they mean “in combination with other informa-
tion available or likely to be available with a body corporate”. These
rules further define the concept of “sensitive personal data or informa-
tion” which could for example be relating to “physical, physiological
and mental health condition” or “medical records and history” but
also to a lot of other information such as financial information or sex-
ual orientation. The data may be transferred if this is “necessary for
the performance of the lawful contract between the body corporate or
any person on its behalf and provider of information or where such
person has consented to data transfer”. In the law text, there does not
seem to be any definition of how to handle “de-identified” data.

2.3 Related Work: De-ldentification Systems

Medical reports which have been de-identified can, as previously men-
tioned, be shared and used for research. Since manual de-identifica-
tion is costly, there has been much research on the development of
automatic de-identification methods. These research projects mostly
focus on removing the PHI defined in HIPAA, which is probably due
to the amount of medical data that is digitally stored in the U.S. but
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also because HIPAA explicitly defines which information has to be
removed in order for the report to be de-identified. Thus, HIPAA is
giving the possibility to use a quantitative measure for the quality of
de-identification methods in terms of recall of PHI.

Uzuner et al. [65] defined the goal of de-identification for the i2b2
de-identification challenge as identifying and removing the PHI con-
tained in medical records while the integrity of the data should be
preserved as much as possible. The authors further describe the chal-
lenges for this task. First of all, the difficulties posed by the ambiguities
between PHI and non-PHI such as the name “Parkinson” (PHI) and
the “Parkinson’s disease” (non-PHI). Secondly, Uzuner et al. point out
that it can be difficult to identify PHI which are misspelled or foreign
words.

Since the introduction of deep learning methods, in which input
features are learned together with the rest of the parameters of a pre-
dictive model, a categorisation of de-identification methods into meth-
ods using hand-engineered features and those learning the features is
a reasonable choice. The methods using hand-engineered features can
then further be classified into rule-based methods, also referred to as
methods using pattern-matching, and machine-learning-based meth-
ods [38, 12].

2.3.1 Systems Using Hand-Engineered Features

Extensive reviews of the different de-identification methods published
can be found in [38, 65, 60], containing both rule-based and machine-
learning based methods using hand-engineered features.

An example of a purely pattern-matching-based method is pre-
sented by Neamatullah et al. [45]. They use a combination of dictio-
nary look-ups, regular expressions and heuristics to identify PHI from
free-text medical records. They use four types of dictionaries: a list
of known patient names and hospital staff (known PHI), a list with
amongst others generic first names, last names, hospital names and
locations (potential PHI), a list of PHI indicators such as titles, name
indicators (“son”, “mother”, ...), location indicators (e.g., “Hospital”),
age indicators (e.g., “age”), a list of non-PHI formed of common En-
glish words and words from the UMLS nomenclature. Names that are
also found in this last list are labelled “ambiguous”. The presented
algorithm first divides sentences into words. It then identifies PHI by
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look-ups in dictionaries and regular expressions. PHI including nu-
meric patterns such as street addresses are recognised using regular
expressions identifying the numeric pattern while checking for con-
textual keywords such as “road”. Non-numeric PHI are recognised by
lexically matching each word in the text with the dictionaries, i.e., la-
belling words with the dictionaries they belong to such as known PHI
or PHI indicator (e.g., “Mr.” or “Hospital”). Regular expressions are
here used to check for combinations of potential PHI and context key-
words (e.g., “Mr. Miller” with the context keyword “Mr.” followed
by a a known last name which is in the potential PHI dictionary). If
an “ambiguous” PHI is found, heuristics are used to decide whether
to classify the token as PHI or not. The authors check for example for
name patterns such as first name followed by last name. When the al-
gorithm has classified every token, the PHI tokens are removed and re-
placed by their PHI category, e.g., name or location. In the case of dates
as PHI, these are replaced by a date with a patient specific offset. This
way time intervals are preserved. The authors developed and eval-
uated their method using the nursing notes from the MIMIC-II data
set [53], which they annotated and enriched by adding more instances
of PHI. The method received a recall of close to 100% on names except
for initials which it was unable to recognise. Dates were recalled in
94.6% of the cases, locations in 97.3%, phone numbers in 100%, and
age over 89 in 75%. The precision was below 90% for all categories
except locations.

Yang et al. [68] present a method which combines rule-based tech-
niques with machine learning techniques in form of conditional ran-
dom fields (see Section 3.6). The authors generate different linguis-
tic features like part-of-speech tags of the token (i.e., is the token a
noun, verb, adjective, etc.), the word forms, the position in the sen-
tence, features based on regular expression, as well as task-specific
features. For each PHI category, they proceed separately. In order to
determine whether a token is of this PHI category, one or several of the
following approaches are used: conditional random fields, rules and
patterns, or keywords. In a post-processing phase, the method further
tries to correct possible errors. This method was the best submission
at the 2014-i2b2 de-identification challenge [60], where it achieved a
precision of 97.6%, a recall of 93.9%, and an F1 score of 95.7% on the
HIPAA-PHI categories during an entitiy-based evaluation.

Sahlstrom [54] compared the performance of three different de-
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identification methods on a data set of VigiBase reports and on the
2006 i2b2 de-identification challenge data set. One of the methods he
implemented uses regular expressions to de-identify dates and ages
and Sahlstrom evaluated its performance on his VigiBase data set. The
method achieved an F1 score of 85.7% on ages and 93.5% on dates. The
second method that Sahlstrom developed was a support vector ma-
chine using several different features such as the part-of-speech tag of
the token, the result from dictionary look-ups, and the token position
in the sentence and the document. This method achieved a recall of
91.5%, a precision of 91.8%, and an F1 score of 91.7% on the 2006-i2b2
data set. His third method was a conditional random field. For this
evaluated on the 2006-i2b2 data set, the recall was 87.7%, the precision
95%, and the F1 score 91.2%.

2.3.2 Feature Learning Neural Network Systems

Deep learning has moved into the focus of machine learning following
a seminal publication by Krizhevsky et al. [29], which led to advances
in the field of Computer Vision. Deep learning is a machine learn-
ing method in which the representation, the features of the data, are
learned and not hand-engineered [19]. The features are learned at the
same time as the desired function itself while using several layers to
learn a hierarchy of features. In the field of natural language process-
ing, recurrent neural networks (RNNs) have led to advances in the
tield of language modelling [40] but have further proven to be appli-
cable to other tasks like chunking, part-of-speech tagging, and named
entity recognition [11].

Dernoncourt et al. [12] have successfully applied this kind of neural
network to the task of de-identification. The method uses a learned to-
ken embedding to represent tokens as vectors, where the token embed-
ding is pre-trained and fine-tuned during the training of the model.
Pre-training means that one trains the model, in this case a token em-
bedding, on a different data set and then uses the learned weights
or parts of them as initialisation in another, sometimes more com-
plex model. The token-embedding is further enhanced by a vector
representation of the characters of a token, which allows for example
to handle out-of-vocabulary tokens and misspellings. This character-
based token embedding is learned using a type of neural networks
called bidirectional Long Short-Term Memory (LSTM) RNNs (see Sec-
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tion 3.4.4 for an introduction to LSTM). In addition to this character-
enhanced token embedding layer, the model has two more layers, a la-
bel prediction layer and a label sequence optimisation layer. The label
prediction layer uses bidirectional LSTMs and a feed-forward layer.
Its purpose is to output a sequence of probability vectors to output
the probabilities for certain tokens to belong to certain PHI categories.
The label sequence optimisation layer is then used to find the optimal
sequence of labels for the input (token) sequence based on these prob-
abilities. This layer can take into consideration that two names, first
and last name, often follow each other and optimise the label of se-
quences with this in mind. The model is evaluated using the 2014-i2b2
data set [60] as well as the MIMIC-III data set [26] and compared to
a conditional random field method, which it outperforms. This paper
brings up ideas for named entity recognition which were presented by
Lample et al. [30]. In named entity recognition, the goal is to find and
label named entities in natural text such as persons or locations. Lam-
ple et al. present a method using a bidirectional LSTM combined with
a sequential conditional random field layer, which can be used to tag
a sequence. The idea is that the labelling of the sequence is performed
jointly while looking at the whole sequence and not only at separate
tokens. This is argued by the fact that in named entity recognition
tasks the different tokens are dependent, e.g., a last name often fol-
lows a first name. Their results have shown that using deep learning
with recurrent neural networks can lead to better performance than
was previously achieved by the use of other machine learning meth-
ods like conditional random fields. The authors propose that this is
because their artificial neural network can better use the context infor-
mation and that it is better capable of dealing with the variations in
natural language than a conditional random field.

Dernoncourt et al.’s feature learning approach was improved by
Lee et al. [32]. Their method does not only use learned features but
also includes hand-engineered features. The authors exploit the fact
that one often is given lists of patient and doctor names of a certain
hospital when performing the de-identification. Therefore, they use
features that they derive from the hospitals” databases. These features
are patient’s first name, patient’s last name, doctor’s first name, and
doctor’s last name. In addition to these dictionary look-ups, they also
add other features. These are morphological features (e.g., “first letter
capitalised?”), semantic features (e.g., hypernyms), temporal features
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(e.g., holidays), gazetteers (e.g., honorifics for doctors or first names),
and regular expressions (e.g., for email, or age). These features were
taken from work by Filannino and Nenadic [18] and from work by
Yang and Garibaldi [68], or from online resources. These are binary
features which are passed through a feed-forward neural network be-
fore they are added to the character-enhanced token embedding from
the non-feature-enhanced model [12]. This method is tested on the
same subset of the MIMIC-III data set as the previous one. For most
categories, except phone and state, the enhanced model outperforms
the plain RNN model in terms of precision, recall and F1 score. The
additional features not coming from a hospital database did however
not generally improve the results and did in some cases even reduce
the recall of PHI categories.

Shweta et al. [58] also use RNNs to perform de-identification of
clinical records, but they chose two different types of RNNs, the El-
man Architecture and the Jordan Architecture. Also with this kind of
RNN, it was possible to outperform conditional random fields. These
RNNSs use so called context windows to capture short-term dependen-
cies. To form a context window, word embedding vectors are concate-
nated using the word embeddings from previous and subsequent time
steps. This method does however not perform as well as Dernoncourt
et al.’s method [12] on the 2014-i2b2 data set.

Lietal. [34] also use bidirectional LSTMs as in [12] but their method
also extracts the skeleton of the medical record and uses this as input to
a separate RNN. The final classification uses the output of the LSTM
for both directions as well as the RNN that processed the skeleton.
This method outperforms the method presented in [12] in terms of
precision on the 2014-i2b2 data set but it performs worse in terms of
recall.

2.3.3 Inverse Approach Systems

The previously presented methods all approach the task of de-identi-
fication as a named entity recognition task, that is identifying and re-
moving sensitive words and numbers. Our literature search only iden-
tified one method [7] which approaches the inverted task where all
words are “removed” and “safe” words are allowed back into the text.
This method [7] only retains clinical terms and stopwords while all
other words are removed and it is further limited to pathology records.
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After parsing for sentences and tokenizing them, the algorithm looks
up medical terms in the Unified Medical Language System (UMLS)
nomenclature [9] and replaces the found terms by their code in the
UMLS. Furthermore, the method takes in stopwords. All other words
are replaced by three asterisks. In order to look up which words match
the nomenclature, the method takes a phrase and produces all possible
ordered concatenations of words of length 1 to n, where n is the length
of the phrase. The implementation is nomenclature-independent but
Berman, the author, suggests the use of Medical Subject Headings
(MESH)! and Systematized Nomenclature of Medicine (SNOMED)?.
The system was implemented in Perl. The author describes the dif-
ferent problems that this algorithm has: it will definitely take out too
much information from the text and it might include names that are
also common words used in the nomenclature. The system will not
take in PHI terms that were misspelled as misspelled terms will just
be left out by the system.

Furthermore, [17] includes a component implementing the inverse
approach. This system first classifies words as PHI and removes them
based on rules and conditional random field predictions. Afterwards,
it lets some of these words back in according to a support vector ma-
chine classifier®. For pre-processing, the authors use sentence segmen-
tation, tokenisation, part-of-speech tagging, phrase chunking, word
normalisation, and lexical variant generation. The rule-based method
they used are dictionary look-ups in different dictionaries, as well as
decisions based on the part-of-speech tag of a token. In order to filter
the false-positives, data points which were falsely classified as being
positive, i.e., PHI, multi-class support vector machines for certain sub-
sets of the PHI categories are used. The authors, Ferrandes et al., tested
the system on their own data set as well as the 2006-i2b2 data set. On
the latter they achieved a high recall of more than 90% for all PHI cat-
egories except for Street/City. The overall recall was 96.5%.

IMESH: https://www.nlm.nih.gov/mesh/

2SNOMED: https://www.nlm.nih.gov/healthit/snomedct/

3A support vector machine is a classifier which tries to find a separating hyper-
plane with maximal margin for the data in a higher dimensional space.



Chapter 3
Theory

This chapter contains the description of the relevant theory underly-
ing our de-identification method. In Section 3.1, a short introduction
to artificial neural networks in general is given. In Section 3.2, an in-
troduction to the field of deep learning and neural network training
follows. Section 3.3 introduces deep feed-forward neural networks
and Section 3.4 introduces the concept of recurrent neural networks, a
special type of neural networks commonly used to process sequential
data. In Section 3.5, we describe a way of representing natural lan-
guage input for input to neural networks referred to as word vectors.
In Section 3.6, we describe linear-chain conditional random fields, a
method for sequence labelling. Section 3.7 contains a description of
prevalent evaluation measures.

In machine learning, an algorithm tries to learn a function using a
training data set. The algorithm is trained on data in order to approx-
imate the function. This learned approximation can then be used to
predict some aspect of a new data point. It is desired that the learning
algorithm can generalise from the training data to unseen test data [20,
Ch. 3]. If the learning algorithm specialises too much to the idiosyn-
crasy of the training data, one says that the algorithm is overfitting to
the training data. As the goal of machine learning is to generalise,
measures against overfitting are commonly used. In the following, we
will focus on a special kind of learning algorithm called artificial neu-
ral networks.

22
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3.1 Artificial Neural Networks

Artificial neural networks are a type of machine learning technique that
is inspired by the nervous systems [51, Ch. 1]. The simplest artificial
neural network consists of one neuron, often called unit. A neuron
takes several real values z; as its inputs. These inputs are multiplied
with weights w;, one weight per input [51, Ch. 1]. The weighted sum
of the inputs is called the unit’s activation. The unit output is com-
puted as the result of a non-linear activation function which takes the
weighted sum as its input [8, Ch. 5]. The non-linear activation function
of such an artificial neuron is chosen as a differentiable function which
resembles the all-or-nothing activation of a real neuron. Commonly
used is the function tanh or the sigmoid function [8, Ch. 5]. Such an
artificial neural network neuron is shown in Figure 3.1.
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Figure 3.1: A neuron with inputs z;, weights w;. It computes the
weighted sum of the inputs and outputs y, the result of the activation
function f given this sum.

One can use several neurons to form artificial neural networks,
where multiple neurons receive the same inputs in parallel or where
the output of a neuron is passed as input to neurons in a next layer [8,
Ch. 5] (see Figure 3.2).

This kind of neural network is called feed-forward neural network
because the input is only passed forward through the network due
to its lack of loops in its connectivity. For a detailed introduction to
artificial neural networks, see [42, 16, 51].
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Figure 3.2: An artificial neural network with three layers of neurons,
including a so called hidden layer.

3.2 Deep Learning

In deep learning methods, features are learned instead of hand-crafted
and the networks commonly consist of multiple layers used to learn
this data representation [19, Ch. 1]. A review on deep learning was
published by LeCun, Bengio, and Hinton [31]. For a detailed intro-
duction to the topic, see [19].

3.2.1 Feature Learning

Conventionally, in order to apply a machine learning technique to a
problem, one had to engineer features by hand. It was not common to
input raw data into the learning system [31]. This process of feature
engineering had to be done carefully and it required domain exper-
tise [31], while for many problems the hard part in solving them is
the feature extraction itself. In the case, when given good features, a
simple learning system can easily learn to perform the classification
or other tasks [19, Ch. 1]. Therefore, “representation learning”, the
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task of automatically discovering the representation of the raw data
needed for a classification method [31], became an interesting task for
researchers.

A deep learning method learns representations as a hierarchy of
features at the same time as it learns to solve the actual problem. A
representation learned by a deep learning system consists of multi-
ple levels of representation [31], in which complex concepts are built
out of simpler concepts [19, Ch. 1]. This hierarchy of features can be
thought of as a deep graph with multiple layers, in which the first
layer contains simple concepts while the last layer contains more com-
plex concepts [19, Ch. 1]. Because of this deep hierarchy of features,
these methods are referred to as deep learning methods.

3.2.2 Pre-Training and Fine-Tuning

Deep neural networks can be pre-trained on a similar task and then
fine-tuned for the actual task on new data. Pre-training can be use-
ful when data is limited [31]. For visual tasks, Razavian et al. even
showed that features learned by a so called convolutional neural net-
work! can be used for a variety of tasks different from the task orig-
inally used for training [57], even without fine-tuning. Azizpour et
al. [4] further researched how to best transfer the learned vision fea-
tures. They found that when certain “learning factors”, like regular-
isation techniques and network size, are well chosen, it is possible to
reach state-of-the-art results on different computer vision tasks by fine-
tuning using features pre-trained on the ImageNet dataset [52].

The role of unsupervised pre-training, where the correct answer is
not known, has been investigated during several research projects [15,
6]. Erhan et al. [15] propose the hypothesis that the improvements are
due to better regularisation, while Bengio et al. [6] suggest that the
advantage is due to better optimisation. In both studies (greedy layer-
wise) unsupervised pre-training was used. Erhan et al. [15] suggest
that this leads to better generalisation because it introduces “a useful
prior to the supervised fine-tuning”.

Fine-tuning even following supervised pre-training is commonly
used, for example by Dernoncourt et al. [12]. They pre-train their
token-embedding on a different data set to then fine-tune it during

A convolutional neural network is a type of artificial neural network with a local
connectivity pattern, shared weights, which is commonly used in computer vision.
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the actual training for the task of de-identification.

3.3 Deep Feed Forward Neural Networks

The simplest example of a deep learning model is the deep feed-for-
ward neural network [19, Ch. 6]. Thus, this is just a classical feed-
forward neural network using several layers stacked on each other as
previously described (see Section 3.1).

3.3.1 Training

Most of the advances in deep learning have been made using super-
vised learning methods [31]. In supervised learning, the system is pre-
sented example inputs together with their correct answer. It can then
learn from experience. For this, it will need an objective (error) function,
which measures how correct (incorrect) the answer was. The system
then adjusts its parameters in order to perform better in the future.
The weights are adjusted following the negative gradient of the er-
ror [20, Ch. 3]. A step is taken in the direction of the negative gradient
of the error function with respect to the weights. This is called gradient

descent [20, Ch. 3]:
00

vw(t) = —an—@y

where ¢ indicates the time step and 7 is chosen between 0 and 1. 7
is called the learning rate as it defines how much should be learned
by defining how big the weight correction should be [20, Ch. 3]. The
gradient is then added to the previous weights so that w(t+1) = w(t)+
vw(t). Here, the gradient is computed using the full training set [8,
Ch. 5].

In practice, stochastic gradient descent is commonly used, in which
a randomly picked sample is passed through the network and the
derivative of the objective function with respect to the weights is com-
puted based on this sample [8, Ch. 5]. An update is made after see-
ing each sample, but it can also be made after seeing a batch of sam-
ples. Passing all samples through the network in stochastic gradient
descent is called a training epoch. This often works well since one
can get a good estimate of the gradient based on only a few samples
and thus save computational time during gradient computations [44,
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Ch. 8]. Furthermore, stochastic gradient descent can more easily es-
cape from local minima due to the added “noise” of the stochastic es-
timate of the gradient [44, Ch. 8].

A method to enable the gradient descent to escape from local min-
ima is to add a momentum term to the weight update yw(t) [20, Ch. 3]:

w() =avwlt=1) -

where 0 < a < 1 defines how much of the old direction for the gradi-
ent descent to keep.

In order to train a neural network with multiple layers, a method
called backpropagation has to be used in order to propagate the error
from the output layer backwards to the first layers. Backpropagation
applies the chain rule in order to compute derivatives with respect to
weights of hidden layers. The following explanation is based on [8,
Ch. 5], which we refer to for a detailed explanation and an example of
the backpropagation algorithm. In the following explanation we will
also use Bishop’s terminology and his definition of an example neural
network.

Consider a simple feed-forward neural network with two hidden
layers (its definition was taken from [8, Ch. 5]):

ag»l) = Zwﬁ)xl (3.1)

2z = hl(ag.l)) (3.2)

a,(f) = Z w,(j.)zj (3.3)
J

or = h(ay)), (3.4)

where
e z;: the i-th input to the network,

. ag.l): the weighted sum of inputs at the j-th hidden unit of the
tirst hidden layer,

. wﬁ): the weight of the connection between input i and unit j of
the first layer,
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e z;: the activation at the j-th unit of the first hidden layer using
activation function h(-),

. a,(f): the weighted sum of inputs at the k-th unit of the second
hidden layer,

) w,(fj): the weight of the connection between unit j of the first layer
and unit k£ of the second layer,

e 0;: the k-th output of the network, the activation at the k-th hid-
den unit of the second hidden layer using activation function

h(-).

If we want to compute the derivative with respect to the second

layer Welghts (2) (where O is the objective function), we can use the
chain rule to fmd N

90 90 aok
ow® ~ 9o gu

This is due to the fact that the objective O which uses the outputs oy,

only depends on w,(fj) through o,. go can easily be computed using the

chosen definition for the objective function.

To compute 80(’;) we note Equation (3.3) and (3.4) where o, de-

pends on ak Wthh in turns directly depends on wk Using the chain

rule another time, we get:

;w—%) =h a(Q))gZ}—']‘(;Zj) = h’(al(f))zj
Thus, we find:
ai—%) g—ookh’(a Nz = 0z, (3.5)
where we defined: 50
o =5, ' (a\?). (3.6)

For the derivative of the objective function with respect to the weights
of the first layer, we use:

00 _ 520 do
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where we use the sum because all o, depend on w ji). For this, we need
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where we used (3.1)—(3.4), the chain rule, and the fact that only z; with

| = j depends on wﬁ).

Thus, we find:
00 90 1@y @270 (1)
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We define

0= drw ' (dl). (3.8)

k

Thus, from (3.5), (3.6), (3.7), (3.8) we get:

OrZi,
8wg) v
00

— =0y,

aw](;) ’

where

_ 00,

6k - 80kh (ak )7

6 = Z 5kw,g)h’(a§l)).
!

In addition to this general learning algorithm, different strategies
are used in order to improve the learning process in practice.



30 CHAPTER 3. THEORY

One way to prevent overfitting in neural networks is to use early
stopping [20, Ch. 3]. In early stopping, one uses a validation set, a part
of the training set which was set aside, in order to monitor the error
during training. Usually, it can be observed that the training error goes
down, while the validation error will decrease at first until a certain
point after which it starts to increase again [20, Ch. 3]. This is the
moment in which the learning system starts to overfit and in which
training should be stopped.

Another regularisation method is called weight decay. Weight decay
means that the weights are kept small by adding an additional regular-
isation term to the objective function which penalises large weights [8,
Ch. 5]. In weight decay, this is the L2-norm of the weights, which
requires that the total sum of squares of the weights is kept below a
certain threshold.

A method typically used in convolutional neural networks is called
dropout. Dropout is described by Goodfellow et al. [19, Ch. 7] as an en-
semble method similar to bagging where an ensemble of large neural
networks is trained. When using dropout, each connection between
two units in the network is not used during training with probability
p. This way, the network is forced to make correct predictions without
relying on certain inputs to units. The method can even be used for
deep recurrent neural networks but only on the non-recurrent connec-
tions [69].

When initialising the weights of a neural network which is to be
trained with gradient descent, small random values should be cho-
sen [20, Ch. 3]. The network can as previously explained also be ini-
tialised with pre-trained weights.

3.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a type of neural networks that
allow the network graph to contain cycles [20, Ch. 3]. This means for
example that a unit’s value can influence the unit’s value at the next
time step [19, Ch. 10]. RNNs are mostly used to process sequential
input data [19, Ch. 10].

Typically, RNNs are the type of models that should be chosen if
the distribution over the target variables y() depends on values of the
network in the distant past [19, Ch. 10]. The network can also use
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contextual information from the future if a so called bidirectional ar-
chitecture is used. The assumption which this model makes is that
parameters can be shared so that the same parameters can be used at
different time steps [19, Ch. 10].

In the following, the RNN model is described using the layout and
terminology of Goodfellow et al. [19, Ch. 10].

3.4.1 Structure

Recurrent neural networks have two forms of visualisation, a circuit
graph and an unfolded computational graph. Circuit graphs are crisp,
compact visualisations of the network, while unfolded graphs illus-
trate the flow of information in time. For example [19, Ch. 10]:

B — f(h(t_l),x(t);é)

where h® is the hidden unit at time ¢, f is the function that this RNN
has learned and which is parameterised by 6. = is the input at time ¢.

This simple RNN has one hidden unit with a recurrent connection
to itself, which can be seen by how (= is used as an input. The unit
further has an incoming connection from the input unit 2. We can
visualise this in form of a circuit graph which is shown in Figure 3.3.
When unfolding the graph to see how the recurrent connections create
dependencies over time, one gets an unfolded computational graph as
shown in Figure 3.4.

Input

Figure 3.3: The circuit graph of the simple RNN. (Graph as shown
in [19, Ch. 10].)
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Input®=1 Input() Input(”l)

H"
o

Figure 3.4: The unfolded computational graph of the simple RNN.
(Graph as shown in [19, Ch. 10].)

When thinking about the number of parameters of the network,
one has to realise that the same function is used at any time step. Thus,
the parameters are shared. This appears logical as important informa-
tion can appear anywhere in the sequence. A lower number of param-
eters means further that fewer training examples are needed in order
for the network to learn. This concept of unfolding is not only good
with regards to the number of parameters. It also allows the network
to handle inputs with variable input length.

An RNN can also have an output layer. According to Goodfellow
et al. [19, Ch. 10], there are three different major design patterns which
differ in their recurrent connections as well as in their way of produc-
ing outputs:

1. An RNN which has a recurrent connection from the hidden unit
to itself and which produces one output per time step.

2. An RNN which has a recurrent connection between the output
and the hidden unit and which produces one output per time
step.

3. An RNN which has a recurrent connection from the hidden unit
to itself and which only produces one output once at the end.

The architecture of the first model is shown in Figures 3.5 and 3.6.
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Its forward pass can mathematically be defined as:

a? =b4+Wh')  Uz® (3.9)
hY = tanh(a) (3.10)
o) =c+VhY (3.11)
g = softmaz(o®), (3.12)

Figure 3.5: The circuit graph of the first RNN architecture (graph as
shown in [19, Ch. 10]). z is the input, & the hidden unit, o the network’s
output, L the loss function (used instead of the objective function in the
last example) and y the target value. W, V, and U are weights.
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Figure 3.6: The graph of the first RNN architecture, unfolded over time
(graph as shown in [19, Ch. 10]). The z are the inputs, h the hidden unit
at the different time steps, o the networks outputs, L the loss function
(used instead of the objective function in the last example) and y the
target values.

Here, W are the parameters of the recurrent connection, U the pa-
rameter of the connection between the input and the hidden unit, and
b is a bias term. Furthermore, we have V, the parameters of the con-
nection between the hidden unit and the output, and ¢, another bias
term. In the hidden unit, the RNN can use any kind of activation func-
tion. In this case, the hyperbolic tangent is used. The output unit will
use a softmax function in order to transform unnormalised log proba-
bilities into normalised probabilities. The softmax function is a type of
logistic function which can be used to find the posterior probability of
a class given an input in the case of K > 2 classes [8, Ch. 4].
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The architectures described in this section are shallow ones while
one could extend the models to get a deep architecture. A deep archi-
tecture can be achieved by using the output of an RNN's hidden layer
as input to a new RNN hidden layer, thereby, stacking hidden RNN
layers on top of each other [21].

3.4.2 Training

The training method for a recurrent network which has connections
between the hidden units is called backpropagation through time. To
compute the gradient of the loss function, it is necessary to perform
both the forward and backward pass through the unfolded graph.
Backpropagation through time cannot be sped up by the use of par-
allelisation if there are hidden to hidden connections.

We will explain backpropagation through time using the example
of the RNN defined in Equations 3.9-3.12.

The loss for this model is defined in terms of the negative log-
likelihood:

L= 1Y
t
==Y uIng” + (1= y)in(1 - §)
t k

where t € {1,...,T} is the time step and k € {1,..., K} the class,
and y,(f) the target value at time step ¢ for class k. y,(:) is 0 or 1. Here, the
error is assuming that the class labels are independent given the input
vector and that K separate binary classifications are performed using
a logistic function to compute the output @,Ef) [8, Ch. 5].

We find that
oL

and

a9 g — (g2

K3 3

One can further find that
9."
o)

(2

=501 — g0y = g0 — G0)2 (3.15)
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from the definition of ) in (3.12).
We find that

oL
(Vo L)i = PY0)

oL OLW

= 300 5.0 (3.16)
oL 8Ll(t) oyt
= 920 550 g (317)
i RCEPRCN.
=1- —Qz@ - (3}1@)2 ' (yi — (%) ) (3.18)
=g =y, (3.19)

where i is the binary class that we are looking at, ¢ the time step and QZ@
the output of the network for this class and time step, yl(t) the respective
target value. Here, (3.16) and (3.17) follow by the chain rule. (3.18)
follows by (3.13), (3.14), and (3.15). (3.19) gives the gradient of the loss
function with respect to the output.

When computing the gradient for the loss function with respect to
the hidden units h”, one has to work backwards through the unfolded
graph. At time 7', the last time step, the gradient is given by

0L do™
o ao(T) ah(t)
=V' v,m L,

V(D L

where we first apply the chain rule, use /) L from above and then
compute the derivative of o7) with respect to h'") using the definition
of o") from (3.11).

When we continue the backward pass, we compute

oL on'"tY) 9L 9oW

Vaol = ORED R + 50 gp® (3.20)
ah(tJrl) T ao(t) -
= ( ah(t) > (vh(t+1)L) + <—8h(”) (Vo(t)L) (3.21)

_ WT(Vh<t+1>L)diag<1 _ (h(t“))z) LVI(T.0l)  (322)

forallt € {T'—1,...,1}. Here, the chain rule gives (3.20). (3.21) uses
the definition of </, «+1L and v/, L. (3.22) follows by the derivative
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of the tanh function, the chain rule, as well as (3.9) and (3.10) for the
derivative of h"™" with respect to h) and o*) with respect to h").

In this formula, diag<1 - (h(t+1))2) is a diagonal matrix containing

elements of 1 — (h(t+1))2.

]

These gradients can now be used to compute the gradients with
respect to the parameters. With respect to ¢ and b these are:

I - OL 9o
Vel = 2500 e

00N T
:;< gc > Vo L
=> Vowl,

t

oL oh"
Vel = ; oh® b

<8h(t)
- 8b(t)
<8h(t) da®

t

-
> Va® L

.
da® az;) Vo L

- Zdiag(l - (h(t))2> Vno L,
t
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and with respectto V, W, and U:
dL 00"
Vvl = ZZ 90 (t) aOV
8L
2 Z<W) wv ol
— S (v.,0L)a"",
(501
Fwl - Z Z 8L 8h
_ Z Z(ah(t ) Vw® h
= Zdiag(l — h(t))2> (th)L)h(t_l)T,
t

aL ons
Vul = ZZ oU®

Note how in the case of an unfolded graph the weights such as W are
the same at every time step. Therefore, dummy copies of W, W " are
used during backpropagation.

These gradients of the unfolded graph can then be used during
the backpropagation algorithm as described in Section 3.3.1 to get the
backpropagation through time algorithm.

3.4.3 Bidirectional Recurrent Neural Network

Some task which take sequences as input might benefit from not only
taking the past but also the future into consideration. This is for exam-
ple reasonable to do in a task where the output only has to be made
after seeing the full sequence. In order to incorporate both the past and
the future, bidirectional RNNs can be used. This type of RNN combines
two RNNs, one which gets the sequence and another one which gets
the sequence in inverted order as input [19, Ch. 10]. The output ol*)
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will then depend both on the hidden layer of the forward and of the
backward RNN [20, Ch. 3].

3.4.4 Long Short-Term Memory

An RNN without any additional architectural changes can only access
a limited context [20, Ch. 4]. It has problems to learn long-term depen-
dencies [19, Ch. 10]. This is due to the fact that the effect that the input
has on the hidden layer will decay or blow up exponentially while it
is passed backwards through the network [20, Ch. 4]. This problem is
called the “vanishing (or exploding) gradient problem” [19, Ch. 10].
The most effective solution to the vanishing gradient problem is a
special type of RNN, the Long Short-Term Memory (LSTM) [20, Ch. 4].
The Long Short-Term Memory model is a type of RNN which uses
gates to produce paths on which gradients can flow for longer dura-
tion in order to overcome the vanishing gradient problem [19, Ch. 10].
This type of network was first introduced by Hochreiter et al. [23].
The following description of the LSTM is based on [19, Ch. 10]
and [20, Ch. 4]. The LSTM model is constructed like a normal RNN,
but instead of a normal hidden unit with a recurrent connection, it
uses LSTM or memory cells. These LSTM cells have the same in- and
outputs as a normal RNN unit. Internally, they additionally have a
“self-loop” and they use gates in order to control the flow of informa-
tion. A simple LSTM as it is commonly used has the following parts:

Internal state unit, 55“: The internal state unit is the LSTM cell’s in-

ternal state. It takes the old internal state, sgt_l), the external input, xgt),

and the external recurrent connection, hg-t*l), as input. All inputs are
gated, by the forget gate for the internal recurrent connection and by
the external input gate for the external input and the external recurrent
connection. The activation function used by the internal state unit in
this case is a sigmoid function,

Sz(t):fi(t) _;_gz (b —|—ZU”$ +ijh]t 1)7

where b, U, W are the biases, input weights, and recurrent weights for
this internal state unit [19, Ch. 10].
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Forget gate unit, Y The forget gate is used to control when and to
what extent to remember the previous state. The decision is based on

(®)

the external inputs, z;”, and the external recurrent connection input,

hg-t_l). The activation function of this unit is a sigmoid function,
V= (bf + Y UL+ S WAl ),
J J

where b’ U/, W/ are the biases, input weights, and recurrent weights
parameters for this forget gate [19, Ch. 10].
External input gate unit, gt

.+ The external input gate unit is gating
the external input, which is xgt) and h§-t_1), based on these same inputs.

It is a sigmoid unit,
_‘7<bg+z 0j J ZWngth 1)

where b7, U?, WY are the biases, input weights, and recurrent weights
for this external input gate unit [19, Ch. 10].

Output, hl(-t): h") is the output of the LSTM cell. It is based on the

7

internal state, sgt), and gated by the output gate [19, Ch. 10]:
h = tanh(s(-t))q(t).

This unit can have any activation function. In this case the tanh func-
tion is used.

(),

1

Output gate unit, g,
output of the LSTM cell, h . It also uses a sigmoid activation function.

o) = o v+ i)

where b°, U°, W° are the biases, input weights, and recurrent weights
for this output gate unit [19, Ch. 10].

There are different variations of this architecture. For example, one
can have sgt) as an additional input to the gates. The LSTM is able
to learn long-term dependencies, which a simple RNN can only learn
with difficulties. LSTMs have been successfully applied to different

real-world applications such as speech recognition [21].

The output gate unit is used for gating the
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3.5 Word Vectors

One way of presenting text as input to a machine learning system is to
represent each word by a one-hot vector. This representation is sparse
and will suffer from the curse of dimensionality [5]. The vector space
is large and the objects are far from each other [5]. Syntactically or
semantically close words will also not be located close to each other as
there is no notion of similarity between words [39].

Bengio et al. [5] introduced a different, neural-network-based lan-
guage model in which word vector representations and a statistical lan-
guage model are learned jointly. They learn a word embedding which
represents semantically and syntactically similar words close to each
other.

The concept of using feed-forward neural networks to learn word
vectors was further continued amongst others by Mikolov et al. [39].
The authors present two different model architectures for word em-
beddings, the continuous skip-gram model and the continuous bag-of-
words model. The idea is to use a simple feed-forward neural network
with one hidden layer and a softmax function to learn the representa-
tions as the weights connecting the input and the hidden layer. In the
skip-gram model, for example, the model is trained by learning to pre-
dict the context of a word. Thus, if presented a word from a sentence
like “The lake is dark blue” and a window size of 2, we find the fol-
lowing (word, context)-pairs: (“The”, [“lake”, “is”]), (“lake”, [“The”,
“is”, “dark”]), (“is”, [“The”, “lake”, “dark”, “blue”]), (“dark”, [“lake”,
“is”, “blue”]), (“blue”, [“is”, “dark”]). Note how the context is cap-
turing both the words in the past and in the present. During training
of the system, no difference between closer or distant and past or fu-
ture words is made. The system is presented with training pairs like
(“The”, “lake”) and (“The”, “is”). From these it should learn to predict
the context word. The learned weights can then be used as the vec-
tor representation of the words. While learning this task, the network
proved to learn good vector representations for words in the hidden
layer. For the continuous bag-of-words model, the inverted task is
used for training: to predict the word itself from the context. In [39],
this method is improved by Mikolov et al. in terms of speed and qual-
ity of the learned representations. The model introduced by Mikolov
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et al. is called word2vec?.

The representations learned by this and other models can capture
more than simple syntactic regularities. Mikolov et al. [39] showed for
example that simple algebraic operations can be used on the vector
representation to find the answer to vector(“King”) - vector(“Man”) +
vector(“Woman”) = vector(“Queen”).

Another model introduced by Pennington et al. is called GloVe [48].
While word2vec is a prediction-based model, GloVe is a count-based
model [48]. Pennington et al. describe GloVe as a “global log-bilinear
regression model”. The model captures the statistics of the corpus
using word-word co-occurrence counts, or more precisely the ratios
of co-occurrence probabilities [48]. The authors present their results
which show that they outperform the word2vec model with regards to
speed and performance. In the GloVe model, X are the word-word co-
occurence counts with X ; being the number of times word j appears
in context of word ¢. The probability for a word j to occur in the context
of word ¢ is computed as P;; = P(j|i) = X;;/X;, where X; = ), Xj.
This co-occurrence probability is, according to their observations, not
as good for representing the characteristics of the corpus as the ra-
tio between these probabilities. As an example, one can look at the
words i = water and j = pressure. We can now compute the ratio
between the co-occurrence probabilities P,/ P;j; with respect to a third
word k. This word could be k; = peer, ks = swimming, ks = cooker,
and k4 = screen. While “peer” appears in the context of “pressure”
but not in the context of “water”, “swimming” occurs in the context of
“water” but not of “pressure”, the word “cooker” appears in both con-
texts while “screen” appears in none of them. Thus, the co-occurrence
probability ratio should be low for the word “peer”, high for the word
“swimming”, and close to one for the words which relate to both or
to none of the words. Thus, the ratios are better than raw probabili-
ties in order to distinguish the words relevant for word representation
learning, the ones which are only similar to one of the words, from
the words irrelevant for word representation learning. The ratio helps
further to better distinguish between the relevant words. Therefore,
the authors used these ratios of co-occurence probabilities rather than
the raw probabilities as their starting point for word vector learning.
Their model is F'(w;, w;, wy) = P ik, where w € R? are word vectors and

P;

2See also https://code.google.com/archive/p/word2vec/.
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w € R? are separate context word vectors. The function F is restricted
by them in order to preserve the qualities which a word vector repre-
sentation should have, such as linearity. Their model learns two sets
of word vectors, w and w, which they claim perform equivalently.

3.6 Linear-Chain Conditional Random Field

As previously mentioned, linear-chain conditional random fields can
be used to label a sequence, where the label y is chosen for an input
according to the probability function p(y|x). The function uses features
which can depend on the label y, the label of the previous time step,
and the input z. The fact that a label is only dependent on the previous
but not on the other time steps is called Markov property. The linear-
chain conditional random field is defined in Equation (3.23) [62]:

i) = i [Lean( Ohilmnly, (629

t=1 k=1

where T is the number of time steps (the sequence length), Z(x) is a
normalising factor, fi(y,v', ;) is a feature function, K is the number of
feature functions, and 6, are parameters.

3.7 Evaluation Measures

In order to evaluate a machine learning system, commonly used mea-
sures can be applied. Systems are often evaluated based on recall, pre-
cision, and F1 score. To calculate these measures, one needs to first
compute the number of true positives (TP), true negatives (TN), false pos-
itives (FP), and false negatives (FN), which form the confusion matrix
shown in Table 3.7 [44, Ch. 5].

The recall is calculated as:

TP
TP+ FN

The formula for the precision is:

TP
TP+ FP



44 CHAPTER 3. THEORY

Predicted class
s
Actual class + TP FN
- FP TN

Figure 3.7: Confusion matrix: a TP is a correctly classified positive
sample, a TN is a correctly classified negative sample, a FN is a pos-
itive sample which is falsely classified as negative, a FP is a negative

sample which is falsely classified as positive.

The F1 score is calculated using;:

2 X recall X precision

recall + precision
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Methodology

In this chapter, we present our de-identification method and the eval-
uation method. Our method uses a combination of both simple and
advanced methods in order to solve the inverse de-identification task.
In the inverse task, safe tokens are identified to be left in the text. In
Section 4.1, the data sets which were used during training and testing
of the method are presented. In Section 4.2, we describe two dictionar-
ies used by our method to identify medical terms which are consid-
ered non-PHI, thus safe to let back in. In the following, we will refer
to non-PHI as being “safe” in the sense that it is safe to let the token
back into the text as it cannot be used to identify the data subject. Sec-
tion 4.3 gives a detailed description of our de-identification method
which is a hybrid method combining a rule-based approach with a
feature-learning approach. The last section, Section 4.4, contains a pre-
sentation of our chosen evaluation method.

4.1 Data Sets

In order to train and test a de-identification model, annotated data
is needed. During this project, we worked with two different data
sets. The deep neural network was trained and evaluated on data from
the 2014-i2b2 de-identification challenge. The second data set, a set
of previously annotated case narratives from VigiBase, was used to
fine-tune this network. We chose to fine-tune on the VigiBase data
set instead of using it as the primary basis for our training due to its
limited number of training examples. Furthermore, the similarities
between the 2014-i2b2 data set and the VigiBase data set in terms of

45
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structure and annotations made this appear to be a reasonable choice.

Both data sets have a separate test set which was used during the
evaluation of the method. The VigiBase data set is also used to eval-
uate the ability of the i2b2-trained network to generalise to VigiBase
case narratives without a fine-tuning step.

4.1.1 2014-i2b2 Data Set

This data set, which we will in the following refer to as the 2014-
i2b2 data set, was created for “the de-identification track of the 2014
i2b2 /UTHealth shared task” [60]. It contains 1,304 medical records of
296 patients. There exist two to five records per patient. Therefore,
the authors also refer to the records as “longitudinal medical records”.
In this project, as described by Stubbs and Uzuner [60], the data was
annotated following the HIPAA standard while also introducing addi-
tional categories for PHI. The data came from the non-profit organisa-
tion Partners HealthCare' and PHI was annotated by two annotators.
The annotations were manually checked and the PHI afterwards auto-
matically replaced with surrogates. The method to generate surrogates
was developed by the authors. Additional categories used, which are
not part of HIPAA, were names of hospitals, doctors and nurses, as
well as patient’s professions and ages below 90 in addition to the ages
above 89 included in HIPAA. The annotations were further chosen to
be more fine-grained leading to sub-categories such as “Location: Hos-
pital” and “Location: City”. The authors decided to label everything
that remained with category “Location: Other”. This category along
with the categories “Location: Room” and “Location: Department”
were not used in the final data set for the de-identification challenge.
The number of instances of the different PHI categories in the 2014-
i2b2 data set can be found in Table 4.1.

The data set has been split by the challenge organisers into a train-
ing and a test set as shown in Table 4.1. Of the total number of 790
training documents, 269 were set aside for validation purposes. There
are 514 documents in the test set.

Partners HealthCare: http://www.partners.org/
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PHI Category Training Test  Total
NAME: PATIENT 1,316 879 2,195
NAME: DOCTOR 2,885 1,912 4,797
NAME: USERNAME 264 92 356
PROFESSION 234 179 413
LOCATION: HOSPITAL 1,437 875 2,312
LOCATION: ORGANIZATION 124 82 206
LOCATION: STREET 216 136 352
LOCATION: CITY 394 260 654
LOCATION: STATE 314 190 504
LOCATION: COUNTRY 66 117 183
LOCATION: ZIP CODE 212 140 352
LOCATION: OTHER 4 13 17
AGE 1,233 764 1,997
DATE 7,507 4,980 12,487
CONTACT: PHONE 309 215 524
CONTACT: FAX 8 2 10
CONTACT: EMAIL 4 1 5
CONTACT: URL 2 0 2
CONTACT: IPADDRESS 0 0 0
ID: SSN 0 0 0
ID: MEDICAL RECORD 611 422 1,033
ID: HEALTH PLAN 1 0 1
ID: ACCOUNT 0 0 0
ID: LICENSE 0 0 0
ID: VEHICLE 0 0 0
ID: DEVICE 7 8 15
ID: BIO ID 1 0 1
ID: ID NUMBER 261 195 456
Total 17,410 11,462 28,872

Table 4.1: Number of PHI instances per category in the 2014-i2b2 data
set.



48 CHAPTER 4. METHODOLOGY

4.1.2 VigiBase Data Set

During the Master’s thesis project by Sahlstrom [54], 400 case narra-
tives from the VigiBase database were annotated. The author anno-
tated the samples using the following PHI categories: Date, Age, Lo-
cation, Organisation, and Person. In order to use the annotated data
during this project, it was transformed to the same format used dur-
ing the i2b2 challenge. For evaluation purposes, all locations were
mapped to one location category (“City”) and all person annotations
were mapped to one name category (“Patient”).

The distribution of the PHI examples in the training and test set is
presented in Table 4.2. Note the low number of training examples for
the categories “Location”, “Organisation”, and “Person” and note also
that the category “Person” is not represented in the test set.

PHI Category Training Test Total

Date 553 185 738
Age 109 30 139
Location 25 9 34
Organisation 5

Person

Total 696 226 922

Table 4.2: Number of PHI instances per category in the VigiBase data
set.

The VigiBase data set contains 300 case narratives for training and
100 case narratives for testing.

4.2 Dictionaries

The rule-based approach to de-identification uses dictionaries to iden-
tify safe words which can be let back into a completely masked text.
These can be medical terms or common words. These words can how-
ever be ambiguous, i.e., some of them could also appear as PHI such
as names. Therefore, the rule-based de-identifier will also need some
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dictionaries to identified known PHI terms or words known to possi-
bly be PHI. Two of the dictionaries used by the rule-based approach,
the ones to identify medical terms and drug names, are presented in
this chapter. The other dictionaries are introduced in Section 4.3.3.

4.2.1 WHODrug

WHODrug is a drug reference dictionary containing trade names, ac-
tive ingredients, pharmaceutical formulation, strength and classifica-
tions of drugs [36]. It was created within the WHO Programme for
International Drug Monitoring to structure the VigiBase data for more
efficient analysis and is maintained by the Uppsala Monitoring Cen-
tre [36]. It is used to structure and code drug data in reports of sus-
pected adverse drug reactions and in clinical trials for better analysis.
The database is filled with medical products appearing in reports of
suspected adverse drug reactions, as well as drugs newly registered
by the U.S. Food and Drug Administration or European Medicines
Agency and based on information from a cooperation with the com-
pany IMS Health.

4.2.2 Medical Dictionary for Regulatory Activities

The Medical Dictionary for Regulatory Activities (MedDRA) is a hi-
erarchical terminology by the International Conference on Harmoni-
sation of Technical Requirements for Registration of Pharmaceuticals
for Human Use for classification of medical terms in adverse drug re-
action reports [43]. It is used by both regulatory authorities as well
as by the pharmaceutical industry [43] and many others including the
Uppsala Monitoring Centre, national centres, or academic researchers.

4.3 De-ldentification Methods

Our de-identification method is an inverse and hybrid method. The
method starts from a text which is fully masked and it then tries to
identify safe words to be let back into the text. This does not mean
that the method as developed here cannot be extended to be used to
identify tokens which possibly are dates, city names, or ages but this
is currently not its aim. The method aims to be sure about a token
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being “safe” before it lets it back into the text. The approach is hy-
brid because the method solves this task using two rather different
approaches. One is a rule-based approach using dictionary look-ups,
while the other approach uses deep learning.

In our method, the rule-based de-identifier is designed to be very
conservative and thereby producing a high recall of PHI but also many
tokens which are falsely classified as PHI. The deep de-identifier gets
the role of correcting the errors that the rule-based de-identifier makes,
i.e., correcting the PHI tokens which are not classified as such and the
more numerous tokens which are safe but are classified as PHI.

4.3.1 Overview

The general process of de-identification is presented in form of a flow
chart in Figure 4.1. Before an input text is passed through the de-
identification part of the method, it is first pre-processed. The text
is tokenised and one can think of each token as being classified as
“PHI” (and thus masked) until the method decides otherwise. The
de-identification part consists of two de-identification algorithms, the
rule-based and the deep learning-based de-identifier. Based on the
outputs from the two independent de-identification methods, each to-
ken is classified as safe or not. Afterwards, this classification result is
used during a post-processing step.

During the post-processing phase, two tasks need to be fulfilled.
First of all, the recognised unsafe tokens (PHI-tokens) are written to an
XML file as annotations in the same format as for the i2b2-challenge.
These are all tokens from the original token list which were not recog-
nised as safe. This output can be used to evaluate the method by using
the official i2b2 evaluation function. Secondly, the original text and
the recognised unsafe tokens are used to compute a de-identified text.
This new text is written to a text file. In this text, the unsafe tokens are
replaced by “PHI”, thus forming a de-identified version of the text.
The other phases of this process are described in the following subsec-
tions.

In an inverse approach, the main idea is to only let tokens in which
are recognised to be safe. The tokens that are not let back in are thereby
classified as PHI because they are not recognised by the method as
being safe. This concept of recognising PHI will make it difficult to
give names to each of the recognised PHI tokens. Usually, in de-
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Figure 4.1: The general de-identification process.

identification, the method labels the recognised PHI with a category
such as “Person” or “City”. Our method on the other hand does not
attempt to label the PHI tokens with categories and does not either
try to combine the tokens to form a multi-token PHI instance for the
given reason. The output of our method are simply tokens which are
safe and tokens which are not safe.

The 2014-i2b2 data set uses, as previously mentioned, both HIPAA-
categories and additional PHI categories. The rule-based de-identifier
was developed in such a way that it aims to remove all HIPAA-cate-
gories, while the deep de-identifier uses all PHI categories and might
therefore lead to the removal of non-HIPAA PHI tokens. We assume
that this additional information can on the one hand only be helpful
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for the network to better learn to understand the sentence structure.
On the other hand, we designed the method to be especially safe which
is increased by taking more possibly PHI out than required by HIPAA.

4.3.2 Annotating and Pre-Processing

The data from both data sets is stored in XML files. It is given in the
same format as used in the 2014-i2b2 challenge. In this format, the
XML root element is called “deldi2b2” and it has a child element with
the case narrative, the “TEXT”, and a child element containing the an-
notations, the “TAGS”. Per annotation such as a name, there is an el-
ement of the PHI category as its type and an identification number, a
start position, an end position, the text of the annotation, as well as
the detailed type such as “City” for the category “Location”. We trans-
formed the VigiBase data to the same format and annotation scheme
as in the i2b2 challenge. For evaluation of our method, the official
Python evaluation script for the 2014-i2b2 challenge can then be used
(see Section 4.4.1 for more information on the evaluation method and
the evaluation script). The classes from this evaluation module further
provide the possibility to load training and test data as well as to write
new annotations to XML files.

During the pre-processing phase, the input texts have to be to-
kenised. This is necessary for the method to be able to process them.
In the 2014-i2b2 challenge, one part of the evaluation is made using
the tokenised annotations. We use the same tokeniser as used in the
challenge’s evaluation script. It is based on a regular expression which
recognises contiguous sequences of letters and numbers as one token
while splitting them at characters other than letters or numbers. This
means for example that it splits after symbols and white spaces. For
both the rule-based and the deep de-identifier, all tokens are trans-
formed to lower case.

4.3.3 Rule-Based Approach Using Dictionary Look-
ups

The rule-based part of the method considers each token independent-
ly. It checks if the token is included in different dictionaries. It uses the
dictionaries to decide whether a word is safe by checking for common
English words and for medical terms. To prevent ambiguous words
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(common word or medical term at the same time as PHI) from being
let in, the method also has to use dictionaries with known PHI-terms.
The rule-based de-identifier further computes a set of features which
can be used later on during the decision phase of the method.

The method will only consider tokens as safe which were found
in one of the safe word dictionaries but not in one of the PHI dictio-
naries. Thus, the results from look-ups in the unsafe term dictionar-
ies will always overwrite the output from the safe term dictionaries
in order to remove as many unsafe terms as possible. The rule-based
de-identifier also outputs a list of features per token. These are: “is-

possibly-city”, “has-capital-beginning”, “is-sentence-beginning”, “is-

4 “ 4 ‘" 77 ‘s

possibly-name”, “is-common word”, “is-digit”, “contains-digit”, “is-

e aas 77 ALy

medical-term”, “is-weekday”, “is-month”, “is-top-level-domain”, “is-
street”, “is-holiday”, “is-single letter”, and “is-written out number”,
which were mostly taken from the previously described dictionaries.

These are the dictionaries with safe terms:

1. Stopwords

2. Common English words
3. WHODrug

4. MedDRA

The list of stopwords is obtained from the Python package “Natural
Language Toolkit” (NLTK)?. We further check whether a word is a
common English word. For this, first of all, the lexical reference system
WordNet developed by Princeton University’s Cognitive Science Labo-
ratory [41] is used. It provides synonym sets for words. If a token has
a synonym in WordNet we consider it to be a common English word.
Tokens are also checked in the NLTK word list, which includes words
retrieved from Wikipedia. Words which are contained in the two pre-
sented dictionaries, WHODrug and MedDRA, are also considered to
be safe.
These are the dictionaries with unsafe terms:

1. Locations
2. Names

3. Weekdays
4. Months
5. Digits

2Natural Language Toolkit: http://www.nltk.org/
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6. Streets
7. Top-level domains

For the location dictionaries, we obtained a list from NLTK containing
U.S. cities and a list of all cities in the world with more than 15,000
inhabitants. The latter was retrieved from the GeoNames Gazetteer®.
GeoNames provides lists of various geographic data licensed under a
Creative Commons Attribution 3.0 License. Note that city names of
cities with fewer than 15,000 inhabitants are unlikely to appear in the
English dictionary and do therefore not need to be included. Our list
of names is a combination of first names obtained from NLTK (cor-
pus by Mark Kantrowitz, Copyright (C) 1991) and last names from the
U.S. Census of 2000*. From the census we retrieve surnames which
occurred 100 or more times. A list of weekdays is used by the method
which we assembled ourselves and which also contains abbreviations
of the days of the week. The method is further using a list of months,
which was also assembled by us and which includes abbreviations.
Digits are also considered to be unsafe by the rule-based de-identifier.
We check whether a token is a number by using the Python function
isDigit () and whether a token contains a digit using a Python func-
tion which searches for the appearance of a digit. The street name list
contains the words “Drive”, “Street”, and “Avenue” as they commonly
occur in street names and are common English words. The top-level
domain list contains the common top-level domains which could ap-
pear in website names and email addresses, such as “org” or “com”.
For top-level domains, the rule-based de-identifier checks whether the
token which could be a top-level domain is preceded by a dot.

For all safe-word dictionaries with multi-word terms, it applies that
we do not want to map the words from the text to the dictionary. This
would be useful if we wanted to find where a certain multi-word term
occurs. We on the other hand only want to check if a single word from
the text occurs in a term in the dictionary. Therefore, we do not need
to apply advanced mapping techniques. Instead, we can tokenise the
dictionary entries and use the whole dictionary as a bag of words. This
simplifies the otherwise complicated way of checking for different or-
ders of the words, left out words in the terms, and so on. These dictio-

3GeoNames Gazetteer: www . geonames . org

*Frequently Occurring Surnames from the Census 2000: https://www.
census.gov/topics/population/genealogy/data/2000_surnames.
html
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naries can of course contain words which can also be PHI such as the
common example of “Mr. Parkinson” and “Parkinson’s disease”. This
can however even be the case for single word medical terms. Thus, we
will need to check whether a word is also a possible PHI term and then
use the output of the deep de-identifier to make a decision. Matching
the multi-word term from the text to the dictionary could help to de-
cide whether a term is actually a medical term but during the decision
one would still need to consider the context. The mapping would lead
to much overhead while the dictionary is only meant to give a good
summary of words which could possibly be used as “safe” words. Af-
terwards, techniques are still needed to check if this is not the case. We
do this both by using the rule-based and the deep de-identifier.

City names differ from multi-word dictionaries as MedDRA in the
sense that, for city names, the word order cannot be altered. Thus, the
mapping of cities to a text is different than for terms from MedDRA:
we need to find occurrences of all tokens of the city name at contiguous
positions in the text and in the correct order to find an occurrence. All
the unsafe-term dictionaries except for these city names contain only
terms of the length of one word and are therefore already a bag of
words.

4.3.4 Deep Learning Approach Using Long Short-Term
Memory

The deep de-identifier, which uses Long Short-Term Memory (LSTM),
focuses on improving the precision by correcting the rule-based de-
identifier’s numerous safe tokens mistakenly classified as PHI. It also
tries to correct the PHI tokens which were missed by the method. It
does so by trying to predict per token with which probability it is safe.
It is actually trained to solve the task of labelling all tokens in the se-
quence with a class, a specific PHI-category or the class “safe”. We
check the probabilities for the “safe” class in order to decide if a token
might be safe to let back into the text. This is done during the combi-
nation step described in Section 4.3.5. There, only tokens are consid-
ered to be safe if the deep de-identifier says so with a high probability.
How the neural network model is designed and trained to solve this
sequence to sequence labelling task is described in the following.



56 CHAPTER 4. METHODOLOGY

Architecture

The architecture of the deep neural network was chosen similar to the
one presented by Dernoncourt et al. [12]. We use RNNs since we are
dealing with input data in the form of sequences. LSTM as the type of
RNN is chosen because of its ability to overcome the vanishing gradi-
ent problem of standard RNNs (see Section 3.4.4). We can apply the
LSTM on the sequence both forwards and backwards since we have
access to the whole text and thereby also to the future. Thus, a bidi-
rectional LSTM is used. The architecture is shown in Figure 4.2 and
described in the following.

Input: Dernoncourt et al.’s architecture (see also Section 2.3.2) as well
as ours use both a token-level and a character-level input, which are
both transformed by embedding layers to word vectors. A sentence
“The patient has...” will look like [“the”, “patient”, “has”| for the
token-level input and [ [“t”, “h”, “e” |, [“p”, “a”, “t”, “i”, “e”, “n”,
“t” ], ["h”,”a”, “s”] | for the character-level input. Thus, the token-
level input is a sequence of tokens, z1, . .., z,, while the character-level
input is a sequence of sequences of characters, [[z1,1,...,Z1 1)), - .
[Tn1, -5 Tnymy]], Where a token is formed by the character sequence.
Note also how all tokens are transformed to lower case during the
pre-processing. Here, n is the length of the token sequence and /(i)
the length of the i-th token’s character sequence.

Token-Based Embedding: Each token from the token sequence is
passed through a token embedding function, Ep. The result is a se-
quence of token-based embeddings, e;,, .. ., e;,. This embedding func-
tion can be pre-trained for example using GloVe or word2vec (see Sec-
tion 3.5).

Character-Based Embedding: Each sequence of characters is passed
through a character embedding layer. This is shown in Figure 4.3. Its
purpose is to produce a second embedding for the token based on its
sequence of characters. It uses an embedding layer, which is a map-
ping from a character to a vector, E. Note how the same embedding is
applied to each character regardless of its position in the sequence. The
sequence of vector embeddings for the sequence of characters is then
passed through a bidirectional LSTM. It produces one output vector.
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The LSTM activation are thus combined to one output for the whole
sequence instead of one per character. This way, the method produces
an embedding per token which is based on each of its characters com-
bined. For token z;, this embedding is called e, in Figure 4.2.

Bidirectional Long Short-Term Memory: The sequence of the com-
bined embeddings, the concatenations of the character-based and the
token-based embeddings, are passed through a bidirectional LSTM
which produces an output per token in the sequence, (a1, a1 ),. ..,
(@n,—,an ). Each of these outputs is the concatenation of the forward
LSTM output and the backward LSTM output for the respective token.

Softmax Layer: This outputis in turn transformed by a softmax func-
tion into probabilities for the token being of a certain class. Thus, the
output of the whole network is a sequence of vectors whose entries are
probabilities for the token to belong to one of the output classes.

Variations: The architecture was slightly adapted during some runs
in order to try different variations and to evaluate their impact on the
performance.

First of all, the character-level input was enhanced by concatenat-
ing up to three of the possibly following characters to the character se-
quence, i.e., characters which follow but which are positioned before
the beginning of the next token. This could be white spaces, newlines,
or symbols. The idea is that these might help the network to under-
stand the sentence structure better. Especially, it might help in cases
where there are dates written in the format “DD/MM/YY”, which is
quite common. Adding this information to the input gives the network
the chance to learn features which use the presence of the characters.
We will refer to these as “post space”-characters since they follow the
token in the space just behind this token and before the next token.

In a second variation, the architecture was adapted to include a
third input. This input is a feature-level input. Thus, hand-engineered
features which are expected to be useful for the network are fed into
it. These features are concatenated to the combined embeddings. We
chose to add information on whether the token is all lower case, all
upper case, or starting with a capital letter in order to make up for the
information loss which happens during pre-processing. During pre-
processing, all tokens are transformed to lower case. We also give the
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Figure 4.2: Artificial neural network architecture. The character-
level input is passed through the character embedding layer from
Figure 4.3. The token-level input is passed through the embedding
function, Ep. The resulting embeddings are concatenated and passed
through a bidirectional LSTM. Its output is transformed into probabil-
ities, proby, . . ., prob,, using a softmax layer.

network additional input indicating the presence of salutation words
such as “Mr”, “Mrs”, or “Ms”. The intention is that this might help
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Figure 4.3: Character Embedding Layer. This is the artificial neu-
ral network architecture for the character-based embedding of token
Ty = (211,212, ..., %10)), with [(1) being the length of z,. E¢ is the
character embedding, a mapping from a character to a vector. The
same function E¢ is applied to all characters regardless of their posi-
tion in the sequence. The two LSTMs of the bidirectional LSTM are
unfolded. The unfolded forward LSTM consists of the units from the
lower line and the backward LSTM of the LSTM units of the upper
line. Both LSTMs output one vector per character sequence which are
concatenated to form one character-based embedding.

the network recognise names more easily. We added this when we
noticed that some of the trained networks did not recognise patient
names despite the presence of these strong indicator words.
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Training Details

When training on data for de-identification, it has to be considered
that the class distribution is imbalanced. This is due to the fact that
the natural text includes more safe words than PHI tokens. Therefore,
we weight the samples differently according to the class they belong
to. This way, the samples of rare classes contribute more to the loss
function. The loss function was chosen as a categorical cross entropy
(see the definition of the negative log-likelihood in Section 3.4.2). It
is used because it is suitable for the multi-class classification and be-
cause it is based on the difference between the target value and the
output of the network, thus the margin by which the classification
for a data point was wrong. “Adam” was chosen for optimisation.
Adam is a stochastic, gradient-based optimisation algorithm which
uses “adaptive estimates of lower-order moments” where momentum
can be understood as the first order moment of the objective function
and where in addition to the first order moment also the second order
moment is used [28]. The learning parameters were left at the default
values suggested by the deep learning framework: learning rate 0.001,
beta; = 0.9, betas = 0.999, epsilon = le — 08, and no learning rate de-
cay was used. For regularisation purposes, dropout was used after the
concatenation of the embeddings. The dropout probability was chosen
tobe p = 0.5.

For the token embedding layer, we chose a pre-trained GloVe layer,
trained on Wikipedia text, with 100 as dimension of the embedding.
We chose to use GloVe instead of word2vec because Dernoncourt et
al. [12] found it to work slightly better in their development of a de-
identification method.

The character embedding function is also a layer in the neural net-
work. It is however not pre-trained but trained from scratch at the
same time as the rest of the network.

Implementation Details

We implemented our method in Python using version 3.5.3. For the
deep learning model, we used the “high-level neural network API”
Keras [10], version 2.0.2, with TensorFlow [2], version 1.0, as its deep
learning backend. Both training and testing of the model was run in
GPU mode. For the implementation of the model we used the Keras
layers Dropout, Input, Embedding, TimeDistributed, Dense,
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LSTM, Bidirectional, and the function concatenated, as well as
the Model class and the Keras implementation of the Adam optimiser.
The model is trained using the function fit and used using the func-
tion predict of the Model. When training a model using Keras, the
target values have to be represented using a 1-hot-encoding.

In order to enable batch learning, the input sequences of the net-
work have to have equal length. Therefore, a maximum length for
the token sequences and the character sequences, forming the tokens,
was chosen. The sequences have to be padded and possibly split into
several parts. The maximum length is limited by the amount of GPU
memory available. This is due to the fact that the unfolded model has
to fit into the GPU memory. It thereby also depends on the size of
the network’s layers. The padded values should not influence the net-
work’s output. Therefore, they are set to 0 which will lead to them not
influencing the LSTM’s output. In the loss function these tokens have
to be ignored as well. This is reached by weighting the padded tokens
with 0 in the loss function.
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4.3.5 Combination Strategy

The output of the deep and the rule-based de-identifier have to be
combined to make a decision for each token whether it is safe or PHI.
The rule-based de-identifier is designed to only let in words for which
it is highly confident that they are safe. This makes it a very conser-
vative approach. It is designed to have few missed PHI tokens but
thereby also many tokens which were mistakenly classified as PHI re-
sulting in a low precision. The rule-based de-identifier will still lead to
some missed PHI as it cannot base its decisions on the context when
identifying PHI. This is problematic when a token is not in the list
of known PHI but in the common words or the medical term lists.
The rule-based de-identifier is designed to not let any token contain-
ing numbers in, although these can contain very important informa-
tion. This rule leads to many tokens falsely recognised as PHI. Both
these errors, missed PHI and tokens falsely classified as PHI, might be
corrected by combining the rule-based de-identifier’s output with the
deep de-identifier’s output.

One way to combine the two outputs would be to only allow words
back in which were classified as safe by both identifiers. This would
allow to correct some of the missed PHI of the rule-based de-identifier
but not the tokens which were identified as such mistakenly, leading
to an extremely low precision. This is impractical and this method is
therefore not used.

We use another way of combining the two methods. In this combi-
nation method, we use the rule-based de-identifier to decide on how
high the threshold of the deep de-identifier should be for it to classify
a word as safe. If the rule-based de-identifier says that the word is
safe, then a lower threshold can be used in the deep de-identifier. We
look at the probability with which the deep de-identifier believes that
the output is safe. If this probability is above the threshold, the to-
ken is classified as safe. The level of the threshold is chosen according
to the output of the rule-based de-identifier. We call this “adaptive-
threshold-rule”. This combination method requires two thresholds as
parameters, a low and a high threshold for when the rule-based de-
identifier classifies the token as safe or PHI.

In this “adaptive-threshold-rule”, if the deep de-identifier does not
say with a high probability that the token is safe it is removed. This
is a good idea since the deep de-identifier has a high precision when
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identifying PHI. If it thinks that something is PHI, i.e., not safe, it most
likely is. Thus, it is not likely to cause many tokens wrongly classi-
fied as PHI. If the rule-based de-identifier says that a token is PHI it
could be one of its many mistakes made classifying a safe token as
PHI. Therefore, we want to check if it actually is PHI using the deep
de-identifier. The token will in this case be classified as safe if the deep
de-identifier classifies it as safe but only if it says so with a very high
probability. If the rule-based de-identifier classifies a token as safe it
could be one of the rare missed PHI. Therefore, we check with the deep
de-identifier if it is safe or not but with a lower threshold to prevent
a high number of tokens mistakenly classified as PHI. There is a third
case: if the rule-based de-identifier outputs that a token is not safe

V/aaTs

and that it contains one of the features “is-weekday”, “is-month”, “is-
street”, “is-holiday”, and “is-written out number”, then the threshold
for the deep de-identifier is picked as infinity. Thus, these tokens are

always removed because they appear to always be PHI.

4.3.6 Model Selection

During this project, we evaluated four different variations of the model
which are presented in Table 4.3. In the first variation, a), we use
none of the variations mentioned in the architecture description (Sec-
tion 4.3.4). In the second variation, b), we add the “post space”-char-
acters to the character input as described in Section 4.3.4. In c), we use
the additional inputs in form of salutation-features and capitalisation-
features as described in Section 4.3.4. Variation d) includes both these
concepts.

Model PostSpace Additional Input

a) o o
b) . o
) o °
d) ° °

Table 4.3: The different variations of the method.

In order to select the best model, we train variation a) to d) two
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times for four epochs. Due to the time constraints of this project, we
could not make any experiments with training for more epochs. 10%
of the training samples are not used during network training but for
validation through accuracy monitoring during training. We evaluate
the models” performance after the different numbers of epochs. For
this, we run the algorithm on the separate validation data and use a
threshold pair with (low = 0.8, high = 0.9) in the “adaptive-threshold-
rule”, where low stands for the lower threshold and high for the higher
threshold. The best model from the runs is picked, i.e., the model after
the epoch with best performance with respect to HIPAA-recall while
also taking the general precision into account (see Section 4.4 for more
information on the evaluation function).

We rerun these best models for the different variations and the two
runs (at best epoch) on the validation set but with a threshold pair of
(low = 0.9, high = 0.95). After comparing the performance on the val-
idation data, we found that this threshold pair generally led to better
results on the validation sets (results not shown here). It would have
been too computationally expensive to compute the performance on
the validation set of this second threshold for all epochs.

We then evaluate the performance of these best models with thresh-
olds (low = 0.9, high = 0.95) for the four different variations (a—d) on
the test set. The results are presented in Chapter 5. Experiments for
more different threshold pairs would have been useful but there was
not enough time to perform an extensive search.

For the VigiBase model, we took the best model for variation d)
to test its performance on the test data both after fine-tuning on Vi-
giBase training data and when solely combined with the “adaptive-
threshold-rule”. For the “adaptive-threshold-rule” both the threshold
pairs (low = 0.8, high = 0.9) and (low = 0.9, high = 0.95) were tested.
Fine-tuning was performed for 2 epochs and the model was tested af-
ter both epochs. We chose variation d) because we did not know at
this point which variation would perform best and as we hypothe-
sised that it might be variation d). We also tested the method on the
test set when only using its rule-based or deep de-identifier.
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4.4 Evaluation

In order to evaluate how the method performs, we compute the recall
of PHI on the separate test sets of the i2b2 and the VigiBase data sets.
In this way, we can evaluate how safe the method is. For the evaluation
of the data preserved, we look at the precision, which however is not
expected to be high. For the VigiBase data set, we also let an expert
evaluate how much information valuable for causality assessment is
preserved. What is considered to be information valuable for causality
assessment was presented in Section 2.1.1.

4.4.1 Recall and Precision for Protected Health Infor-
mation

The method is evaluated based on its recall on tokenised HIPAA anno-
tations from the i2b2 and the VigiBase gold standard. This means that
the HIPAA annotations, which can contain more than one token each,
are tokenised before they are compared to the method’s annotations
(which are already single tokens). Since we use the same tokeniser for
preprocessing which is also used during the evaluation, the method’s
annotations will only consist of one token each. The tokenised eval-
uation is necessary because the method only outputs PHI classified
tokens without aggregating them to form a person’s name or a city
name. This evaluation of tokenised annotations is provided by the
evaluation script of the i2b2-challenge. Nevertheless, the script had
to be adjusted to properly handle the fact that the method’s annota-
tions do not specify any valid PHI category labels for the annotations.
During the evaluation, our adjusted algorithm checks for each token
of each of the gold standard annotations whether there also is a to-
ken annotation made by our method for the token. The gold standard
annotation will belong to a certain PHI category while the method’s
annotation will be a general PHI annotation. Scaiano et al. [56] refer
to this as “masking recall”. For this, it is important that the token is
masked by the method but not that the method knows the token’s PHI
category. Scaiano et al. point out that it is reasonable to use this type
of measure, but using this measure can be problematic if the token fre-
quency per class is not taken into consideration. In our masking recall
measure, we can however also output the masking recall for each PHI
category (as we know the PHI category of each gold standard annota-
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tion) and thereby account for varying PHI category frequencies.

During the evaluation of the method, the recall of PHI is consid-
ered as the main measure of performance. The precision, which re-
flects to what extent masked words are in fact PHI, is, as previously
mentioned, not focused on when improving the method at this stage.
It is not possible to compute the precision per PHI class since the de-
identification method does not assign PHI categories. This means that
we cannot compute the number of tokens falsely classified as PHI per
category. Since we are removing additional PHI instances which are
not included in HIPAA, our method cannot reasonably be evaluated
using precision for HIPAA tokens. This is due to the fact that we
cannot tell which of the tokens was mistakenly removed due to the
attempt to remove HIPAA tokens and which due to the attempt to re-
move other PHI tokens. We therefore look at the precision for PHI
tokens in general when we want to evaluate the method’s precision.
Since other methods in the literature usually are evaluated based on
recall of HIPAA PHI, we evaluated our method based on HIPAA PHI
recall.

We changed the implementation of the evaluation script to con-
sider different start and end points of an annotation. Since we are
using the same tokeniser as the evaluation script when tokenising our
input texts, our correct annotations should in general be the same to-
kens as the tokens from the tokenised gold standard annotation. There
can however be cases in which our annotation token fully covers a
gold standard annotation and includes some additional characters in
the beginning or end. This occurs when the gold standard annotation
starts or ends in the middle of a token which the tokeniser usually
keeps together. This means that this probably is a token in which a
white space or another separating character is missing. Thus, this to-
ken could be seen in the gold standard as two different tokens. It is
therefore reasonable to count it once as a correctly recognised PHI to-
ken and once as a token which was falsely recognised as being PHI
as it represents both in one. It further is not a non-recognised PHI to-
ken as its PHI-part was correctly classified as PHI. Therefore, a gold
standard HIPAA annotation token is in our version of the evaluation
script not counted as missed if the PHI token is fully overlapped by a
token of the method and the token is counted as a token which was
correctly classified as PHI. This overlapping token is however also
counted as a falsely classified PHI token and it therefore lowers the
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precision of the method. Note that this kind of change to the evalua-
tion function does not make a conservative method like ours look safer
than it is. A conservative method should be optimised for high recall.
This change only removes the tokens recognised by the original eval-
uation function as being missed PHI which are actually fully covered
by a method’s annotation. The recall does therefore not appear better
than it is.

During the evaluation of the method’s performance on VigiBase
data, we also manually check the missed PHI. We assess which leaked
PHI token actually could lead to a re-identification and correct the
counted number of missed PHI. Here, it is for example important to
note that an annotation of a date could include the word “of” in “1st
of March”. A leaked token “of” does however not allow for re-identi-
fication of the data subject.

4.4.2 Retainment of Valuable Information

In order to get an idea about whether or not the method preserves
valuable information, we made what can be understood as a type of
qualitative precision evaluation which was carried out by an expert.

A pharmacist from the Uppsala Monitoring Centre looked at the re-
sulting de-identified case narratives in order to check their usability for
causality assessment. The pharmacist looked at the de-identified ver-
sion of the 100 VigiBase test samples. The pharmacist read these and
checked if there was any useful information preserved and whether
there were any parts masked which might be useful during a causality
assessment. Afterwards, she checked in the original narrative which
words or numbers were removed and whether the information would
actually have been necessary for the assessment of causality.
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Results

In this chapter, we present the performance of our method on the test
sets while using the evaluation methods as described in Section 4.4. In
the first section, Section 5.1, we present the results on the 2014-i2b2 test
set. For this, we present the recall and precision for protected health
information and the output for some example inputs. In Section 5.2,
we present the results in terms of precision and recall on the VigiBase
test set. Here, we also present some examples of PHI tokens missed
by our method. The section also contains a presentation of the results
from the qualitative analysis of the preserved valuable information in
the de-identified case narratives.

5.1 2014-i2b2 Data Set

This section includes the results on the i2b2 data set. The performance
of the different variations of our method as described in Section 4.3.6
can be found in Section 5.1.1 for the adaptive-threshold combination
rule and in Section 5.1.2 for only using the deep de-identifier. In Sec-
tion 5.1.3, a comparison between the rule-based, deep, and hybrid
methods as well as with a method from the related work is made. In
Section 5.1.4, we present the results per category and Section 5.1.5 con-
tains a presentation of example outputs.

5.1.1 Evaluation of the Hybrid De-ldentifier

For the adaptive-threshold rule, we tested all four variations (a—d) of
the deep model from two different runs of training. We selected the

68
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higher pair of thresholds as it showed better results on the validation
set for all variations. The results are shown in Table 5.1

Recall - HIPAA Precision — All

Adaptive-threshold, a-1) 0.985 0.493
Adaptive-threshold, a-2) 0.994 0.361
Adaptive-threshold, b-1) 0.991 0.518
Adaptive-threshold, b-2) 0.991 0.494
Adaptive-threshold, c-1) 0.987 0.464
Adaptive-threshold, c-2) 0.981 0.571
Adaptive-threshold, d-1) 0.988 0.563
Adaptive-threshold, d-2) 0.990 0.505

Table 5.1: Token-based HIPA A-recall and PHI-precision evaluation on
the i2b2 test set for variations a—d) for runs 1 and 2 with adaptive-
threshold rules with a high threshold pair (low = 0.9, high = 0.95).
The highest recall and the highest precision are highlighted.

Studying the difference in recall and precision between the differ-
ent variations a) to d) can give an idea of the impact that the additional
inputs, post-space characters and feature inputs, can have on the mod-
els” capability to learn the mapping between token and PHI categories
(and the safe category). Variation a), the one without any additional
inputs, does based on the two runs not appear to be able to reach a re-
call greater than 99% at the same time as a precision greater than 50%.
When the post space character input is added, in variation b), the recall
is in both runs above 99% while it seems possible to reach a precision
greater than 50% at the same time. If we however add the additional
feature input instead of the post space characters, as in variation c),
we do not see a clear indication of a result with recall above 99% and
precision greater than 50% being possible. Going from only an addi-
tional feature input to adding both additional inputs, as in going from
variation c) to variation d), seems to allow the recall to be improved,
possibly even to a higher value than 99%, while there is no large loss
in precision at the same time. In general, for variation d), a result of re-
call greater than 99% and precision greater than 55% appears possible.
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When going from variation b), which uses the post space character in-
put, to variation d), which uses both additional inputs, there does not
seem to be a significant difference in performance. In the two runs it
looks like adding feature vectors in addition to the post space character
input leads to a minor loss in recall but an improvement in precision.
Thus, the post space character input appears to improve the perfor-
mance in general while the results suggest that the additional feature
input may improve the precision. Model variation b-1) performs best
on the test data with respect to a balance between recall and precision.

This analysis of the repeated runs of training however also shows
that there is a substantial variation in performance between runs with
the same configuration. The results should therefore be interpreted
with some caution.

5.1.2 Evaluation of the Deep De-ldentifier

For the deep de-identifier, we used a threshold of 0.8, 0.9, and 0.95 and
tested all model variations during the two training runs. The results
are presented in Table 5.2.

In this table, we can see that using only the deep de-identifier in
a certain variation and run can lead to similarly high recall as in the
hybrid method. This is the case when a high threshold such as 0.95
is used. In these cases, the precision is however lower than for the
hybrid method. We can also see that using a lower threshold for what
is classified as safe can lead to high precision but it is combined with
a loss in recall. Such a recall of less than 99%, however, is too low
for our purposes. None of these variations of only using the deep de-
identifier seems to allow to have both a recall greater than 99% and a
precision of 50% and they all perform worse than the corresponding
adaptive-threshold rule ones.

5.1.3 Comparisons

In Table 5.3, we compare the result of only using a rule-based de-
identifier, with the results of only using a deep de-identifier, as well
as with the adaptive-threshold. This table also shows a comparison
with other methods.

We can see that the highest recalls were achieved by the rule-based
de-identifier, the deep de-identifier when using a high threshold, and
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Recall - HIPAA Precision — All

Only deep, th = 0.8, a-1) 0.946 0.680
Only deep, th = 0.8, a-2) 0.964 0.542
Only deep, th = 0.8, b-1) 0.971 0.713
Only deep, th = 0.8, b-2) 0.969 0.675
Only deep, th = 0.8, c-1) 0.951 0.665
Only deep, th = 0.8, c-2) 0.935 0.768
Only deep, th = 0.8, d-1) 0.964 0.740
Only deep, th = 0.8, d-2) 0.971 0.697
Only deep, th = 0.9, a-1) 0.971 0.571
Only deep, th = 0.9, a-2) 0.987 0.423
Only deep, th = 0.9, b-1) 0.983 0.568
Only deep, th = 0.9, b-2) 0.984 0.600
Only deep, th = 0.9, c-1) 0.977 0.550
Only deep, th = 0.9, c-2) 0.965 0.664
Only deep, th = 0.9, d-1) 0.980 0.643
Only deep, th = 0.9, d-2) 0.984 0.586
Only deep, th = 0.95, a-1) 0.985 0.470
Only deep, th = 0.95, a-2) 0.994 0.339
Only deep, th = 0.95, b-1) 0.991 0.498
Only deep, th = 0.95, b-2) 0.979 0.479
Only deep, th = 0.95, c-1) 0.977 0.550
Only deep, th = 0.95, c-2) 0.965 0.664
Only deep, th = 0.95, d-1) 0.973 0.551
Only deep, th = 0.95, d-2) 0.990 0.482

Table 5.2: Token-based HIPA A-recall and PHI-precision evaluation on
the i2b2 test set for variations a—d) for runs 1 and 2 only using the deep

de-identifier. The highest recall and the highest precision are high-
lighted.
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Recall - HIPAA Precision — HIPAA

ANN [12] 0.974 0.983
ANN + CRF [12] 0.978 0.979

Recall - HIPAA Precision — All
Adaptive-threshold, b-1) 0.991 0.518
Only deep, th = 0.9, b-2) 0.984 0.600
Only deep, th = 0.95, b-1) 0.991 0.498
Only rule-based 0.988 0.117

Table 5.3: Token-based HIPAA-recall, HIPAA-precision, and general-
PHI-precision evaluation on the i2b2 test set for the best adaptive-
threshold rule variation, the best deep de-identifiers, and rule-based
de-identifier compared with the artificial neural network model
(ANN) and artificial neural network model combined with a condi-
tional random field model (ANN+CRF) of Dernoncourt et al. [12]. The
highest recall and the highest precision are highlighted.
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by combining the output of the rule-based de-identifier with the deep
de-identifier’s output. The high recall of the rule-based de-identifier
was to be expected as it was designed to be very conservative. Its
precision however is with 11.7% too low to be applicable in practice.
Many of the adaptive-threshold rule variations (see Table 5.1) reached
a higher recall than the rule-based de-identifier while also achieving
a higher precision. The adaptive-threshold rule using variation b-1),
which includes an additional post-space character input but not an
additional feature input, for example, achieved a slightly higher recall
while increasing the precision up to 51.8% as compared to the rule-
based de-identifier with 11.7%. The deep de-identifier performs better
than the rule-based de-identifier both in terms of recall and precision.
We have seen that the deep de-identifier when used alone can lead to a
recall as high as achieved by the hybrid method. The precision is then
however lower than for the hybrid method.

How our results compare to the deep learning approach of Dernon-
court et al. [12] can also be seen in Table 5.3. We compare our results
using an adaptive-threshold combination rule with their results for
which they were both using an artificial neural network (ANN), which
uses an LSTM and a conditional random field layer, and a combina-
tion of this artificial neural network with an additional, independent
conditional random field model (ANN+CRF). We also added the best
only-deep de-identifiers with respect to HIPAA-recall and all-token-
precision balance (variation b-2 with th = 0.9 and b-1 with th = 0.95)
and the rule-based de-identifier to the comparison. We find that our
hybrid, inverse approach outperforms the state-of-the-art deep learn-
ing method with respect to recall but that it has a fairly low precision.
Here, we need to note that our method has to be evaluated based on
general PHI precision while Dernoncourt et al. evaluated their method
based on HIPA A-precision.

5.1.4 Results Per Category

How the adaptive-threshold-rule models perform per category when
using the threshold pair (low = 0.9, high = 0.95) is shown in Table 5.4.
Although we found that b-1) is the best model, a-2) has the highest
HIPAA-recall which can also be seen in a-2) having achieved the high-
est recall in more categories than most of the other models but a-2)
has a low precision. We expected to see an increase in recall of patient
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names when adding the additional feature input, i.e., between varia-
tion a) to c) and b) to d) but there exist no significant difference. An in-
crease in recall of dates could have been further expected when adding
the post space character input from variation a) to b) and from c) to d).
This was however not the case. For medical records, an increase in
recall can be seen between variations c) and d) but not between a) and

b).

Adaptive-threshold rule

a-1) a-2) b-1) b-2) 1) c¢2) d-1) d-2)

Date 0988 0.997 0995 0.994 0.991 0983 0.992 0.991
Patient 0946 0.977 0.968 0966 0964 0965 0.968 0.975
Med. Rec. 0.996 0.990 0.989 0.996 0.974 0.981 0.993 0.993

Age 0982 0.987 0979 0982 0.975 0956 0961 0.985
Street 0.998 0.998 1.0 0.998 1.0 0.998 1.0 1.0
Phone 1.0 1.0 1.0 1.0 1.0 0.998 1.0 1.0
City 0.997 0.997 1.0 0.994 1.0 0.997 0.997 1.0
Org. 0.891 0905 0.884 0.891 0.925 0.884 0.864 0.905
Z1P 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Device ID 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Fax 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Email 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5.4: Token-based per category recall on the i2b2 test set for vari-
ations a—d) for runs 1 and 2 with an adaptive-threshold-rule and the
threshold pair (low = 0.9, high = 0.95).

5.1.5 Example Outputs

In general, one can say that many documents did not have any missed
PHI tokens. If they contained leaked PHI, it was often only one token
that leaked, e.g., only one part of a date. Thus, the leaked informa-
tion could often be considered insufficient for re-identification. There
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were however patient names which leaked. Some of them were com-
mon words but even names which are not common words and which
were identified by the rule-based de-identifier as possible names were
missed. There were also initials of people’s names which leaked. With
regard to dates, some of the leaked PHI tokens are actually harmless
such as “s” and “of” but there were also numbers, seasons, and week-
days which leaked. The method could sometimes not recognise a date
which was included in a common date format. The method also had
problems recognising a weekday which was combined with another
letter because a white-space was missing in between. Many of the
missed “Age”-tokens were the token “s” but even numbers followed
by clear indicators such as “years” and “y 0o” were missed.

In Tables 5.5, 5.6, and 5.7, we show three sample reports which we
generated ourselves. They were designed to be similar to reports or
excerpts from reports from the i2b2 data set. The tokens marked in
blue are PHI which were correctly recalled and removed. The red to-
kens are those PHI tokens which were missed by the de-identification
method. The underlined tokens are safe tokens which were mistaken
for being PHI and therefore removed. We can see two missed PHI
which were both of the type “Patient”. One is an initial, the other one
is a first name used in a normal sentence. This last kind of mistake
appeared several times on the i2b2 test set. We can see that dates are
recalled in different formats and contexts. Some of the mistakenly re-
moved safe tokens, such as “Name” or “M” in “M.D.”, are less impor-
tant for understanding the narrative than others such as doses or the
blood pressure. Thus, although the narratives are still readable, they
are sometimes missing important information.
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Original

De-identified

Record date: 2063-05-27

JOHNS, EVA
96735682
05/27/2063

David Mason, M.D.
320 Loretto Rd,
Lebanon, KY 40033

Dear Dr. Mason:

Your patient, Eva Johns, was in the
Surgery Clinic today. As you know,
she is a 79-year-old woman with a
history of osteoporosis. She under-
went a surgery of her left foot on
Nov 20, 2062. She has done well
since the procedure. She is now
comes here complaining of pain in
the left foot. She had an x-ray to
rule out a fracture of the metatarsal
bones. She explains the discomfort
as pain and burning in the foot.

I have discussed with Eva that her
discomfort most likely is due to
PN. She also experienced this dis-
comfort on December of 2061.

If I can be of further assistance in
her care, do not hesitate to contact
me.

Sincerely,
Robert Short, MD

Record date: PHI-PHI-PHI

PHI, PHI
PHI
PHI/PHI/PHI

PHI PHI, M.D.
PHI PHI PHI,
PHI, PHI PHI

Dear Dr. PHI:

Your patient, PHI PHI, was in PHI
Surgery PHI today. As you know,
she is a PHI-year-old woman with
a history of osteoporosis. She un-
derwent a surgery of her left foot
on PHI PHI, PHI. She has done well
since the procedure. She is now
comes here complaining of pain in
the left foot. She had an x-ray to
rule out a fracture of the metatarsal
bones. She explains the discomfort
as pain and burning in the foot.

I have discussed with Eva that her
discomfort most likely is due to
PN. She also experienced this dis-
comfort on PHI of PHI.

If I can be of further assistance in
her care, do not hesitate to contact
me.

Sincerely,
PHI PHI, MD

Table 5.5: Example 1. Made-up example document intended to resem-
ble the real i2b2 data showing both the original and the de-identified
narrative. Blue tokens are correctly removed PHI tokens, underlined
tokens are those which were unnecessarily removed, and the red to-

kens are leaked PHI tokens.
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Original De-identified

Name: Sierra, Arsenio P PHI: PHI, PHI P

MRN: 35696235 MRN: PHI

Date: 07-13-49 Date: PHI-PHI-PHI
Address: 26 C Main Street, Address: PHI PHI PHI PHI,
Cincinnati, Ohio PHI, PHI

Table 5.6: Example 2. Made-up example document intended to resem-
ble the real i2b2 data showing both the original and the de-identified
narrative. Blue tokens are correctly removed PHI tokens, underlined
tokens are those which were unnecessarily removed, and the red to-
kens are leaked PHI tokens.
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Original

De-identified

Record date: 2092-02-03

Patient Name: FRIEDMAN, JIM,;
MRN: 5983265

Dictated at: 02/04/92 by LISA B.
Li, M.D.

Mr. Friedman returns with a history
of depression and chronic pain.

Medications at Transfer:
Cipramil 10 mg po qd

Actig, 200 mg p.n.

Nicotine patch 14 mcg/d q 24 hrs

Allergies: NKDA

PHYSICAL EXAMINATION:
Pulse of 80, blood pressure 156/78,
oxygen saturation 96%, and
temperature is 97.9.

FARMER, PAUL M.D.
D: 02/03/92
T:02/03/92

Record date: PHI-PHI-PHI
Patient PHI: PHI, PHI; PHI: PHI

Dictated at: PHI/PHI/PHI by PHI
PHI. PHI, M.D.

Mr. PHI returns with a history of
depression and chronic pain.

Medications at Transfer:
Cipramil PHI mg po qd
Actiq, 200 mg p.n.

Nicotine patch PHI mcg/d q PHI
hrs

Allergies: NKDA

PHYSICAL EXAMINATION:
Pulse of 80, blood pressure
156/PHI, oxygen saturation 96%,
and temperature is PHI.PHI.

PHI, PHI PHI.D.
PHI: PHI/PHI/PHI
PHI: PHI/PHI/PHI

Table 5.7: Example 3. Made-up example document intended to resem-
ble the real i2b2 data showing both the original and the de-identified
narrative. Blue tokens are correctly removed PHI tokens, underlined
tokens are those which were unnecessarily removed, and the red to-

kens are leaked PHI tokens.
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5.2 VigiBase Data Set

This section contains the presentation of the results for the VigiBase
data set. In Section 5.2.1, the general results are presented. In Sec-
tion 5.2.2, we present the results per category. In Section 5.2.3, we
give some examples of PHI which was missed by our method. In
Section 5.2.4, we present the results from the evaluation of valuable
information preserved in the de-identified VigiBase reports.

5.2.1 General Results

During the evaluation on the i2b2 validation set for model selection,
we found that d-2) performed best, which is why it was used dur-
ing the VigiBase evaluations rather than variation b-1) which achieved
the best results (highest HIPAA-recall combined with acceptable pre-
cision) on the i2b2 test data. The general results of our method on
the VigiBase test set are presented in Table 5.8. This table contains the
results for model variation d-2) after fine-tuning on the VigiBase train-
ing data for 1 or 2 epochs and for model variation d-2)’s performance
when applied without fine-tuning.

In all cases, we are using an adaptive-threshold rule with two pairs
of thresholds, (low = 0.9, high = 0.95) and (low = 0.8, high = 0.9). The
results are compared to the performance of the methods developed
during a previous Master’s thesis by Sahlstrom [54]. He used reg-
ular expression patterns (RegEx patterns), conditional random fields
(CRF), and a support vector machine (SVM) to de-identify VigiBase
data. In his project, he made multiple token annotations and evalu-
ated different recalls. He checked whether his annotation overlapped
with the gold standard annotation, if it was exactly the same or if it
covered the gold standard annotation. For our comparison we chose
his “covering-criteria” results. The precision for our method is slightly
higher as presented here on all tokens than it is on only HIPAA-tokens
since the data set also included some other PHI-categories such as ID
numbers which we correctly masked as PHI. Thus, we present the
overall PHI-precision instead of the HIPA A-precision, while Sahlstréom’s
results are based on only four categories, “Date”, “Age”, “Location”,
and “Organisation”.

We can see that Sahlstrom’s models were developed to have a high
F1 score and therefore both a high recall and a high precision. Thus, his
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Recall Precision

d-2) fine-tuned, 2 epochs, lower th 0.983 0.570
d-2) fine-tuned, 2 epochs, higher th ~ 0.990 0.455
d-2) fine-tuned, 1 epoch, lower th 0.979 0.550
d-2) fine-tuned, 1 epoch, higher th ~ 0.981 0.389

d-2) not fine-tuned, lower th 0.901 0.347
d-2) not fine-tuned, higher th 0.929 0.285
RegEx patterns [54] 0.881 0.930
CREF [54] 0.783 0.859
SVM [54] 0.889 0.905

Table 5.8: Token-based recall and precision on the VigiBase test set for
d-2) both fine-tuned and not fine-tuned using an adaptive-threshold
rule with two different threshold pairs: (low = 0.9, high = 0.95) and
(low = 0.8, high = 0.9). This is compared with the results from the
previous Master’s thesis project by Sahlstrom [54] which used regu-
lar expression patterns (RegEx patterns), a conditional random field
model (CRF), and a support vector machine (SVM). The highest recall
and precision per project are highlighted.

methods outperform our method by far with respect to precision but
with respect to recall our models are all superior. The highest recall,
99.0%), is gained by the variation that was fine-tuned for two epochs
and which was using the higher threshold pair (low = 0.9, high =
0.95).

5.2.2 Results Per Category

In the following, we describe the results of the method per PHI cate-
gory. The limited size of the VigiBase test set allows us to manually
check all PHI tokens missed by our method. As the annotations in
the gold standard were made in such a way that ages were annotated
while including the words “years” and “old” or similar in the annota-
tion, there are missed PHI tokens which include only the information
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that the person is a number of “years” old. We further found that some
missed “Organisation” PHI tokens included the word “of”, which we
decided would not increase the probability of re-identification. If we
correct the recall per category by removing these tokens from the list
of missed PHI, we get the corrected recalls as presented in Table 5.9
and Table 5.10.

2 epochs 1 epoch

low th high th low th high th

R Rnew R Rnew R Rnew R Rnew

Date 0.998 0.998 0.998 0.998 099 0.996 0.998 0.998
Age 0917 0964 0.964 0.964 0905 0.964 0905 0.964
Loc. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Org. 0.75 1.0 0.75 1.0 0.75 1.0 075 1.0

All 0983 0993 0.990 0.993 0.979 0.991 0.981 0.993

Table 5.9: Token-based per category HIPAA-recall on the VigiBase
test set for variation d-2) fine-tuned for 1 or 2 epochs and using an
adaptive-threshold rule with a lower (low = 0.8, high = 0.9) and a
higher (low = 0.9, high = 0.95) threshold pair. Here, recall is abbrevi-
ated as “R” and “R new” stands for the corrected recall.

We find that the fine-tuned model has very high recall for loca-
tions, organisations, and dates, while it performs slightly worse on
ages. It seems that learning for more than one epoch does not decrease
but might even increase the recall per category. It also increased the
overall precision as we can see in Table 5.8. Fine-tuning increases the
precision from 34.7% up to 55.0% for use of low threshold pairs and
one epoch fine-tuning and even up to 57.0% after two epochs of fine-
tuning. From the per category recall tables, we can learn that there are
more corrections of missed PHI to make when the model was not fine-
tuned on the data set. This means that the model has learned to mask
“years” and “old” after fine-tuning but it also recognises more ages
even after the recall was corrected. Thus, the model seems to learn
something about the special form of VigiBase case narratives which
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low th high th

R Rnew R Rnew

Date 0.998  0.998 1.0 1.0
Age 0333 0929 0512 0.941
Loc. 1.0 1.0 1.0 1.0
Org. 1.0 1.0 1.0 1.0

All 0901 0988 0.929 0.991

Table 5.10: Token-based per category HIPAA-recall on the VigiBase
test set for variation d-2) not fine-tuned and using an adaptive-
threshold rule with a lower, “low th” = (low = 0.8, high = 0.9), and
a higher, “high th” = (low = 0.9, high = 0.95), threshold pair. Here, re-
call is abbreviated as “R” and “R new” stands for the corrected recall.

helps to recognise ages.

A comparison between our de-identification method and the ones
using regular expressions, conditional random fields, and support vec-
tor machines is made for the per-category-recall. This comparison can
be found in Table 5.11.

We can see that our model both after fine-tuning or when used
“off-the-shelf” outperforms the regular expression, conditional ran-
dom field, and support vector machine methods with respect to re-
call. Our models are better especially with respect to locations and
organisations which the regular expressions and the conditional ran-
dom field do not recognise at all. Even the support vector machine
is not much better on these categories. It has a recall of only 22.2%
on locations and does not recall any organisations. These models do
however have a high precision on all categories: the lowest precision
on a category is 84% for dates achieved by the conditional random
field. Some of the models have a precision of 100% on the “Age” cat-
egory and the lowest overall precision is 85.9%, while our model has
an overall precision of at most 57.0% when using the mentioned com-
bination methods.
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Fine-tuned Non-fine-tuned RegEx CRF SVM

Date 0.998 1.0 0946 0.822 0.924
Age 0.964 0.941 0.800 0.833 0.889
Location 1.0 1.0 0.000 0.000 0.222
Organisation 1.0 1.0 0.000 0.000 0.000
All 0.993 0.991 0.881 0.783 0.889

Table 5.11: Token-based per category recall on the VigiBase test set
for the best fine-tuned model with an adaptive-threshold-rule with a
low threshold pair (low = 0.8, high = 0.9), for the best non-fine-tuned
model with a high threshold pair (low = 0.9, high = 0.95), and for
the models used by Sahlstrom [54]. Note that the corrected recall is
used for our models. For our model the token-based recall is given
while Sahlstrom’s models were evaluated based on the PHI annotation
instances.

5.2.3 Examples of Leaked Protected Health Informa-
tion

Here, we list the leaked PHI tokens from the VigiBase test set after
correction when using the fine-tuned variation d-2) after two epochs
and with a low threshold pair. The highlighted token is the missed
PHI token while the other tokens are the preceding and the subsequent
ones:

/s /Ay

e Age: “not”, “reported”, “At”, “4”, “years”, “ot”, “age

7

A 77 A

o Age: “was”, “experienced”, “at”, “2”, “years”, “ot”, “age”

A/ i

e Age: “reported”, “to”, “be”, “5”, “years”, “ot”, “age

) Date: //in/I’ IIFUII’ IIFUIII II7II’ 111011’ 11200311, IIA/I

For patient privacy reasons, the ages were replaced by values in the
same age group and the dates were replaced by a different date in the
same format and with only a minor change of the year.

The missed “Age”-annotation tokens are easy to detect for a hu-
man but the model might not have seen anything similar to “years of
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age” during training. The date might have gone undetected because of
the context “FU FU” which might be very different from the examples
seen during training. “FU” stands for “Follow-Up” but this abbrevia-
tion does not seem to be commonly used.

The organisation tokens which were missed were twice the token
“of” which followed the word “Hospital” and were removed by us.

5.2.4 Valuable Information for Causality Assessment

A pharmacist from the Uppsala Monitoring Centre assessed how much
valuable information was left in the de-identified VigiBase case narra-
tives. The case narratives were de-identified using the variation which
was fine-tuned for 2 epochs and which was using the lower threshold.
She found that 96% of the de-identified reports still contained some
type of valuable information. Information included was for example
the information on the reaction itself, the seriousness of the adverse
reaction, the outcome of the adverse reaction, drug names, informa-
tion on the medical history, doses, lab results, or information on the
temporal relationship of the events. The de-identified narratives did
however also miss information such as numbers for lab results, sever-
ity scales, or doses, as well as information in form of common words,
and even drug names and information on time-to-onset (e.g., “seven
days later”). However, 52% of the reports did not miss any valuable
information for causality assessment. Drug and brand names, doses,
and lab data and other measurements were the types of valuable in-
formation which were most often mistakenly removed.



Chapter 6

Discussion

The combination of a deep neural network with a rule-based method
using an adaptive-threshold combination method achieved an perfor-
mance improvement compared to the rule-based de-identifier in terms
of recall and especially in terms of precision, as we can tell from the
i2b2 test results. The hybrid method is also better than a deep de-
identifier with a similarly high threshold (0.95) with respect to preci-
sion or with respect to recall when compared to a deep de-identifier
with a lower threshold (0.9 or 0.8). This is logical since the rule-based
de-identifier is very conservative and will recall many tokens as being
possibly PHI so that we can adjust the threshold used on the deep de-
identifier to a higher value which will lead to a more secure estimation.
However, if we only use a high threshold on the deep de-identifier
without using the rule-based de-identifier we see that we recall equally
many tokens but that the precision decreases to values lower than for
the hybrid method. Using an adaptive-threshold appears logical and
gives good recall and precision. The recall is higher than the one for
the rule-based de-identifier since the rule-based de-identifier will miss
some PHI tokens when the PHI words are also common words or med-
ical terms but not in any of the known PHI dictionaries. In these cases,
the deep de-identifier can often recognise PHI by using the context
around the token.

For the different variations of the model when using the adaptive-
threshold, we could see that adding post-space characters could lead
to a sufficiently high recall, larger than 99%, while improving the preci-
sion to values above 50% which is a significant improvement from the
rule-based de-identifier and its precision of 11.7%. As we could see
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from the differences in performance for the separate runs of the same
variation, the models” performance differs per run. This is because
the learned model weights depend on their random initialisation and
the random shuffling of training examples during stochastic gradient
descent, and the convergence of the model weights to local minima
during model training. In general, there is an uncertainty about the re-
sults due to the limited amount of training data as well as the fact that
we might not have found the optimal weights yet. The convergence
time might also differ for different numbers of inputs and for differ-
ent weight initialisations, which means that we might be training too
short for some of the models if we only train for a maximum of four
epochs. We did however notice a drop in recall on the validation data
after training for more than 3 epochs in most of the cases. One further
needs to note that the thresholds were chosen to the arbitrary values
of (low = 0.8, high = 0.9) for the lower pair and (low = 0.9, high
= 0.95) for the higher pair which might work better for some mod-
els than for others and that there might even be more complex ways
to better combine the two de-identifiers. As we trained two models
we could show that there are significant differences between the runs
but looking at two runs per variation helps support the observations
described in Chapter 5.

It appears logical that adding post-space characters could improve
the performance since it allows to recognise sentence structure more
easily and since it helps to recognise specific character-symbol for-
mats. It was surprising that it did not significantly improve the re-
call of dates. In this context, one has to discuss whether adding ad-
ditional features to a deep network in general will increase its perfor-
mance or whether it will prevent it from generalising. Using a pure
feature learning approach would mean that the deep neural network
is trained with pure data to learn any possible feature on its own. Of
course, this is not simple in a natural language processing context. A
suitable input format has to be chosen. We chose to tokenise the text.
We represent the tokens by numbers which are then transformed to
embedding vectors within the network. We also represent the tokens
by a sequence of characters where each character is represented by a
number which is transformed to an embedding vector by the network.
This is of course already some kind of feature engineering. In addition
to these necessary “features” one might wish to feed the network with
more information which we know could be useful when interpreting
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natural language. One feature which can be added is a binary input
indicating whether a token in the original text is lower case, beginning
with a capital letter or fully capitalised. We also saw that the neu-
ral network might not learn to recognise an instance of a name even
though the name-token is preceded by the token “Mr.” or “Mrs.”. One
might believe that giving these additional features as input to the net-
work, the network would improve in performance. We could even
extend this to more features, e.g., all features of the rule-based de-
identifier. This however raises the question whether giving additional
input will actually help the network to learn to predict difficult cases or
whether it will prevent the network from generalising to more general
features for the tokens. Our network did not improve its performance
in terms of recall and only possibly and slightly in terms of precision
when the additional feature input was added. The network did not
show any signs of increased recall of names but possibly an increase
in precision in general. This might mean that the network classifies
fewer tokens mistakenly as PHI that it previously mistakenly classi-
fied as names. Lee et al. [32] who also used additional feature input re-
ported no improvement through non-database feature-augmentation.
They even experienced a decrease in recall on some PHI categories
when using hand-engineered features based on for example morpho-
logical features or regular expressions, at least when used in combi-
nation with features based on a known-PHI database. The authors
suggest that the reason for a drop in recall is that features engineered
by humans tend to have a higher precision than recall. They further ar-
gue that the hand-engineered features might lead to the model losing
its ability to recognise tokens which do not conform with the human-
engineered features. When adding features to the input, one thus has
to evaluate its benefits carefully. If it for example increases the recall
of patient names while decreasing the recall of other, less sensitive,
categories, this might be desirable. One might want to increase the re-
call on names even when this means that there is a drop in the recall
of organisations. The use of these additional inputs should therefore
be evaluated more carefully before a decision can be made regarding
whether they are useful or not. For this, one should look at each cate-
gory and decide what is a good trade-off between per-category recall
and overall precision for this category.

Our method improved the recall achieved by the deep learning de-
identification method by Dernoncourt et al. [12]. It does however not
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reach a precision close to the one achieved by Dernoncourt et al. This
is probably due to the fact that we do not classify using the class with
maximum probability but by checking whether a class is safe using
a threshold. This way we can improve the recall at the expense of
the precision. The higher precision of Dernoncourt et al. might be
achieved due to their use of an additional conditional random field
layer on top of the network’s softmax layer. Their classification is
based on the label returned by the conditional random field layer. One
can very well imagine that the conditional random field layer will in-
crease the recall and the precision of PHI for example in the case of
dates where often three numbers follow each other. Dernoncourt et al.
also mention ZIP codes followed by city names as an example where
certain labels are more likely to follow each other. The network could
in this case decide that the number is a date if it knew that the previous
or following token is also likely to be a date. In their ablation study,
the authors showed that they could increase the F1 score of the model
from approximately 97% to approximately 98%. Adding a conditional
random field layer to our model would be interesting but is problem-
atic since the conditional random field layer would change the output
from being a vector of probabilities to a choice of class. Our model
does however use the probabilities to make a decision about the safety
of a token. The combination method as it currently exists depends on
the probability output. One could, during future work, try to explore
the possibilities of combining a network with a conditional random
field layer with our rule-based de-identifier.

Dernoncourt et al. [12] could improve their recall to 97.8% when
using an independent conditional random field in combination with
their neural network model which also includes a conditional random
tield layer. This suggests that our method might even improve by com-
bining results not only from the rule-based and the deep de-identfier,
but also from an independent conditional random field de-identifier.
This use of a separate conditional random field model should be ex-
plored during future research.

Our method manages to remove many of the PHI-categories com-
pletely from the i2b2 test set. These categories are “Street”, “Phone”,
“City”, “ZIP”, “Device ID”, “Fax”, “Email”. Many of these follow a
certain pattern or will appear in a similar context in all records and
are therefore easy to detect. Our method performs worst on the cat-
egory “Organisation” which is probably because it is less clearly de-
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fined and can only be recognised by the appearance of certain words
such as “University” or “Association” and by the context. The per-
formance on names is also with 97.7% in the best adaptive-rule vari-
ation not enough considering the fact that these tokens might help to
directly identify a person. Fortunately, some of the missed “Person”-
PHI are only initials which will only slightly increase the probability
for re-identification of the person. There are some last names that have
leaked, mainly those which are common names but also some known
names which are not common words or medical terms. “Patient” ap-
pears to be a category which the network struggles the most not to
identify as safe with a high probability. This might also be because
names appear in many different places in the report and in different
contexts. The use of a named entity recognition method which can
be trained to recognise which tokens are persons might therefore help
improve the method. This could either be added to the rule-based
de-identifier, as an input to the deep de-identifier, or the deep de-
identifier could be pre-trained for a more general named entity recog-
nition task. It is further surprising that the method does not recognise
ages even when they are followed by “years old”. It is probably harder
to recognise numbers as PHI since many numbers are also safe. Thus,
tokens which themselves look the same, might be PHI as in an age or
are safe as in a dose or a pulse. It might be interesting to see whether
the performance of the method on ages improves if more training data
is used. Dernoncourt et al.’s method performed worst on the “Lo-
cation” PHI categories. Our hybrid, inverse approach has a recall of
100% for the locations “Street”, “City” and “ZIP”, but only 88.4% on
“Organisation” (for variation b-2). We have not evaluated the recall of
the non-HIPAA location categories. Our “Location” recall might thus
be similarly low as theirs even though it appears to be good when only
HIPAA categories are considered.

It is not possible to compare the results from our de-identification
with other inverse de-identification methods because neither Berman'’s
system [7], nor Ferrdndes et al.’s system BoB [17] were evaluated on
the 2014-i2b2 data set.

On the VigiBase data, our method performs well with respect to
recall with values of up to 99.0% and it can even reach a precision of
more than 55%. The method benefits significantly from fine-tuning the
neural network, especially in terms of precision. The case narratives
from VigiBase are different in their structure and language and they
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are shorter. Therefore, it appears logical that the method can bene-
tit from fine-tuning its weights. Fine-tuning for two epochs does not
seem to have led to any overfitting so it might be useful to try to fine-
tune the neural network for even more epochs in the future. It is in-
teresting to see how the neural network could adjust to the different
annotation scheme of the VigiBase data. The model learned to also
mask “years” and “old” in age annotations as these were annotated
in the VigiBase gold standard but not in the i2b2 data set. Fine-tuning
helped to recognise more “Age” annotations than without fine-tuning.
This is not just due to the network learning how to recognise “years”
and “old” but it must be learning something more about the structure
of the sentences or the way ages are described. The ages which were
not recognised by the network were below ten and were followed by
“years of age”. This could be due to the fact that the neural network
might not have seen similar examples during the pre-training on the
i2b2 data. The model could maybe learn how to recall these by seeing
more examples during another epoch of training or by adding syn-
thetic data of this form to the training set. It is interesting that the
performance on locations did not suffer after fine-tuning although all
locations were labelled as “City” even if they actually were streets or
other locations.

The de-identification methods which were developed by Sahlstrom
did perform significantly better with respect to precision. Our inverse
hybrid method achieved a precision of 55% on the VigiBase data while
for example the regular expression method by Sahlstrém had a preci-
sion of 93%. This is however also the case because Sahlstrém’s meth-
ods do not attempt or succeed to recognise locations and organisations
at all or do so only with a very low recall. Thus, our method outper-
forms these methods with respect to recall on all categories and on
some categories with a large difference. Our method struggles mostly
with recognising ages which might be due to the previously described
difference in formulations.

As the test set does not contain any “Name” samples, it is not rea-
sonable to make any judgement whether the method is leading to a
safe de-identification of VigiBase case narratives. Names are in par-
ticular sensitive as they can directly lead to the re-identification of the
report. In order to develop a good method, training data with more
name instances than in the current training set would be required.
Furthermore, examples with names would also need to be present in
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the test set in order to judge the performance of the de-identification
method. This does also apply to other PHI categories such as ID num-
bers and contact information. In general, more VigiBase data with
more, different PHI categories is required both to train and to test the
method.

The missed organisation annotation tokens, “of” following after
“Hospital”, could have been detected if a conditional random field in
addition to the network’s output was used. The model could thus have
recognised that the word hospital is PHI and thereby concluded that
also the following “of” is PHI. This might also have helped to recog-
nise the missed date annotation token since the model might conclude
that the date is missing the number for the date in front of the month
and the year.

One problem when transferring the model from i2b2 to VigiBase
data might be that, in the i2b2 data set, dates were shifted by several
years into the future while VigiBase reports are from the past, thus
differing in number by 50 to 100 years. This could hinder the non-
fine-tuned model from recognising dates and this could even not be
learned fully after fine-tuning for 2 epochs.

Our method was designed to remove more classes than specified
by the HIPAA standard by training the deep de-identifier to recognise
these while the rule-based de-identifier was designed for HIPAA cate-
gories only. We assume that using all classes during training will help
the deep network to better understand the text structure and to learn
better features. This was however not evaluated during our research.
It would be interesting to explore during future research whether the
deep de-identifier will perform better if the network is trained on the
binary classes “safe” and “PHI” or on hyper-classes such as “Loca-
tion” and “Person” (instead of “City”, “Street”, ..., and “Patient” and
“Doctor”). The fact that we developed the network in such a way
that it takes away more than required by HIPAA makes it however
even safer and allows for an easier application of the method to other
countries such as EU member states. The EU regulation states that all
information which could lead to the identification of the data subject
should be removed. In order to fulfil this requirement, it is likely that
many situations will require the method to remove more information
than defined in the HIPAA definition. As discussed by the authors
of the 2014-i2b2 challenge data set [60], this is especially important in
cases where the attacker could use information from several reports of
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the same patient by combining information from the different reports.
These longitudinal reports are however less common in VigiBase.

This research project which developed an inverse, hybrid method
was a first evaluation of the possibility to approach the problem of
de-identification in this inverse way and by using this kind of hybrid
method. Both the rule-based de-identifier and the deep de-identifier as
well as the combination methods have room for improvements. The
rule-based de-identifier could benefit from filtering the common word
list in order to create a common word list with unambiguous words
which are not possibly names, dates or other PHI categories, as done
by Neamatullah et al. [45]. The rule-based de-identifier could also use
a named entity recognition tool, as previously mentioned, to identify
persons and locations and other named entities. The dictionaries could
in general be improved. For example, the rule-based de-identifier cur-
rently only has a list of common names which is based on the last
names from the U.S. census. These dictionaries could however easily
be extended and improved.

The deep de-identifier could possibly be improved by training on
data which is annotated with hyper-categories of PHI or with binary
classes (safe or PHI). Adding more training data is also likely to im-
prove the results. This could be more reports of adverse drug reac-
tions from national centres or data produced by the use of data aug-
mentation techniques similar to the ones suggested by Lin et al. [35].
Even the use of a different tokeniser could potentially change the per-
formance of the method. The presented results were not based on an
extensive search of optimal optimisers and their hyperparameters due
to the limited time available. The limited time was also the reason why
we did not explore the effect of training for more epochs. All this could
be evaluated during future work.

The combination method of the model could benefit from an ex-
tensive search for the best threshold pair. It might also be useful to
combine the results of the rule-based and deep de-identifier with the
results from the regular expressions from Sahlstrom’s thesis [54]. The
impact of combining the deep de-identifier’s and the rule-based de-
identifier’s output using a machine learning technique such as deci-
sion trees' or support vector machines would also be an interesting

LA decision tree is a machine learning model in which a tree of binary questions
about the data is built which can be followed down to the leaves per data point in
order to find the class to which it belongs in the leaf of the tree.
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focus for future work.

Names are an interesting case of PHI since they tend to be repeated
several times. It might be useful to develop a method to recognise if a
word which possibly is a name is repeated several times and at least
once in combination with a salutation so that we can be confident that
it is a name.

In de-identification of medical case narratives for adverse drug re-
action research, dates as PHI play a special role. This is due to the
importance of dates in causality assessment in which the time interval
between the occurrence of certain events can be important. For ex-
ample, it can be useful to know how much time passed between the
introduction of a drug (onset) and the reported symptoms in order to
draw conclusions about the causality. This time interval is called time-
to-onset [33]. Therefore, time information should not be removed like
other PHI but should instead be replaced by an onset time and the
time-to-onset for following events [45]. This is an important task dur-
ing the future development of an inverse method which should be ap-
plicable in practice. It might even be desirable to try to use the output
of the rule-based and deep de-identifier to assign place holders other
than PHI to the PHI tokens when the method suspects what kind of
category is present. This might already be possible with this method
by using the probabilities of the PHI categories as well as the features
returned by the rule-based de-identifier. This task was however out-
side of the scope of this thesis project.

In order to get a good estimate for the level of reliability that the
method provides, one should, during future development, evaluate
the performance of the method with respect to the risk for re-identifi-
cation. This could be based on current research such as the work by
Scaiano et al. [56].

With recall on both data sets of close to or even above 99%, a very
reliable method was constructed. The qualitative analysis by an ex-
pert has further shown that the method managed to preserve a lot
of valuable information for causality assessment. Nevertheless, one
needs to consider that a recall of 99% of the HIPAA PHI tokens does
not mean that all direct identifiers (those which could be used to di-
rectly identify a person) were removed. Thus, even though a recall
close to 100% was reached one has to consider that this does not mean
that the probability for re-identification is 0. Furthermore, we need to
realise that even though there is valuable information contained, there
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is still some valuable information which is mistakenly removed. This
is probably unavoidable when we aim for an extremely high recall but
we are convinced that some improvements with respect to the preci-
sion could be made, for example by adding a conditional random field
to the method. With respect to the precision, one also has to consider
that only around 7% of the tokens in a text are PHI (a result obtained
when tokenising with the i2b2 tokeniser and when using a random
split of 90% of the training data). This means that even though a preci-
sion of only 51% appears low, this does not mean that the total amount
of mistakenly removed tokens is very large. Out of all tokens (PHI and
safe tokens) only 13.6% of the tokens were safe tokens which were mis-
takenly removed by variation a-2), which was the one with the lowest
precision.

Pre-training the method’s neural network on the i2b2 data and fine-
tuning it on VigiBase data helps to overcome the problem of limited
VigiBase training data being available. With more VigiBase training
data, we are likely to improve the results for the already considered
categories as well as achieve similarly high recall as on the i2b2 data
for categories which are not included in the VigiBase test set so far.
Thus, even though the method is not yet ready to be applied in prac-
tice, it was shown to be both very reliable and reasonably precise. Af-
ter some improvements have been made during future research using
more data from adverse drug reaction reports, the method could most
likely be used in practice. The future work could be carried out in co-
operation with national centres in order to test the method in a real life
setting.



Chapter 7

Conclusion

From the evaluations of our inverse, hybrid de-identification method
on both the 2014-i2b2 data set as well as the VigiBase data set, we can
see that it is possible to effectively de-identify case narratives in re-
ports of suspected adverse reactions. Combining both a rule-based ap-
proach with a deep-learning approach leads to an improved recall as
compared to other methods while still achieving acceptable precision.
On the 2014-i2b2 test set, our method achieves a recall of protected
health information of 99.1% and a precision of more than 51%. On the
VigiBase test set, our method could, after fine-tuning, recall more than
99% of the protected health information. The precision corresponding
to 99% recall on this data was 55% but 96% of the narratives contained
some kind of valuable information and 52% of the narratives did not
miss any valuable information at all.

With more VigiBase data containing annotations for all categories
of available protected health information and after some improvements
during future work, this method should be reliable and precise enough
to be used in practice.
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