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Abstract— In this paper we propose a method for pivoting
an object held by a parallel gripper, without requiring accurate
dynamical models or advanced hardware. Our solution uses the
motion of the robot arm for generating inertial forces to move
the object. It also controls the rotational friction at the pivoting
point by commanding a desired distance to the gripper’s fingers.
This method relies neither on fast and precise tracking systems
to obtain the position of the tool, nor on real-time and high-
frequency controllable robotic grippers to quickly adjust the
finger distance. We demonstrate the efficacy of our method by
applying it on a Baxter robot.

I. INTRODUCTION

Many tasks in robotics require object interaction and tool
use, whereby the robot picks up and grasps these in a way
that is suitable for the overall task. However, the desired
grasp may be difficult or unfeasible to achieve from the initial
position. Moreover, even when the robot can plan correctly,
the resulting grasp may be different from the desired one
due to uncertainties in the environment and imprecise motion
execution. As a consequence, the robot needs to reposition
the object to be able to execute its final task.

One common approach for repositioning uses regrasping
with pick-and-place. In this approach, the robot places the
object on a surface and plans a different grasp to pick it
up again in the desired configuration [1]. Such a method
requires a space next to the robot for the placing action and
it also needs time to execute.

Other approaches mimic the human ability to change grasp
configuration by moving the fingers precisely, exploiting the
intrinsic dexterity of the hand. These methods provide an ef-
ficient solution for in-hand regrasping. However, replicating
a human-like dexterity on a robotic hand requires a gripper
with high mechanical complexity and good coordination of
the multiple degrees of freedom to achieve an in-hand re-
grasping [2], [3]. Alternatively, the dexterity of the robot can
be enhanced by designing customized grippers specifically
for regrasping [4], but this introduces the need for a specific
kind of hardware to achieve a desired task.

Many robots have simple parallel grippers that are robust
and easy to control, but poor in intrinsic dexterity. To
compensate for this lack of degrees of freedom, and perform
in-hand manipulation with a simple gripper, a robot can
use extrinsic dexterity. This approach takes advantage of
external supports such as gravity, contact points and inertial
forces [5]–[7].

In this paper, we focus on a specific kind of repositioning
strategy, called pivoting. This strategy consists of rotating the
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Fig. 1: An example of a pivoting task in which the tool, held by a parallel
gripper, has to rotate around a pivoting point, marked in orange.

object (or the tool) between two fingers to reorient it with
a desired angle, as illustrated in Fig. 1. Pivoting is a robust
method for in-hand manipulation that allows for reorientation
along a single axis. This reorientation is enough for many
tasks, and it can also be combined with sliding actions [8]
for obtaining a wider range of repositioning.

An example of a task that requires pivoting consists of a
robot that is holding a screwdriver and needs to use it. For
most robotic manipulators, to turn a screw the screwdriver
has to be positioned close to 0◦ with respect to the gripper.
However, when picking up the screwdriver from a table, this
orientation can be unfeasible to achieve. Therefore, the tool
has to pivot within the end-effector.

Most of the proposed solutions for pivoting require both
a high-frequency control of the gripper to rapidly adjust
the finger distance (the distance between the two jaws of
the gripper), and thereby the friction, and the ability to
track the orientation of the tool while it moves at high
velocity. However, many commercial robots and grippers
do not provide a real-time or high-frequency control of the
gripper’s fingers (e.g. Baxter, Yumi). Moreover, it is difficult
to obtain a precise and robust vision-based tracking system,
especially without using a high frame-rate camera, due to
motion blur and susceptibility to changes in illumination and
the object’s appearance.

In this paper, we propose a method for the pivoting task
that also satisfies the following conditions:

• Low hardware requirements. The method requires nei-
ther a high-precision and high-frequency controllable
robotic manipulator, nor a high-speed tracking system
to determine the orientation of the tool.

• Low modeling needs. This method does not rely on
high-precision modeling; it uses a simple mathematical
model and a rough measure of the involved parameters.



Furthermore, the proposed method is suitable to be used
while the robot is performing other tasks, since it does not
pose hard constraints on the velocity of the robot’s end-
effector, but it only requires a limited set of conditions to
be satisfied.

The proposed method performs pivoting in three distinct
stages:

1) in the first stage, the gripper that is holding the tool
starts moving until it reaches a desired velocity;

2) in the second stage, the gripper stops and opens the
fingers at a desired distance, to allow the tool to rotate;

3) in the third stage, the tool rotates around the pivoting
point until in reaches the desired angle.

During the third stage, no feedback is required, as no
action to influence the motion of the tool is performed.
Consequently, the rotation of the tool is solely determined
by its initial angular velocity, by the friction at the pivoting
point and by the gravity. The initial angular velocity depends
on the gripper’s speed reached during the first stage, and the
friction at the pivoting point depends on the finger distance
reached during the second stage.

We consider the initial angular velocity and the finger
distance as the inputs of the system, and we compute the
optimal values using Q-learning.

While the lack of feedback control reduces the con-
trollability of the tool’s rotational motion, it increases the
possibility of application of our method. This allows us to
satisfy all the conditions for working with simple hardware
setups, as we do not require high-frequency control to adjust
the finger distance or high-speed tracking systems. Our
method pivots an object using open loop control to lower
the requirements on cameras used for tracking. In addition,
the gripper’s fingers are used to influence the motion of the
tool only at the beginning of the pivoting action, without
further precise readjustments. Hence, there is no need for
high-frequency control of the gripper.

II. RELATED WORK

Previous works on pivoting involve environmental con-
straints such as external contact surfaces, motions of the
robot arm that generate inertial forces to produce angular
momentum, and external forces such as gravity.

In [9], the authors propose to use a contact surface to
rotate an object between two stable poses. In this case, there
is no control on the gripping force.

On the other hand, several works on pivoting strongly
focus on controlling the force applied on the object by the
gripper’s fingers. By controlling this force it is possible
to change the torsional friction that influences the object’s
motion. In [10] the authors focus on swing-up motions and
they exploit the ability of the gripper to exert dissipative
torque on the object. The proposed solution uses an energy-
based control that pivots the object to the angle that has
the desired potential energy. They extend the discussion
in [11], in which they synthesize the approach to regrasp
an object from a lower energy angle to a higher one. In this
approach, the motion of the object is limited to the vertical

plane. Moreover, it strongly relies on fast response time in
controlling the gripper and on fast sensory feedback to track
the position of the object at every time-step.

The adaptive control solution proposed in [12] exploits the
gravity acceleration and the friction at the pivoting point.
This work has successively been extended by including
tactile sensors to measure the normal force applied by the
gripper in [13]. In this approach, the gripper does not move
and the motion of the object depends on the direction of
gravity. Therefore, it is only possible to change the object’s
configuration toward a position with lower potential energy
than the initial one. In addition, the gripper’s fingers need
to be controlled at a high frequency to adjust their distance
and the object needs to be tracked precisely during the entire
process.

These works rely on high-frequency control of the gripper
and on precise and fast sensory feedback to track the motion
of the object over time. Moreover, the motion appears to
be constrained on the vertical plane and does not take into
account possible changes of orientation of the plane of
rotation.

Unlike other methods, the one that we propose requires
neither a high-frequency real-time controllable gripper, nor
a high-speed tracking system to determine the orientation of
the tool. In fact, we want to achieve a successful pivoting
on a commercial robot, using an easily available camera
to determine the orientation of the tool with respect to
the gripper. Our method uses a low-frequency controllable
parallel gripper and only requires measurements of the angle
between the tool and the gripper when they are not moving,
working with still images. Moreover, the proposed method
is generalizable to cover variations in the plane of rotation
of the tool.

III. PROBLEM FORMULATION

This section provides a formalization of the problem and
it describes the model of the system.

The system is composed by a tool held by a parallel
gripper, which is the end-effector of a robot arm that can
be velocity controlled in 3D space.

We assume that we can approximately measure the dimen-
sions of the grasped tool and its mass, or infer them from the
available sensors. To be generally applicable to a wide range
of robots, we assume we cannot directly measure the force
applied to the tool at the pivoting point. This force influences
the torsional friction. We also assume that the coefficients
that describe this friction are unknown or highly uncertain.

Because we use modest commercial hardware, we assume
that the execution of the commands is subject to errors. In
particular, we assume errors in the finger distance execution
and in the gripper’s velocity, which are due to errors in the
robotic manipulator’s joints actuation.

A. Pivoting Task

Given a tool held by a parallel gripper with an angle θ0
with respect to the gripper itself, the goal is to rotate the tool
until it reaches the desired angle θd. More specifically, we



want to find the necessary initial velocity θ̇0 that the gripper
has to transmit to the tool and the necessary finger distance
at which the parallel gripper needs to open in order to obtain
a motion that ends at the desired final angle.

B. Sliding Friction and Deformation Model

Once the tool has started moving, the relevant forces
affecting its motion are gravity and torsional friction at the
pivoting point. The torsional friction depends on the opening
of the fingers: a wide opening gives less friction and a narrow
opening gives more friction.

When the tool is not moving, we use the Coloumb model
to describe the static friction τs as:

|τs| ≤ γfn, (1)

in which γ is the static friction coefficient and fn is the
normal force applied by the fingertips on the tool at the
pivoting point.

We use viscous and Coulomb friction [14] to model the
torsional friction τf when the tool is moving:

τf = −µθ̇ − σ sgn(θ̇)fn, (2)

where µ and σ are the viscous and Coulomb friction co-
efficients respectively, θ̇ is the angular velocity of the tool
around the pivoting point and sgn is the signum function.

Since our system cannot measure fn directly, we follow
the approach suggested in [12] and we express it as a function
of the finger distance d using a linear deformation model:

fn(t) = k(d0 − d), (3)

where k is a stiffness parameter and d0 is the distance
at which the fingers initiate contact with the tool, i.e. the
distance of zero deformation for the fingertips.

With ξ = σk, we write the overall torsional friction as:

τf = −µθ̇ − ξ sgn(θ̇)(d0 − d). (4)

To avoid numerical singularities when the tool starts
moving, or, in other words, when it initiates the switching
between the two models in Equation 1 and 4, we follow
the approach suggested in [15]: we define a small neighbor

Fig. 2: A tool that rotates around a fixed pivoting point.

|θ̇| ≤ ε (for a small ε > 0) in which the normal force on the
tool counterbalances the net torque to preserve equilibrium.

C. Dynamic Model

Our system is composed by a tool rotating around a
pivoting point, as shown in Fig. 2. The pivoting point
corresponds to the contact point between the tool and the
fingers of the robotic gripper that is holding it. Since there
is no additional force influencing the motion of the tool, its
dynamics are determined by the gravity acceleration and the
torsional friction, as:

(I +mr2)θ̈ −mgpr sin(θ) = τf , (5)

in which I is the inertia of the tool with respect to its center
of mass, m is its mass, r is the distance between its center
of mass and the pivoting point and gp is the component of
the gravity acceleration in the plane of rotation of the object.

While the tool is moving the gripper is still. Therefore, the
direction of the gravity component in the plane of rotation
remains constant.

The parallel gripper is the end effector of a robotic manip-
ulator, which can change its orientation in space. Depending
on the orientation, gp can vary between −9.8 m/s2 and
9.8 m/s2. As shown in Fig. 2, the direction of gravity
corresponds to the axis at which θ = 0. However, it is trivial
to generalize it to other situations by including the difference
in angle between these two directions.

D. Error Analysis

We assume that the actuation of the gripper’s motion
is subject to errors. More specifically, we assume that the
executed velocity will be different from the desired one, and
that the actual finger distance will also slightly differ from
the commanded one.

The error in velocity execution affects the estimate of
the initial angular velocity of the tool, which affects the
estimate of the torsional friction. We express the actual
angular velocity ˜̇

θ as:

˜̇
θ = αθ̇d, (6)

in which θ̇d is the desired angular velocity and α ≥ 0 is
a coefficient that describes the error. In particular, α < 1
describes a slower motion than the one desired and α > 1
describes a faster one. By using a friction coefficient µ̃ = µα
in Eq. 4, this error can be incorporated in the estimate of the
friction coefficients.

The error in the finger distance affects the estimate of
the normal force at the pivoting point, hence the torsional
friction. This error can be absorbed in the friction coefficient
ξ similarly to the error in the tool’s angular velocity.

This formulation compensates for errors in actuations by
translating them into error in the friction coefficients’ values.
These values are estimated in order to adapt to the behavior
of the real system.



Fig. 3: The three separate stages of the open loop pivoting. In the first stage,
the gripper and the tool move at the same velocity. In the second stage, the
gripper stops and opens the fingers. In the last stage, the tool rotates until
it reaches the desired angle.

Algorithm 1: three-stages pivoting
Input: initial estimate of µ, ξ, target angle θd, initial

angle θ
1 while |θd − θ| > δ do
2 compute optimal control action a∗

3 execute stage 1
4 execute stage 2
5 read new angle θ
6 update µ, ξ
7 end

IV. THREE-STAGES PIVOTING

We propose a method for pivoting that is composed of
three separate stages, as shown in Fig. 3. This approach
needs neither a fast and reliable tracking system nor a
high-frequency control of the gripper’s fingers, nor a highly
precise estimate of the parameters describing the friction. In
fact, these coefficients can be estimated on-line, i.e. while the
robot is manipulating the tool. Whenever these parameters
are updated, the necessary commands to achieve a desired
pivoting actions will change consequently.

A detailed description of the three stages and of the eval-
uation of the necessary control actions is presented below,
while a summary of our method is shown in Algorithm 1.

A. The Three Stages

It is necessary to control the motion of the robotic manip-
ulator that is holding the tool in order to generate the desired
motion and reach the target angle. The specific method for
determining the desired initial velocity θ̇∗0 of the tool and the
desired finger distance d∗ is explained in section IV-B.

Our method is divided into three separate stages:
1) End-effector’s velocity stage: in this stage, the gripper

holds the tool firmly, and it moves until it reaches a desired
velocity. This desired velocity is such that, as soon as the tool
starts rotating in the third stage, its initial angular velocity at
the pivoting point will be θ̇0 = θ̇∗0 , which combined with the
proper finger distance will allow the tool to reach the desired

angle. In the instant in which the tool starts moving, while
the gripper stops, its center of mass continues its motion
with the previous velocity v. Since the motion of the tool is
constrained, this velocity corresponds to an angular velocity
ω around the pivoting point. This angular velocity is:

ω =
v · r̂⊥
r

, (7)

in which r̂⊥ is the unitary vector orthogonal to the vector
that goes from the pivoting point to the tool’s center of mass
and · is the scalar product. Hence, the desired velocity v of
the gripper is the one so that ω = θ̇∗0 .

With this method, the robotic manipulator is free to move
the gripper in any direction and at any velocity, as long as
this constraint is satisfied for the successful outcome of a
pivoting action. This is useful when the pivoting action is
combined with another motion of the robot to accomplish a
higher level task. For instance, the robot can plan a trajectory
for tool use so that when the tool stops in front of the object
to interact with, it pivots to the required orientation, imposing
no additional constraints to the arm motion.

Since the synchronization between the end-effector’s stop
and the fingers’ opening is subject to errors, the velocity that
is transferred to the tool will have small alterations. However,
this error can be included in the estimation of the parameters
as shown in section III-D.

2) Finger distance stage: In this stage, the end-effector
stops and opens the fingers at a desired distance. This
distance is d∗, which corresponds to the desired torsional
friction at the pivoting point.

The friction coefficients µ and ξ may typically not be
known a priori for a new tool, and they also have to be
estimated. This estimation is run in parallel to the execution
of the pivoting task, and the desired actions can be recom-
puted accordingly whenever a change in the coefficients is
estimated. This allows us to include an adaptation of the
method using observations from the real system. Once the
estimate of these parameters improves, the robot will be
able to reliably pivot the tool to any desired angle. More
information on the parameters’ update is provided in section
IV-C.

3) Tool’s motion stage: In this stage, the tool rotates
around the pivoting point until it reaches the desired angle.
Its motion is solely determined by the actions taken in the
previous stages.

Due to the influence of gravity, it is possible that once the
tool stops it soon starts rotating in the opposite direction.
To avoid this undesired motion, which would lead the tool
in a wrong configuration, the gripper’s fingers can be closed
to firmly grasp the tool at the time in which it reaches the
desired angle. This time can be computed from the solution
of Eq. 5. It is easy to obtain a numerical solution to this
differential equation, given d = d∗ and the initial condition
θ̇0 = θ̇∗0 . Alternatively, the possible values of d can be
restricted so that the static friction, once the tool stops,
prevents successive motions due to gravity, without the need
of closing the fingers.



B. Selection of the Control Action

The formula in Eq. 5 depends on the current state of the
tool, described by θ and θ̇, and by the current finger distance
d, which influences the torsional friction τf . Since we open
the gripper at the beginning, the distance d does not vary
while the tool moves. Therefore, the differential equation
only depends on θ. It is possible to solve it numerically by
imposing a condition on the initial velocity θ̇0.

Moreover, since the tool keeps moving in the same di-
rection, it is possible to determine the value of sgn(θ̇) by
looking at the starting and desired angle. Alternatively, it
is also possible to assume this sign to always be positive
and change the reference system for the angles accordingly
every time. This allows us to avoid possible numerical
discontinuities.

Once the tool starts moving, it stops at a final angle θf .
This final angle depends on the initial velocity θ̇0 and on the
finger distance d. These two variables correspond to the first
two stages of our method. On a real setup, these variables
are limited by the robot’s joints velocities, by their precision
and by the accuracy of the gripper in adjusting the finger
distance.

While it is possible to compute the exact inputs required
to reach a desired angle given an initial one, this computation
would not provide any solution if the final angle were not
reachable in a single step. In fact, the maximum opening of
the fingers and the maximum achievable velocity impose a
limit to the maximum angle that can be reached. Moreover,
assuming low accuracy of the robot hardware, it may not
be able to reliably execute a commanded velocity at the
end-effector, and the position of the tool is also subject to
possible errors in the detection. Hence, we prefer to use a
discretization of the control variables and of the states in
order to introduce a margin of tolerance to these potential
errors.

From how we defined it, this problem is easily solvable
using Reinforcement Learning algorithms or Dynamic Pro-
gramming. This allows us to learn the best control inputs
to execute in order to obtain the desired angle, and it can
easily generalize to many initial angles at the same time.
Among the possible choices, we choose to use a Q-Learning
approach to “learn” the proper action [16], but many other
approaches will work.

The control action a to learn is composed by the initial
desired velocity and by the desired finger distance:

a = (θ̇0, d). (8)

The tool’s angle θ represents the state of the system. We use
the following reward function R:

R(θ) =
{

1 if |θ − θd| ≤ δ
0 otherwise

, (9)

in which δ represents the margin of tolerance for the goal.
The learning process is executed without interaction with

the real system. It predicts the outcome of an action in a
given state by using the model in Eq. 5. With the Q-learning’s
discount factor, the actions that are preferred are the ones that

lead the tool to the goal using a single control action, when
possible.

It is possible to learn continuous actions from a continuous
representation of spaces. However, the precision obtained
from learning continuous values for θ̇0 and d requires also
precision in the actuation of the robotic manipulator to
execute exactly those values. Moreover, we want the learning
process to be as fast as possible because we propose to use it
while the robot is currently manipulating a tool in case the
parameters are uncertain. Therefore, as already mentioned,
we use a discretization of actions and states. Given our
state and action, this discretization leads to a small number
of possible states and actions that does not slow down the
process of learning and allows the execution of the actions
to have a tolerance margin.

After the learning, given a state θ of the tool we are able
to determine an optimal action a∗ = (θ̇∗0 , d

∗). This action is
one of the best combinations of θ̇0 and d that allows the tool
to reach the desired angle. In case a new tool is grasped,
the process of learning will be repeated accordingly to new
estimate in the friction coefficients.

C. Parameters Update

Unlike the mass and length of the tool, which are easily
obtainable, the friction coefficients µ and ξ of a new tool are
unknown at the beginning. Unless some previous stage of
estimation is performed, the actions learned using default or
highly uncertain parameters will not produce any meaningful
result when executed on the robot.

We propose to update the friction coefficients while the
robot is trying to execute a pivoting task. The robot executes
the actions learned using default coefficients or using a rough
estimate of them if it is available. The outcome of these
actions is not successful, because the tool does not stop at
the desired angle. Therefore, the parameters can be adapted
to match the observed behavior.

In particular, the friction coefficients are estimated to
minimize the error:

e =

N∑
i=1

(θexp,i − θobs,i)2, (10)

in which θobs is the observed angle, i.e. the real outcome of
the action, and θexp is the expected outcome of the actions
given the known friction coefficients. This last variable can
be estimated by obtaining a numerical solution from Eq. 5,
knowing the initial angular velocity and the finger distance
from the executed action. N is the total number of attempts
to reach the desired angle executed so far.

Once the friction coefficients are estimated correctly, the
new optimal actions are able to pivot the tool to the desired
angle. Successively, by using the estimated friction coeffi-
cients, it is possible to learn how to reach different angles in
a single step, and to manipulate the tool as desired.

V. EXPERIMENTS

We performed several experiments to test our proposed
approach for pivoting.



Fig. 4: Pivoting task executed with the Baxter robot’s gripper. The first image shows the tool at an angle θ0 = 0. The three following images show the
three stages of our method: the first stage, in which the gripper and the tool are moving with the same velocity; the second stage, in which the gripper
stops once the desired velocity for the tool has been reached, and the fingers open at the desired distance; the third stage, in which the tool rotates around
the pivoting point. The last image shows the tool at the desired angle θd = 0.52 radians.

I[kg ·m2] 0.000057248
m[kg] 0.024
r[m] 0.084
d0[m] 0.0189

TABLE I: Parameters of the tool used in the experiments

First, we demonstrated the performance of the three-
stages controller, using pre-estimated values for the friction
coefficients to isolate the controller from the parameters esti-
mation. We tried to reach two different target angles from the
same initial angle by manually resetting the tool whenever
the goal was reached. Then, to show the generalization to
different orientations of the end-effector, we tried to reach
a third angle with a different orientation of the plane of
rotation. Fig. 4 shows one of these experiments.

In the second set of trials, we assessed the performance
when the system is commanded to reach an angle without
first assigning correct values to the parameters, so that our
method needs to estimate them on-line, while trying to
reposition the tool.

A. General Setup

These experiments were performed on a Baxter robot.
The parallel gripper had slightly deformable fingertips to
be able to modify and control the friction according to the
commanded finger distance.

The parameters of the tool we used are shown in table I.
The tool’s shape was rectangular. However, our method is
generalizable to different object shapes, because it depends
only on an estimate of the inertia and of the center of mass.
Moreover, it is generalizable to different materials thanks to
the on-line friction coefficients estimation.

To determine the angle of the tool with respect to the
gripper, we used an AprilTag [17] placed on the tool, and
used a Kinect 2 for detection.

For the Q-learning implementation, we used PyBrain [18].
We set an epsilon-greedy explorer for the learning. The
angle was reset to the initial one at the beginning of every
episode and whenever the tool hit the goal. Fig. 5 shows
an example of the learning for this problem when the target
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Fig. 5: The learning process as reward received per episode with the
increasing number of iterations. The target angle is set to θd = 0.52 radians.

angle was set to 0.52 radians. This learning was sufficiently
fast (an episode of 50 iterations run on average for 18 ms)
to be re-computed online in case of a re-evaluation of the
friction coefficients. Therefore, the process of estimating
these parameters can be run in parallel to the execution of
the actions and the learned actions will change according to
the updated friction coefficients.

During the first experiments, the tool was manually re-
placed in the gripper at a starting angle close to 0. Since
we placed the tool manually, the position of the pivoting
point on the tool varied slihgtly between trials, implying a
variation in the value of r. We verified that a variation of the
pivoting point within ≈ 1.0 cm does not affect the successful
outcome of the execution.

Furthermore, we observed a behavior that sometimes
affected the final outcome of an action: before stopping
completely, the tool had a small bounce due to a non-
modeled effect that would cause a small backward motion.
We assume that this motion is caused by the deformation
of the rubber material used for the fingertip. This motion is
usually negligible, but it can be compensated by closing the
fingers immediately instead of waiting for the tool to stop a
second time.

B. Performances of the Three-Stages Control

For the first experiment we set 0.52 radians (≈ 30◦) as
the target angle. The actions were learned using friction
coefficients that we had estimated beforehand as ξ = 11.976
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Fig. 6: A sample of the experiment from a neighbor of θ0 = 0 as initial state
to θd = 0.52 radians as goal state. The blue dots represent the outcome of
the experiments and the red lines delimit the margins of the tolerated goal
region.

and µ = 0.00568. These estimates were accurate enough, so
the learned actions did not need to adjust to further changes.

We set the rotational plane to be horizontal, so that the
gravity acceleration was close to 0. This allowed us to verify
that the angle at which the tool stopped was close to the
expected one, without the need of closing the fingers imme-
diately to compensate for the gravity acceleration. Moreover,
it showed that the motion of the tool was caused only by the
motion of the robot arm, therefore the influence of the gravity
acceleration is not essential for pivoting.

We set the initial angle to 0◦. The states ranged from 0
to 1.75 radians (≈ 100◦) with a resolution of 0.05 radians
(≈ 3◦). This resolution allowed us to keep a goal tolerance
that was small enough to obtain a final angle close to the
desired one but it was also sufficiently large to compensate
for small errors in the robot’s actuation. The total number of
states was 36. We set the goal tolerance δ to 0.1 radians.

The actions include both the finger distance and the initial
velocity for the tool. Given the range of the fingers from
firmly closed on the object to d0 and the approximation in
motion that we could obtain from the gripper’s actuation,
which we verified to have an accuracy of roughly 0.0005 m,
we selected the following set as possible finger distances (in
meters): {0.0171, 0.0175, 0.0179, 0.0183, 0.0187}. We lim-
ited the maximum initial velocity of the tool to 15 rad/s to
keep a high safe margin from the robot’s joint limits. We
discretized it with steps of 0.2. Thus, the overall number of
actions was 380.

Fig. 6 shows the result of our experiments. The image
shows the different outcome of the experiments in a neighbor
of the initial angle θ0 = 0. The unsuccessful experiments are
still in a range of 0.097 radians (≈ 5◦) from the target angle.
Such variation is probably due to non-modeled behaviors that
slightly affect the motion of the tool.

To show the usability of our method for different angles,
we performed an experiment with a different target angle,
θd = 0.79 radians (≈ 45◦). Since the starting angle was
always the same (θ0 = 0), we noticed that the maximum
velocity allowed for the tool was not sufficient to reach
the desired angle in one step. Therefore, we increased the
allowed velocity to 21.0 rad/s and lowered the resolution
to keep the same number of actions. We verified that this
increase in velocity was still in the range of actuation of the
robot’s joints, i.e. it would not lead to a violation of their
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Fig. 7: A sample of the experiment from a neighbor of θ0 = 0 as initial state
to θd = 0.79 radians as goal state. The blue dots represent the outcome of
the experiments and the red lines delimit the margins of the tolerated goal
region.
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Fig. 8: A sample of the experiment from a neighbor of θ0 = 0 as initial
state to θd = 0.35 radians as goal state, with gp = −1.7 m/s2. The blue
dots represent the outcome of the experiments and the red lines delimit the
margins of the tolerated goal region.

velocity limits.
We found that learning to reach this angle was more

difficult than the previous one. Therefore, we experimented
with different values of epsilon in the epsilon-greedy explorer
to find the one that would allow a faster learning. Since, as
already mentioned, the learning runs on-line while estimating
the parameters during the experiments, it is important that
this process is fast.

We performed the experiments on the real robot with the
same tool and setup. Fig. 7 shows the outcome of these
experiments. The first set of experiments is shown in the
video attachment.

The last experiment of this set of trials involved a change
in the orientation of the gripper, to show that the proposed
method generalizes to variations in the plane of rotation
of the tool. We set the end-effector’s orientation so that
gp = −1.7 m/s2. We verified that the static friction alone
was enough to keep the tool in position once it stopped at
the desired angle. This desired angle was set to θd = 0.35
radians (≈ 20◦) and the initial angle was θ0 = 0. We used the
same set of actions of the previous experiment. The results
are shown in Fig. 8.

C. Performances of the Parameters Estimation

Finally, we performed an experiment in which the initial
coefficients were not correct for the right outcome of the
learning at the beginning. The values we used were ξ = 1.0
and µ = 0.1. These values were constantly updated during
the attempts to reach the correct angle. We used pySMAC
[19] to obtain an estimate that minimizes the error between
the expected angle and the real one. We set the target angle
to θd = 0.79 radians and the initial angle to θ0 = 0. The



-1 0 1 2 3 4 5 6 7 8 9

steps

0

0.2

0.4

0.6

0.8

1

a
n

g
le

 [
ra

d
]

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05

initial angle [rad]

0.4

0.6

0.8

1

fi
n

a
l 
a

n
g

le
 [

ra
d

]

Fig. 9: The first image shows the steps before reaching the desired angle
θd = 0.79 radians from θ0 = 0. The black circles indicate the reached
angle and the red lines delimit the goal region. The second image shows
samples of trials after the parameters estimation, starting from a neighbor
of θ0 = 0. The blue dots represent the obtained angle.

position of the tool was not manually reset until the tool
reached the desired angle.

We used the same set of actions as in the previous
experiment, and we set the plane of rotation to be horizontal.
The process of reaching the desired angle took 8 steps, during
which the friction coefficients were updated using the new
observations. The goal was reached when these estimates
were ξ = 12.0131773 and µ = 0.00496152. To verify
that these values are good enough for successive in-hand
manipulations of the same tool, we repeated the experiment
of reaching the target angle from an initial angle of θ0 = 0.
This time, the angle was reached in one step. The process
of reaching the target angle during the parameters estimation
and a sample of the following experiments with the estimated
parameters are shown in Fig. 9.

VI. CONCLUSIONS AND FUTURE WORK

We proposed an approach for pivoting that allows a
robot to successfully reorient an object held by a parallel
gripper without the need for high-frequency and real-time
controllable robotic grippers. We divided our approach in
three separate stages and we used Q-learning to compute the
action to perform during the first two stages. We showed the
result of this approach by reorienting a tool to different target
angles using a Baxter robot.

As future work, we plan to include this pivoting action in
a more general task. For instance, the robotic manipulator
has a tool to use, and this tool needs to be in a particular
configuration in order to be used properly. We plan to
develop a strategy for achieving the reorientation while
performing other actions at the same time, leading to the
successful outcome of the overall task.
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