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Abstract 

Cellular biophysics deals with, among other things, transport processes within cells. This 
thesis presents two studies where mathematical models have been used to explain how 
two of  these processes occur.  

Cellular membranes separate cells from their exterior environment and also divide a 
cell into several subcellular regions. Since the 1970s lateral diffusion in these membranes 
has been studied, one the most important experimental techniques in these studies is 
fluorescence recovery after photobleach (FRAP). A mathematical model developed in this thesis 
describes how dopamine 1 receptors (D1R) diffuse in a neuronal dendritic membrane. 
Analytical and numerical methods have been used to solve the partial differential 
equations that are expressed in the model. The choice of  method depends mostly on the 
complexity of  the geometry in the model. 

Calcium ions (Ca2+) are known to be involved in several intracellular signaling 
mechanisms. One interesting concept within this field is a signaling microdomain where 
the inositol 1,4,5-triphosphate receptor (IP3R) in the endoplasmic reticulum (ER) 
membrane physically interacts with plasma membrane proteins. This microdomain has 
been shown to cause the intracellular Ca2+ level to oscillate. The second model in this 
thesis describes a signaling network involving both ER membrane bound and plasma 
membrane Ca2+ channels and pumps, among them store-operated Ca2+ (SOC) channels. 
A MATLAB® toolbox was developed to implement the signaling networks and simulate its 
properties. This model was also implemented using Virtual cell.  

The results show a high resemblance between the mathematical model and FRAP 
data in the D1R study. The model shows a distinct difference in recovery characteristics 
of  simulated FRAP experiments on whole dendrites and dendritic spines, due to 
differences in geometry. The model can also explain trapping of  D1R in dendritic spines.  

The results of  the Ca2+ signaling model show that stimulation of  IP3R can cause Ca2+ 
oscillations in the same frequency range as has been seen in experiments. The removing 
of  SOC channels from the model can alter the characteristics as well as qualitative 
appearance of  Ca2+ oscillations.  
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Sammanfattning (in Swedish) 

Cellulär biofysik behandlar bland annat transportprocesser i celler. I denna avhandling 
presenteras två studier där matematiska modeller har använts för att förklara hur två av 
dess processer uppkommer.  

Cellmembran separerar celler från deras yttre miljö och delar även upp en cell i flera 
subcellulära regioner. Sedan 1970-talet har lateral diffusion i dessa membran studerats, en 
av de viktigaste experimentella metoderna i dessa studier är fluorescence recovery after 
photobleach (FRAP). En matematisk modell utvecklad i denna avhandling beskriver hur 
dopamin 1-receptorer (D1R) diffunderar i en neural dendrits membran. Analytiska och 
numeriska metoder har använts för att lösa de partiella differentialekvationer som 
uttrycks i modellen. Valet av metod beror främst på komplexiteten hos geometrin i 
modellen.  

Kalciumjoner (Ca2+) är kända för att ingå i flera intracellulära signalmekanismer. Ett 
intressant koncept inom detta fält är en signalerande mikrodomän där  inositol 1,4,5-
trifosfatreceptorn (IP3R) i endoplasmatiska nätverksmembranet (ER-membranet) fysiskt 
interagerar med proteiner i plasmamembranet. Denna mikrodomän har visats vara orsak 
till oscillationer i den intracellulära Ca2+-nivån. Den andra modellen i denna avhandling 
beskriver ett signalerande nätverk där både Ca2+-kanaler och pumpar bundna i ER-
membranet och i plasmamembranet, däribland store-operated Ca2+(SOC)-kanaler, ingår. Ett 
MATLAB®-verktyg utvecklades för att implementera signalnätverket och simulera dess 
egenskaper. Denna modell implementerades även i Virtual cell.  

Resultaten visar en stark likhet mellan den matematiska modellen och FRAP-datat i 
D1R-studien. Modellen visar en distinkt skillnad i återhämtningsegenskaper hos 
simulerade FRAP-experiment på hela dendriter och dendritiska spines, beroende på 
skillnader i geometri. Modellen kan även förklara infångning av D1R i dendritiska spines. 

Resultaten från Ca2+-signaleringmodellen visar att stimulering av IP3R kan orsaka 
Ca2+-oscillationer inom samma frekvensområde som tidigare setts i experiment. Att ta 
bort SOC-kanaler från modellen kan ändra karaktär hos, såväl som den kvalitativa 
uppkomsten av Ca2+-oscillationer.  
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1 Introduction 

Cellular biophysics deals with cellular transport, a process which influences the 
localization of  molecules and ions within a cell.  This can involve mobility of  membrane 
proteins as well as the regulation of  concentration gradients across cellular mem-
branes [1].   

Recently investigators in our group have proposed diffusion as a mechanism for 
lateral transport of  dopamine 1-receptors within the membranes of  neurons, and as a 
way for these receptors to be trapped in dendritic spines [2].  Paper I in this thesis 
describes experimental studies using confocal microscopy and mathematical modeling to 
examine and describe the mobility of  these receptors.  The author has developed the 
mathematical model in Paper I.  This thesis describes how mathematical modeling is an 
approach to explain the process by which dopamine 1 receptors are trapped in dendritic 
spines.  The physical concepts in this study are lateral diffusion and chemical reactions 
between protein molecules.  Here analytical and numerical methods to solve reaction 
diffusion equations that describe this system are explained.   

An important cellular transport process is the maintaining of  ion concentration 
gradients across membranes.  Intracellular Ca2+ is kept at a very low level compared to 
the extracellular environment, while several intracellular compartments have higher Ca2+ 
concentration than the cytoplasm.  This makes Ca2+ an efficient messenger for intra-
cellular signaling, the process whereby signals are transduced from an extracellular 
stimulus to an intracellular activity such as gene expression [3-5].  An important type of  
Ca2+ signaling is oscillations in intracellular Ca2+ concentration which occur due to the 
concerted interplay between different transport mechanisms within a cell.  Paper II in 
this thesis examines ways to explain these mechanisms in terms of  a mathematical 
model.   

Mathematical modeling is a valuable tool, helping us to understand the mechanisms 
involved in biological systems.  This has especially been the case within the field of  Ca2+ 
dynamics.  One reason for this is that modern, experimental methods in fluorescent and 
confocal microscopy provide accurate measures of  spatiotemporal Ca2+ distribution in 
cells, making it possible to test mathematical models and biological theories.  Another 
reason for modeling Ca2+ dynamics is that the dynamics in these systems are too complex 
to explain in simple, intuitive ways.  Mathematical modeling has also been very successful 
in computational neuroscience and network models [1, 4, 6, 7].  The purpose of  this 
thesis is to explore new modeling aspects of  diffusion and binding of  receptor proteins 
in neuronal membranes and intracellular Ca2+ dynamics in renal tubular epithelial cells.   
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2 Background 

2.1 Cellular transport 
Transport of  solutes and solvents is central in biology.  Such processes take place on 
length scales ranging from nm in subcellular compartments to tens of  meters of  water 
transport from the earth to the tops of  trees.   

2.1.1 Fick’s laws of diffusion 
The most obvious mechanism governing transport on cellular scales is diffusion, the 
process that transports solvents from regions of  high concentration to regions of  low 
concentration.  The nature of  diffusion is typically irreversible, increasing the entropy of  
the system.  The flux of  solute through a given area is given by Fick’s first law of  
diffusion:  
 cD∇−=J , (2.1) 

where c∇ is the concentration gradient.  The flux vector J  is measured in mol/(m2·s), 
the SI unit of  concentration is mol/m3 or mM, and consequently the diffusion 
coefficient D is measured in m2/s [1].  Combining Fick’s first law with the continuity 
equation one obtains:  

 
t
c
∂
∂

−=⋅∇ J , (2.2) 

which states that the divergence in the flux is equal to the rate of  decrease in 
concentration.  Using Gauss’ theorem, this can be expressed as:  

 ( ) ∫∫∫∫∫∫∫∫ ∂
∂

−=⋅=⋅∇
VSV

dV
t
cddV SJJ , (2.3) 

where S is the surface of  the volume V.  This means that the total flux through the 
surface of  a given closed volume is equal to the rate of  concentration decrease in that 
given volume [1].  Combining (2.1) and (2.2) gives Fick’s second law, also known as the 
diffusion equation: 

 cD
t
c 2∇=
∂
∂ . (2.4) 

The consequences of  the equations above are illustrated in Figure 2.1. 
The physical explanation of  diffusion is that thermal energy induces random 

collisions between solute and solvent particles [8].  One can show that in the continuous 
limit, the location of  a random walking particle, undergoing the process known as 
Brownian motion, will have a probability distribution equal to the concentration given by 
the diffusion equation [1, 9].   
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Figure 2.1 The diffusive flux J, indicated by the arrows, depends on the concentration c according to 
Equation (2.1).  c is a function of the spatial coordinate x.  At extreme points in concentration 
(maxima and minima) the flux is zero.   

In real biological systems diffusion plays an important role in all kinds of  passive 
transport, such as exchange of  gases, neurotransmission and Ca2+ signaling.  The time 
scale of  diffusion over a certain distance is proportional to the square of  that distance, 
making diffusion a fast process over short length scales such as synaptic clefts, but an 
extremely slow process over longer length scales, such as neuronal axons or the whole 
human body.  As an example of  this we can note that a synaptic cleft is approximately 10 
nm in distance, this results in a 100 ns diffusion time with D = 10-9 m2/s [1, 10], while 
the same diffusion coefficient results in a 30 year diffusion time over a distance of  1 m!  
The concentration gradient is also an important driving force for transport across cellular 
membranes, and as we shall see further on in this thesis, for localization of  receptor 
proteins in neuronal membranes.   

2.1.2 Cellular membranes 
The plasma membrane is the main barrier between a living cell and its exterior 
environment.  Intracellular membranes separate organelles from the surrounding cyto-
plasmic environment in the cell.  The concept of  cellular membranes originates from the 
nineteenth century.  Charles Ernest Overton studied cellular membranes and discovered 
that there is a wide variety in permeabilities across cellular membranes for different 
substances.  Overton used this knowledge to propose that membranes are constituted of  
phospholipids and cholesterol.  Overton’s theory of  a dissolve and diffuse mechanism of  
solutes across membranes is a simple model of  membrane flux [1].  Overton also 
suggested that there must be an active transport mechanism to concentrate certain 
solutes in the intracellular environment.  Overton summarized his theory in a set of  rules 
for membrane structures [1].   

Since then one has discovered that cellular membranes are composed of  a phospho-
lipid bi-layer containing large amounts of  proteins which are involved in transporting 
ions, nutrients and other solutes.  Proteins called aquaporins transport water across 
membranes, resulting in cell volume changes [11].  One description of  the membrane 
structure is the fluid mosaic model which describes cellular membranes as phospholipid 
bi-layers containing clusters of  proteins with hydrophobic interiors [12].  Other studies 

x

c 

J
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have reformulated this picture into one where low mobility proteins can bind to different 
parts of  the cytoskeleton and lipid bi-layer.  This binding, known as  trapping, can result 
from extracellular signals [13].   

Lateral diffusion in membranes  
One of  the first studies of  lateral diffusion in cellular membranes was performed by Frye 
and Edidin in the early 1970s [14] and was one of  the main motivations of  Singer and 
Nicolson’s fluid mosaic model [12].  Frye and Edidin used immunofluorescence to study 
the mixture of  two different proteins in cellular membranes from mouse and human cell 
cultures that were fused together with the Sendai virus.  The two proteins were allowed 
to mix for 40 min and then were seen to have mixed almost completely.  This mixing was 
proven to be decreased by lowering the temperature below 15 ºC.  Also it was not 
affected by inhibitors of  protein synthesis, of  adenosine triphosphate (ATP) formation 
or of  glutamine-dependent synthetic pathways.  The diffusion coefficient was estimated 
to be [12]:  

 /sμm 005.0
2

2
2
==

t
lD , 

where l = 5 µm is the distance of  mixing and t = 40 min is the time that the proteins 
were allowed to mix.   

During the mid 1970s, a new experimental method called Fluorescence Recovery After 
Photobleach (FRAP) was developed to study the mobility of  membrane lipids [15].  In this 
method a small, fluorescent target area is bleached using strong laser light.  The bleached 
fluorophores are thereby no longer visible, but are replaced by mobile molecules from 
the surrounding area in the studied object.  The speed of  this recovery can be used to 
measure the mobility of  the fluorophores.  Axelrod et al. [15] developed a mathematical 
method to fit recovery time series to a solution of  an equation given by an expanded 
version of  Fick’s second law.   

Axelrod et al. assume that fluorescent recovery in a region where a small subregion is 
bleached follows: 

 
x
cVcD

t
c

∂
∂

−∇=
∂
∂

0
2 , (2.5) 

where D is the diffusion coefficient of  the fluorophore whose distribution is given by the 
concentration c.  V0 is the velocity of  a uniform flow of  fluorophores in the x-direction.  
Axelrod et al. provide a solution to the equation given above for a two-dimensional plane 
where a circular region with radius w is bleached initially.  According to their solution, the 
mean concentration in the bleached region is given by: 

 [ ]∑
∞

= ++

⎥
⎦

⎤
⎢
⎣

⎡
++

−
−=

0

2

0 )/21(1!
)/21(1

)/(2
exp

)()(
n D

D

F

n

tnn
tn

nt

KCtc
τ
τ

τ

, (2.6) 

where K is the “amount of  bleaching”, given as )0(TIK α≡ , with α being the rate of  
bleaching, T the amount time during which the bleaching take place, and I(0) the intensity 
of  the bleaching radiation.  Fτ  and Dτ  are  time constants of  flow and diffusion 
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respectively, defined as 0/VwF ≡τ and DwD 4/2≡τ .  Axelrod et al. suggest ways to 
estimate the diffusion or flow rate for a circular bleaching beam by:  

 
flow, of case in

diffusion, of case in

,81.0

,22.0

2/1
0

2/1

2

τ

τ
wV

wD

=

=

 

where 2/1τ  is the time at which the recovery has reached half  of  its final intensity above 
the initial level.   

FRAP was later developed to study protein mobility in excitable membranes of  
neural and muscle cells, amongst others by Poo [13].  One of  the main targets in the 
studies presented by Poo was acetylcholine (ACh) receptors.  Several studies have been 
conducted showing that the diffusion coefficient can vary between different membrane 
proteins, and ranges from immobility up to around 0.5 µm2 /s, 100 times higher than the 
diffusion coefficient first reported by Singer and Nicolson.  The recovery of  membrane 
protein fluorescence is often not complete which suggests that a fraction of  the proteins 
are immobile.  The mechanism behind this immobility is called trapping and can be of  
various origins, such as extracellular ACh receptors which are strongly concentrated close 
to nerve terminals in muscle membranes.  The nerve terminals are thought to chemically 
attract the ACh receptors [13].   

2.2 Intracellular signaling and calcium dynamics 
All eukaryotic cells respond to signals originating from chemicals in the extracellular 
environment [3, 16, 17].  These chemicals can be hormones that bind to receptors in the 
plasma membrane.  Other signaling molecules are neurotransmitters and mediators 
involved in local cell communication.  Some signaling molecules are cell permeable and 
bind to intracellular receptors [18].  The process in which extracellular signals are 
translated into the intracellular environment is called signal transduction, which involves 
second messenger molecules.  Common second messengers are ions such as Na+ or Ca2+ 

[19].  Both of  these ions are present in high extracellular and low intracellular 
concentrations [5].  In the case of  Ca2+ the intracellular concentration is around 100 nM, 
while the extracellular concentration is 10,000 times higher.  Ca2+ is also stored in 
intracellular organelles or compartments such as the endoplasmic reticulum (ER), which 
has a Ca2+ concentration several orders of  magnitude higher than the cytosol.  This 
organelle has a membrane which constitutes around half  of  the total membrane area in a 
eukaryotic cell [20].  Na+ and Ca2+ ions access the cytosol via ion channels in a process 
described as passive transport.  The process which transports these ions out of  the cell 
or Ca2+ into the ER is called active transport.   

The study of  Ca2+ dynamics has grown tremendously as a field over the past years 
due to the introduction of  effective dyes that make it possible to study these dynamics in 
real time [5].  This has also made it possible to create and test mathematical models of  
this phenomenon and increase our knowledge in the field [4].  The mechanisms involved 
in Ca2+ dynamics are Ca2+ channels in the plasma membrane and ER which can rapidly 
increase  the cytosolic Ca2+ concentration and pumps in the plasma membrane and ER 
that decrease this concentration.   
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Passive transport 
Since Overton’s rules were formulated a large number of  proteins involved in transport 
across cellular membrane have been discovered.  Many of  these transport proteins are 
gated or co-transporters that effectively make use of  concentration gradients, ligand 
binding, and electrical membrane potentials to control their permeability.   

The simplest possible model for transport across a cellular membrane is a description 
of  different permeabilities for different solutes.  This description is called the dissolve 
and diffuse-model and for a thin membrane can be summarized as: 

 ( )o
n

i
nnn ccPJ −= , (2.7) 

where Jn is the flux of  a solute n through a membrane in the outward direction, i
nc is the 

inside concentration of  that solute, o
nc  is the outside concentration of  solute n, and Pn is 

the permeability of  that solute.  The permeability is given by: 

 
d
kDP nn

n = , (2.8) 

where Dn is the diffusion coefficient of  solute n in the membrane, d is the thickness of  
the membrane, and kn is the partition coefficient, which is the ratio between the 
membrane and water solubilities of  solute n.  Equation (2.7) is basically a special case of  
Fick’s first law, with the membrane being in a steady state.  Although the dissolve and 
diffuse model is a very simple description which, while not considering modern concepts 
of  transport proteins, remains a good description of  passive transport at moderate solute 
concentrations.  However, there are many solutes that can cross the plasma membrane 
via pure diffusion; this includes gases such as O2 and CO2 as well as hydrophobic 
substances such as many anesthetic agents.   

Passive transport gated by proteins, such as ion channels, can often be described by a 
modified version of  (2.8), where Pn is replaced by an opening probability multiplied by 
the permeability of  an open channel and the number of  channels in the considered 
membrane [1, 16, 21].  Because there is a voltage across the plasma membrane, ion 
channel permeability will depend both on this voltage and the concentration gradient 
through a process called electrodiffusion.  In the case of  Ca2+ the concentration gradient 
is so high that it dominates over the effect of  voltage [4, 21], and in this thesis the 
membrane voltage will not be considered as a contributing factor in Ca2+ dynamics.   

Active transport 
Some of  the most energy consuming mechanisms in living cells are involved in 
maintaining the concentration gradients of  ions across intra- and extracellular 
membranes.  These gradients are created by transport against a concentration gradient in 
a process called active transport.  Active transport is performed by carrier proteins that 
take up free energy from one reaction to lower the entropy by increasing a concentration 
gradient.  The most common source of  free energy for active transport is the 
dephosphorylation of  adenosine-triphosphate (ATP).  The membrane proteins which are 
involved in this transport are called pumps.  Other types of  active transport take up free 
energy from concentration gradients in processes called exchange and co-transport [16].  
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Many carrier proteins exploit the Na+ gradient across the plasma membrane to actively 
transport other solutes uphill against their concentration gradient.  Examples of  this 
process, called secondary active transport, are the Na+/Ca2+ exchanger and a Na+-glucose 
cotransporter called SLGT-1 [1].  Secondary active transport does not consume ATP.   

2.2.1 Calcium channels 
Calcium channels are present in both the plasma membrane and intracellular membranes.  
They are passive transporters, often with high permeability, that are efficient because of  
the steep Ca2+ concentration gradients across these membranes.  Ca2+ channels are 
opened because of  a gating variable, which can be either a ligand or voltage across the 
membrane.  An important ligand for Ca2+ channels in the ER membrane is inositol 1,4,5-
triphosphate (IP3), which is produced in the plasma membrane from phosphatidylinositol 
biphosphate (PIP2) upon extracellular signals.  IP3 diffuses rapidly in the cytosol and 
binds to the IP3 receptor (IP3R), a ligand gated Ca2+ channel in the ER membrane, and 
thereby increases its open probability [3, 22].   

In the plasma membrane, voltage operated Ca2+ channels (VOCs) as well as other 
types of  Ca2+ channels are present.  Some of  these channels are gated by mechanisms 
that are not fully known.  Polycystin-2 is a protein present in the plasma membrane 
which is thought to be involved in Ca2+ signaling caused by mechanical stimulation [23], 
while store operated Ca2+ channels (SOC) are gated by a decrease in the Ca2+ 
concentration in the ER [24].   

Inositol 1,4,5-triphosphate receptor (IP3-receptor) 
IP3R is a large protein located in the ER membrane of  most eukaryotic cell types.  It 
functions as a Ca2+ channel with the specific ligand IP3.  This ligand is typically produced 
through G protein linked receptor signaling [3, 25].  Interestingly Ca2+ release through 
IP3R is also stimulated by Ca2+ itself  at low concentrations.  This is known as Ca2+ 
induced Ca2+ release (CICR), which works as a positive feedback mechanism.  At higher 
concentrations Ca2+ instead works as an inhibitor for Ca2+ release, resulting in negative 
feedback.  This combination of  positive and negative feedback of  Ca2+ on the IP3R has 
been described as a bell shaped response curve [26]. 

There are three subtypes of  the IP3R, known as types 1, 2 and 3 [27].  It has been 
shown that these receptors show similar basic properties but have different types of  
regulation.  IP3R types 2 and 3 in lipid bi-layers are not inhibited by Ca2+  [28, 29].  
However IP3R type 3 has been shown to be so in intact cells [30].  Knockdown of  
specific type 1 and type 3 IP3Rs have shown that these two receptor types play different 
roles in Ca2+ oscillations [31].  The study suggests that IP3R type 1 maintains Ca2+ 
oscillations while IP3R type 3 can be involved in the activation of  Ca2+ signaling as it is 
not as readily inhibited as the IP3R type 1 receptor.   

Miyakawa-Naito et al. [32] have proposed a new mechanism in gating of  the IP3R.  
Their study showed that ouabain induced Ca2+ oscillations in renal proximal tubular cells 
are not caused by an increased level of  IP3 but by a specific physical interaction between 
ouabain bound Na,K-ATPase (NKA) and IP3R.  This was shown by expressing an IP3 
sponge protein, localized to the cytosol and with a high affinity for IP3, which did not 
stop the Ca2+ oscillations.  The study also showed an increased fluorescent energy 
transfer (FRET) between ouabain bound NKA and IP3R.  This shows that there is 
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approximately a 12 nm distance between the two proteins.  A mutation in the NH2-
terminal of  NKA abolished the Ca2+ oscillations, meaning that it is a probable site for the 
protein-protein interaction.   

The complex mechanisms of  the IP3R that control the positive and negative feedback 
of  the IP3R is a well studied subject by both experimentalists and modelers [26, 28, 33-
36].  The modeling of  IP3R was thoroughly reviewed by Sneyd and Falcke  [37].  One of  
the first models was the De Young and Keizer model [34] which assumes that there are 
three independent subunits in the IP3R.  These subunits have to be in a conducting state 
to allow for Ca2+ flux.  Another model is the Mak-McBride-Foskett model that is a 
phenomenological model in which the open probability has been fitted to measured data 
from IP3R types 1 and 3 [33].  In Paper II we have compared these two models and how 
they are affected by  store-operated Ca2+ channels.   

Store operated calcium channels (SOC channels) 
Non-excitable cells often lack voltage operated Ca2+ channels, but have other means to 
let Ca2+ into the cytosol.  One such way, thought to be involved in Ca2+ oscillations, is 
through store-operated Ca2+ (SOC) channel entry.  The exact mechanism involved in this 
kind of  Ca2+ influx, as well as the identity of  SOC channels, is not known [38].  When 
Ca2+ is released from intracellular stores it is taken up by Ca2+ pumps in the ER and 
plasma membrane of  the cell.  This may cause a decrease in the total amount of  
intracellular Ca2+, which must somehow be replenished.  This was modeled by Putney 
[39] and termed capacitative Ca2+ entry (CCE).  At first it was thought that CCE took 
place through a direct link between the ER and extracellular space.  It has later been 
shown that Ca2+ stores are replenished by a relatively slow increase of  cytosolic Ca2+, 
which can be pumped into the ER [38].   

One important discovery was that of  Ca2+ release activated Ca2+ (CRAC) current, 
which was shown to be highly selective for Ca2+ compared to some other divalent 
cations.  This was done by whole-cell patch clamp measurements combined with 
ratiometric Ca2+ imaging that showed Ca2+ currents that were activated by depletion of  
the ER in mast cells.  CRAC is today considered to be one of  perhaps several SOC 
pathways [38, 40, 41].   

It is still not known how the ER communicates Ca2+ depletion to the plasma 
membrane.  At least three different qualitative explanations have been proposed [41].  
One of  these models describes vesicular transport, according to which SOC channels are 
transported in vesicles and fused into the plasma membrane.  Another model suggests 
physical interaction between the membranes of  the ER and the cell, possibly through the 
IP3R.  The third possible explanation was first presented by Randriamampita and Tsien 
[42] and includes a diffusible Ca2+ influx factor (CIF) that diffuses through the cytosol 
and activates SOC in the plasma membrane.  In Paper II we have made use of  the CIF 
explanation when modeling SOC and its impact on Ca2+ oscillations.   

Some studies suggest that that there is a physical interaction between the IP3R in the 
ER membrane and SOC channels in the plasma membrane.  Mikoshiba, Gill and 
colleagues [43] have shown that IP3R is required to activate SOC.  These studies have 
suggested that transient receptor potential (TRP) channels are functionally similar to 
SOC channels.  TRP is a large family of  Ca2+ channels, first found in Drosophila, but 
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several members of  this family have also been found in mammalian cells, amongst 
others, in human embryonic kidney cells [35, 43, 44].   

2.2.2 Calcium pumps 
The low, cytosolic Ca2+ concentration is maintained by active transporters, in non-
excitable cells mainly by ATP consuming pumps.  These pumps are found in the 
mitochondria, ER and plasma membranes.  A well understood protein for this kind of  
transport is the Sarco-Endoplasmic Reticulum Ca2+ ATPase (SERCA).  This pump 
consumes ATP and transports Ca2+ from the cytosol to the ER.  A similar pump for 
active Ca2+ transport is the plasma membrane Ca2+ ATPase (PMCA) which pumps Ca2+ 
across the plasma membrane, out of  the cell.   

There are mathematical, well-established models on how the active Ca2+ transport 
works in the ER membrane, see the modeling section.  These models are based on 
measurements of  uptake of  the radioactive isotope 45Ca2+ into vesicles prepared from 
intracellular membranes.  The PMCA and SERCA proteins have been crystallized and 
their three dimensional molecular structure is known [17, 21]. 

2.2.3 Calcium oscillations 
A high cytosolic Ca2+ concentration is toxic to a cell, especially if  this level is sustained 
for a longer period of  time.  As mentioned above, Ca2+ signaling is involved in a large 
number of  cellular processes.  Some of  these processes, such as neural activity and 
muscle contraction are triggered by single Ca2+ transients, while many complex processes 
such as gene transcription respond to oscillating Ca2+ signals.  Ca2+ oscillations can have 
periods ranging from seconds to days.  It is believed that this diversity in frequencies, as 
well as amplitudes, can be an explanation of  the large number of  mechanisms involving 
Ca2+ signaling [5, 45-48].   

The channels and pumps described above serve as ON and OFF mechanisms in Ca2+ 
signaling.  One important actor in Ca2+ oscillations is IP3 receptor (IP3R), with its 
combination of  positive and negative feedback on cytosolic Ca2+ levels.  It is clear that 
Ca2+ oscillations are driven by a system with inertia.  As we show in Paper II stimulation 
of  the IP3R can create a system where Ca2+ is released from the ER and undergoes 
reuptake by the SERCA pump in a periodic manner.   

The most common way to activate the IP3R is through phospholipase C via G 
proteins that produce IP3 and diacylglycerol from PIP2.  IP3 increases the open 
probability of  the IP3 receptor which in turn rapidly releases Ca2+ into the cytosol.  The 
rate of  Ca2+ release is at first increased through CICR, and later decreases by negative 
feedback.  At this point the OFF processes, mainly pumps in the plasma and ER 
membranes begin to dominate and cause a decrease in cytosolic Ca2+ [49].  As mentioned 
above, Miyakawa-Naito et al. [32] have shown that Ca2+ oscillations can also be caused by 
a novel mechanism involving physical interaction between the Na,K-ATPase and IP3R, 
without involving IP3.   

The large range of  frequencies at which Ca2+ oscillations occur in combination with 
the large number of  cellular processes that they are involved in make it plausible that 
these processes are sensitive to the frequency of  Ca2+ oscillations.  This is generally 
believed, but there is very little experimental evidence for this view.  One important 
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finding in this area was made by De Koninck and Schulman [50], showing that 
calmodulin-dependent protein kinase II (CaM kinase II) has an activity which is highly 
regulated by Ca2+ oscillation frequency.  CaM kinase II in turn affects synaptic plasticity 
in neurons, which is the basic principle for learning and memory, and gene transcription, 
the main process behind cell differentiation.   

2.3 Problem statement 
The aim of  this thesis is to mathematically model behavior found experimentally in living 
cells.  A necessary principle in this kind of  work is to simplify the biological system in 
such a way that only a limited number of  parameters are present.  This simplification is a 
big part of  the creation of  a model, introducing a hypothesis that can be compared with 
experimental results.  Using physical laws, a hypothesis can be formulated into a 
mathematical model, normally describing the studied system as differential equations.  
Computer simulations can numerically solve these differential equations and make it 
possible to compare hypothetical model results to actual experiments.  Hypotheses that 
may seem realistic may be excluded if  they make predictions that do not agree with the 
experimental results [21].   

Paper I shows that lateral diffusion in the cell membrane is an important mechanism 
involved in the trapping of  dopamine 1 receptors (D1R) in dendritic spines.  The method 
used to study this movement is FRAP [13, 15], where a region of  a dendrite containing a 
fluorescent construct called pD1R-venus is bleached by intense laser light [2].  The 
recovery of  fluorescence is studied and can be analyzed to measure the transport 
properties in this system.  To describe the recovery process as well as the mechanism 
behind the trapping of  D1R in spines, a mathematical model is developed in this thesis. 
Analytical and numerical methods are used in this thesis to fit the experimental data of  
the FRAP experiments to this model.   

The discovery of  Ca2+ oscillations caused by α-haemolysin [46] and ouabain [45] have 
led to questions concerning the specific mechanisms involved in this type of  oscillations.  
Experimental studies have shown that ouabain-induced oscillations are caused by a 
signaling microdomain with physical protein-protein interactions [32].  Paper II proposes 
a mathematical model with characteristics similar to these experimental results as well as 
a new model for store-operated Ca2+ entry (SOC).   
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3 Methods and modeling 

3.1 Modeling of diffusion in cells 

3.1.1 Fick’s laws in d dimensions 
In the Background of  this thesis diffusion in three dimensions is described.  Solving the 
diffusion equation in three dimensions can be a difficult problem, both analytically and 
numerically, because of  the high number of  degrees of  freedom.  In many biologically 
relevant problems the number of  dimensions can be reduced to two or even one.  When 
studying transmembrane diffusion, the concentration gradient is often one dimensional, 
in the direction normal to the membrane surface [1].  Lateral membrane diffusion is 
usually a two dimensional problem, where proteins or other substances can move in any 
of  the dimensions parallel to the membrane surface.  Let us consider a diffusion equation 
as given by (2.4) where a substance is free to move in a d-dimensional space.   

To solve a partial differential equation (PDE), like the diffusion equation, two 
principal methods exist.  When the whole space is considered Green’s functions can be 
used.  In this method the solution for a point source concentration is calculated to be:  
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where r=r  is the distance from the original point source.  The concentration of  a 
diffusing substance with an initial point source is equal to the probability distribution of  
a random walking particle.  For an arbitrary initial concentration )0,(rc the solution is 
calculated as a convolution between )0,(rc  and the Green’s function given by (3.1) [9]:  
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When a confined region of  space is considered, the Green’s function method is often 
not practical.  The boundary conditions around a confined region in space make it 
possible to solve a PDE using the product method instead.  This method reduces a PDE 
to a set of  ordinary differential equations, which together with the boundary conditions 
form a set of  eigenfunctions whose product can be shown to be a solution to the original 
PDE.  The number of  factors in the solution is equal to the number of  degrees of  
freedom in the PDE.  A sum of  an infinite number of  eigenfunctions can fulfill the 
initial conditions of  the PDE, and thus solve the problem.  This kind of  method is used 
in Paper I to solve the FRAP problem in a dendritic spine (see below).  In general the 
solution to the diffusion equation is given by: 
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where kn and f  depend on the geometry and boundary conditions of  the problem, and cn 
is a series expansion of  the initial concentration.  For one-dimensional problems )( xkf n  
is a periodic function and cn is given by the corresponding series expansion [9].   

3.1.2 Solving the theoretical FRAP problem  

Diffusion in dendrite 
In Paper I we model the dendrite as a long cylinder.  A piece of  the dendrite is bleached, 
leading to diffusion of  unbleached and bleached fluorescent molecules independently of  
each other.  To simulate the fluorescent intensity in this system we consider the 
concentration of  fluorescent material and assume that the fluorescent intensity is 
proportional to this concentration.  Because the diffusion only takes place along the 
dimension of  the symmetry axis of  the cylindrical dendrite, we can view this problem as 
one-dimensional.  If  we assume that the bleached area is centered on the origin and has a 
length of  2l, Fick’s second law can be thus written as:  

 2
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with the initial condition: 
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as shown in Figure 3.1a. This PDE can be solved analytically using Green’s functions [1, 
9] and has the solution:  
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where erfc is the complementary error function defined as: 
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The solution is shown in Figure 3.1b. 
When doing FRAP studies the mean fluorescence intensity in the bleached area as a 

function of  time is measured.  Under the assumption that fluorescence intensity is 
proportional to concentration, using the substitution 2/ lDa = , this quantity can be 
calculated as: 
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This expression could be fitted to a measured recovery curve using nonlinear least-square 
optimization.  However, the measured recovery curve is influenced by focus drift caused 
by small movements of  the dendrite.  Because the study is done in a confocal 
microscope, focus drift has a large impact on the recovery curve.  It is often not possible 
to fit the data well to the expression given by Equation (3.7).  A quantity which is less 
influenced by focus drift is the half  time of  the recovery, t1/2.  This is the time from the 
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beginning of  the recovery until the intensity has reached half  of  its final recovery value.  
This intensity is given by ( ) 2/2/1 iei IIII −+= , where Ii is the intensity after 
photobleach and Ie  is the intensity at the end of  the recovery as shown in Supporting 
Figure 9 in Paper I.  To calculate t1/2 we identify )(tc  given by (3.7) as a function of  at 
and numerically solve the equation:  
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which gives the result: 925.02/1 ≈at .  Thereby the diffusion coefficient can be calculated 
as: 
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Diffusion in spines 
A FRAP experiment in a dendritic spine can be described as diffusion in a small tube 
with a closed end, through which the flux of  fluorophores is zero.  In the other end of  
the tube is the dendrite, which is much larger than the spine, see Figure 3.2a.  The 
dendrite can thus be viewed as a non-emptying pool.  At the connection between the 
dendrite and the spine the fluorophore concentration is considered to be constantly equal 
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Figure 3.1 (a )The initial condition and (b) analytical solution for the FRAP problem of a dendrite 

as given by Equation (3.6). The parameters in the solution are D = 1 µm2/s and l = 1 
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to C0.  These two boundary conditions combined with Fick’s second law leads to a one-
dimensional diffusion problem in a confined region.  Using a series expansion that fulfills 
the boundary conditions and Equation (3.3), the solution to this problem can be written 
as:   

 ∑
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where x is the coordinate along the axis of  the spine.  The length of  the spine, and 
thereby also the bleached region, is 2l.  The solution is shown in Figure 3.2b.  When 
taking the mean concentration over the bleached area in the same way as was done above 
for the dendrite, the solution becomes: 
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Supporting Figure 8 in Paper I compares the results of  Equations (3.7) and (3.10), 
showing that the recovery in a spine is faster than in a dendrite. 

The time t1/2 can be calculated as above by numerically solving the equation: 
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The right hand side of  this equation is the first 11 terms of  the expression for the mean 
concentration divided by C0.   
This gives the result: 
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A more accurate model can be made when assuming that diffusion of  the 
fluorophore into the spine depletes the concentration of  fluorophore in the dendrite.  
This makes the problem two-dimensional and it cannot easily be solved analytically.  
Therefore COMSOL Multiphysics™ (Comsol AB, Stockholm, Sweden) has been used to 
numerically simulate this problem using a finite element method (FEM).  There is no 
exact, simple relationship between the half  time of  recovery and the diffusion coefficient 
in this model, but a first order approximation when l is near 375 nm and t1/2 is near 1 s is 
found to be:  
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where l is half  the length of  the spine.   
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Figure 3.2 The initial condition (a) and analytical solution (b) of the FRAP problem for a spine given by 

the first 11 terms in Equation (3.9).  The limited number of terms gives rise to the oscillatory 
behavior known as Gibbs phenomenon seen to the left in the picture [9].  The parameters are 
the same as in Figure 3.1.   

3.2 Trapping of dopamine 1 receptors in spines  
The trapping of  diffusing dopamine 1 receptors (D1R) by N-methyl-D-aspartate 
(NMDA) receptors can be described by a diffusion reaction equation given by Fick’s 
second law and an additional reaction term, R.  In two dimensions this reaction diffusion 
equation is given by:  
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where R is the reaction rate for a species with concentration c.  In the current model it 
has been assumed that there are two diffusing species present.  One is the D1R, having a 
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concentration c1, and the other species, with concentration c2, is D1R bound to the 
NMDA receptor.  This leads to a system of  differential equations:  
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where R1 = –R2.  This means that the reactions taking place are binding and dissociation 
between the bound and unbound states.  The model of  the reactions can be described as: 
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where ka is the binding rate and kd is the dissociation rate in the reactions.  The binding 
only takes place in the head of  the spine while the dissociation can occur everywhere in 
the cell.  cmax is the binding site concentration in the spine head.  The model has been 
simulated using a Finite Element method (FEM) in COMSOL Multiphysics where it has 
been mapped onto an analytical geometry, see Figure 3.3. 

 

Figure 3.3 The geometry of the FEM model of the spine and the dendrite.  The grey mesh shows the 
discretization used by the FEM solver.  The geometry is described by a 1 µm wide, long 
dendrite with a spine that consists of a 0.10 µm wide and 0.25 µm long tube connected to a 
circle with a radius of 0.25 µm (the spine head).  The spine head is centered at the coordinates 
(0,1 µm).  The scales on the axes are in meters. 
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3.3 Modeling of calcium signaling 
In Paper II we have created a compartmental mathematical model of  a cell.  The model 
contains a cytosolic compartment, an endoplasmic reticulum (ER) and an extracellular 
environment.  As the extracellular environment is large and has a very high Ca2+ 
concentration it can be viewed as a non-emptying source of  Ca2+.  In the model 
presented in Paper II the compartments are assumed to be well-stirred with uniform 
concentrations that are only dependent on time [1, 4, 51, 52].  The model is summarized 
in Figure 3.4. 

A more detailed way to model cellular dynamics is to construct a spatial model where 
the mixing time is limited by diffusion [53].  In this kind of  model, the concentration of  
a substance n with concentration cn is described by a modified version of  the diffusion 
equation known as the reaction diffusion equation [54]. 
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where j is the rate of  reactions that consume or produce  the substance n.  j can depend 
on a number of  different quantities such as cn, spatial coordinates or the concentration of  
other substances, for example cm.  A flux, through a membrane, between two different 
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Figure 3.4 A Summary of the Ca2+ signaling model shows three compartments that are present in the 

model. The density of Ca2+ ions represents relative differences in Ca2+ concentration. Graphics 
by Linda Westin.  
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compartments is given as a Neumann boundary condition at the location of  that 
membrane [55]: 
 nnn JzyxcD ),,(ˆ rtransportemembrane α=∇⋅n , (3.18) 

where membranen̂  is the unit vector normal to the membrane, rtransporteα  is the distribution 
of  transporters of  substance n and Jn is the flux of  that substance n through these 
transporters.  This boundary condition is a special case of  Fick’s first law given by 
equation (2.1).  A well-stirred or compartmental model can be viewed as a spatial model 
in the limit where the diffusion coefficients are considered large enough to assume that 
the time scale of  diffusion is much shorter than the time scale of  change in 
concentration by flux of  reactions.  In a well-stirred compartmental model the equations 
(3.17) and (3.18) can be summed into [1]: 
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where Amembrane/Vcompartment is the surface to volume ratio of  the compartment where cn is 
measured.  This description significantly reduces the complexity of  the problem.   

Ca2+ signaling is modeled as a combination of  ON and OFF mechanisms working 
together to create a signal.  This signal may be either a steady increase in cytosolic Ca2+ 
concentration, a transient increase, where the cytosolic Ca2+  returns to base level after 
some time or an oscillating signal [5, 47].  In a mathematical model the ON and OFF 
mechanism are described as terms contributing to the total flux of  Ca2+, +2CaJ .  The 
three compartments that have been considered in our model are the cytosol, the 
endoplasmic reticulum (ER) and the extracellular (EC) environment, each one having a 
certain Ca2+ concentration.  A compartmental model of  this system can be written as a 
system of  ordinary differential equations (ODEs).  The model which is described in 
detail in Appendix A contains eight different concentrations, and ten reactions or fluxes, 
which can be summed into a system of  ODEs using a generalized form of  equation 
(3.19) [56]: 

 Nj
S
=

dt
d , (3.20) 

where S is a column vector of  all the species in the model, N is the 8×10 stoichiometry 
matrix and j is a column vector of  all reactions of  fluxes in the model.  The rows in j that 
contain fluxes have to be multiplied by the surface to volume ratio as described by 
equation (3.19).  This has been done using the OOR toolbox, which automatically can 
calculate the matrix N, by specifying the species and reactions between them, as well as 
the volume of  each compartment present in the model.  The toolbox was made using 
MATLAB®, see Appendix A.   
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To summarize the compartmental model in Paper II: it consists of  a species vector: 
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where the first four elements are the concentrations of  Ca2+ and IP3 present in the three 
compartments of  the model.  The other four species are described below as they take 
part in the dynamics of  IP3 and the SOC channels.  The reaction vector:  

 ( )TG JjjjjjJJJJ CIFdeg SOCbindning SOC prodCIFIPSOCRIPSERCAPMCA ,,,,,,,,,
33

=j  (3.22) 

contains the ten fluxes and reaction rates that are described below.  Figure 3.4 shows a 
representation of  the species and transporters present in the model. 

In Equation (3.22) jG and jIP3
 are reaction rates involved in the negative feedback 

mechanism of  Ca2+ on the level of  IP3.  This mechanism has previously been reported 
[52, 57, 58].  In our model it has been implemented as a reaction starting at time t0 which 
produces IP3 at a rate: 
 cyt3degmax3degsignalIP ]IP[]IP[

3
IIGj −= . (3.23) 

Gsignal depends on a hypothetical substance G which is produced and degraded at a rate: 

 cytcyt
2 [G]][Ca GGG Ikj −= + , (3.24) 
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The parameters in the equations above are defined in Paper II, Table 1.   

3.3.1 Calcium channels 
Ca2+ channels are passive transporters of  Ca2+ that open and close with certain 
probabilities.   The general form of  flux through a Ca2+ channel is, as given by (2.7): 

 ( )oiCaPJ ]Ca[]Ca[ 22
Ca 22

++ −= ++ . (3.26) 

The permeability of  the channels, +2CaP , is given as a product of  the permeability of  a 
single open channel, the number of  channels in the membrane and the open probability 
of  a single channel.   
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IP3-receptors 
As described in the background of  this thesis there are several models of  IP3R.  In our 
study we have compared two different models.  Both of  these models follow the general 
expression: 

 ( )( )cyt
2
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2

ER leakRIPRIP ]Ca[]Ca[
33

++ −+= VVJ , (3.27) 

where VIP3R and Vleak ER are the permeabilities of  the IP3R by regulated flux and leak 
respectively.  The De Young and Keizer [34] model is not specific to any subtype of  IP3R 
and according to this model: 
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The parameters in this model are explained in Paper II, Table 3.   
The second IP3R model was proposed by Mak et al. [33] and is described by the 

equations:  

  [ ]
[ ] 1

inh

cyt
21

cyt
2
act

RIP

Ca
1

Ca
1

33

−+−

+ ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

K
K

vV RIP , (3.29) 
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Again, the parameters are described in Paper II, Table 3. 

SOC channels 
In Paper II we propose a phenomenological model of  SOC channel activation.  This 
model involves a diffusible Ca2+ influx factor (CIF) which is released from the ER and 
binds to a channel in the plasma membrane.  The model suggests that CIF slowly binds 
to and opens SOC channels; these channels are in turn deactivated after some time given 
by the coefficient ISOC.  The flux of  CIF across the ER membrane is controlled by the 
Ca2+ concentration in the ER lumen.  When this concentration falls below a certain value, 
CIF is released into the cytosol.  CIF is regenerated in the ER up to the level [CIF]max.  In 
Equation (3.22) JSOC is the Ca2+ flux through the SOC channels, JCIF is the flux of  CIF 
across the ER membrane, jCIF prod is the production rate of  CIF through the regeneration 
process, jSOC binding is the binding rate of  CIF to the SOC channels and jSOC deg the 
deactivation rate of  SOC channels in the plasma membrane.  These quantities are 
coupled through Equation (3.20) as described in detail in Appendix A.  The mathematical 
definition of  the Ca2+ flux through SOC is given by: 

 ( ) [ ]PMSOCSOCcyt
2

EC
2

PM leakSOCSOC SOC,]Ca[]Ca[)( vVVVJ =−+= ++ , (3.31) 

where VSOC is the SOC channels permeability.  The flux of  CIF across the ER membrane 
is given by: 
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The reaction rates involved in the regulations of  CIF and SOC channels are given by: 
 [ ] [ ]( ),CIFCIF ERmaxCIF prodCIF −= kj  (3.33) 

 [ ] [ ]PMSOCdeg SOCcytSOCbinding SOC SOC,CIF Ijkj −== .   (3.34) 

See Paper II, Table 3 for definitions of  the parameters.   

3.3.2 Calcium pumps 
The activities of  the Ca2+ pumps were implemented as in Baker et al.  [51].  The SERCA 
and PMCA activities are thus: 

 
SERCASERCA

SERCA

SERCA,2/1cyt
2

cyt
2

SERCAmax,
SERCA ]Ca[

]Ca[
nn

n

K
V

J
+

=
+

+

, (3.35) 

 
PMCAPMCA

PMCA

PMCA,2/1cyt
2

cyt
2

PMCAmax,
PMCA ]Ca[

]Ca[
nn

n

K
V

J
+

=
+

+

. (3.36) 

The parameters in these expressions are found in Paper II, Table 4.   

3.3.3 Calcium oscillation models 
To model Ca2+ oscillations the parameter [IP3]max was varied.  This corresponds to a 
varied degree of  stimulation of  the IP3R that has been shown in experimental studies in 
both experimental and modeling studies to result in Ca2+ oscillations [7, 32, 52].  In the 
present model Ca2+ oscillations were induced by increasing the [IP3]max after the resting 
time t0 which was set to 500 s.  The maximum IP3 concentration was varied in a range 
between 1 and 80 nM.  In the model, other variations that have been implemented were 
to inhibit SERCA and to remove SOC channels from the model.   

3.4 Numerical computation 
A system of  differential equations can be solved using numerical methods where the 
problem is discretized in a way where the solution can be described by a limited number 
of  values at different points in space and time [54].   

3.4.1 Compartmental models 
A compartmental model describes a cell as a system of  compartments where the 
concentration in each compartment is homogeneous at all times.  As the concentration 
of  species in the compartments varies in time, but is independent of  space, this system 
can be modeled using ordinary differential equations (ODEs) [54].   

As described in Appendix A, the system of  ODEs was coupled and solved using the 
Matlab® ode15s function [59, 60].  This is a variable order, multistep solver that uses 
numerical differentiation formulas.  It can handle stiff  problems where the problem 
contains several different time scales [61].  Physically, the short time scale corresponds to 
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sudden opening of  Ca2+ channels and the long time scale to the time at which the cell is 
in nearly steady state.   

3.4.2 Spatial models 
A computational tool that is specialized in solving a system of  reaction diffusion 
equations is Virtual Cell [54, 62].  By using this program, the Ca2+ signaling model 
described by Equations (3.23)–(3.36) was entered and coupled according to Equations 
(3.17)–(3.18).  A geometry based on data from an image of  a COS-7 cell taken by a 
confocal microscope was added to the model, see Section 4.2.2.  This resulted in a system 
of  PDEs which was solved using simulations based on the finite volume method.  Using 
this method, the geometry is discretized into two or three dimensional rectangular spaces, 
or volume elements.  Within each element, the change of  concentration of  a species is 
the sum of  flux and production through reactions in this element.  Virtual Cell uses a 
constant time step to numerically integrate the resulting equations [54, 55].   

3.5 Experimental verification by fluorescence microscopy 
Fluorescent microscopy is a powerful and sensitive technique for real time live cell 
measurements.  Using this method images of  cells are recorded by using short 
wavelength excitation light and detecting longer wavelength emission light with a camera 
or photomultiplier tube (PMT).   

A special type of  fluorescent microscopes is the laser scanning confocal microscope 
in which focused laser light is used for excitation; emitted light passes a pinhole and is 
detected by a PMT.  This makes it possible to resolve images in three dimensions.  The 
spatial resolution of  a fluorescent microscope is ideally given by the diffraction limit and 
is approximately equal to half  the wavelength of  the emission light.   

3.5.1 Fluorescence recovery after photobleach 
Fluorescence recovery after photobleach (FRAP) is a method using confocal microscopy 
to bleach a limited area in the sample.  Using this method, the influx of  unbleached 
fluorescent material, known as fluorescence recovery, is studied.  In Paper I FRAP has 
been used to study the movement of  dopamine 1 receptors (D1R) in dendrites.  Neurons 
in organotypic striatal cultures were transfected with the fluorescent protein Venus 
tagged to D1R.  An approximately 10 µm long region of  the dendrite in a transfected 
neuron was bleached and the images of  the recovery were collected for 5 min by 
recording a frame every 5 s [2, 63, 64].  Figure 3.5 shows the principle of  a confocal 
microscope.   
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The fluorescent signal from the area that had previously been bleached was averaged 
in each frame and plotted as a function of  time.  The resulting data is known as the 
recovery curve and was compared to the theoretical values given by Equation (3.7) as 
described in Section 3.1.2.  From recovery curves resembling the theoretical model the 
diffusion coefficient was calculated using Equation (3.8).   

3.5.2 Ratiometric measurements of intracellular calcium 
Using fluorescent dyes such as Fura-2, intracellular Ca2+ concentrations can be measured.  
This is done by measuring the ratio of  fluorescent intensity at two different excitation 
wavelengths.  In Paper II cells were incubated with Fura-2.  During measurements, each 
image was recorded by exciting in turn using 340 and 380 nm UV light.  The images were 
detected by a Charge Coupled Device (CCD) camera at 510 nm.  The absolute 
intracellular, time dependent Ca2+ concentration in such a recording can be calculated by: 

 [ ]
s

D F
F

tRR
RtRK 0

max

min2

)(
)(Ca ⋅
−
−

=+ , (3.37) 
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Dichroic beam splitter
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2l Detecor

Figure 3.5 This principal drawing of a confocal microscope shows how a laser is focused onto the 
fluorescent specimen. The short wavelength excitation light is reflected by the beam splitter 
and focused onto the specimen. In focus emission light (solid line) follows the same path 
through the objective but passes the beam splitter and is focused onto the pinhole aperture. 
Out of focus emission light (dashed line) will not pass the pinhole aperture and will therefore 
not be detected. 
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where R(t) is the intensity of  an image excited by 340 nm at time t pixelwise divided by 
the image excited by 380 nm at approximately the same time; Rmin and Rmax are the same 
ratios calculated at minimum and saturated intracellular Ca2+ concentrations.  F0 and Fs 
are the intensities of  images excited by 380 nm at minimum and saturated Ca2+ 
concentrations; KD is the dissociation constant of  Ca2+ and Fura-2, approximately equal 
to 225 nM [5, 46, 65].   
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4 Results 

4.1 Trapping of dopamine 1 receptors in neuronal spines 

4.1.1 The effective diffusion coefficient of D1R in dendrites 
Comparing the analytical solution of  the diffusion equation for a dendritic spine with the 
bleached region given by 2l in Equation (3.7) to experimental data shows a strong 
similarity.  Recovery curves from a number of  experiments were fitted to the equation 
using a non-linear least-square regression method by applying the MATLAB® optimization 
toolbox function lsqcurvefit, which uses the Levenberg-Marquardt algorithm to fit a 
curve to the recovery data.  The parameters that are calculated by the curve fitting are the 
diffusion coefficient, the mobile fraction of  diffusing receptors and the intensity directly 
after photobleach.  Because a large fraction of  the recovery data curves contained focus 
drift, which influences the fluorescent intensity in a way completely independent of  the 
diffusion properties of  the sample, another method based on the half  time of  recovery 
and Equation (3.8) was selected instead.  The diffusion coefficient calculated in this way 
from a large set of  recovery data was shown to be  0.80±0.13 µm2/s [2].  Figure 4.1 
shows a typical FRAP experiment on a dendrite, with a theoretical recovery curve fitted 
to the data.   

In Paper I the fluorescent recovery in a dendrite is compared to that of  a spine 
according to the model presented in Section 3.1.2.  The recovery of  fluorescence in a 
spine is more rapid than in a dendrite, especially by the end of  the recovery curve.  
Figure 4.2 shows a similar comparison, and also includes the simulated recovery from 
COMSOL Multiphysics.  As can be seen when comparing Equations (3.8), (3.12) and 
(3.13) the half  time of  recovery is shortest for the analytical model of  the spine, longer 
for the dendrite, and longest in case of  the numerically simulated 2D model of  the spine.  
By the end of  the recovery, the 2D model of  the spine gains speed compared to the 
dendrite.  This can be understood in terms of  fluorescent material being recruited from 
both directions into the bleached region.  In the spine, fluorescent material only enters 
the region from one direction, but it is not depleted outside of  the bleached region to the 
same extent as in the case of  the dendrite.  The reason for this is the difference in size 
between the comparatively large dendrite and the small spine.   
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Figure 4.1 (a) Parts of a series of images taken during a FRAP experiment on a dendrite. 0 s is the time 

directly after bleach and 112 s is the half time of recovery. The scale bar is 10 µm long. 
(b) The measured FRAP data corresponding to (a) is compared to a fitted, theoretical curve 
given by Equation (3.7). For this data set, Equation (3.8) and the half time of recovery give a 
diffusion coefficient of 0.197 µm2/s, while curve fitting results in a diffusion coefficient of 
0.277 µm2/s.  
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Figure 4.2 (a) Fluorescent recovery in a simulated spine using COMSOL Multiphysics. The color 

scale indicates concentration of fluorophores in mM. (b) The recovery curves of the two 
models of diffusion in spines. The thick line shows a recovery curve in a simulated FRAP 
experiment calculated by numerically integrating a FEM solution to the problem. The thin 
line shows an analytic solution to the one dimensional spine model. The dashed line is the 
analytical model of a dendrite with a bleached region with the same length as the spine. 
The parameters are set as D = 0.2 µm2/s and l = 0.375 µm.  
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4.1.2 Diffusion transports D1R to active spines 
The system of  combined diffusion and a reaction trapping fluorescent material as given 
by Equations (3.15) and (3.16) was simulated using COMSOL Multiphysics.  Figure 4.3 
shows a simulated FRAP experiment on a dendritic spine.  The recovery curve is 
compared to an increase of  fluorescent concentration given by the trapping reaction 
where the initial condition is homogeneous concentration.  By varying the diffusion 
coefficients, D1 and D2, the simulations show that when the bound receptor diffuses 
more slowly than the unbound, the D1R gets trapped in the spine.  If  D1 and D2 instead 
are equal, then there is no trapping in the spine; the D1R concentration is thus 
homogeneous.   
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Figure 4.3 A simulated reaction traps diffusing D1R in a spine. The images show a sequence of 
time frames following initial bleach. After 18 s, fluorescence has recovered fully. The 
trapping reaction increases the intensity further. The thick curve shows recovery after 
bleaching while the thin curve shows increase of fluorescence by the trapping reaction 
alone. The diffusion coefficients are 0.2 µm2/s for the non-trapped substance and five 
times (0.04 µm2/s ) smaller for the trapped substance. 
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4.2 The impact of store-operated calcium entry calcium 
oscillations 

In the Ca2+ signaling model in Paper II Ca2+ oscillations appear mainly as a cyclic 
exchange of  Ca2+ between the ER and cytosol.  The cause of  these oscillations is 
stimulation of  the IP3R.  In the model, this is controlled by changing the parameter 
[IP3]max.  This parameter determines the maximum IP3 concentration and can be viewed 
as the strength of  an extracellular signal.  Figure 4.4 shows the cyclic movement of  Ca2+ 
between the two intracellular regions.   

4.2.1 Comparing two models of the IP3 receptor 
The two different models of  the IP3R show strikingly different Ca2+ oscillations 
properties, see Fig. 3 and 6 in Paper II.  Mainly the DeYoung and Keizer model that is 
given by Equation (3.28) results in Ca2+ oscillations with lower amplitude, but higher 
frequency than the Mak-McBride-Foskett model of  the IP3R, given by Equations (3.29) 
and (3.30).  Also the DeYoung and Keizer model shows Ca2+ oscillations only within a 
narrow range of  IP3 concentrations, while the Mak-McBride-Foskett model results in 
Ca2+ oscillations for all IP3 concentrations above 12 nM.   

As shown in Figs. 4-6 in Paper II Store-operated Ca2+ entry (SOC) has a strong effect 
on Ca2+ oscillations.  When SOC, as given by Equations (3.31)-(3.34), is excluded from 
the model Ca2+ oscillations appear in a wider range and with other characteristics using 
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Figure 4.4 Two phase plots showing the cytosolic versus ER Ca2+, corresponding to the two traces in 

Paper II, Fig. 3. The red curve is based on the De Young and Keizer model of IP3R and 
the blue curve on the Mak-McBride-Foskett model. The oscillations appear to the left in 
the figure, seen as bounded regions where Ca2+ is exchanged cyclically between the two 
compartments. The figure clearly shows the difference in amplitude between the 
oscillations in the two models, while the period of the oscillations can not be seen. 
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the DeYoung and Keizer description compared to the same model where SOC is 
included.  The effect of  excluding SOC from the Mak-McBride-Foskett model is an 
increase in oscillation frequency above a certain level of  IP3 concentration, where the 
Ca2+ flux out of  the ER causes a depletion of  ER Ca2+ which is sufficient to activate 
SOC channels.   

4.2.2 Spatial model 
In Paper II a compartmental model of  Ca2+ signaling and oscillations is presented.  A 
similar spatial model has also been constructed using Virtual Cell.  The IP3 dynamics 
model is simplified compared to the compartmental model and does not depend on Ca2+.  
However, because IP3 is produced in the plasma membrane and degraded throughout the 
cytosol, there will be a stationary distribution of  IP3 in the cell.  In an irregular geometry 
this distribution is non uniform.  This causes stimulation of  IP3R that is different in 
different parts of  the ER membrane.  The results from this model show similar 
oscillations compared to the model in Paper II.  The oscillations in this model show 
frequencies around 1 mHz.  In the current geometry some regions of  the cytosol 
between the ER and plasma membranes are narrow causing large variation in the peak 
levels of  Ca2+ concentration within the cytosol.  Between peaks the Ca2+ concentration is 
lower and shows a smaller variation, see Figure 4.5.   

Figure 4.6a shows the distribution of  cytosolic Ca2+ concentrations over time and 
Figure 4.6b shows the distribution of  Ca2+ concentration in both ER and cytosol 
integrated over time.  To the left in the figure is a darker area showing the oscillations.  
The wide upper part of  this area represents the bursts of  Ca2+ which are much more 
distributed than the lower part representing the time in between bursts.  As in Figure 4.4 
oscillations appear as a closed curve in the lower left part of the panel.   

4.2.3 Geometry dependence 
As I have shown earlier [7], narrow regions in a geometry can strongly increase the 
amplitude of  Ca2+ transients and oscillations.  This is a result of  geometry and diffusion 
and can potentially affect reactions in the cell, such as opening of  the IP3R Ca2+ channels.   

Figure 4.5 The distribution of Ca2+ in the modeled cell shown at two points in time. The left panel 
shows the cells in between two peaks of a Ca2+ oscillation while the right panel shows a cell 
during a peak of cytosolic Ca2+ concentration. 
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Figure 4.6 (a) Cytosolic Ca2+ oscillations in the spatial model. The gray scale shows the distribution of 
cytosolic Ca2+ concentration over time. The red trace shows the mean Ca2+ concentration. 
(b) The same distribution of Ca2+ in phase space integrated over time. Dark parts of the 
diagram indicate that large portions of the cell are in a certain state. Light parts mean that 
only a small portion of the cell is in that state. The red trace shows the phase plot of the 
average Ca2+ concentration in the two compartments of the cell.  
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5 Discussion 

This thesis presents two projects where mathematical modeling has been used on cellular 
systems.  The results presented are analytical or numerical solutions to equations that can 
describe these systems according to physical laws of  diffusion and reaction rates.   

5.1 Methodological limitations 
Biological cells display a complexity which has seldom been observed  in other systems 
studied in physics.  The large number of  interactions in the system requires that any 
qualitative or quantitative description is greatly simplified.  One problem in making 
quantitative models of  biological systems is the lack of  good parameter values.  In the 
projects presented in this thesis, parameters have in many occasions been estimated so 
that steady state occurs in resting systems and that time scales are compatible with 
experimental results.  The complexity in terms of  the number of  interactions in a system 
does not necessarily make it unpredictable as the systems are often robust and 
cooperative [66].  In many cases there exist some key elements which are crucial for the 
function of  a biological system.  Identifying these elements may involve both modeling 
and experiments, calling for a ongoing dialogue between investigators in both these 
fields.   

5.2 Geometrical influence 
The models presented in this thesis work with simplified geometrical descriptions of  
biological cells and detailed analytical and numerical solutions to reaction-diffusion 
equations.  I believe that this approach is sufficient for drawing conclusions about the 
importance of  some geometrical features present in living cells.  The focus has been on 
dendrites and dendritic spines, where the former case represents an almost ideal system 
for FRAP studies when the diffusion can be assumed to occur only along one axis.  In 
the later case we have shown that the geometry can have a large influence on the 
recovery profile as seen in a FRAP experiment.  An often overlooked fact when 
measuring diffusion properties of  biological systems is the straight forward scaling law 
of  diffusion, which simply states that the time of  diffusion across a volume is 
proportional to the square of  the volume’s length scale.  I believe this to be an important 
example where basic ideas of  physics and biology can merge.   

In the Ca2+ signaling model the geometrical description showed qualitatively similar 
results as the compartmental model, however limited diffusion time results in large 
spatial variations.  It has been suggested that thermal fluctuations, as well as fluctuations 
in concentration caused simply by a low number of  particles taking part in reactions can 
be exploited by cells as a way to switch between different states [67].  As the spatial 
simulations of  Ca2+ signaling presented in this thesis show, also a deterministic model can 
have large variations in concentration if  the geometry limits diffusion in certain areas.  
The results also show that the current system is robust enough to maintain its properties, 



Jacob Kowalewski 

 34

in terms of  frequency and shape of  the Ca2+ peaks, even when there are diffusion limited 
areas.   

5.3 Conclusions and future perspectives 
The two studies presented in this thesis both deal with biologically relevant questions 
which have implications in medicine.  Mathematical modeling has been used as a tool to 
build hypotheses that can be compared to experimental results.  In both studies the 
models have resulted in quantitative descriptions of  biological systems where the 
influence of  certain parameters can be studied in more detail than was previously 
possible.   

As we have pointed out earlier [2], diffusion can describe the movement of  dopamine 
1 receptors in dendrites.  This study shows that diffusion and trapping reactions fit well 
to the FRAP experiments that have been performed in Paper I.  The numerical 
simulations described in this thesis show how different geometries can affect the 
fluorescent recovery and that geometrically constrained reactions can trap diffusing 
receptors in dendritic spines.   

Ca2+ signaling and oscillations can be described as a system of  contributing channels 
and pumps leading to slow oscillations in intracellular Ca2+, similar to those observed in 
experiments.  A contributing factor in the oscillating patterns is store-operated Ca2+ entry, 
which affects both qualitative occurrence of  oscillations and their characteristics in terms 
of  frequency and amplitude.  The system behaves qualitatively similar both when 
described as a well-stirred compartmental model and as a spatial reaction-diffusion 
model.   

The modeling tools developed during the work on this thesis focus on the spatial and 
geometrical aspects of  cellular biophysics.  An area not covered by this thesis, where 
spatial distribution is of  importance, is the role of  astrocytes in the brain where 
substances are transported between intra- and extracellular spaces across several spatial 
and temporal scales.  The characteristics of  mathematical modeling are detailed 
descriptions of  dynamic processes.  As data from biological experiments increase in 
resolution and detail, the hypotheses driving the research will have to shift into a more 
mathematical description.   
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Appendix A: Object Oriented Reaction toolbox 
documentation 

Object Oriented Reaction toolbox (OOR toolbox) is a MATLAB® toolbox for creating and 
simulating chemical reactions involving one or more compartments.  Models are built up 
by species localized in compartments.  Reactions connect the species by describing them 
as reactants, product or catalysts.  OOR toolbox is fully integrated, and created in 
MATLAB®, making it possible to automate changing of  model properties such as reaction 
pathways and parameter values from a MATLAB® script or the command line interface.  
The structure of  models built in OOR toolbox is similar to the structure of  The Systems 
Biology Markup Language (SBML) [1, 2].  OOR toolbox uses MATLAB® m-functions, as well 
as anonymous and inline functions, to define rules.  This makes it possible to construct 
more general models than are easily created using SBML.  At this time OOR toolbox is not 
compatible with SBML.  The interested reader may see the SBML toolbox for MATLAB® 
[3] which can import, manipulate and simulate SBML models in MATLAB®.   

A model is created in OOR toolbox using the object oriented command line interface 
in MATLAB®.  A model is an object containing several other objects such as 
compartments, species, and reactions.  These objects are created and combined using 
special m-functions called methods.  A method is a function working on an object.  
Methods are defined for a certain class, a type definition and description of  that type  of  
objects [4].   

A.1 Object structure 
The classes in OOR toolbox are model, comp (compartment), species, reaction, 
transport (a subtype of  reaction), and speciesref (reference to a species object). The 
transport object works similarly to flux reactions in Virtual Cell [5].  Each class has 
methods which can be called from within MATLAB® as long as the OOR directory is in 
the search path.  Observe:  The class directories do not have to be added to the search 
path.  A special method is the constructor which has the same name as the class; it is 
used to define a new object of  that class.   

The most fundamental object in OOR toolbox is a model.  In most cases modeling in 
OOR toolbox begins with a call to the model constructor.  Other objects such as 
compartments, species and reactions are added to a model using the add method, see 
below.  The model object contains all other objects used in the calculation.  Species and 
reactions added to a model are automatically numbered and can be referred to by 
number.  Compartments are not number, and are only possible to refer to by name.  
Species can be referred to either by number or hierarchically in the form 
model.compartment.species.  Reactions describe dynamical properties of  the model 
and connect species by containing references to them either as reactants, products or 
catalysts.  Reactions contain function handles or inline objects that express the rate of  
conversion from reactants to products as a function of  the concentration of  each species 
referred to by the reaction object.  Reaction rates can also depend on a number of  
parameters contained in the model.  The structure of  an OOR toolbox model follows 
similar principles as those described by the SBML definition [2].   
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A.1.1 Simulations 
A model can in principle describe different kinds of  dynamics, not necessarily by 
compartmental models and ordinary differential equations (ODEs). OOR toolbox takes 
advantage of  the flexible type definitions in MATLAB® so that a species concentration can 
be either a scalar, to express its initial amount, a vector, to express a time series, or an 
array of  any number of  dimensions to express e.g. a spatial dependence. Presently the 
only implemented kind of  simulation is an interface to MATLAB®’s ODE solvers. This 
interface is the odesim method in the model class. It simulates the dynamics of  a model 
expressing it as a system of  ODEs, see below.  The output of  odesim is a new model 
object containing the same species and reaction objects as before but with species 
concentrations replaced by the times series corresponding to the numerical solution to 
the system of  ODEs.   

A.2 Class definitions 

A.1.2 Model class 

Constructor 

model(mod)  
constructs a new empty model object or uses the persistent one if it exists. If the 
argument mod is specified, the new model is a copy. 

Methods 

add(mod,comp)  
adds a compartment to a model mod. 

add(mod,spec)  
adds a species spec to a model mod. The species spec is added to its compartment. If 
it has not yet been assigned a number, this function does that. An already numbered 
spec replaces an old species with that number. A species with a name and 
compartment already present in mod replaces the old species with the same name and 
compartment.  

add(mod,reaction)  
adds a reaction to a model. 

add(mod,params) 
adds parameters to mod contained in the structure params. 

str = char(mod)  
converts mod to string str containg detailed information about the model. 

N = getcouplings(mod)  
returns the couplings matrix of the model mod. It differs from the stoichiometry 
matrix in the way that it includes information on compartment sizes in transport 
reactions. 
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spec = getspecies(mod,n)  
gets species from a model. Returns species n (1 or more if  n is non-scalar) from the 
model. If  n is not assigned, all species are returned. 

N = getstoich(mod) 
returns the stoichiometry matrix of the model mod. The size of N is (the number of 
species) × (the number of reactions) in mod. 

odesim(mod,time,odesolver) 
simulates a model during the time span time, using odesolver. If time is scalar and 
time is within the time span of mod.time, a model which is equal to mod at a time 
close to time will be returned. If odesolver is not specified ode15s is selected. 

h = plot(mod,x,varargin) 
plots species concentrations or flux rates in a model. x is either a species, a flux or the 
string 'time'. The following arguments can be species, species references, or 
reactions.  The returned value h is a handle to graphics objects as in the built in plot 
function. If x is not specified, all concentrations will be plotted as functions of time.  

x = subsref(A,s) 
returns a species object when called as A.<compartmentname>.<speciesname>. 
Called as A.<compartmentname> this method returns a compartment object. In 
other cases this method returns any field from a model A.  E.g. A.params returns a 
structure of parameters and A.time returns the time vector of A.   

A.1.3 Compartment class 

Constructor 

comp(name,size,outside,dim,varargin) 
defines a new comp object.  name is a string, size is a number, and dim is an integer 
describing the number of dimension of the new compartment.  

Methods 

addspec(c,spec)  
adds a species to a compartment. The species spec is added to c. This method is 
mainly used by the add(species) method in the model class.   

str = char(c)  
returns the name of c. 

setspecies(c,spec)  
sets the species reference  vector of a compartment to spec. 

A.1.4 Species class 

Constructor 

species(name,comp,conc,charge,unit,varargin)  
defines a species object. A species has a name, a compartment, a concentration, a 
charge and a concentration unit. To have the same species in several compartments, a 
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list of compartments can be given with corresponding concentrations. The name is 
compulsory, the rest can be set to default values.  

Methods 

str = char(s,format) 
converts the species s to a charater string str. If the concentration is an array it will 
be displayed as the size and type of data. format can be one of 'long', 'short' 
'context' and 'conc'. 'long' is the default. 

display(s) 
 prints char(s) in the command window. 

n = getnumber(spec) 
 returns the numbers of spec as a vector. 

[mtimes] specref = n*species 
returns a speciesref  specref where the stoichiometry is multiplied by n. 

[plus] specref = s1 +s2  
creates a speciesref merged from spec1 and spec2. Equal references are summed. 
This is a kind of algebraic sum intended for stoichiometry modeling. 

setconc(s,c) 
sets the concentration of a species s to c. 

setnumber(s,n) 
sets the number of a species s to n. 

A.1.5 Species reference class 

Constructor 

speciesref(s,n)  
constructs a speciesref object. s can be a species vector, speciesref or a N×2 
matrix containing species numbers in the first and stoichiometries in the second 
column. The stoichiometry vector n is set to 1 by default and may be excluded.  

Methods 

str = char(s,format,mod)  
converts s to string str using format.  See also species/char. 

[mtimes] specref = n*spesref  
creates a species reference where the stoichiometry is multiplied by n.  

[plus] specref = specref1 + specref2  
creates specref merged from specref1 and specref2. Equal references are 
summed. This is a kind of algebraic sum intended for stoichiometry modeling.  
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A.1.6 Reaction class 

Constructor 

reaction(rule,reactants,products,catalysts,varargin) 
constructs a reaction object that can be added to a model.  rule is a function handle,  
reactants, products and catalysts are species or species references. Additional 
arguments should be strings containing names of the parameters for the reaction 
object. 

Methods 

str = char(r)  
returns the name of r. 

str = char(r,mod)  
converts r to a longer string containing information about the references from r to 
the model mod. 

display(r)  
prints char(r) in the command window.  

setnumber(r,n) 
sets the number of a reaction r to n. 

setrule(r,rule) 
sets the rule of a reaction r to rule. 

subsref(r,x) 
returns a vector rate containing the flux by r at every time in x.time when called as 
rate = r(x), where x is a model. Otherwise this is a general subsref method 
which returns any field name x from the reaction r. 

A.1.7 Transport class 

Constructor: transport(rule,comp1,comp2,specs,varargin) 
creates a transport  reaction involving species specs going from compartment comp1 
to comp2. transport is a subclass of reaction. Additional arguments are strings 
containing names of the parameters for the transport object.  

Method: setcomps(t,comp1,comp2)  
sets the compartments of t to comp1 and comp2.  
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A.3 Example: Ca2+ signaling model 
Below follows a MATLAB® script and some functions that together use the OOR toolbox to 
create the Ca2+ signaling model presented in Paper II.  

A.1.8 Script 
% CA_SIGNALING script defines the model object.  
% Creates a model and runs a Matlab simulation of intracellular 
% Ca-signaling. 
% 
% Jacob Kowalewski 2006 
 
clear setmodel params SOCt Cell 
Cell_ID = length(dir('Cell*.mat'))+1 
 
OORpath = pwd; 
OORpath = [OORpath(1:length(OORpath)-6) 'OOR']  
addpath(OORpath); 
 
tic 
params.X=0.4; 
params.Y=0.6; 
params.r1=0.185; 
 
params.v2=0.002; 
params.V_IP3R=0.7*0.1; 
params.K_inf=52; 
params.IP3R_actCa=210E-3; 
params.K_IP3=50E-3; 
 
params.d1=0.13; 
params.d2=0.5; 
params.d3=9.4E-3; 
params.d5=82.34E-3; 
params.v1=10; 
 
params.VmaxPMCA=0.245*0.6;  
params.VmaxSERCA=0.95*2;  
params.K05=0.2;  
params.K05_SERCA=0.5;  
params.V_SOC=5E-3; 
params.leak_PM=1.2E-5; 
 
params.I_deg=0.01; 
params.I_R=0.01; 
params.period_IP3=5000; 
params.T_IP3prod=3000; 
params.IP3max= 40E-3 
 
params.k_G=0.2; 
params.G_max=1; 
params.G_deg=0.5; 
 
params.kZ=2e-4; 
params.Zmax=0.1; 
params.kSOC=1.7; 
params.I_SOC=0.002; 
params.Ca_ER_min=10; 
params.vZ=1 
 
Cell = model; 
Cell = add(Cell,params); 
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Cell = add(Cell,comp('EC',inf)); 
Cell = add(Cell,comp('PM',1/params.r1,'EC')); 
Cell = add(Cell,comp('cyt',1/params.r1,'PM')); 
Cell = add(Cell,comp('ER',1,'cyt')); 
 
% Initial conditions 
 
Cell = add(Cell,species('Ca',{'cyt','ER','EC'},{0.095,100,10000*0.095},2)); 
Cell = add(Cell,species('IP_3',Cell.cyt,1E-9,0)); 
Cell = add(Cell,species('G',Cell.cyt,0)); 
Cell = add(Cell,species('Z',{'cyt','ER'},{0,0.1})); 
Cell = add(Cell,species('SOC','PM',0)); 
 
% Reactions 
r_SERCA = 
transport(@SERCA,Cell.cyt.Ca,Cell.ER.Ca,[],'VmaxSERCA','K05_SERCA','Y'); 
 
r_PMCA = transport(@PMCA,Cell.EC.Ca,Cell.cyt.Ca,[],'VmaxPMCA','X','K05'); 
 
r_IP3RMak = transport(@IP3RMak,Cell.cyt.Ca,Cell.ER.Ca,Cell.cyt.IP_3,'v2', 
... 
     'V_IP3R','K_inf','IP3R_actCa','K_IP3'); 
r_IP3R = transport(@IP3R,Cell.cyt.Ca,Cell.ER.Ca,Cell.cyt.IP_3, ... 
     'v2','d1','d2','d3','d5','v1'); 
r_SOC = transport(@SOC,Cell.EC,Cell.cyt,'Ca',Cell.PM.SOC, ... 
     'V_SOC','leak_PM'); 
r_RyR = transport(@RyR,Cell.ER.Ca,Cell.cyt.Ca,[],'vRyR','Ka','Kb', ... 
    'Kc'); 
 
Grule = inline('k_G*Ca - G_deg*G','G','Ca','k_G','G_deg','t') 
IP3rule = inline('G_signal_loop(t,G,G_max).*IP3max*I_deg -
I_deg*IP3','IP3','G','IP3max','I_deg','G_max','t') 
 
Cell = add(Cell,r_PMCA); 
Cell = add(Cell,r_SERCA); 
Cell = add(Cell,r_IP3R); 
%Cell = add(Cell,r_IP3RMak); 
Cell = add(Cell,r_SOC); 
 
Cell = add(Cell,reaction(Grule,[],Cell.cyt.G,Cell.cyt.Ca,'k_G','G_deg')); 
Cell = 
add(Cell,reaction(IP3rule,[],Cell.cyt.IP_3,Cell.cyt.G,'IP3max','I_deg','G_ma
x')); 
 
Cell = add(Cell,reaction(@Zprod,[],Cell.ER.Z,[],'kZ','Zmax')); 
Cell = add(Cell,transport(@SOCbind,Cell.cyt.Z,Cell.PM.SOC,[],'kSOC')); 
Cell = add(Cell,reaction(@SOCdegrad,Cell.PM.SOC,[],[],'I_SOC')); 
Cell = add(Cell,transport(@Ztransp,Cell.ER,Cell.cyt,'Z', ... 
     Cell.ER.Ca,'Ca_ER_min','vZ')); 
 
% Simulate the whole thing 
Cell = setmodel(Cell); 
spec=getSpecies(model) 
 
Cell=odesim(Cell,[0 7000],@ode15s) 
filename = ['Cell_' num2str(Cell_ID)] 
figure(1) 
plot(Cell,'t',Cell.cyt.Ca,Cell.cyt.IP_3) 
save(filename,'Cell'); 
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A.1.9 Functions describing the transporters 
function signal=G_signal_loop(t,G,G_max) 
n=1; 
signal=(t>500)*G_max*(1-Hill(G,n,G_max/2)); 
 
function flux=Hill(c,n,c_05) 
% Hill-type flux equation  
 
flux=c.^n./(c.^n + c_05^n); 
function J=IP3R(CaCyt,CaER,IP3,v2,d1,d2,d3,d5,v1,t) 
%global v2 V_IP3R K_inf IP3R_actCa K_IP3 d1 d2 d3 d5 v1; 
%J=-(CaER-CaCyt)*(v2+v1*(d2*IP3*exp(-((CaCyt-0.6)/0.2)^2))); 
 
%H_inh=4; 
%H_act=2; 
%H_IP3=4; 
%IP3R_inhCa=K_inf./(1 + (K_IP3./IP3).^H_IP3); 
%J=-(CaER-CaCyt).*(v2 + V_IP3R./((1 + (IP3R_actCa./CaCyt).^H_act) .* ... 
%     (1 + (CaCyt./IP3R_inhCa).^H_inh))); 
J=-(CaER-CaCyt).*(v1*(CaCyt.*IP3*d2./((CaCyt.*IP3 + IP3*d2+d1*d2 + 
CaCyt*d3).*(CaCyt+d5))).^3+v2); 
 
function J=PMCA(CaEC,CaCyt,VmaxPMCA,X,K05,t) 
n=2; 
J=-X*VmaxPMCA.*CaCyt.^n./(CaCyt.^n+K05^n); 
 
function J=SERCA(CaCyt,CaER,VmaxSERCA,K05_SERCA,Y,t) 
n=1; 
blocked_range = (t<100000|t>200000); 
J=Y*VmaxSERCA*(0+1*blocked_range).*CaCyt.^n./(CaCyt.^n+K05_SERCA^n); 
 
function J=SOC(CaEC,CaCyt,SOC,V_SOC,leak_PM,t) 
 
J = (V_SOC*SOC + leak_PM) .* (CaEC-CaCyt); 
%SOC_flag=~isempty(indexOn); 
%tSOC=[tSOC;t]; 
%JSOC=[JSOC;J]; 
 
 
function J = SOCbind(Z_cyt,SOC_PM,kSOC,t) 
J= kSOC*Z_cyt; 
 
function J = SOCdegrad(SOC_PM,I_SOC,t) 
J= I_SOC*SOC_PM; 
 
function J = Zprod(Z_ER,kZ,Zmax,t) 
J= kZ*(Zmax-Z_ER); 
 
function J = Ztransp(Z_ER,Z_cyt,Ca_ER,Ca_ER_min,vZ,t) 
J= (Ca_ER<Ca_ER_min)*vZ.*(Z_ER - Z_cyt); 
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Time = 0                                                                                            
 Species:                                                                                      
   [Ca2+]

cyt
 = 0.095μM (1)                                                                  

   [Ca2+]
ER

 = 100μM (2)                                                                     
   [Ca2+]

EC
 = 950μM (3)                                                                     

   [IP
3
]
cyt

 = 1e−09μM (4)                                                                     
   [G]

cyt
 = 0μM (5)                                                                            

   [Z]
cyt

 = 0μM (6)                                                                            
   [Z]

ER
 = 0.1μM (7)                                                                           

   [SOC]
PM

 = 0μM (8)                                                                           

                                                                                                    
 Reactions:                                                                                    
   Ca2+

EC
 → Ca2+

cyt
 (VmaxPMCA,X,K05): PMCA (1)                                

   Ca2+
cyt

 → Ca2+
ER

 (VmaxSERCA,K05
S
ERCA,Y): SERCA (2)                        

   Ca2+
cyt

 → Ca2+
ER

 (IP
3cyt

,v2,V
I
P3R,K

i
nf,IP3R

a
ctCa,K

I
P3): IP3RMak (3)

   Ca2+
EC

 → Ca2+
cyt

 (SOC
PM

,V
S
OC,leak

P
M): SOC (4)                         

    → G
cyt

 (Ca2+
cyt

,k
G

,G
d
eg): Grule (5)                                        

    → IP
3cyt

 (G
cyt

,IP3max,I
d
eg,G

m
ax): IP3rule (6)                                

    → Z
ER

 (kZ,Zmax): Zprod (7)                                                         
   Z

cyt
 → SOC

PM
 (kSOC): SOCbind (8)                                                 

   SOC
PM

 →  (I
S
OC): SOCdegrad (9)                                                     

   Z
ER

 → Z
cyt

 (Ca2+
ER

,Ca
E
R

m
in,vZ): Ztransp (10)                             

                                                                                                    
X          =     0.4                                                                                
Y          =     0.6                                                                                
r1         =   0.185                                                                                
v2         =   0.002                                                                                
V

I
P3R     =    0.07                                                                                

K
i
nf      =      52                                                                                

IP3R
a
ctCa =    0.21                                                                                

K
I
P3      =    0.05                                                                                

d1         =    0.13                                                                                
d2         =     0.5                                                                                
d3         =  0.0094                                                                                
d5         = 0.08234                                                                                
v1         =      10                                                                                
VmaxPMCA   =   0.147                                                                                
VmaxSERCA  =     1.9                                                                                
K05        =     0.2                                                                                
K05

S
ERCA  =     0.5                                                                                

V
S
OC      =   0.005                                                                                

leak
P
M    = 1.2e−05                                                                                

I
d
eg      =    0.01                                                                                

I
R
        =    0.01                                                                                

period
I
P3 =    5000                                                                                

T
I
P3prod  =    3000                                                                                

IP3max     =   4e−05                                                                                
k

G
        =     0.2                                                                                

G
m

ax      =       1                                                                                
G

d
eg      =     0.5                                                                                

kZ         =  0.0002                                                                                
Zmax       =     0.1                                                                                
kSOC       =     1.7                                                                                
I
S
OC      =   0.002                                                                                

Ca
E
R

m
in  =      10                                                                                

vZ         =       1                                                                                

 
Figure A.1  Example of output from char(Cell) in a Matlab® figure. This shows a summary of the 

model made by the MATLAB® script.  
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Figure A.2  The figure created by the script is presented here.  
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