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Abstract

We present a new method of identifying a specific module in a dynamic network, possibly with feedback loops. Assuming
known topology, we express the dynamics by an acyclic network composed of two blocks where the first block accounts for
the relation between the known reference signals and the input to the target module, while the second block contains the
target module. Using an empirical Bayes approach, we model the first block as a Gaussian vector with covariance matrix
(kernel) given by the recently introduced stable spline kernel. The parameters of the target module are estimated by solving
a marginal likelihood problem with a novel iterative scheme based on the Expectation-Maximization algorithm. Additionally,
we extend the method to include additional measurements downstream of the target module. Using Markov Chain Monte
Carlo techniques, it is shown that the same iterative scheme can solve also this formulation. Numerical experiments illustrate
the effectiveness of the proposed methods.
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1 Introduction

Networks of dynamical systems are everywhere, and ap-
plications are in different branches of science, e.g., econo-
metrics, systems biology, social science, and power sys-
tems. Identification of these networks, usually referred
to as dynamic networks, has been given increasing atten-
tion in the system identification community, see e.g., [1],
[2], [3]. In this paper, we use the term “dynamic net-
work” to mean the interconnection of modules, where
each module is a linear time-invariant (LTI) system. The
interconnecting signals are the outputs of these modules;
we also assume that exogenous measurable signals may
affect the dynamics of the network.

Two main problems arise in dynamic network identifica-
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tion. The first is topology detection, that is, understand-
ing the interconnection between the modules. The sec-
ond problem is the identification of one or more specific
modules in the network. Some recent papers deal with
both the aforementioned problems [4,5,1], whereas oth-
ers are mainly focused on the identification of a single
module in the network [6,7,8,9,10]. As observed in [2],
dynamic networks with known topology can be seen as a
generalization of simple compositions, such as systems in
parallel, series or feedback connection. Therefore, iden-
tification techniques for dynamic networks may be de-
rived by extending methods already developed for simple
structures. This is the idea underlying the method pro-
posed in [7], which generalized the results of [11] for the
identification of cascaded systems to the context of dy-
namic networks. In that work, the underlying idea is that
a dynamic network can be transformed into an acyclic
structure, where any reference signal of the network is
the input to a cascaded system consisting of two LTI
blocks. In this alternative system description, the first
block captures the relation between the reference and
the noisy input of the target module, the second block
contains the target module. The two LTI blocks are iden-
tified simultaneously using the prediction error method
(PEM) [12]. In this setup, determining the model struc-
ture of the first block of the cascaded structure may be
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complicated, due to the possibly large number of inter-
connections in the dynamic network. Furthermore, it re-
quires knowledge of the model structure of essentially
all modules in the feedback loop. Therefore, in [7], the
first block is modeled by an unstructured finite impulse
response (FIR) model of high order. The major draw-
back of this approach is that, as is usually the case with
estimated models of high order, the variance of the es-
timated FIR model is high. The uncertainty in the es-
timate of the FIR model of the first block will in turn
decrease the accuracy of the estimated target module.

The objective of this paper is to propose a method for
the identification of a module in dynamic networks that
circumvents the high variance that is due to the high or-
der model of the first block. Our main focus is on the
identification of a specific module, which we assume is
well described through a low-order parametric model.
Following a recent trend in system identification [13], we
use regularization to control the covariance of the iden-
tified sensitivity path by modeling its impulse response
as a zero-mean stochastic process. The covariance ma-
trix of this process is given by the recently introduced
stable spline kernel [14], whose structure is parametrized
by two hyperparameters.

We also consider the case where more sensors spread in
the network are used in the identification of the target
module, motivated by the fact that adding information
through addition of measurements used in the identifica-
tion process has the potential to further reduce the vari-
ance of the estimated module [15]. To avoid too many
additional parameters to estimate, we model also the im-
pulse response of the path linking the target module to
any additional sensor as a Gaussian process.

An estimate of the target module is obtained by em-
pirical Bayes (EB) arguments, that is, by maximiza-
tion of the marginal likelihood of the available measure-
ments [13]. This likelihood does not admit an analyti-
cal expression and depends not only on the parameter
of the target module, but also on the kernel hyperpa-
rameters and the variance of the measurement noise. To
estimate all these quantities, we design a novel itera-
tive scheme based on an EM-type algorithm [16], known
as the Expectation/Conditional-Maximization (ECM)
algorithm [17]. This algorithm alternates the so called
expectation step (E-step) with a series of conditional-
maximization steps (CM-steps) that, in the problem un-
der analysis, consist of relatively simple optimization
problems, which either admit a closed form solution, or
can be efficiently solved using gradient descent strate-
gies. As for the E-step, we are required to compute
an integral that, in the general case of multiple down-
stream sensor, does not admit an analytical expression.
To overcome this issue, we use Markov Chain Monte
Carlo (MCMC) techniques [18] to solve the integral as-
sociated with the E-step. In particular, we design an in-
tegration scheme based on the Gibbs sampler [19] that,

in combination with the ECM method, builds up a novel
identification method for the target module.

A part of this paper has previously been presented in
[20]. More specifically, the case where only the sensors
directly measuring the input and the output of the tar-
get module are used in the identification process were
partly covered in [20], whereas, the general case where
more sensors spread in the network are used in the iden-
tification of the target module is completely novel.

2 Problem Statement

We consider dynamic networks that consist of L scalar
internal variables wj(t), j = 1, . . . , L and L scalar exter-
nal reference signals rl(t), l = 1, . . . , L. We do not state
any specific requirement on the reference signals (i.e., we
do not assume any condition on persistent excitation in
the input [12]), requiring only rl(t) 6= 0, l = 1, . . . , L, for
some t. Notice, however, that even though the method
presented in this paper does not require any specifics of
the input, the resulting estimate is of course highly de-
pendent on the properties of the input [12]. Some of the
reference signal may not be present, i.e., they may be
identically zero. Define R as the set of indices of refer-
ence signals that are present. In the dynamic network,
the internal variables are considered nodes and transfer
functions are the edges. Introducing the vector notation
w(t) := [w1(t) . . . wL(t)]>, r(t) := [r1(t) . . . rL(t)]>,
the dynamics of the network are defined by the equation

w(t) = G(q)w(t) + r(t), (1)

with

G(q) =


0 G12(q) · · · G1L(q)

G21(q) 0
. . .

...
...

. . .
. . . G(L−1)L(q)

GL1(q) · · · GL(L−1)(q) 0

 ,

where Gji(q) is a proper rational transfer function for
j = 1, . . . , L, i = 1, . . . , L. The internal variables w(t)
are measured with additive white noise, that is

w̃(t) = w(t) + e(t),

where e(t) ∈ RL is a stationary zero-mean Gaussian
white-noise process with diagonal noise covariance ma-
trix Σe = diag

{
σ2
1 , . . . , σ

2
L

}
. We assume that the σ2

i are
unknown. To ensure stability and causality of the net-
work, the following assumptions hold for all networks
considered in this paper.

Assumption 2.1 The network is well posed in the sense
that all principal minors of limq→∞(I − G(q)) are non-
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zero [2]. Furthermore, the sensitivity path S(q) = (I −
G(q))−1 is stable

Assumption 2.2 The reference variables {rl(t)} are
mutually uncorrelated and uncorrelated with the mea-
surement noise e(t).

Remark 2.1 We note that, compared to e.g. [2], the dy-
namic network model treated in this paper does not in-
clude process noise (but in turn includes sensor noise).
Process noise complicates the analysis and the derivation
of the method, and will be treated in future publications.

The network dynamics can then be rewritten as

w̃(t) = S(q)r(t) + e(t). (2)

We define Nj as the set of indices of internal variables
that have a direct causal connection to wj , i.e., i ∈ Nj
if and only if Gji(q) 6= 0. Without loss of generality, we
assume thatNj = {1, 2, . . . , p}, where p is the number of
direct causal connections to wj (we may always rename
the nodes so that this holds). The goal is to identify
module Gj1(q) given N measurements of the reference
r(t), the “output” w̃j(t) and the set of p neighbor signals
in Nj . To this end, we express w̃j , the measured output
of module Gj1(q) as

w̃j(t) =
∑
i∈Nj

Gji(q)wi(t) + rj(t) + ej(t). (3)

The above equation depends on the internal variables
wi(t), i ∈ Nj , which we we only have noisy measurement
of; these can be expressed as

w̃i(t) = wi(t) + ei(t) =
∑
l∈R

Sil(q)rl(t) + ei(t) . (4)

where Sil(q) is the transfer function path from reference
rl(t) to output w̃i(t). Together, (3) and (4) allow us to
express the relevant part of the network, possibly con-
taining feedback loops, as a direct acyclic graph with two
blocks connected in cascade. Note that, in general, the
first block depends on all other blocks in the network.
Therefore, accurate low order parameterization of this
block depends on global knowledge of the network.

Example 2.1 As an example, consider the network de-
picted in Figure 1, where, using (3) and (4), the acyclic
graph of Figure 2 can describe the relevant dynamics,
when wj = w3 is the output and we wish to identify
G31(q).

In the following, we briefly review two standard methods
for closed-loop identification that we will use as starting
point to derive the methodology described in the paper.

G31
r4 r2

+
w4

G14 +
w1

G21 +
w2

G32 +
w3

G12 G23

G43

Fig. 1. Network example of 4 internal variables and 2 refer-
ence signals.

S12(q) S14(q)

S22(q) S24(q)

G31(q)

G32(q)

+ w3

r2

r4

+
w1

+
w2

Fig. 2. Direct acyclic graph of part of the network in Figure 1.

Two-stage method: The first stage of the two-stage
method [2], proceeds by finding a consistent estimate
ŵi(t) of all nodes wi(t) in Nj . This is done by high-
order modeling of {Sil} and estimating it from (4) using
the prediction error method. The prediction errors are
constructed as

εi(t, α) = w̃i(t)−
∑
l∈R

Sil(q, α)rl(t), (5)

where α is a parameter vector. The resulting estimate
Sil(q, α̂) is then used to obtain the node estimate as

ŵi(t) =
∑
l∈R

Sil(q, α̂)rl(t). (6)

In a second stage, the module of interest Gj1(q) (and
the other modules inNj) is parameterized by θ and esti-
mated from (3), again using the prediction error method.
The prediction errors are now constructed as

εj(t, θ) = w̃j(t)− rj(t)−
∑
i∈Nj

Gji(q, θ)ŵi(t). (7)

Simultaneous minimization of prediction errors:
It is useful to briefly introduce the simultaneous min-
imization of prediction error method (SMPE) [7]. The
main idea underlying SMPE is that if the two predic-
tion errors (5) and (7) are simultaneously minimized, the
variance will be decreased [11]. In the SMPE method,
the prediction error of the measurement w̃j depends ex-
plicitly on α and is given by

εj(t, θ, α) = w̃j(t)−
∑
i∈Nj

Gji(q, θ)
∑
l∈R

Sil(q, α)rl(t). (8)
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r1
S11(q) +

w1
G21(q) +

w2

Fig. 3. Basic network of 1 reference signal and 2 internal
variables.

The method proceeds to minimize

VN (θ, α) =
1

N

N∑
t=1

ε2j (t, θ, α)

λj
+
∑
i∈Nj

ε2i (t, α)

λi

. (9)

In [7], the noise variances are assumed known, and how to
estimate the noise variances is not analyzed. As an initial
estimate of the parameters θ and α, the minimizers of
the two-stage method can be taken.

The main drawback is that the least-squares estimation
of S may still induce high variance in the estimates. Ad-
ditionally, if each of the ns estimated transfer functions
in S is estimated by the first n impulse response coeffi-
cients, the number of estimated parameters in S alone
is ns · n. Already for relatively small dimensions of S
the SMPE method is prohibitively expensive. To handle
this, a frequency domain approach is taken in [21]. In
this paper, we will instead use regularization to reduce
the variance and the complexity.

3 Empirical Bayes estimation of the module

In this section we derive our approach to the identifi-
cation of a specific module based on empirical Bayes
(EB). For ease of exposition, we give a detailed deriva-
tion in the one-reference-one-module case. The exten-
sion to general dynamic networks follows along similar
arguments and can be found in [22]. We first describe
the proposed method in the setup where only one sen-
sor downstream the target module is used. In the next
section, we will focus on the general multi-sensor case.

We consider a dynamic network with one non-zero ref-
erence signal r1(t). Without loss of generality, we as-
sume that the module of interest is G21(q), and hence
G22(q), . . . , G2L(q) are assumed zero (We can always re-
name the signals such that this holds). The setting we
consider has been illustrated in Figure 3. We parametrize
the target module by means of a parameter vector θ ∈
R
nθ . Using the vector notation introduced in the previ-

ous section, we denote by w̃1 the stacked measurements
w̃1(t) before the module of interest G21(q, θ), and by w̃2

the stacked output of this module w̃2(t). We define the
impulse response coefficients of G21(q, θ) by the inverse
discrete-time Fourier transform, and denote it by gθ(t).
Similarly we define s11 as the impulse response coeffi-
cients of S11(q), where S11(q) is, as before, the sensi-
tivity path from r1(t) to w1(t), and e1(t) and e2(t) are
the measurement noise sources (which we have assumed

white and Gaussian). Their variance is denoted by σ2
1

and σ2
2 , respectively. We rewrite the dynamics as

w̃1 = R1s11 + e1 ,

w̃2 = GθR1s11 + e2 .
(10)

where Gθ is the N ×N lower triangular Toeplitz matrix
of the N first impulse response samples gθ, and R1is the
Toeplitz matrix of r1. For computational purposes, we
only consider the first n samples of s11, where n is large
enough such that the truncation captures the dynamics
of the sensitivity S11(q) well enough. Let z := [w̃>1 w̃

>
2 ]>

and let e be defined similarly; we rewrite (10) as

z = Wθs11 + e , Wθ =
[
R>1 R>1 G

>
θ

]>
(11)

Note that e is a random vector such thatΣe := E[ee>] =
diag

{
σ2
1I, σ

2
2I
}

.

3.1 Bayesian model of the sensitivity path

To reduce the variance in the sensitivity estimate (and
also reduce the number of estimated parameters), we
cast our problem in a Bayesian framework and model the
sensitivity function as a zero-mean Gaussian stochas-
tic vector [23], i.e., p(s11;λ,Kβ) ∼ N (0, λKβ). The
structure of the covariance matrix is given by the first-
order stable spline kernel [14], whose structure obeys
{Kβ}i,j = βmax(i,j). The parameter β ∈ [0, 1) regulates
the decay velocity of the realizations from the prior,
whereas, λ tunes their amplitude. In this context, Kβ is
usually called a kernel (due to the connection between
Gaussian process regression and the theory of repro-
ducing kernel Hilbert space, see e.g. [23] for details) and
determines the properties of the realizations of s. In
particular, the stable spline kernel enforces smooth and
BIBO stable realizations [14].

3.2 The marginal likelihood estimator

Since s11 is assumed stochastic, it admits a probabilis-
tic description jointly with the vector of observations z,
parametrized by the vector η = [σ2

1 σ
2
2 λβ θ]. The poste-

rior distribution of s11 given the measurement vector z
is also Gaussian, given by (see e.g. [24])

p(s11|z; η) ∼ N (PW>θ Σ
−1
e z, P ) , (12)

P = (W>θ Σ
−1
e Wθ + (λKβ)−1)−1 , (13)

and it is parametrized by the vector η. The module iden-
tification strategy we propose in this paper relies on an
empirical Bayes approach. We introduce the marginal
probability density function (pdf) of the measurements

p(z; η) =

∫
p(z, s11) ds11 ∼ N (0, Σz) , (14)
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where Σz = WθλKβW
>
θ +Σe. Then, we can define the

maximum (log) marginal likelihood (ML) criterion as
the maximum of the (log) marginal pdf p(z; η) defined
above, whose solution provides also an estimate of θ and
thus of the module of interest.

4 Computation of the solution of the marginal
likelihood criterion

Maximization of the marginal likelihood is a non-
linear problem that may involve a large number of
decision variables, if nθ is large. In this section, we
derive an iterative solution scheme based on the
Expectation/Conditional-Maximization (ECM) algo-
rithm [17], which is a generalization of the standard
Expectation-Maximization (EM) algorithm and will in
our case converge to a stationary point just as EM does.
In order to employ EM-type algorithms, one has to de-
fine a latent variable; in our problem, a natural choice
is s11. Then, a (local) solution to the log ML criterion is
achieved by iterating over the following steps:

(E-step) Given an estimate η̂(k) (computed at the k-th
iteration of the algorithm), compute

Q(k)(η) := E [log p(z, s11; η)] , (15)

where the expectation is taken with respect to the
posterior of s11 when the estimate η(k) is used, i.e.,
p(s11|z, η̂(k)) ;

(M-step) Solve the problem η̂(k+1) = arg maxη Q
(k)(η).

First, we turn our attention on the computation of the E-

step, i.e., the derivation of (15). Let ŝ
(k)
11 and P̂ (k) be the

posterior mean and covariance matrix of s11, computed

from (12) using η̂(k). Define Ŝ
(k)
11 := P̂ (k)+ŝ

(k)
11 ŝ

(k)T
11 . The

following lemma provides an expression for the function
Q(k)(η).

Lemma 4.1 Let η̂(k) = [σ̂
2(k)
1 σ̂

2(k)
2 λ̂(k) β̂(k) θ̂(k)] be an

estimate of η after the k-th iteration of the EM method.
ThenQ(k)(η) = − 1

2Q
(k)
0 (σ2

1 , σ
2
2 , θ)− 1

2Q
(k)
s (λ, β), where

Q
(k)
0 (σ2

1 , σ
2
2 , θ) =

(
log det{Σe}+ z>Σ−1e z − 2z>Wθ ŝ

(k)
11

+ Tr
{
W>θ Σ

−1
e WθŜ

(k)
11

})
,

Q(k)
s (λ, β) = log det{λKβ}+ Tr

{
(λKβ)

−1
Ŝ
(k)
11

}
.

Having computed the function Q(k)(η), we now focus on
its maximization. We first note that the decomposition
ofQ(k)(η) shows that the kernel hyperparameters can be
updated independently of the rest of the parameters as
shown in the following proposition (see [25] for a proof).

Proposition 4.1 Define Qβ(β) = log det{Kβ} +

n log Tr
{
K−1β Ŝ

(k)
11

}
. Then

β̂(k+1) = arg min
β∈[0,1)

Qβ(β) , λ̂(k+1) =
Tr
{
K−1
β̂(k+1)

Ŝ
(k)
11

}
n

.

(16)

Therefore, the update of the scaling hyperparameter is
available in closed-form, while the update of β requires
the solution of a scalar optimization problem in the do-
main [0, 1), an operation that requires little computa-
tional effort, see [25] for details.

We are left with the maximization of the function
Q

(k)
0 (σ2

1 , σ
2
2 , θ). In order to simplify this step, we split

the optimization problem into constrained subproblems
that involve fewer decision variables. This operation
is justified by the ECM paradigm, which, under mild
conditions [17], guarantees the same convergence prop-
erties of the EM algorithm even when the optimization
of Q(k)(η) is split into a series of constrained subprob-
lems. In our case, we decouple the update of the noise
variances from the update of θ. By means of the ECM

paradigm, we split the maximization of Q
(k)
0 (σ2

1 , σ
2
2 , θ)

in a sequence of two constrained optimization subprob-
lems:

θ̂(k+1) = arg max
θ

Q
(k)
0 (σ2

1 , σ
2
2 , θ) (17)

s.t. σ2
1 = σ̂

2(k)
1 , σ2

2 = σ̂
2(k)
2 ,

σ̂
2(k+1)
1 , σ̂

2(k+1)
2 = arg max

σ2
1 , σ

2
2

Q
(k)
0 (σ2

1 , σ
2
1 , θ) (18)

s.t. θ = θ̂(k+1) .

The following result provides the solution of the above
problems.

Proposition 4.2 Introduce the matrix D ∈ R
N2×N

such that Dv = vec{TN{v}}, for any v ∈ RN . Define

Â(k) = D>(R1Ŝ
(k)
11 R

>
1 ⊗ IN )D , b̂(k) = TN

{
R1ŝ

(k)
11

}>
w̃2.

Then

θ̂(k+1) = arg min
θ

g>θ Â
(k)gθ − 2b̂(k)>gθ . (19)

The closed form updates of the noise variances are as
follows

σ̂
2(k+1)
1 =

1

N

(
‖w̃1 −R1ŝ

(k)
11 ‖22 + Tr

{
R1P̂

(k)R>1

})
,

σ̂
2(k+1)
2 =

1

N

(
‖w̃2 −Gθ̂(k+1)R1ŝ

(k)
11 ‖22

+ Tr
{
Gθ̂(k+1)R1P̂

(k)R>1 G
>
θ̂(k+1)

})
. (20)
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Each variance is the result of the sum of one term that
measures the adherence of the identified systems to the
data and one term that compensates for the bias in the
estimates introduced by the Bayesian approach. The up-
date of the parameter θ involves a (generally) nonlinear
least-squares problem, which can be solved using gradi-
ent descent strategies. Note that, in case the impulse re-
sponse gθ is linearly parametrized (e.g., it is an FIR sys-
tem or orthonormal basis functions are used [26]), then
the update of θ is also available in closed-form.

Example 4.1 Assume that the linear parametriza-

tion gθ = Lθ, L ∈ RN×nθ , is used, then θ̂(k+1) =(
L>Â(k)L

)−1
L>b̂(k) .

The proposed method for module identification is sum-
marized in Algorithm 1.

Algorithm 1 Network empirical Bayes.
Initialization: Find an initial estimate of η̂(0), set k = 0.

(1) Compute ŝ
(k)
11 and P̂ (k) from (12).

(2) Update the kernel hyperparameters using (16).
(3) Update the vector θ by solving (19).
(4) Update the noise variances using (20).
(5) Check if the algorithm has converged. If not, set k =

k + 1 and go back to step 1.

The method can be initialized in several ways. One op-
tion is to first estimate Ŝ11(q) by an empirical Bayes
method using only r1 and w̃1. Then, ŵ1 is constructed
from (6), using the obtained Ŝ11(q). Finally, G is esti-
mated using the prediction error method, using ŵ1 as
input and w̃2 as output.

5 Including additional sensors

As reference signals can be added with little effort, a
natural question is if also output measurements “down-
stream” of the module of interest can be added with lit-
tle effort. In Example 2.1 the measurement w4 is such
a measurement that, with the same strategy as before,
can be expressed as

w4(t) = G43(q)w3(t) + r4(t) . (21)

Using this measurement for the purpose of identification
would require the identification of G43(q) in addition
to the previously considered modules. The signal w4(t)
contains information about w3(t), and thus information
about the module of interest. The price we have to pay
for this information is the additional parameters to esti-
mate and, as we will see, another layer of complexity. It
is therefore advantageous to include the additional sen-
sor when it is of high quality, i.e., subject to noise with
low variance.

r1
S11(q) +

w1
G21(q) +

w2
F (q) +

w3

Fig. 4. Basic network of 1 reference signal and 3 internal
variables.

To extend the previous framework to include additional
measurements after the module of interest, let us con-
sider the case where we would like to include only one ad-
ditional measurement, in this context denoted by w̃3(t);
the generalization to more sensors is straightforward
but notationally heavy. Let the path linking the target
module to the additional sensor be denoted by F (q),
with impulse response f . Furthermore, let us for sim-
plicity consider the one-reference-signal-one-input case
again, i.e., (10). The setting we consider has been illus-
trated in Figure 4. We model also F (q) using a Bayesian
framework by interpreting f as a zero-mean Gaussian
stochastic vector, i.e., p(f ;λf ,Kβf ) ∼ N (0, λfKβf ),
where again Kβf is the first-order stable spline kernel
introduced in Section 3.1. We introduce the following
variables

σ =
[
σ2
1 σ

2
2 σ

2
3

]
, z =

[
w̃>1 w̃>2 w̃>3

]>
, zf = w̃3 . (22)

For given vales of θ, s11 and f , we construct

Ws =
[
R> r>G>θ R>G>θ F

>
]>

, (23)

Wf = TN{GθRs11} , Σ = diag{σ} ⊗ IN . (24)

Notice that the last internal variablew3 can be expressed
as w3 = GθRv, where v := Fs11.

The key difficulty in this setup is that the description
of the measurements and the system description with
both s11 and f no longer admit a jointly Gaussian
probabilistic model, because the above-defined v is the
result of the convolution of two Gaussian vectors. In
fact, a closed-form expression is not available. This
fact has a detrimental effect in our empirical Bayes
approach, because the marginal likelihood estimator of
η = [σ λs βs λf βf θ], where λs, βs are the hyperparam-
eters of the prior of s11, that is

η̂ = arg max
η

∫
p(z, s11, f ; η) ds11 df, (25)

does not admit an analytical expression, since the in-
tegral (25) is intractable. To treat this problem, again
we resort to the ECM scheme introduced in Section 3.
In this case, while the M-Step remains substantially un-
changed, the E-step requires to compute

Q(k)(η) := E [log p(z, s11, f ; η)] = (26)∫
log p(z, s11, f ; η)p(s11, f |z, η̂(k)) ds11 df.
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As can be seen, this integral does not admit an an-
alytical solution, because the posterior distribution
p(s11, f |z, η̂(k)) is non-Gaussian (it does not have an
analytical form, in fact). However, using Monte Carlo
techniques we can compute an approximation of the
integral by sampling from the joint posterior density
p(s11, f |z; η) (also called a target distribution). Direct
sampling from the target distribution can be hard,
because, as pointed out before, it does not admit a
closed-form expression. If it is easy to draw samples
from the conditional probability distributions, samples
of the target distribution can be easily drawn using the
Gibbs sampler. In Gibbs sampling, each conditional is
considered the state of a Markov chain; by iteratively
drawing samples from the conditionals, the Markov
chain will converge to its stationary distribution, which
corresponds to the target distribution. In our problem,
the conditionals of the target distribution are as follows

• p(s11|f, z; η). UsingWs defined in (23), we write the
linear model

z = Wss11 + e, (27)

where e = [e>1 e
>
2 e
>
3 ]>. Then, given f , the vec-

tors s11 and z are jointly Gaussian, so that
p(s11|f, z; η) ∼ N (ms, Ps), with

Ps=
(
W>s Σ

−1Ws + (λsKβs)
−1)−1 , ms=PsW

>
s Σ
−1z .

• p(f |s11, z; η). Given s11 and r, all sensors but the
last becomes redundant. Using (24) we write the
linear model zf = Wff + e3, which shows that
p(f |s11, z; η) ∼ N (mf , Pf ), with

Pf =

(
W>f Wf

σ2
3

+ (λfKβf )−1

)−1
, mf = Pf

W>f
σ2
3

zf .

The following algorithm summarizes the Gibbs sampler
used for dynamic network identification.

Algorithm 2 Dynamic network Gibbs sampler.
Initialization: compute initial value of s011 and f0. For
k = 1 to M +M0:

(1) Draw the sample sk11 from p(s11|fk−1, z; η);
(2) Draw the sample fk from p(f |sk11, z; η);

In this algorithm, M0 is the number of initial samples
that are discarded, which is also known as the burn-in
phase [27]. These samples are discarded since the Markov
chain needs a certain number of samples to converge to
its stationary distribution.

We now discuss the computation of the E-step and the
CM-steps using the Gibbs sampler scheme introduced
above.

Proposition 5.1 Introduce the mean and covariance
quantities

sMs = M−1
M0+M∑
k=M0+1

sk11 ,P
M
s = M−1

M0+M∑
k=M0+1

(sk11 − sMs )(·)>,(28)

where (·) denotes the previous argument and fMs , PMf ,

vMs and PMv are defined similarly and where sk11, fk and
vk = sk11 ∗ fk are samples drawn using Algorithm 2.

Define

Q̃s(λ, β, x,X) :=log det{λKβ}+Tr
{
(λKβ)−1(xx>+X)

}
Q̃z(σ

2, z, x,X) :=N log σ2 +
‖z−Rx‖22+ Tr

{
RXR>

}
σ2

Q̃f (σ2, z, θ, x,X) := N log σ2 +
1

σ2
‖z −GθRx‖22

+
1

σ2
Tr
{
GθRXR

>G>θ
}
.

Then

−2Q(k)(η) = lim
M→∞

Q̃s(λs, βs, s
M
s , P

M
s ) (29)

+Q̃s(λf , βf , f
M
s , PMf ) + Q̃z(σ

2
1 , w̃1, s

M
s , P

M
s )

+Q̃f (σ2
2 , w̃2, θ, s

M
s , P

M
s ) + Q̃f (σ2

3 , w̃3, θ, v
M
s , P

M
v ) .

The CM-steps are now very similar to the previous case
and are reported in the following Proposition (the proof
follows by similar reasoning as in the proof of Proposi-
tion 4.2).

Proposition 5.2 Let η̂(k) be the parameter estimate ob-
tained at the k:th iteration. Define SMs = sMs (sMs )> +
PMs , SMv = vMs (vMs )> + PMv ,

Âs = D>(RSMs R
>⊗ IN )D , b̂s = TN

{
RsMs

}>
w̃2 ,

Âv = D>(RSMv R
>⊗ IN )D , b̂v = TN

{
RvMs

}>
w̃3 .

Then the updated parameter vector η̂(k+1) is obtained as
follows

θ̂(k+1) = arg min
θ

g>θ Âsgθ
σ2
2

+
g>θ Âvgθ
σ2
3

− 2
b̂>s gθ
σ2
2

− 2
b̂>v gθ
σ2
3

.

The closed form updates of the noise variances are

σ̂
2(k+1)
1 =

1

N

(
‖w̃1 −RsMs ‖22 + Tr

{
RPMs R>

})
,

σ̂
2(k+1)
2 =

1

N

(
‖w̃2 −Gθ̂(k+1)Rs

M
s ‖22

+ Tr
{
Gθ̂(k+1)RP

M
s R>G>

θ̂(k+1)

})
,

σ̂
2(k+1)
3 =

1

N

(
‖w̃3 −Gθ̂(k+1)Rv

M
s ‖22
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+ Tr
{
Gθ̂(k+1)RP

M
v R>G>

θ̂(k+1)

})
.

The kernel hyperparameters are updated through (16) for
both s11 and f .

The proposed method for module identification is sum-
marized in Algorithm 3.

Algorithm 3 Network empirical Bayes extension. Ini-
tialization: Find an initial estimate of η̂(0), set k = 0.

(1) Compute the quantities (28) using Algorithm 2.
(2) Update the kernel hyperparameters using (16).
(3) Update the vector θ and the noise variances accord-

ing to Proposition 5.2.
(4) Check if the algorithm has converged. If not, set k =

k + 1 and go back to step 1.

As can be seen, the main difference with Algorithm 3
compared to Algorithm 1 is that Step 2 of the algorithm
requires a heavier computational burden because of the
Gibbs sampling. Essentially, a posterior mean and co-
variance matrix is computed for each sample drawn in
the Gibbs sampler, whereas they are computed only once
in the previous algorithm. Nevertheless, as will be seen
in the next section, this pays off in terms of performance
in identifying the target module.

Remark 1 The method presented in this section postu-
lates Gaussian models for the sensitivity path s and the
for the path to the additional sensor f , while the target
module Gθ is modeled using a parametric approach. It
may be tempting, especially in the multiple-sensor case
presented in this section, to model also the target module
using Gaussian processes. However, there are two main
reasons for us not to doing so. First, our concept of dy-
namic network is that it is the result of the composition
of a large number of simple modules, i.e., modules that
can be modeled using few parameters (e.g., a DC motor
having only one mode). Therefore, the use of parametric
models seem more appropriate in this context. Second, in
the case where only one sensor downstream is used for
module identification (i.e., the case of Section 3), using
Gaussian processes to model the target module would re-
quire to employ the Gibbs sampler also in that case.

6 Numerical experiments

In this section, we present the result from a Monte
Carlo simulation to illustrate the performance of the
proposed method, which we abbreviate as Network Em-
pirical Bayes (NEB) and its extension NEBX outlined
in Section 5. We compare the proposed methods with
SMPE (see Section 2) and the two-stage method on data
simulated from the network described in Example 2.1.
The reference signals used are zero-mean unit-variance

Gaussian white noise. The noise signals ek are zero-
mean Gaussian white noise with variances such that
noise to signal ratios Var{w}k/Var{e}k are constant.
The setting of the compared methods are provided in
some more details below, where the model order of the
plant G(q) is known for both the SMPE method and
the proposed NEB method.

2ST: The two-stage method as presented in Section 2.

SMPE: The method is initialized by the two-stage
method. Then, the cost function (9), with a slight mod-
ification, is minimized. The modification of the cost
function comes from that, as mentioned before, the
SMPE method assumes that the noise variances are
known. To make the comparison fair, also the noise
variances need to be estimated. By maximum likelihood
arguments, the logarithm of the determinant of the
complete noise covariance matrix is added to the cost
function (9) and the noise variances are included in θ,
the vector of parameters to estimate. The tolerance is

set to ‖θ̂(k+1) − θ̂(k)‖/‖θ̂(k)‖ < 10−6.

NEB: The method is initialized by the two-stage
method. First, Ŝ(q) is estimated by least-squares. Sec-
ond, G is estimated using MORSM [28] from the sim-
ulated signal ŵ obtained from (6) and w̃j . MORSM is
an iterative method that is asymptotically efficient for
open loop data. Then, Algorithm 1 is employed with
the stopping criterion ‖η̂(k+1) − η̂(k)‖/‖η̂(k)‖ < 10−6.

NEBX: The method is initialized by NEB. f0 is
obtained by an empirical Bayes method using sim-
ulated input and measured output of f . Then, Al-
gorithm 3 is employed with the stopping criterion
‖η̂(k+1) − η̂(k)‖/‖η̂(k)‖ < 10−6, or a maximum of 5
iterations.

The simulations were run in Julia, a high-level, high-
performance dynamic programming language for tech-
nical computing [29] (the code is available 1 ).

The Monte Carlo simulation compares the NEB method
and NEBX with the 2ST and SMPE method on data
from the network of Example 2.1, illustrated in Figure 1,
where each of the modules are of second order, i.e.,

Gij(q) =
b1q
−1 + b2q

−2

1 + a1q−1 + a2q−2
,

for a set of parameters that were chosen such that all
modules are stable and {S12(q), S24(q), S22(q), S24(q)}
are stable and can be well approximated with 60
impulse response coefficients. Two reference sig-
nals, r2(t) and r4(t) are available and N = 150
data samples are used with the goal to estimate
G31(q) and G32. In total 6 transfer functions are
estimated, {S12(q), S24(q), S22(q), S24(q), G31(q) and

1 https://github.com/neveritt/NEB-Example.jl
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G32(q)}, where {S12(q), S24(q), S22(q), S24(q)} are each
parametrized by n = 60 impulse response coeffi-
cients in all methods. For NEBX also G43(q) is esti-
mated by n = 60 impulse response coefficients. The
noise to signal ratio at each measurement is set to
Var{e}k/Var{w}k = 0.1 and the additional measure-
ment used in NEBX has a lower noise to signal ratio of
Var{e}4/Var{w}4 = 0.01.

The fits of the impulse responses of G31 for the experi-
ment are shown as a boxplot in Figure 5. Comparing the
fits obtained, the proposed NEB and NEBX methods are
competitive with the SMPE method for this network.
NEBX outperformed NEB in this simulation. However,
NEBX is significantly more computationally expensive
than NEB.

2ST SMPE NEB NEBX
0.85

0.9

0.95

1

Fig. 5. Box plot of the fit of the impulse response of G31

obtained from 100 Monte Carlo runs by the methods 2ST,
SMPE, NEB and NEBX respectively.

7 Conclusion

In this paper, we have addressed the identification of a
module in dynamic networks with known topology. The
problem is cast as the identification of a set of systems
in series connection. The second system corresponds to
the target module, while the first represents the dynamic
relation between exogenous signals and the input and
the target module. This system is modeled following a
Bayesian kernel-based approach, which enables the iden-
tification of the target module using empirical Bayes ar-
guments. In particular, the target module is estimated
using a marginal likelihood criterion, whose solution is
obtained by a novel iterative scheme designed through
the ECM algorithm. The method is extended to incor-
porate measurements downstream of the target mod-
ule, which numerical experiments suggest increases per-
formance. The main limitation with the proposed algo-
rithms is the restrictive assumptions on the noise. Gen-
eralizing the noise assumptions would improve the appli-
cability of the method and is considered for future work.

A Appendix

Proof of Lemma 4.1: From Bayes’ rule it follows that
log p(z, s11; η̂(k)) = log p(z|s11, η̂(k)) + log p(s11; η̂(k)),
with (neglecting constant terms)

log p(z|s11, η) ∝ −1

2
log det{Σe} −

1

2
‖z −Wθs11‖2Σ−1

e

log p(s11; η) ∝ −1

2
log det{λKβ} −

1

2
s>11(λKβ)−1s11 .

Now we have to take the expectation w.r.t. the
posterior p(s11|w̃2; η̂(k)). Developing the second
term in the first equation above and recalling that

Ep(s11|w̃2; η̂(k))[s
>
11As11] = Tr

{
AŜ

(k)
11

}
, the statement of

the lemma readily follows.

Proof of Proposition 4.2: In Q
(k)
0 (σ2

1 , σ
2
2 , θ̂

(k+1)),

fix Σe to the value Σ̂
(k)
e (computed inserting σ̂

2(k)
1 and

σ̂
2(k)
2 ). We obtain the θ-dependent terms (after multi-

plying by a factor −2),

−2z>
(
Σ̂(k)
e

)−1
Wθ ŝ

(k)
11 = − 2

σ̂
2(k)
2

y>GθR1ŝ
(k)
11 + k1

= − 2

σ̂
2(k)
2

y>TN
{
R1ŝ

(k)
11

}
gθ + k1

Tr

{
W>θ

(
Σ(k)
e

)−1
WθŜ

(k)
11

}
=

Tr
{
GθR1Ŝ

(k)
11 R

>
1 G
>
θ

}
σ̂
2(k)
2

+ k2

=
1

σ̂
2(k)
2

vec{Gθ}>(R1Ŝ
(k)
11 R

>
1 ⊗ IN ) vec{Gθ}+ k2

=
1

σ̂
2(k)
2

g>θ D
>(R1Ŝ

(k)
11 R

>
1 ⊗ IN )Dgθ + k2,

where k1 and k2 contain terms independent of θ. Recall-
ing the definitions of Â(k) and b̂(k), (19) readily follows.
Now, let θ be fixed at the value θ̂(k+1). The function (16)
can be rewritten as (after multiplying by a factor −2).

Q
(k)
0 (σ2

1 , σ
2
2 , θ̂

(k+1)) = N(log σ2
1 + log σ2

2) +
‖w̃1‖22
σ2
1

+
1

σ2
1

Tr
{
R>1 R1Ŝ

(k)
11

}
+
‖w̃2‖22
σ2
2

− 2w̃>2
σ2
2

Gθ̂(k+1)R1ŝ
(k)
11

−2w̃>1
σ2
1

R1ŝ
(k)
11 +

1

σ2
2

Tr
{
R>1 G

>
θ̂(k+1)Gθ̂(k+1)R1Ŝ

(k)
11

}
The results (20) follow by minimizing this expression
with respect to σ2

1 and σ2
2 .

Proof of Proposition 5.1: Using Bayes’ rule we can
decompose the complete likelihood as log p(z, s11, f ; η) =
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log p(z|s11, f ; η) + log p(s11; η) + log p(f ; η), and we will
analyze each term in turn. First, note that

−2 log p(s11|η) = log det{λsKβs}+ s>11(λsKβs)
−1s11

= log det{λsKβs}+ Tr
{

(λsKβs)
−1s11s

>
11

}
Replacing s11s

>
11 with its sample estimate yields

the first term in (29). Similarly, −2 log p(f |η) =
log det

{
λfKβf

}
+ Tr

{
(λfKβf )−1ff>

}
. Replacing ff>

with its sample estimate yields the second term in
(29). Finally, −2 log p(z|t, s11; η) = log det{Σ} + (z −
ẑ)>Σ−1(z−ẑ), with ẑ := [(Rs11)> (GθRs11)> (GθRv)>]>.
The first term is N times the sum of the logarithms
of the noise variances squared. The second term de-
composes into a sum of the (weighted) error of each
signal. Then, the first weighted error is given by
σ2
1‖w̃1−Rs11‖22 = ‖w̃1‖22−2w̃>1 Rs11 +Tr

{
Rs11s

>
11R

>}.

Replacing s11 and s11s
>
11 with their respective estimates

gives the third term in (29), with the corresponding
noise variance term added. Similar calculations on the
remaining two weighted errors gives the last two terms
in (29). This concludes the proof.
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