Nyttomaximering av en solcellsanläggning

En jämförelse mellan ett konventionellt- och ett smart solcellssystem.

ERIK ÖSTLING

FILIP JOSEFSSON
Sammanfattning

Studien påvisar att systemet inte bidrar med en betydande ökning av egenanvändningen av solenergi, ty batteriets inställningar ofta medför att batteriet är fulladdat under dagens soltimmar. Det smarta systemets mest fördelaktiga funktion är att kapa fastighetens effekttoppar vilket skapar möjlighet till nedsäkring.

Abstract

This bachelor thesis is evaluating and comparing an existing photovoltaic system including an energy storage and a smart bidirectional converter in Farsta, Stockholm. This smart system will be compared with a conventional PV plant. The aim of the report is to identify the amount of self-consumed solar energy, give optimizing suggestions and shed light on possible cost savings. The smart converter has given the possibility to collect data from a web-based portal. The portal logs and stores the energy and power data of the system.

The study proves that this smart system does not contribute with an increased amount of self-consumed solar energy, since the battery settings implies a fully charged battery during the day. The most advantageous benefit in the smart system is to cut power peaks, which gives opportunities to use smaller main fuses in the real estate.

The magnitude of the power peaks that can be reduced is depending on the settings of the battery. Two different scenarios have been examined in the study. The most essential is that the battery is always able to cut the highest power peaks without being fully discharged. The maximum utility occurs when the battery is activated when the consumption is higher than 24 kW. Fuse analysis proves that the lowest possible main fuses that could be used in the real estate is 35 A. Though, this study recommends main fuses of 50 A since a safety margin is desired. This gives opportunities to sign a more beneficial electricity contract. Conclusively, the fuse rating contract that can be used is 33 547 SEK cheaper per year than the power rating contract that is used in the real estate today.
Förord

Stockholm, maj 2018
Innehållsförteckning

Sammanfattning ... i
Abstract .. ii
Förord .. iii
1. Inledning .. 1
 1.1 Introduktion ... 1
 1.2 Syfte .. 1
 1.3 Mål ... 1
 1.4 Avgränsningar ... 2
2. Bakgrund .. 2
 2.1 Systemet ... 2
 2.2 Portalen .. 3
3. Metod ... 4
4. Teori .. 4
 4.1 Solceller ... 4
 4.1.1 Monokristallina solceller ... 5
 4.1.2 Polykristallina solceller ... 5
 4.1.3 Tunnfilmssolceller .. 5
 4.1.4 SSO ... 6
 4.1.5 Växelriktare ... 6
 4.2 Energilagring ... 6
 4.2.1 Batterier ... 7
4.3 Elabonnemang ... 8
 4.3.1 Säkringsabonnemang .. 8
 4.3.2 Effektabonnemang ... 9
 4.3.3 Nättytta .. 10
 4.4 Stöd ... 10
5. Resultat .. 12
 5.1 Solproduktion ... 12
 5.2 Självförsörjning .. 13
 5.3 Energilager ... 16
 5.4 Effektoppar ... 17
 5.4.1 Scenario A ... 18
 5.4.2 Scenario B ... 20
 5.5 Ekonomi .. 21
 5.5.1 Säkringsabonnemang ... 22
 5.5.2 Effektabonnemang ... 23
6. Diskussion .. 24
 6.1 Solproduktion ... 24
 6.2 Självförsörjning .. 24
 6.3 Energilager .. 25
 6.4 Effektoppar ... 25
 6.5 Ekonomi .. 27
 6.6 Känslighetsanalys ... 28
7. Slutsats .. 28
8. Referenser ... 29
Figurförteckning

Figur 1. Principskiss över systemet .. 3
Figur 3. Prisutvecklingen av elcertifikat (Svensk kraftmäkling, 2018). .. 11
Figur 6. Producerad solel samt egenförbrukningen av solel per dag från 2018-03-07 till 2018-04-23 (Ferroamp AB, 2018). .. 14
Figur 7. Fördelnings av solenergin i kWh under perioden 2018-03-07 till 2018-04-23 (Ferroamp AB, 2018) 14
Figur 11. Import, förbrukning samt batterianvändning under given tidsperiod den 14 mars (Ferroamp AB, 2018). .. 16
Figur 14. Aktuell batteristatus under sju dagars tid (Ferroamp AB, 2018). ... 18
Figur 15. Säkringsanalys för strömmar mellan den 6 mars och 10 april utan aktiverad ACE (Ferroamp AB, 2018). .. 19
Figur 16. Säkringsanalys för strömmar mellan den 6 mars och 10 april med aktiverad ACE (Ferroamp AB, 2018). .. 19
Figur 17. Batteriets status under sju dagar i scenario B (Ferroamp AB, 2018). ... 20
Figur 18. Importerat från elnätet, fastighetens förbrukning och batterianvändning den 22 april (Ferroamp AB, 2018). .. 21
Figur 19. Säkringsanalys från den 10 april till den 24 april, Scenario B (Ferroamp AB, 2018) 21
Figur 20. Medeleffekten för förbrukning per timma baserat på förbrukningen mellan den 7 mars till den 23 maj (Ferroamp AB, 2018). .. 22

Tabellförteckning

Tabell 1. Kostnader för säkringsabonnemang BAS ... 8
Tabell 2. Kostnader för säkringsabonnemangen ENKEL och TID (Ellevio AB, 2017a) 9
Tabell 3. Kostnader för effektabonnemang L0,4L/S. (Ellevio AB, 2017b) ... 10
Tabell 4. Nättyntoersättning för säkrings- samt effektabonnemang. (Ellevio AB, 2017c) 10
Tabell 5. Sammanfattar markerade strömmar från Figur 15 och 16. .. 20
Tabell 6. Energimängder och priser för säkringsabonnemanget TID. ... 22
Tabell 7. Totala kostnader per år för säkringsabonnemangen TID respektive ENKEL med de olika möjliga huvudsäkringarna .. 23
Tabell 8. Priser för effektabonnemangel enligt medelförbrukningen i studien. 24

Formelförteckning

Formel 1. Självförsörjningsgrad .. 13
1. Inledning

1.1 Introduktion

För att möjliggöra ett ökat användande av förnyelsebar energi måste dessa typer av lösningar implementeras och utvärderas. Att kunna ta vara på solenergin och använda den på kvällstid bidrar till en mer effektiv energianvändning då den icke förnyelsebara energiproduktionen är högre. Därför är detta kandidatexamensarbete viktigt för den framtida förnyelsebara elproduktionen. Om rapporten visar att det smarta solcellssystemet bidrar till en nyttomaximering så driver studien på utvecklingen inom den förnyelsebara energisektorn.

1.2 Syfte

Projektet genomförs med syftet att jämföra en befintlig solcellsanläggning med energilager och en smart växelriktare mot ett konventionellt solcellssystem. Syftet är även att identifiera mängden egenanvänd solenergi samt kostnadsbesparingarna i dessa båda alternativ.

1.3 Mål

Rapporten skall jämföra solcellssystem med eller utan energilagring och smarta växelriktare. Ett annat mål är att analysera systemens ekonomiska förhållanden. Detta skall genomföras genom att:

- Presentera anläggningens funktion samt dess resulterande effekter ur ett ekonomiskt och energianvändningsperspektiv.
- Utvärdera vilka injusteringsmöjligheter som finns samt att ge optimeringsförslag för systemet, med fokus på ekonomisk besparing och självförsörjningsgrad.
- Med hjälp av systemsimuleringar identifiera det mest lönsamma elavtalet för fastigheten.
1.4 Avgränsningar

2. Bakgrund
Stockholmshem är en stor fastighetsförvaltare i Stockholmsområdet som arbetar efter uppsatta miljömål och som ska bedriva sin verksamhet på ett hållbart sätt (Stockholmshem, 2018). Ett steg i detta är att installera solceller på sina fastigheter för att minska mängden el som köps in. De hade dock högre ambitioner än att bara installera solceller och ämnade därför att kombinera tekniken med ett energilager. Målet med att kombinera solcellerna med ett energilager var att nyttja överskottsenergin för att minska mängden inköpt el och därmed öka självförsörjningsgraden. En annan bidragande faktor var att undersöka de ekonomiska besparingarna.

Företaget EnergiEngagemang Sverige AB fick uppdraget att implementera lösningen, varpå de ingick ett samarbete med Ferroamp AB. Tillsammans har de installerat solceller, ett energilager samt en smart växelriktare. Denna typ av anläggning är ett relativt nytt koncept och inte speciellt beprövat. Därför fyller studien det viktiga syftet att belysa dessa typer av anläggningar för att öka dess trovärdighet på marknaden och öka användandet på sikt. Både Stockholmshem och EnergiEngagemang har intresse av att utvärdera dessa typer av system för att se huruvida lönsamt det kan vara generellt.

För att anläggningen ska vara ekonomiskt lönsamt krävs det att alla komponenter är anpassade och att noggranna beräkningar har utförts så att dessa komponenter är optimala för just detta system. Givet denna solcellsanläggning är det viktigt att optimera systemets tillhörande komponenter så att de används på bästa möjliga sätt och når sin fulla potential. För att göra detta krävs att rätt inställningar samt injusteringar görs gällande till exempel att batteriet laddas i respektive ur under rätt omständigheter samt gynnsamma i- och urladdningsnivåer.

2.1 Systemet
Systemet består av solceller, ett energilager och en smart växelriktare. Solcellernas toppoeffekt är 15,2 kW. Energilagret är ett batteri från Nilar AB med kapaciteten 32,4 kWh.

2.2 Portalen

3. Metod
Kandidatexamensarbetet har grundats i en teoretisk studie i syfte att belysa nödvändig information så att två olika uppsättningar av system kan jämföras på bästa sätt. Sökningar till teoristudien har genomförts i databaser som Google Scholar samt KTHB Primo. Sökord som använts är: ”solcellssystem”, ”elnätsystem”, ”energilagring”, ”växelriktare”, ”smart grid”, ”solar energy storage” samt ”elnätstariff”. För att få kompletterande information om solcellssystemet med energilagring samt den smarta växelriktaren har samtal förts med företagen bakom de olika komponenterna. Under studiens tidsperiod har energilagret styrts av två olika inställningar för i- respektive urladdning. Rapporten skiljer på dessa inställningar i scenario A och scenario B. Genom att jämföra dessa scenarion mot varandra har slutsatser dragits vilket scenario som ger störst nytta för anläggningen.

4. Teori
4.1 Solceller

Solcellers verkningsgrad varierar beroende på vilken typ det är, men ligger generellt mellan 10-20 %. Den genererade elektriciteten beror på solinstrålningen, vilken i Sverige är 900-1100 W/m² beroende på geografisk placering. I genomsnitt genererar en 1 kW anläggning i Sverige 950 kWh el per år och tar upp 7m² (Energimyndigheten, 2018a). Solceller är beroende av utomhustemperaturen, ju varmare det är desto lägre blir verkningsgraden. För att mäta verkningsgraden används standardiserade testförhållanden, STC, där solinstrålningen är 1000 W/m² och temperaturen är 25 grader Celsius. Effekten som fås ut under dessa förhållanden kallas toppoeffekt, även om solcellerna alltså kan producera mer el om förhållandena skiljer sig från de standardiserade (Nimmermark, 2014).

Solceller är en benämning för solpaneler och syftar på en anläggning med minst en solpanel. Solpanelen består av många små solceller som är sammankopplade. Det finns flera olika typer av solpaneler som är gjorda av olika material. Gemensamt för solcellerna är att de består av ett halvledarmaterial, oftast kisel. De är uppbyggda av olika skikt som gör att det

4.1.1 Monokristallina solceller

4.1.2 Polykristallina solceller

4.1.3 Tunnfilmssolceller
Tunnfilmssolceller, även kallat amorfa solceller, finns i flera olika varianter. Marknadsandelen i världen är ungefär 10–15 %. De består av ett skikt ljusabsorberande material i storleksordningen mikrometer. Det aktiva skiktet är väldigt flexibelt och kan placeras på glas, metall, plast och andra material som är mer flexibla och formbara. Istället för skivor så är tunnfilmssolcellerna tillverkade i ett långt svep, och materialåtgången är mycket mindre än för de kristallina solcellerna. Verkningsgraden är ungefär 12–14 %, men

4.1.4 SSO

4.1.5 Växelriktare

4.2 Energilagring
Till följd av ökad produktion av förnyelsebar och flödande energi har energilagring blivit mer intressant. Energilager ger möjlighet att flytta genererad energi från en tidpunkt till en annan. Elektricitet måste genereras samtidigt som den konsumeras vilket skapar en stor utmaning i att införa flödande energikällor som en stor del i energisystemet. För att kunna byta ut stabila fossila kraftverk och ersätta dem med förnyelsebar energi krävs energilagring i olika former för att alltid kunna möta behovet hos konsumenterna och skapa ett stabilt elnät.

Det finns många olika tekniker som växer i takt med den alternativa energiproduktionen. Beroende på syftet med lagringen är olika metoder bäst lämpade. Om energin ska lagras i storleksordningen sekunder är svångjul och superkondensatorer ett bra alternativ med en verkningsgrad på 95 %. Att lagra energi över längre tid, mer än ett dygn och över årstider, är power to gas med vätgasproduktion det mest effektiva sättet. Om mindre energimängder
ska lagras från minuter och upp till flertalet timmar så är litiumjonbatterier en effektiv metod med verkningsgraden 85-100% (Power circle, 2016).

4.2.1 Batterier

4.3 Elabonnemang

Säkrings-, effekt- samt nättyto-abonnemang ombesörjs av nätägaren i den region där fastigheten är belägen. I studiens fall är det Ellevio AB som är nätägare och därför är det förtagets abonnemang som har undersöks.

4.3.1 Säkringsabonnemang

Säkringsabonnemang tecknas av kunder med huvudsäkringar upp till och med 63A. Abonnemangens nätagift betalas månatligen och bestäms utifrån fastighetens huvudsäkringar, exempelvis 168 kr för 16A och 916 kr för 63A. Den rörliga elnätsavgiften varierar beroende på tre typer av abonnemang, BAS, ENKEL och TID. För BAS-avtalet kostar energin 40,12 öre/kWh och för Enkel-avtalet 22,10 öre/kWh. Med TID-avtalet varierar energipriset beroende på vilken tid den överförs, 51,36 öre/kWh samt 8,80 öre/kWh under högpristid1) och övrig tid respektive. Samtliga nämnda priser är exklusive moms och avser elnätspriser i Stockholmsområdet, priserna kan variera beroende på område. Från och med den 1 januari 2018 tillkom även en energiskatt om 33,10 öre/kWh som tidigare har varit pliktig elhandelsföretagen att ta ut (Ellevio AB, 2017a).

Tabell 1. Kostnader för säkringsabonnemang BAS

<table>
<thead>
<tr>
<th>Abonnemang</th>
<th>BAS, trefas max 20A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast elnätsavgift, kr/månad</td>
<td>48</td>
</tr>
<tr>
<td>Rörlig elnätsavgift, öre/kWh</td>
<td>40,13</td>
</tr>
</tbody>
</table>

1) Högpristid avser vardagar samt helgdagar som infaller på en vardag under november-mars klockan 06:00-22:00.

2) Höglasttid avser vardagar mellan klockan 06:00-22:00 under november-mars, med undantag för storhelger som utgör övrig under hela dygnet.
Högpristid avser vardagar samt helgdagar som infaller på en vardag under november-mars klockan 06:00-22:00.

Tabell 2. Kostnader för säkringsabonnemangen ENKEL och TID (Ellevio AB, 2017a)

<table>
<thead>
<tr>
<th>Abonnemang</th>
<th>ENKEL</th>
<th>TID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast elnätsavgift, kr/månad, vid trefas och maximal huvudsäkring:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16A</td>
<td>168</td>
<td>180</td>
</tr>
<tr>
<td>20A</td>
<td>216</td>
<td>228</td>
</tr>
<tr>
<td>25A</td>
<td>276</td>
<td>288</td>
</tr>
<tr>
<td>35A</td>
<td>416</td>
<td>428</td>
</tr>
<tr>
<td>50A</td>
<td>640</td>
<td>652</td>
</tr>
<tr>
<td>63A</td>
<td>916</td>
<td>928</td>
</tr>
<tr>
<td>Rörlig elnätsavgift, öre/kWh:</td>
<td>22,10</td>
<td></td>
</tr>
<tr>
<td>Övrig tid</td>
<td>8,00</td>
<td></td>
</tr>
<tr>
<td>Högpristid[1]</td>
<td>51,36</td>
<td></td>
</tr>
</tbody>
</table>

4.3.2 Effektabonnemang

Vid nyttjande av huvudsäkringar större än 63 A tecknas ett effektabonnemang med nätägaren. Med Ellevio som nätägare finns två typer av lågspänningsseffektabonnemang (spänningar om 0,4 kV) att tillgå, L0,4L samt L0,4S. Med effektabonnemang tillkommer avgifter som inte ett säringsabonnemang ombesörjer, t.ex. så betalar kunder en månadseffektpremium som debiteras månadsvis och bestäms utifrån timman med högst medeleffekt vilket resulterar i 56 och 47 kr per kW för L0,4L och L0,4S respektive. Utöver detta betalar även kunder med L0,4S-abonnemang en höglasteffektpremium[2]. Höglasteffektpremium bestäms enligt samma princip som månadseffektpremium och kostar 47 kr per kW. L0,4S-abonnemangsskunder betalar därefter 7,70 öre per mottagen kilowattimme, medans L0,4L-abonnemangsskunder betalar 45,70 öre/kWh under tidigare definierad höglasttid och 9,30 öre/kWh övrig tid. L0,4L- samt L0,4S-kunder betalar även en fast månadseffektavgift om 263, 2420 kr respektive. Samtliga nämnda priser är exklusive moms och avser elnätspriser i Stockholmsområdet, priserna kan variera beroende på område. Priserna redovisas även i tabell 3. Från och med den 1 januari 2018 tillkom även en energiskatt om 33,10 öre/kWh som tidigare har varit pliktig elhandelsföretagen att ta ut (Ellevio AB, 2017b).

[1] Högpristid avser vardagar samt helgdagar som infaller på en vardag under november-mars klockan 06:00-22:00.

[2] Höglasttid avser vardagar mellan klockan 06:00-22:00 under november-mars, med undantag för storhelger som utgör övrig under hela dygnet.
Högpristid avser vardagar samt helgdagar som infaller på en vardag under november–mars klockan 06:00–22:00.

Höglasttid avser vardagar mellan klockan 06:00–22:00 under november–mars, med undantag för storhelger som utgör övrig under hela dygnet.

Tabell 3. Kostnader för effektabonnemang L0,4L/S. (Ellevio AB, 2017b)

<table>
<thead>
<tr>
<th>Abonnemang</th>
<th>L0,4L</th>
<th>L0,4S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anslutningsspänning, kV</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>Fast elnätsavgift, kr/månad</td>
<td>263</td>
<td>2420</td>
</tr>
<tr>
<td>Månadseffektavgift, kr/kW, månad</td>
<td>56</td>
<td>47</td>
</tr>
<tr>
<td>Höglasteffektavgift, kr/kW, månad</td>
<td>-</td>
<td>47</td>
</tr>
</tbody>
</table>

Rörlig elnätsavgift:
- Höglasttid[2], öre/kWh 45,7 7,7
- Övrigtid, öre/kWh 9,3 7,7

4.3.3 Nätnytta

Tabell 4. Nätnytoersättning för säkrings- samt effektabonnemang. (Ellevio AB, 2017c)

<table>
<thead>
<tr>
<th>Abonnemang</th>
<th>Höglasttid</th>
<th>Övrig tid</th>
<th>Höglasttid</th>
<th>Övrig tid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max 63A</td>
<td>2,8</td>
<td>2,2</td>
<td>3,5</td>
<td>2,7</td>
</tr>
<tr>
<td>Över 63A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.4 Stöd

[1] Högpristid avser vardagar samt helgdagar som infaller på en vardag under november-mars klockan 06:00-22:00.
[2] Höglasttid avser vardagar mellan klockan 06:00-22:00 under november-mars, med undantag för storhelger som utgör övrig under hela dygnet.

Att sälja överskottsel innebär också intäkter i form av skattereduktion. Skattereduktionen är 60 öre/kWh som matas in på elnätet med ett övre tak på 18 000 kronor. Reduktionen avser både fysiska och juridiska personer, där begränsningen gäller per bolag. För att få skattereduktion skall anläggningens huvudsäkring vara maximalt 100A. Inmatning och utmatning till elnätet ska ske genom samma punkt, med samma elmätare och huvudsäkring. Om den utmatade elen på elnätet är större än mängden inköpt el så uppgår skattereduktionen till den mängd som är inköpt (Skatteverket, 2018).

Ett system som liknar elcertifikatsystemet är ursprungsgarantier, även kallat guarantees of origin. Dessa ursprungsgarantier används för att garantera från vilken energikälla som elen är producerad. På så sätt kan elleverantörer garantera att motsvarande mängd el som de säljer har omvandlats från en viss energikälla. Systemet infördes 2010 och syftar till att främja förnybar elproduktion och att skapa en transparens och trovärdighet mellan
elleverantörer och deras kunder. Ursprungsgarantier utfärdas för alla typer av produktion och garantierna säljs på en separat marknad. På så sätt är priset på ursprungsgarantier från solenergi starkt stort av efterfrågan från konsumenterna. Statistik gällande marknadspris på ursprungsgarantier saknas då dessa transaktioner inte är offentliga handlingar. För en mikroproducent ingår ursprungsgarantierna oftast i de avtal med de elleverantörer som köper överskottselen och att producenten får betalt per kWh (Energimyndigheten, 2015).

5. Resultat

5.1 Solproduktion

Figur 5 visar den momentana effekt som solcellerna genererar under en vecka i mars månad. Solcellernas toppeffekt är angiven till 15,2 kW, men som syns i figuren uppgick effekten till över 16 kW den 26 mars. Figuren visar tydligt vilka tider som solen träffar solcellerna med olika styrka och att anläggningen genererar mest elektricitet runt klockan 12 på dagen.
5.2 Självförsörjning

Självförsörjningsgraden definieras som egenförbrukningen av solel dividerat med den totala förbrukningen:

\[
\frac{\text{Producerad solel} - \text{Exporterad elektricitet}}{\text{Total förbrukning}} = \text{Självförsörjningsgrad}
\]

Formel 1. Självförsörjningsgrad

Under knappt sju veckor producerades alltså 2 658 kWh solenergi. Det motsvarar dock en relativt liten andel av förbrukningen under hela perioden 7 mars – 23 april. I Figur 8 syns att den genererade solelen är en liten andel relativt den totala förbrukningen som var 37 397 kWh.

Figur 9 visar egenförbrukningen av solel samt den totala förbrukningen per dag, vilket resulterar i en självförsörjningsgrad per dag. I början av perioden genererade solcellerna lite elektricitet och därmed blev självförsörjningen låg. I Figur 10 syns självförsörjningsgraden dag för dag under perioden. Den högsta graden av självförsörjning var den 20 april. Då var egenförbrukningen av solel 74,3 kWh och förbrukningen i fastigheten 135 kWh, vilket ger självförsörjningsgraden 55 %.

5.3 Energilager

Som visas har det installerade energilagret bidragit till att kapa effekttopper. När förbrukningen i fastigheten varit högre än den angivna nivån på 34 kW så har batteriet levererat mellanskillnaden i effekt. Den maximala effekten som batteriet kan ladda ur är 28 kW vilket gör att den kan kapa relativt stora effekttopper från förbrukningen, givet att det finns tillräckligt mycket energi tillgängligt i batteriet.

I ett traditionellt solcellssystem ingår inget energilager. Om det inte hade varit installerat hade inga effekttoppar kunnat kapas och inte heller hade överskott av solenergi kunnat sparas till senare under dagen. Figur 13 visar förbrukningen och solproduktionen under en vecka i mars. Om inte batteriet hade hunits installerat hade den importerade mängden el varit ekvivalent med förbrukningen minus solproduktionen. När solcellerna inte genererar någon el blir den importerade elen lika med förbrukningen. I figuren syns att den högsta förbrukningen i fastigheten oftast är när solen inte lyser, utan snarare på kvällen när solen inte producerar el. Därmed kommer effekttopparna vara högre och det hade krävts en högre huvudsäkring än vad som behövs med det aktuella systemet.

5.4 Effekttoppar

Energilagrets inställningar bestämmer under vilka förhållanden batteriet ska laddas i respektive ur. Under studiens skede har två olika batteri-inställningarna använts. Under perioden 6 mars till och med den 9 april laddade batterilagret ur vid förbrukningar över 34 kW och laddades vid förbrukningar mindre än 33 kW. Detta kommer i fortsättningen att benämnas som scenario A. Den 10 april ändrades de tidigare inställningarna till att ladda ur
batteriet vid förbrukningar över 24 kW samt till att laddas vid förbrukningar lägre än 23 kW. Dessa inställningar behandlas under scenario B.

5.4.1 Scenario A

Som visats i Figur 11 så bidrar energilagret till att kapa effekttoppar. I detta fall är förbrukningen i fastigheten 55,3 kW, men tack vare batteriet blir den importerade effekten från elnätet 34,5 kW. Utan batteriet hade figurens förbrukningskurva varit ekvivalent med fastighetens effektiimport, vilket skulle resultera i högre månadseffektavgifter och högre belastningar på huvudsäkringen.

Figur 14 visar batteriets laddningsstatus under perioden 23 mars till och med den 30 mars. Lägsta värdet på batteriets status påträffas på kvällen den 27 mars då batteriet har en laddningsstatus om 80 % av maximal kapacitet. De sju dagar som visas är typiska dagar och batterianvändningen varierar inte märkbart under given tidsperiod, vilket påvisar att energilagret kan nyttjas i större utsträckning vid inställningar som tillåter att batteriet laddas ur vid lägre förbrukningseffekter.

![Batteristatus](image)

Elabonnemang

Konsumenter med effektabonnemang betalar en månadseffektavgift som bestäms av den timman med högst medeleffekt under en månad. Med hjälp av batteriet kan effekttoppar kapas och på så vis kan månadskostnaderna mindska. Under mars månad var den högsta medeleffekten 35,6 kW, beräknat på anläggningen om den inte haft ett installerat energilager. Givet samma anläggning under samma tidsperiod med energilager uppgick den högsta medeleffekten till 32,9 kW. För konsumenter med L0,4S-abonnemang tillkommer även en höglasteffektavgift under specifika höglastsperioder.

Säkringsabonnemang

I portalen finns ett verktyg som plottar samtliga strömmars varaktighet i en graf kallad säkringsanalys. Grafen synliggör hur fastighetens tre faser belastas med inaktiv ACE-funktion. Utifrån denna loggade data skapar portalen underlag för att eventuellt nyttja mindre huvudsäkringar, vilket ger en ekonomisk vinning i form av billigare elavtal. Markerad punkt i Figur 15 visualiserar en ström om 81,1 A_{rms} i ledare L₁, som varat i 191 sekunder. Avståndet x₁ visar på att denna ström kunnat vara i ytterligare 1369 sekunder innan den hade hotat en 50 A säkring att lösa ut. Enligt samma princip visar avståndet y₁ att samma ström som varat i 191 sekunder hotar att lösa ut en 50 A säkring först vid strömstyrkan 104 A_{rms}, vilket är 22,9 A mer än den aktuella strömmen.
Vid aktiverad ACE-funktion fasutjämnar EnergyHuben och fördelar strömmarna i de tre ledarna jämnt. Resultatet av fasutjämningen blir att den största strömmen i en ledare blir förhållandevis lägre än vad den blivit utan aktiverad ACE-funktion. Figur 16 visar aktuella strömmar under tidsperioden 6 mars till 10 april 2018, med aktiverad ACE-funktion. De markerade strömmarna är jämnt fördelade mellan de tre faserna till en strömstyrka av 78,4 A rms, vilket är 2,7 A lägre än den markerade strömmen i Figur 15. Detta resulterar i ett längre tidsspann innan dessa strömmar hotar att lösa ut en 50A-säkring, \(x_2 \) visualiserar tidsspannet och är 1851 sekunder vilket också visas i tabell 5.
Tabell 5. Sammanfattar markerade strömmar från Figur 15 och 16.

<table>
<thead>
<tr>
<th></th>
<th>Varaktighet [s]</th>
<th>Strömstyrka [A_{rms}]</th>
<th>X_{sA} [s]</th>
<th>Y_{sA} [A_{rms}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utan ACE₁</td>
<td>191</td>
<td>81,1</td>
<td>1369</td>
<td>22,9</td>
</tr>
<tr>
<td>Med ACE₂</td>
<td>191</td>
<td>78,4</td>
<td>1851</td>
<td>25,6</td>
</tr>
</tbody>
</table>

5.4.2 Scenario B
Till följd av att batteriet använts i låg utsträckning och att det fanns mer kapacitet att nyttja så ändrades inställningarna den 10 april. De nya inställningarna styr batteriet till att aktivera sin urladdning när fastighetens konsumtion överstiger 24 kW. Denna nivå motsvarar en ström på 35 A och sattes för att utvärdera om systemet skulle klara av den huvudsäkringen. Figur 17 visar att batteriet använts i större grad med dessa nya inställningar. Trots att energilagret belastas mer så har det aldrig laddats ur under de två veckor som scenariots inställningar varit aktiva.

![Battery Status](image)

Figur 17. Batteriets status under sju dagar i scenario B (Ferroamp AB, 2018).

Batteriet är med dessa inställningar aktiverat tidigare och är mer aktiv gällande att kapa effekttoppar. Figur 18 visar hur batteriet håller den importerade elen på en effekt runt 24 kW när förbrukningen annars hade varit 40 kW. En konsekvens blir att en större del kapas från timman med den högsta medeleffekten under tidsperioden. Utan energilagring skulle den högsta medeleffekten mellan den 10 april och den 24 april vara 31,9 kW. Den högsta medeleffekten av importerad energi från elnätet är under samma tid 24,9 kW.
Figur 18. Importerat från elnätet, fastighetens förbrukning och batterianvändning den 22 april (Ferroamp AB, 2018).

Figur 19 visar en säkringsanalys med aktuella strömmars varaktighet samt strömstyrka över tidsperioden 10 april till och med den 24 april 2018. Markerade strömmar i grafen visar på ledare L1, L2 och L3 strömstyrka av 69,8 A_mess som varat i 40 sekunder. Dessa strömmar hotar att lösa ut en 35 A huvudsäkring om dessa varat i ytterligare 192 sekunder vilket avstånd \(X_{2B} \) visar. Enligt samma princip hotar en ström som varat i 40 sekunder att lösa ut en huvudsäkring om 35 A först vid en strömstyrka av 90,1 A_rms vilket är 20,3 A_rms högre än de aktuella strömmarna, vilket visualiseras av avståndet \(Y_{2B} \). Denna plot skapar ett underlag för att synliggöra eventuella nedsäkringar som kan göras. Lägre installerade huvudsäkringar gör att mer ekonomiskt fördelaktiga elavtal kan tecknas.

5.5 Ekonomi

Baserat på de energiflödena under mars och april visar Figur 20 medeleffekten under varje timma på dygnet. Vardagar och helger skiljs åt i figuren, och som visas skiljer sig förbrukningen åt mellan dessa periodsuppdelningar. Generellt förbrukas mer elektricitet på helgerna och förbrukningen är som högst mitt på dagen, men också relativt hög på morgontimmarna och mellan klockan 19-20 på kvällen.
Baserat på Figur 20 kan beräkningar genomföras kring kostnaderna för varje möjligt elabonnemang som finns tillgängliga från Ellevio. För att kunna applicera informationen på övriga året antas den vara representativ under hela året.

5.5.1 Säkringsabonnemang

Den övriga tiden under vardagar och förbrukningen under helger kostar lika mycket. På vardagar är förbrukningen mellan kl 22-06 i snitt 33,36 kWh. På samma sätt som tidigare blir detta 3 779,6 kWh mellan november – mars, vilket kostar 293,6 kronor. Under helgerna är medelförbrukningen 233,21 kWh per dag, motsvarande 466,4 kWh per helg. Under de 22 veckorna blir då förbrukningen totalt 10 261,2 kWh. Priset för dessa är 820,9 kronor.

Utifrån dessa data kan även kostnaden för förbrukningen april – oktober (7 månader) beräknas. Total förbrukning november – mars (5 månader) är 31 189,8 kWh. Förbrukningen under sju månader blir då 34 199,9 × 7/5 = 43 665,8 kWh. Då detta inte är under högpristiden blir kostnaden då 47 879,8 × 0,08 = 3 493,2 kronor. Enligt tabell 6 blir de totala rörliga kostnaderna 13 471,9 kronor för ett kalenderår med säkringsabonnemanget TID.

<table>
<thead>
<tr>
<th>Högpristid, november - mars</th>
<th>Vardagar, övrig tid november – mars</th>
<th>Helger, november – mars</th>
<th>All tid, april - oktober</th>
<th>Totalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 259 kWh</td>
<td>3 669,6 kWh</td>
<td>10 261,2 kWh</td>
<td>43 665,8 kWh</td>
<td>74 855,6 kWh</td>
</tr>
<tr>
<td>8 864,2 kronor</td>
<td>293,6 kronor</td>
<td>820,9 kronor</td>
<td>3 493,2 kronor</td>
<td>13 471,9 kronor</td>
</tr>
</tbody>
</table>
Säkringsabonnemanget ENKEL har ingen högpristid, där kostar varje kWh lika mycket oavsett när de förbrukas. Enligt tabell 6 förbrukas 74 855,6 kWh under ett år. De rörliga kostnaderna för ett år blir då 74 855,6 \times 0,221 = 16 543,1 kronor.

Utöver dessa rörliga kostnader tillkommer fasta kostnader som är beroende på storleken av installerade huvudsäkringar. Tabell 7 visar att de totala kostnaderna för en huvudsäkring på 35A med säkringsabonnemanget tid 18 493,6 kronor.

Tabell 7. Totala kostnader per år för säkringsabonnemangen TID respektive ENKEL med de olika möjliga huvudsäkringarna.

<table>
<thead>
<tr>
<th>Huvudsäkring</th>
<th>Fasta kostnader</th>
<th>Total kostnad – TID</th>
<th>Total kostnad - ENKEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 A</td>
<td>2 061 kr</td>
<td>15 532,9 kr</td>
<td>18 604,1 kr</td>
</tr>
<tr>
<td>20 A</td>
<td>2 592 kr</td>
<td>16 063,9 kr</td>
<td>19 135,1 kr</td>
</tr>
<tr>
<td>25 A</td>
<td>3 312 kr</td>
<td>16 783,9 kr</td>
<td>19 855,1 kr</td>
</tr>
<tr>
<td>35 A</td>
<td>4 992 kr</td>
<td>18 463,9 kr</td>
<td>21 535,1 kr</td>
</tr>
<tr>
<td>50 A</td>
<td>7 680 kr</td>
<td>21 151,9 kr</td>
<td>24 223,1 kr</td>
</tr>
<tr>
<td>63 A</td>
<td>10 992 kr</td>
<td>24 463,9 kr</td>
<td>27 535,1 kr</td>
</tr>
</tbody>
</table>

5.5.2 Effektabonnemang

Gällande effektabonnemangen är höglasttiden definierad på samma sätt som under högpristiden för säkringsabonnemanget med undantaget att effektabonnemangen gör undantag för storhelger. Då dessa dagar är få till dagar bortses dem från jämförelsen. Abonnemanget L0,4L har en månadseffektavgift på 56 kr/kW som gäller den timman med högst medeleffekt under månaden. Denna högsta medeleffekt är 24,9 kW, vilket ger en kostnad på 1 394,4 kronor per månad.

Enligt tabell 6 är förbrukningen under höglasttiden 17 259 kWh, vilket ger en kostnad på 17 259 \times 0,457 = 7 887,4 kronor. Kostnaden för konsumtionen övrig tid är (74 855,6 – 17 259) \times 0,093 = 5 368,9 kronor. Enligt tabell 3 är de fasta avgifterna 263 kronor per månad.

Abonnemanget L0,4S har en fast månadsavgift på 2 420 kronor per månad. Abonnemangets månadseffektavgift är 47 kr/kW, vilket med den högsta medeleffekten 24,9 kW ger en kostnad på 1 170,3 kronor per månad. Utöver detta finns även en höglasteffektavgift på 47 kr/kW, som alltså gäller från november till mars. Den rörliga elnätsavgiften är betydligt lägre i detta abonnemang där varje kWh kostar 7,7 öre. De rörliga kostnaderna blir 74 855,6 \times 0,077 = 5 763,9 kronor.

I tabell 8 är de olika kostnaderna summerade. Fastigheten som rapporten behandlar skulle betala 33 145,1 kronor per år för sin nuvarande förbrukning till nätägarna om de hade abonnemanget L0,4L. Om de istället hade abonnemanget L0,4S hade kostnaderna uppgått till 54 699 kronor.
6. Diskussion

6.1 Solproduktion

Under perioden från den 22 december 2017 till och med 23 april 2018 genererade solcellerna 2927,4 kWh med markant ökat bidrag i mitten av mars jämfört med dagarna innan, vilket visas i Figur 4. Dygnet med högst solelproduktion var den 21 april och då producerades 106 kWh. Denna produktion kan förväntas öka under sommardygn då solen levererar en högre effekt under en längre tidsperiod på dagen.

Den 26 mars genererade solcellerna en effekt om 16 kW vilket är 0,8 kW mer än dess märkta toppeffekt. Orsaken till den höga uteffekten är att toppeffekten bestäms utifrån standardiserade testförhållanden med solinstrålning 1000 W/m² samt en omgivningstemperatur av 25 grader Celsius. Det är därför rimligt att anta att omgivningstemperaturen var lägre jämfört med den standardiserade temperaturen och därför levererade solcellerna en högre effekt än den märkta toppeffekten.

6.2 Självförsörjning

Dagen med störst självförsörjningsgrad var den 20 april, denna dag var egenförbrukningen från solcellerna 74,3 kWh och den totala förbrukningen 135 kWh vilket ger en självförsörjningsgrad om 55 %. Anledningen till den relativt höga självförsörjningsgraden är att den höga produktionen av solel väl matchar fastighetens förbrukning under dagens soltimmar. På så sätt används det mesta av den producerade solelen direkt av fastigheten och behövs inte exporteras till elnätet.

Tabell 8. Priser för effektabonnemangen enligt medelförbrukningen i studien.

<table>
<thead>
<tr>
<th></th>
<th>L0,4L</th>
<th>L0,4S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast elnätsavgift</td>
<td>3 156 kr/år</td>
<td>29 040 kr/år</td>
</tr>
<tr>
<td>Månadseffektsavgift</td>
<td>16 732,8 kr/år</td>
<td>14 043,6 kr/år</td>
</tr>
<tr>
<td>Höglasteffektavgift</td>
<td>-</td>
<td>5 851,5 kr/år</td>
</tr>
<tr>
<td>Rörlig elnätsavgift</td>
<td>-</td>
<td>5 763,9 kr/år</td>
</tr>
<tr>
<td>Höglasttid</td>
<td>7 887,4 kr/år</td>
<td>-</td>
</tr>
<tr>
<td>Övrig tid</td>
<td>5 368,9 kr/år</td>
<td>-</td>
</tr>
<tr>
<td>Totalt</td>
<td>33 145,1 kr/år</td>
<td>54 699 kr/år</td>
</tr>
</tbody>
</table>
6.3 Energilager

6.4 Effekttoppar

Beroende på förbrukningen innehas antingen ett effektabonnemang eller ett säkringsabonnemang. Vid effektabonnemang finns den ekonomiska nyttan i att minska den maximala medeleffekten som tas ut sett över en timma. Abonnemanget L0,4L debiterar 56 kr för varje kW, medan det i abonnemanget L0,4S kostar 47 kr/kW plus 47 kr/kW extra under villkoren för höglasttider. I tidsperioden för scenario B skiljer det 7 kW mellan den högsta medeleffekten för konsumtion respektive importerad el. Därmed sparar 4 704 kronor per år på ett L0,4L-abonnemang respektive 5 922 kronor per år på ett L0,4S-abonnemang.

Om fastigheten istället använder sig av ett säkringsabonnemang skiljer sig kostnaderna markant. En fast avgift debiteras varje månad beroende på hur stor huvudsäkring som finns i fastigheten. Exempelvis sparar 3 312 kronor per år genom att gå ned från 63 A till 50 A huvudsäkring. Genom att installera ett batteri och optimera dess inställningar kan nedsäkringar uppstå. Detta är den största ekonomiska vinningen i att installera ett energilager.

6.5 Ekonomi

Säkringsabonnemang
Givet fastighetens förbrukning är elavtalet TID det billigare alternativet av de två säkringsabonnemangen TID och ENKEL, detta trots den avsevärt dyrare kostnaden för energi under högpristid. Helgers dygn berörs inte av högpristid och det är då förbrukningen är som högst, vilket ger fördel för kunder med elavtalet TID då priset för en kWh endast är 8 öre. Säkringsabonnemangens maximala tillåtna huvudsäkring är 20 A har inte analyserats då genomförda säkringsanalysen har visat att huvudsäkringen om 20 A inte är tillräckligt för fastighetens effektbehov.

Effektabonnemang
Av de två tillgängliga effektabonnemangen är L0,4L det mest förmånliga och den totala kostnadsskillnaden till L0,4S-abonnemanget är 21 553,9 kr per år. För att tjäna på ett L0,4S-avtal krävs att en betydligt större mängd energi köps under höglasttid, vilket inte är fallet för studiens fastighet. En annan stor skillnad i avtalens kostnader är de månatliga elnätsavgifteren, där L0,4S-avtalet är det dyrare alternativet och genererar en kostnadsskillnad på 25 884 kr på årsbas. Detta visar på att det finns stora kostnadsskillnader mellan elabonnemang och att dåligt anpassade avtal har stora konsekvenser på en fastighets utgifter. Det är därför viktigt att tecknade elavtal är väl anpassade för fastighetens förbrukningar samt att lägsta möjliga huvudsäkringar nyttjas.
6.6 Känslighetsanalys

Energilagret slits när det används, dess State Of Health (SOH) försämras. SOH påverkas av hur batteriet används under livstiden, att ladda batteriet till 100% för att sedan ladda ur det helt skadar energilagret mer än om laddningen hållas mellan 90- och 10% av den totala kapaciteten. I takt med att batteriets SOH försämras ändras även anläggningens förutsättningar. Det är därför viktigt att detta tas med i beräkningarna när valet av huvudsäkringar görs, för att inte riskera att batteriet inte klarar av att kapa det tänkta effekttopporna och huvudsäkringarna löser ut. När valet av huvudsäkringar görs bör därför en marginal för batteriets SOH-forändring beaktas.

7. Slutsats

I fastigheter med förbrukningsprofiler som i Farsta kan inte enbart den producerade solelen kapa fastighetens högsta effekttoppar. De högsta effekttopporna inträffar på kvällstid när solcellerna inte producerar någon elektricitet. Batteriets inställningar styr batteriet att laddas då fastighetens förbrukning är under 23 kW, detta medför att batteriet ofta är fulladdat under dagen och kan inte laddas direkt av solel. Energilagret bidrar alltså inte nämnvärt till en ökad självförsörjningsgrad med dessa inställningar. Om syftet är öka självförsörjningsgraden kan batteriinställningarna optimeras för detta.

Den största ekonomiska besparingen är istället att kapa effekttoppar och därmed nyttja lägre huvudsäkringar samt teckna ett billigare elavtal. För att maximera nytta av systemet är det viktigt att hitta optimala inställningar för hur batteriet ska arbeta. Det är viktigt att det finns tillräckligt med energi i batteriet så att de högsta effekttopporna alltid kan kapas. Därefter är det essentiellt att hitta inställningar som resulterar i ett så högt utnyttjande som är möjligt. För fastigheten i Farsta innebär detta att scenario B ska användas, där batteriet aktiveras vid förbrukningar över 24 kW.

Utifrån insamlad data för scenario B kan slutsatsen dras att 35 A huvudsäkringar kan användas i fastigheten i Farsta. Som däremot näms i känslighetsanalysen är resultatet hämtad från en begränsad tidsperiod, vilket gör att underlaget inte anses vara tillräckligt bra för en sådan nedsäkring. Då säkriansanalysen endast har data från två veckors tid finns det en risk att en högre effekttopp kan inträffa. Förebyggningen i fastigheten är relativt jämmer över säsonger, men det skulle vara önskvärt att göra en säkriansanalys efter en längre tidsperiod för att kunna vara säker på att 35 A huvudsäkringar skulle räcka. Dessutom bör det finnas en marginal som tillåter extra höga förbrukningar för att minimera risken att huvudsäkringar löses ut. Däremed rekommenderas en nedsäkring till 50 A huvudsäkringar och
säkringsabonnemanget TID. För närvarande brukas effektabonnemanget L0,4S, vilket innebär att den ekonomiska besparingen blir 33 547 kronor per år.

8. Referenser

