Optimal Speed Controller for a Heavy-Duty Vehicle in the Presence of Surrounding Traffic

JAKOB ARNOLDSSON
Optimal Speed Controller for a Heavy-Duty Vehicle in the Presence of Surrounding Traffic

JAKOB ARNOLDSSON
Abstract

This thesis has explored the concept of an intelligent fuel-efficient speed controller for a heavy-duty vehicle, given that it is limited by a preceding vehicle. A Model Predictive Controller (MPC) has been developed together with a PI-controller as a reference controller. The MPC based controller utilizes future information about the traffic conditions such as the road topography, speed restrictions and velocity of the preceding vehicle to make fuel-efficient decisions. Simulations have been made for a so called Deterministic case, meaning that the MPC is given full information about the future traffic conditions, and a Stochastic case where the future velocity of the preceding vehicle has to be predicted. For the first case, regenerative braking as well as a simple distance dependent model for the air drag coefficient are included. For the second case three prediction models are created: two rule based models (constant velocity, constant acceleration) and one learning algorithm, a so called Nonlinear Auto Regressive eXogenous (NARX) network.

Computer simulations have been performed, on both created test cases as well as on logged data from a Scania vehicle. The developed models are finally evaluated on the test cases for both varying masses and allowed deviations from the preceding vehicle. The simulations show on a potential for fuel savings with the MPC based speed controllers both for the deterministic as well as the stochastic case.
Sammanfattning


Datorsimuleringar har gjorts, både på skapade testfall och på loggade data från ett Scania fordon. De utvecklade modellerna utvärderas slutligen på testfallen för både varierande massor och tillåtna avvikelser från det framförvarande fordonet. Simuleringsarna visar på potential för bränslebesparingar med MPC-baserade hastighetsregulatorer både för det deterministiska och det stokastiska fallet.
Acknowledgements

First and foremost I want to thank my supervisor Manne Held at Scania for his guidance, knowledge and valuable inputs throughout the work with this thesis. Without the many fruitful discussions made at critical points in the project many of the developed models and results seen in the thesis would not have been possible. I would also want to thank him, Oscar Flärdh and Mats Reimark for giving me the great opportunity to do this project at Scania. The group NECS at Scania should also get a special thanks for the support and warm welcome given to me during my time there. I would also like to take the opportunity to thank my supervisor Xiaoming Hu at KTH for his valuable input and feedback during the project.

At last, I would like to thank Caroline and my family for their support and encouragements throughout the work with this thesis.
## Contents

Abstract i  
Sammanfattning ii  
Acknowledgements iii  
List of Figures vii  
List of Tables x  
Abbreviations xi  

### 1 Introduction  
1.1 Earlier Work ........................................... 3  
1.2 Formulation of Main Goals ................................ 4  
1.2.1 Deterministic case .................................... 5  
1.2.2 Stochastic case ....................................... 6  
1.2.3 Delimitations ......................................... 6  
1.3 Outline of the Thesis .................................... 8  

### 2 Background  
2.1 Control and Optimization theory ........................ 9  
2.1.1 Optimal Control ....................................... 9  
2.1.1.1 General formulation ................................ 11  
2.1.2 Linear programming ................................... 12  
2.1.2.1 Soft-constraint approach ......................... 14  
2.1.3 MPC- Model Predictive Control ....................... 15  
2.1.4 PI-controller .......................................... 17  
2.1.4.1 Integral Windup .................................. 18  
2.2 FIR-filter ................................................ 19  
2.3 Linear Interpolation and Regression .................... 20  
2.3.1 Linear Interpolation ................................... 20  
2.3.2 Linear Regression .................................... 20  
2.4 Zero Order Hold .......................................... 21  
2.5 Linear and Nonlinear ARX Model ......................... 23
# Contents

2.6 Evaluation of Predictions and Approximations .................. 24

3 Vehicle Models ................................................. 25
  3.1 Vehicle Model ............................................. 25
    3.1.1 Regenerative Braking Extension ....................... 27
    3.1.2 Air drag Model Extension ............................. 28
    3.1.3 States and Discretized Vehicle model ................... 29
      3.1.3.1 Model extension considerations ...................(4)
    3.1.4 Linear Vehicle model .................................. 33
      3.1.4.1 Model extension considerations ...................(4)
    3.1.5 Limitations on Controllable Forces ...................... 36
  3.2 Vehicle Parameters ......................................... 38
  3.3 Preceding Vehicle and Terrain Model .......................... 39

4 Methodology ...................................................... 42
  4.1 PI-controller .............................................. 43
  4.2 Model Predictive Control ................................... 46
    4.2.1 Optimal Control Problem ............................... 46
      4.2.1.1 Constraints ......................................... 46
      4.2.1.2 Regenerative Braking Extension ..................... 51
      4.2.1.3 Air Drag Model Extension ............................ 52
    4.2.2 Objective Function ..................................... 52
      4.2.2.1 Model extension considerations ..................... 53
      4.2.2.2 Terminal Penalization ............................... 54
      4.2.2.3 Complete Optimization model ......................... 55
  4.3 Time Linearization .......................................... 56
  4.4 Air Drag Approximation Update ................................ 59
  4.5 Stochastic Case ............................................ 60
    4.5.1 Rule Based Prediction ................................... 61
      4.5.1.1 Constant velocity approach ......................... 61
      4.5.1.2 Constant acceleration approach ..................... 63
    4.5.2 Nonlinear ARX Prediction ............................... 65

5 Results .......................................................... 69
  5.1 Simulation .................................................. 69
    5.1.1 Constructed simulation cases ............................ 69
    5.1.2 Logged Data ............................................. 72
  5.2 Tuning MPC parameters ...................................... 74
    5.2.1 Slack parameters ........................................ 74
    5.2.2 Terminal penalization parameters ....................... 78
  5.3 PI-controller ............................................... 80
    5.3.1 Tuning parameters ...................................... 80
    5.3.2 Anti-Windup ............................................. 81
  5.4 Deterministic case .......................................... 82
    5.4.1 Basic Simulation Model .................................. 82
      5.4.1.1 Regenerative braking Model .......................... 90
      5.4.1.2 Air Drag coefficient Model .......................... 94
## Contents

5.4.2 Evaluation of Time and Distance Approximation .......................... 96  
5.4.2.1 Time Approximation in Basic Model ............................... 96  
5.4.2.2 Time and Distance Approximation in Second model extension ................................................. 100  
5.4.3 Analysis of the Mass and Maximal Time gap of the Model .......... 103

5.5 Stochastic case ................................................................. 105  
  5.5.1 Performance of Rule Based Prediction ................................. 107  
    5.5.1.1 Constant Velocity Approach .................................. 107  
    5.5.1.2 Constant Acceleration Approach ............................... 108  
  5.5.2 Performance of NARX Based Prediction ............................... 109  
  5.5.3 Comparison between the Predictive Models ......................... 112

6 Discussion ............................................................................ 115  
  6.1 Models and Simulation cases .............................................. 115  
    6.1.1 PI-controller .......................................................... 116  
    6.1.2 Deterministic Case .................................................. 116  
      6.1.2.1 Model Assumptions ............................................ 117  
      6.1.2.2 Basic model .................................................... 117  
      6.1.2.3 Model extensions .............................................. 118  
    6.1.3 Stochastic Case ...................................................... 118  
    6.1.4 Penalization weights ............................................... 119  
  6.2 Force peaks - Instability in the model ................................. 120  
  6.3 Linearizations and Approximations .................................... 120  
  6.4 Prediction models .......................................................... 122

7 Conclusions ........................................................................... 124  
  7.1 Deterministic Case .......................................................... 124  
  7.2 Stochastic Case .............................................................. 124  
  7.3 Future Work ................................................................. 125

A Appendix A ........................................................................... 127  
  A.1 Yalmip ................................................................. 130  
  A.2 NARX in Matlab ......................................................... 131

Bibliography ............................................................................ 133
List of Figures

1.1 Statistics over the emissions and cost for road based transportation. . . . 2
1.2 Illustration of the driving scenario. ............................................. 4

2.1 Schematic figure over the basic idea behind Model Predictive Control . . . 16
2.2 Schematic figure over the PI controller ........................................ 17
2.3 Describing figure over Windup delay for step response with a PI controller
and desired solution trajectory ................................................. 18
2.4 Illustrative figure of the NARX model structure ............................ 24

3.1 External and Controllable longitudinal forces acting on the HDV ........... 26
3.2 Experimental and linear approximation of reduction in air drag coefficient. 28
3.3 Illustration of the approximation of the time update equation .............. 31
3.4 Schematic figure over the nonlinear model of the maximal possible tractive
force as a function of speed .................................................... 37
3.5 Preceding vehicle with the road topography as well as the velocity trajectory. 39
3.6 An illustrative figure over the topography of the road and how it is created
in the manually created simulations situations .............................. 40
3.7 The trajectory of the preceding vehicle ........................................ 41

4.1 A sketch over the fundamental Methodology of this thesis. ................. 42
4.2 Overview of the MPC implementation ......................................... 46
4.3 Close up figure over the time gap model ..................................... 47
4.4 Overview of the time gap model ............................................... 48
4.5 Sketch of the methodology behind the time approximation improvement
loop .................................................. 56
4.6 Creation of the first reference kinetic trajectory ............................. 57
4.7 Time approximation improvement procedure ................................ 58
4.8 Time approximation evaluation ............................................... 58
4.9 Distance approximation ....................................................... 59
4.10 Schematic figure over the stochastic methodology ....................... 60
4.11 An illustration over the stochastic scenario .............................. 61
4.12 Methodology of the constant velocity approach .......................... 62
4.13 Example of a prediction over a prediction horizon with the constant ve-
locity approach .................................................. 63
4.14 Methodology of the constant acceleration approach ...................... 64
4.15 Example of a prediction over a prediction horizon of 250m with the con-
stant acceleration approach ................................................... 65
4.16 Methodology of the NARX prediction approach ........................ 68
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>The basic simulation case, Case 1.</td>
<td>70</td>
</tr>
<tr>
<td>5.2</td>
<td>The hill simulation case, Case 2.</td>
<td>70</td>
</tr>
<tr>
<td>5.3</td>
<td>The oscillating velocity simulation case, Case 3.</td>
<td>71</td>
</tr>
<tr>
<td>5.4</td>
<td>The catch up simulation case, Case 4.</td>
<td>71</td>
</tr>
<tr>
<td>5.5</td>
<td>CC-set speed vs. the preceding vehicle speed for the deterministic case.</td>
<td>72</td>
</tr>
<tr>
<td>5.6</td>
<td>Altitude for the logged data case. The logged altitude vs. the filtered</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>altitude.</td>
<td></td>
</tr>
<tr>
<td>5.7</td>
<td>Illustrative figure over the choice of gamma value.</td>
<td>75</td>
</tr>
<tr>
<td>5.8</td>
<td>Illustrative figure over the choice of beta value.</td>
<td>76</td>
</tr>
<tr>
<td>5.9</td>
<td>The resulting force for a small value of the jerk penalization parameter.</td>
<td>77</td>
</tr>
<tr>
<td>5.10</td>
<td>Relative time difference between the HDV and the preceding vehicle for the</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>prediction horizon for different values of $\delta$.</td>
<td></td>
</tr>
<tr>
<td>5.11</td>
<td>Relative time difference between the HDV and the preceding vehicle for the</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>prediction horizon for different values of $\tau$.</td>
<td></td>
</tr>
<tr>
<td>5.12</td>
<td>Solution for the logged data case for the PI-controller.</td>
<td>80</td>
</tr>
<tr>
<td>5.13</td>
<td>Anti-Windup response to a step in the input signal.</td>
<td>81</td>
</tr>
<tr>
<td>5.14</td>
<td>Results of the different Anti-Windup methods for step in input signal.</td>
<td>82</td>
</tr>
<tr>
<td>5.15</td>
<td>Deterministic case; Case 1 results.</td>
<td>83</td>
</tr>
<tr>
<td>5.16</td>
<td>Deterministic case; Case 1 trajectory.</td>
<td>83</td>
</tr>
<tr>
<td>5.17</td>
<td>Deterministic case; Case 2 results.</td>
<td>84</td>
</tr>
<tr>
<td>5.18</td>
<td>Deterministic case; Case 2 trajectory.</td>
<td>85</td>
</tr>
<tr>
<td>5.19</td>
<td>Deterministic case; Case 2 force.</td>
<td>85</td>
</tr>
<tr>
<td>5.20</td>
<td>Deterministic case; Case 3 results.</td>
<td>86</td>
</tr>
<tr>
<td>5.21</td>
<td>Deterministic case; Case 3 trajectories.</td>
<td>86</td>
</tr>
<tr>
<td>5.22</td>
<td>Deterministic case; Case 3 forces.</td>
<td>87</td>
</tr>
<tr>
<td>5.23</td>
<td>Deterministic case; Case 4 results.</td>
<td>88</td>
</tr>
<tr>
<td>5.24</td>
<td>Deterministic case; Case 4 trajectory and force.</td>
<td>88</td>
</tr>
<tr>
<td>5.25</td>
<td>Deterministic case; Logged data case results.</td>
<td>89</td>
</tr>
<tr>
<td>5.26</td>
<td>Deterministic case; Logged data trajectories.</td>
<td>90</td>
</tr>
<tr>
<td>5.27</td>
<td>Regenerative braking energy consumption versus PI without regenerative</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>braking, case 2.</td>
<td></td>
</tr>
<tr>
<td>5.28</td>
<td>Regenerative brake; case 2 trajectories.</td>
<td>91</td>
</tr>
<tr>
<td>5.29</td>
<td>Regenerative brake; case 2 results vs. PI with regenerative braking.</td>
<td>92</td>
</tr>
<tr>
<td>5.30</td>
<td>Regenerative braking energy consumption versus PI without regenerative</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>braking, logged data.</td>
<td></td>
</tr>
<tr>
<td>5.31</td>
<td>Regenerative brake; Logged data case results vs. PI with regenerative</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>braking.</td>
<td></td>
</tr>
<tr>
<td>5.32</td>
<td>Air drag model energy consumption versus PI with constant air drag coefficient, on logged data.</td>
<td>94</td>
</tr>
<tr>
<td>5.33</td>
<td>Air drag coefficient; Logged data case resulting trajectories.</td>
<td>95</td>
</tr>
<tr>
<td>5.34</td>
<td>Air drag model energy consumption versus PI with distance dependent air drag coefficient.</td>
<td>96</td>
</tr>
<tr>
<td>5.35</td>
<td>Time improvement approximation loop effect for a prediction horizon of 250m.</td>
<td>97</td>
</tr>
<tr>
<td>5.36</td>
<td>The normalized difference between actual and predicted step in the state variables.</td>
<td>98</td>
</tr>
<tr>
<td>5.37</td>
<td>Time difference between the nonlinear and linear models.</td>
<td>99</td>
</tr>
</tbody>
</table>
5.38 Comparison of the resulting trajectories between the nonlinear and linear model. .................................................. 99
5.39 Difference between predicted and actual step in state variables and inter vehicle distance. ........................................ 101
5.40 Time difference between the nonlinear and linear models, second model extension. .......................................................... 102
5.41 Comparison of the resulting trajectories between the nonlinear and linear models, second model extension. ......................... 102
5.42 Mass evaluation on logged data case. .......................................................... 103
5.43 Mass evaluation, resulting trajectories. .......................................................... 104
5.44 Energy consumption for different maximal time gap values. ......................... 105
5.45 Over take example. .................................................................................. 106
5.46 Logged data case for the stochastic simulations. ......................................... 106
5.47 Four examples of the constant velocity approach. ........................................ 107
5.48 Total energy consumption for the constant velocity approach. ..................... 108
5.49 Total energy consumption for the constant acceleration approach. ................. 108
5.50 Four examples of the constant acceleration approach. .................................. 109
5.51 Division of the data set for the NARX approach. ........................................... 110
5.52 Training results of the NARX model. ........................................................... 110
5.53 Four examples of the NARX model approach. .............................................. 111
5.54 Total energy consumption for the NARX approach. ....................................... 111
5.55 Division of the data set for evaluation of velocity prediction. ......................... 112
5.56 Two examples where the NARX model prediction is worse than the rule based models. ......................................................... 113
5.57 Resulting trajectories for predictive models. .................................................. 114
A.1 Full solution for the force peaks scenario. ..................................................... 127
A.2 Full solution for the force peaks scenario, without force peaks. ....................... 128
A.3 Deterministic case; Logged data forces. ...................................................... 129
A.4 Air drag coefficient; Logged data case resulting forces. .................................. 129
A.5 Resulting controllable forces for the predictive models. .................................. 130
# List of Tables

3.1 Standard vehicle parameters and natural constants. ........................................... 38

5.1 Results of speed violation penalization for all simulation cases. .................. 76
5.2 Jerk penalization data for deceleration case. .................................................. 77
5.3 Evaluation of terminal penalization parameters. ............................................ 79
5.4 Tuning parameter values for the PI-controller. ............................................ 81
5.5 Data over the time approximation on logged data. ....................................... 97
5.6 Time and distance approximation statistics for the logged data case. ........ 100
5.7 Difference in energy consumption between applying the linear or nonlinear
    model as system model, for the second model extension. ............................. 101
5.8 Time gap statistics for the logged data case. .............................................. 104
5.9 Mean deviation of the predictions for the prediction horizons made for
    the logged data case. ............................................................................... 113
5.10 Energy consumption with the deterministic solution as the reference. ...... 114
## Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GHG</td>
<td>Green House Gases</td>
</tr>
<tr>
<td>LDV</td>
<td>Light Duty Vehicle</td>
</tr>
<tr>
<td>HDV</td>
<td>Heavy Duty Vehicle</td>
</tr>
<tr>
<td>HEV</td>
<td>Hybrid Electric Vehicle</td>
</tr>
<tr>
<td>ADAS</td>
<td>Adaptive Driver Assistance System</td>
</tr>
<tr>
<td>CC</td>
<td>Cruise Controller</td>
</tr>
<tr>
<td>ACC</td>
<td>Adaptive Cruise Controller</td>
</tr>
<tr>
<td>OCP</td>
<td>Optimal Control Problem</td>
</tr>
<tr>
<td>LP</td>
<td>Linear Program</td>
</tr>
<tr>
<td>MPC</td>
<td>Model Predictive Control</td>
</tr>
<tr>
<td>V2V</td>
<td>Vehicle To Vehicle communication</td>
</tr>
<tr>
<td>V2I</td>
<td>Vehicle To Infrastructure communication</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
</tbody>
</table>
Dedicated to my father
Chapter 1

Introduction

During the past few decades the concerns and attention for the environmental issues facing the world and civilization have become more prominent in the society. Both politically and scientifically the issues of reducing the emissions of green house gases (GHG) as well as emissions of dangerous particles from all parts of the society, but especially the transportation industry, have gained recognition. Of the total emission of GHG in the European Union 2017 the transportation sector accounted for 28.5 % [1], see Figure 1.1. From the start of the measurements 1990 to today the transportation sector is the only industrial sector that increased its emissions and this by 23 % [2].

Of the emissions of GHG due to transportation a majority, 73 % [1], comes from road transportation. Here both cars as well as heavy-duty vehicles (HDV) and light-duty vehicle (LDV) are accounted for. For industrial applications the HDV:s account for the largest part of the emission, 26 % [2]. This has also increased since 1990 with around 15 % which is in direct contrast to the long term goals set up by the European Union in [3] to reduce the emission to 60 % of the values measured in 1990. To break this trend, legislation on emissions has been put in place to further push the transportation industry to fuel efficient and environmentally friendly solutions [4]. This also concerns the pollution of the air in urban environments, where estimations show that around 500 000 people die each year globally due to particle emissions from road vehicles [5].

There are also economical incentives to reduce the fuel consumption of HDV:s. For European haulers 35% of the total costs are due to fuel consumption [6], see Figure 1.1. Thus reducing the fuel consumption would both benefit the environment, the overall health of people living in urban environments and the economy of haulers.

Today manufactures of HDV:s try to decrease the emissions and fuel consumption by in part improving the efficiency of the engine and after treatment system but also in part
by developing intelligent driver assistance systems such as smart cruise controllers. The
development of the later solution is not only driven by the incentive to minimize fuel
consumption but also by the ongoing trend towards more autonomous systems. In the
future HDV:s might have to take the decision themselves.

The development of smart cruise controllers have been going on for many years now, with
focus on highway driving, and there exists today commercial solutions that can reduce
the fuel consumption up to 3% [7]. For urban environments, which constitute a highly
complex driving scenario, the research has not come as far. With the increasing interest
in autonomous and electrified vehicles more attention and research will be devoted to
urban scenarios as well.

Even a small contribution to the fuel consumption of an HDV will have a considerable
impact on both economy and environment. Due to the large mass of an HDV a small
change in the fuel consumption will give a noticeable reduction in both GHG emissions
and fueling costs. Here, a smart cruise controller could make a real difference. Utilizing
all available information such as the road topography, traffic lights, weather conditions
and surrounding traffic to decrease the overall fuel consumption.

In this thesis a small segment of the urban driving scenario will be studied with the
goal to explore how and if it is possible to reduce the fuel consumption by an intelligent
cruise controller. Under the given assumption that one only considers the effects of the
surrounding traffic. This thesis is a part of a project where both traffic lights [8] and
more advanced look ahead controllers [9] have been studied, and is thus an extension
with purpose to also consider surrounding traffic. A smart cruise controller will in the
future have to consider the whole complex driving scenario. This thesis is one important
step towards such a controller.
Chapter 1

1.1 Earlier Work

This thesis is a part of a project where intelligent cruise controllers for urban environments in HDVs have been studied. Here, other aspects of the driving scenario as well as other approaches to the main topic of this thesis has previously been analyzed. In [10] the optimal control of an HDV in urban environments has been studied using information about speed restrictions, intersections as well as vehicle velocity statistics. The impact of traffic lights have also been studied in [8] and this thesis is a continuation of both of these.

The automotive industry has the past decades pushed for more fuel efficient as well as smart cruise controllers. This has led to many studies and implementations for highway driving [11], [12], [6]. Where fuel savings up to 3% and increased throughput of vehicles up to 273 % [13] has been recorded. The recent popularity for more autonomous systems has made the need for urban solutions more prominent.

Today many of the solutions of smart cruise controllers for urban environments are based on the model predictive controller (MPC) framework. Although the algorithm itself is similar in many of the studies many different implementations of it exists. In [14] a hierarchical control architecture is utilized within the MPC structure to both ensure feasibility and to compensate for the nonlinearities in the vehicle model. Novel parametric techniques have been developed in [15] to manage real-time computation of the optimal speed trajectory in an MPC fashion where experiments on urban roads showed fuel-efficiency improvements up to 2 %. Nonlinear MPC models have been proven (in simulations) to give promising results in [16] and [17] with savings of up to 11%, although being computationally heavy.

The preceding vehicle model technique is popular and well used approach to model the surrounding traffic with, e.g. in [18], [19] and [20]. This in order to lower the complexity and in the end be able to implement the models online. Different strategies exist, where the time window or distance corridor is the most popular one [21]. Other methods to incorporate a preceding vehicle to the model is, for example, to model a velocity corridor after the statistics of how a similar vehicle would drive [22]. Similar research is made in the case of Platooning [23] where a platoon of HDVs are controlled fuel-efficiently.

The electrification of the automotive industry is also utilized in the development of smart cruise controllers. In [24], [25] and [10] electric as well as hybrid vehicles are simulated and tested with MPC based smart cruise controllers. Regenerative braking and varying drag coefficient values are studied to give minimum fuel consumption with promising results.
At last, the above mentioned studies have in large made use of given information of both future road slope as well as information about the preceding vehicle. When applying the methods in real life situations prediction models have to be used to predict the future behavior of the preceding vehicle. Although platooning and improved communications systems will enable a better flow of information between vehicles, many prediction models have shown promising results in the MPC framework and thus interesting to analyze further. In [21] and [26] the future velocity trajectory of the preceding vehicle is predicted with nonlinear (polynomial) auto regressive exogenous (NARX) models and Gaussian process’s respectively. Other methods such as ad-hoc grey box models [18] or combined rule based models [17] have shown to give 1-2% fuel savings. Both rule based and learning algorithms will be tested in this thesis, but of lower computational complexity.

1.2 Formulation of Main Goals

In this thesis a cruise controller that minimize the fuel consumption for an HDV will be developed. This by utilizing future and past information about the road slope, speed restrictions and surrounding traffic. This kind of controllers will come to use mostly in urban environments where both surrounding traffic and road slope can have a noticeable impact on the fuel consumption of the HDV.

The traffic scenario that will be studied in this thesis is thus an HDV that drives in an urban environment restricted by a preceding vehicle and speed limitations. In Figure 1.2 one can observe an illustration of the thought of scenario.

In order find an optimal control action that minimizes the fuel consumption of the HDV in a complex urban environment as the one depicted above it will be important to know as much information as possible of the traffic situation in advance. This can include, but is not limited to, the road slope, speed restrictions and the behavior of the preceding vehicle. This information can be collected from a number of different sources.

The position and road data can be collected via GPS and digital maps on beforehand. In many situations the road slope can be loaded on to the HDV before the driving mission
thus making it possible to use the future road slope in the developed control algorithm. The same goes for the speed restrictions of the road. In some cases these are dynamic and change depending on weather and traffic conditions but today such information is often available via cloud services or the GPS.

An important factor that can have a significant influence on the fuel consumption of the HDV is the surrounding traffic. In many situations in urban driving the HDV will be forced to brake or restrict its velocity because of the surrounding traffic. In other situation it will have to increase the desired speed to not cause disturbance for other surrounding traffic participants. One can easily image that the surrounding traffic will affect the HDV and restrict its driving. Thus information about the preceding vehicle will be important.

The information about the velocity and driving behavior of the preceding vehicle can be retrieved via vehicle-to-vehicle communication (V2V). This through some sort of 4G or 5G connection. Another possibility is to have sensors or radars directly on the HDV that measure the current position and speed of the preceding vehicle.

In order to analyze how the amount and reliability of the information of the future velocity trajectory of the preceding vehicle will affect the fuel effective solution of the developed cruise controller we divide the simulations into two cases: one Deterministic case and one Stochastic case.

### 1.2.1 Deterministic case

The Deterministic case will include a cruise controller that minimizes the fuel consumption under the assumption that the full information about the future velocity trajectory of the preceding vehicle is known. This means that the HDV at every instance know the full future information about the driving scenario. This is a highly idealized formulation of the real driving scenario but an interesting formulation from a model point of view. This will give a measure of how much at most the developed controller can reduced the fuel consumption for the studied scenarios.

In order to simulate and compare the results, driving scenarios as well as a reference controller will be created. The created scenarios will both be of specific driving conditions and of more general traffic scenarios collected from logged data given by Scania. This in order to also include a real driving scenario and see how the model reacts to a complex situation. The reference will be constructed in the image of a simple cruise controller (CC) or a simple human driver that tries to keep constant headway to a preceding vehicle.
Here both the amount of future information as well as the restrictions to the preceding vehicle will be explored. Two model extensions will be made to investigate the effect of regenerative braking, which may become important for future electrified vehicles, and inter-vehicle dependent air drag.

1.2.2 Stochastic case

The *Stochastic case* treats the driving scenario where the HDV will not have full information about the future conditions. The speed restrictions as well as road slope will be known in advance but the future trajectory of the preceding vehicle will not. This simulation case will come closer to the real driving scenario in urban environments.

In order to build an optimization model and find an energy effective solution, the future trajectory of the preceding vehicle will be predicted. Three models will be developed for this purpose to analyze how sensitive the developed cruise controller is to the information about the future trajectory of the preceding vehicle. Both rule based models as well as one simple learning algorithm will be explored.

1.2.3 Delimitations

In order to make the project manageable within the time and resources given some delimitations have to be made. This is both so that reasonable results can be achieved but also to keep the complexity of the models at a reasonable level for possible future on-line implementation.

First and foremost the vehicle model will be developed under some strict **physical limitations**.

- **Longitudinal dynamics**: The lateral dynamics of the HDV will not be considered in this thesis. Only the longitudinal dynamics will be included. Thus only longitudinal movements will be included in the simulations made.

- **No Powertrain model**: The powertrain is a term that is used to describe the components that generate the power and distribute it to the road surface in a vehicle. The powertrain is an immensely important part of the HDV but will be neglected in this thesis. Instead a model based purely on the external and the so called controllable forces will be implemented. One can say that the powertrain is approximated with two controllable forces, the tractive and the braking force.
• **External forces:** The external forces such as the rolling resistance and air resistance will in reality depend on the HDV itself, number of wheels, aerodynamic properties and condition of the tires. The weather and road conditions will most probably also affect the external forces on the HDV. This will be approximated by setting a fix value of the rolling resistance and air drag coefficients. Nevertheless, the dependency to the preceding vehicle of the air drag coefficient will be explored in one of the model extensions.

Furthermore, the driving scenario itself will be restricted. This is made in order to have a reasonable scenario to study. The real driving scenario includes many different traffic participants which would make the model extremely complex. In order to manage to develop a model in time the following limitations will be imposed on the driving scenario itself.

• **Only a preceding vehicle:** To include all surrounding traffic into the model would be an extremely hard task. In order to get some results to analyze only the simplest situation will be studied in this thesis. This by assuming that the only traffic to consider is a preceding vehicle.

• **Not a specific type of vehicle:** The preceding vehicle can be any type of vehicle. This will not be specified in the simulation cases studied. The preceding vehicle is only seen as a limitation on the HDV and not as a specific type of vehicle.

• **No speed violations:** The preceding vehicle is assumed to never violate the speed restrictions.

• **Always moving forward:** The preceding vehicle will be assumed to always be in motion, i.e. never be at stand still. Furthermore, we will assume that the preceding vehicle never drives backwards. This to avoid complications in the optimization model.

• **No traffic lights, pedestrians or stop signs:** These factor will not be considered in this thesis. As is mentioned before only the preceding vehicle, road slope and speed restrictions will be considered. A future project might be to extend the developed model to include these factors as well.

At last we will also make limitations and approximations when formulating the system as an optimization problem. These are made in order to have both a reasonably fast algorithm but also in order to find the optimal solutions as well as to be able to compare the results between the developed controller and the reference.
• **Linear optimization model:** The system itself will become nonlinear. In order to have a fast and reliable algorithm one can reduce the complexity by reformulating the system as a linear model. This will also mean that the optimal solution for the prediction horizon will be found. Thus we will limit the optimization model to a linear model. The drawback being that approximations have to be made, which will introduce model errors.

• **Piece-wise constant applied force:** The control action computed by the control algorithms will be considered constant in between sample points.

• **Constant acceleration:** For the update equation of the position in time of the HDV, constant acceleration in between samples points will be assumed. This will not be fully correct because the air resistance is proportional to the square of the velocity. This will not make a big difference for small sample distances and thus neglected in this thesis. This is also consistent with the assumption of piece-wise constant control actions.

• **Fuel approximated as energy:** The fuel consumption will not be available directly with the delimitations mentioned above. It will although be proportional to the energy consumption and thus approximated with it.

1.3 Outline of the Thesis

*Chapter 2* introduces the basic theory behind the methods used in the developed controller. The mathematically theory behind the controller algorithms as well as the theory behind the approximations made is given in this chapter. *Chapter 3* treats the development of the vehicle model. This both for the HDV itself, including the model extensions, and the preceding vehicle. In *Chapter 4* the methodology for both the deterministic and stochastic case is described in detail. Here the methodology developed in order to deal with the model errors as well as the approximations made is presented. At last the chosen methodology for the predictive models is described. In *Chapter 5* the results of the developed models on the created simulation cases are showcased. Both the basic models as well as the model extensions and the predictive model results are shown. *Chapter 6* gives a short discussion of the results and methodology of the project. Including unexpected behaviors and problems that occurred during the work with the models. At last, in *Chapter 7* the conclusions as well as suggestions on future work can be found.
Chapter 2

Background

In this chapter a theoretical overview of the methods used in this thesis is presented. First the theory behind optimal control problems and how they in general can be formulated and solved by the MPC algorithm is given. Then, basic control theory such as the mathematical description of a PI regulator and the theory behind some of the difficulties that can occur, and their solutions, are also given. At last, the mathematics behind linear interpolation and regression that is used in the approximations made in the thesis are briefly mentioned as well as the theory behind the predictive models used in the stochastic case of this thesis.

2.1 Control and Optimization theory

In this section the control and optimization theory used in this thesis will be presented. Optimal control as well as the theory behind the well known and well studied PI regulator will be covered. Furthermore, some important aspects and problems with the algorithms will be studied more in detail in this section. For a complete and, for this thesis, specific formulation of the control algorithms and regulators see Chapter 4.

2.1.1 Optimal Control

Nature itself often behaves optimally and it is thus natural to pose many problems, and specifically control problems in an engineering setting, as optimization problems. Thus the nowadays important branch of mathematics called *Optimal Control* has emerged.

Optimal control is the branch of mathematics that deals with algorithms and methods that solves control problems in a systematic manner whilst optimizing some cost
criterion. A control problem has in general many, sometime infinitely many, solutions. According to some predefined cost criterion, for example to minimize fuel or maximize profit, the control solutions can be classified as being better or worse. The goal would then be to find the best control solution for the stated problem. These kind of problems are usually extremely hard to solve using only engineering intuition or ad-hoc techniques. Optimal control is the field of control and mathematics that gives a systematic approach to solve these problems. Reducing the redundancy of control solutions and selecting the solutions that is best according to the defined cost criterion.

Consider the case when we have a state space realization of a system (2.1), in the time domain, with states \( x(t) \), control \( u(t) \) and initial conditions \( x_0 \) given

\[
\dot{x}(t) = Ax(t) + Bu(t), \quad x(t_0) = x_0.
\] (2.1)

Here \( A \) and \( B \) are given matrices. Then we can formulate a control problem as: Find a control \( u : [t_0, t_f] \to \mathbb{R} \) such that the solution to (2.1) satisfies \( x(t_f) = x_{t_f} \), where \( x_{t_f} \) is given and \( t_0 \) is the initial time and \( t_f \) is the final time. The solutions to this control problem can be found by using basic mathematical systems theory. If we define the state transition matrix \( \Phi(t, s) \) as the solution to the differential equation

\[
\frac{\partial \Phi(t, s)}{\partial t} = A\Phi(t, s), \quad \Phi(t, t) = I
\] (2.2)

and the controllability Gramian as

\[
W(t_f, t_0) = \int_{t_0}^{t_f} \Phi(t_f, s)BB^T\Phi(t_f, s)^Tds
\] (2.3)

then we find the solution to the stated control problem as

\[
u(t) = B^T\Phi(t_f, t)^TW(t_f, t_0)^{-1}[x_{t_f} - \Phi(t_f, t_0)x_0].\] (2.4)

One can now easily see that for many systems (depending on the matrices \( A \) and \( B \)) this will yield many, if not infinitely many, solutions. Optimal control can be used to reduce the set of solutions by introducing a cost criterion. For more details of the derivation of the solution above see [28].

\(^1\)This example is taken from [27].
2.1.1.1 General formulation

In this thesis the general formulation for an optimal control problem will consist of four parts: *cost criterion* (objective function), *the control and state constraints*, *the boundary conditions* and *the system dynamics*. Below we will describe each part of the general formulation of the optimal control problem separately and then define the complete formulation that will be used in this thesis.

**System Dynamics:** Here we will define the system dynamics as the update equation for the states of the system. This means that we define it in terms of a state space equation of the form (2.1) excluding the initial condition on the states. The system dynamics is often given by the system itself by expressing the system model in the introduced states, often as an ordinary first order differential equation. We can in general formulate the system dynamics as

\[
\dot{x}(t) = f(t, x, u)
\]  

(2.5)

where \(x \in \mathbb{R}^n\) are the states, \(u \in \mathbb{R}^m\) are the controls and \(f \in \mathbb{R}^n\) are the functions describing the dynamics for each state.

**Control and State constraints:** The states and control variables will usually be restricted to only take values within a defined set. For the state variables we have that they are restricted to a certain defined set \(X \subset \mathbb{R}^n\) and for the control variables we have that they are restricted to \(U \subset \mathbb{R}^m\). These constraints are set after the limitations the system already has, for example maximal and minimal control action but also after the model choices we make. This can for example be to only look at solutions for a certain subset of values of the states, for example only to look at the solutions where the states take positive values or only negative values.

**Boundary Conditions:** The boundary conditions are set on the states at the initial point and can also be set on the final point. In this thesis we will only look at initial boundary conditions, where we set the initial point to a given value. Thus we get the initial boundary condition as stated in (2.1).

**Cost function:** At last we have the cost function that gives us the cost criterion mentioned earlier. This function describes what we are trying to optimize, for example energy minimization or profit maximization. Generally the cost function can be formulated as in
which consist of two distinctive parts. The first part is the terminal cost \( \phi(x(t_f), t_f) \) which is there to penalize deviation from some desired final state [27]. The second part, which is the integral part, is the cumulative cost of the state and control trajectories.

Now we are ready to formulate the complete optimal control problem as we define it in this thesis, (2.7).

\[
\begin{align*}
\text{minimize} \quad & \phi(x(t_f), t_f) + \int_{t_0}^{t_f} f_0(t, x(t), u(t)) \, dt \\
\text{subject to} \quad & \dot{x}(t) = f(t, x(t), u(t)) \\
& x(t) \in X, \quad u(t) \in U \\
& x(t_0) = x_0, \quad t_0 \leq t \leq t_f
\end{align*}
\] (2.7)

The optimal control problem is thus to find the control trajectory such that the cost function is minimized under the given constraints, boundary conditions and system dynamics. Generally, as in (2.7), the optimal control problem is formulated as a minimization problem. This does not exclude maximization problems from being treated by the same framework. A maximization problem can easily be reformulated to a minimization problem by

\[
\begin{align*}
\text{maximize} \quad & \phi(x(t_f), t_f) + \int_{t_0}^{t_f} f_0(t, x(t), u(t)) \, dt \\
= \quad & -\text{minimize} \left( -\phi(x(t_f), t_f) - \int_{t_0}^{t_f} f_0(t, x(t), u(t)) \, dt \right). 
\end{align*}
\] (2.8)

### 2.1.2 Linear programming

One part of the subject of optimization is called \textit{Linear Programming} and involves the optimization of linear cost functions. This usually involves the minimization (or maximization) of the cost function under the set \( F \) that is described by linear equality’s and/or linear inequalities. Thus we have that the function \( f_0 \) is in this case given by the linear equation
where $x$ is the variable, often state variable, and $c$ is the cost vector that is fixed. The set $F$ is given by a collection of linear equality’s and inequalities on the form of the following equations

$$a_{i,1}x_1 + \ldots + a_{i,n}x_n \geq b_i, \quad i \in I, \quad (2.10)$$
$$a_{j,1}x_1 + \ldots + a_{j,n}x_n = b_j, \quad j \in E. \quad (2.11)$$

Here we have the fixed coefficients $a_{i,k}$ and $a_{j,k}$, $k = 1 \ldots n$ for the inequalities and equality’s respectively. Furthermore, $b \in \mathbb{R}^m$ is also a fixed vector and, $I$ and $E$ corresponds to the set of inequality and equality constraint respectively. Thus the general linear programming problem can be formulated as (2.12).

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & A_I x \geq b_I \\
& A_E x = b_E \\
& lb \leq x \leq ub
\end{align*}
\]
smaller problems. On the other hand the Interior-point method only moves in the interior of the feasible region of the problem and converge to the optimal solution when it is successful. This mean that it do not visit the vertices, nevertheless it turns out that this method can be more efficient for larger sparse problems than the simplex algorithm.

There are further advantages and disadvantages for both methods and the choice of algorithm highly depends on the problem, mathematical formulation of it and the available computational power. In this thesis a commercial LP solver will be used, MATLAB’s linprog [31], which chooses the most appropriate algorithm depending on the formulation of the problem in the software.

2.1.2.1 Soft-constraint approach

In some cases when one tries to solve an optimization problem on the form of a Linear programming problem or a general Optimal control problem as in (2.7), the problem can become in-feasible. The constraints on the states variables or the control variables may sometimes be to "hard", meaning to tight such that the optimization algorithm does not find any feasible solution, nevertheless an optimal solution. This problem can be solved in several ways, but one method used in many earlier works [17], [14] is the method of softening constraints by adding slack variables. In this method the cost function is modified to include a penalization of the deviation from the original constraint. A new variable is added to the constraint that causes the problem to become in-feasible. Thus the solver will be able to violate the original constraint by letting the new slack variable be equal to the deviation from fulfilling the original constraint. This slack is then added to the cost function, with a weight parameter, to be minimized. This yields that the solver will try to find a solution to the original problem when it is possible and otherwise try to minimize the deviation from it.

Mathematically it can be expressed as in the equations below, where we use the method of Soft-constraints to the constraint on the upper and lower bounds on the state variables of the general LP formulated in (2.12).

\[
\begin{align*}
\text{minimize} \quad & c^T x \\
\text{subject to} \quad & A_l x \geq b_l \\
\text{Problematic Constraint} \quad & lb \leq x \leq ub
\end{align*}
\]

\[
\begin{align*}
\text{minimize} \quad & c^T x + w_{lb} Y_{lb} + w_{ub} Y_{ub} \\
\text{subject to} \quad & A_l x \geq b_l \\
& A_E x = b_E \\
& lb - Y_{lb} \leq x \leq ub + Y_{ub} \\
& Y_{lb}, Y_{ub} \geq 0
\end{align*}
\]
In the above equations we have to the left the general LP formulation as stated above. If we assume that the problematic constraint is the upper and lower bounds on the state variables we can use the approach of softening the constraint as is shown to the right in the equations above. We introduce the slack variables $Y_{lb}$ and $Y_{ub}$, and make them non-negative. These variables are introduced in the concerned constraint as can be see above to the right. They are also introduced in the cost functions with corresponding weight parameters $w_{lb}$ and $w_{ub}$, which sets the ”importance” of keeping the original constraint or not. If these weights have higher values we penalize deviations harder and the solver will in greater extent avoid deviations from the original constraint. If the weights have lower values the solver might find optimal solutions where the slack variables are non zero, thus breaking the original constraint. This is set depending on the problem and the meaning of the constraint in the model [32].

This method can also be applied as a modelling strategy when modeling systems with constraints that the solver should be able to break at some point but with a following cost. For example the speed limit on a road. The constraint could be that the velocity of a vehicle should be kept under the speed limit but it should also be able to ”break” the constraint, the speed limit, if necessary. The solver should avoid this, and thus one includes this violation of the constraint with a corresponding cost in the cost function.

2.1.3 MPC- Model Predictive Control

Model Predictive control (MPC) is an advanced and frequently used optimization method that is used to solve Optimal control problems in a receding horizon fashion. The method is based on an iterative process where the system or plant is sampled at each iteration after which an open loop optimization for a specified prediction horizon is performed. From this a predicted state trajectory and corresponding optimal control trajectory is computed using numerical algorithms for the defined prediction horizon. Then the first control is applied on the system or plant and the process is repeated for the next iteration step. The prediction horizon keeps on being shifted forward and thus the method also has the name *Receding Horizon Control*. In Figure 2.1 below we see the basic concept of the MPC algorithm.
The algorithm can roughly be summarized in four important steps. Given a discrete model of the dynamical system in consideration, with defined states $x$, controls $u$, prediction horizon $N$ and simulation horizon $M$ the algorithm can be summarized as:

1. Measure the system states at the current step $k$, i.e $x(k) (= x(k+1))$.

2. Solve the open-loop optimization problem for the prediction horizon $k = k, k+1, \ldots, k+N$ which gives the prediction of the state trajectory for the prediction horizon $\{x(k), x(k+1), \ldots, x(k+N-1), x(k+N)\}$. This will also give a predicted optimal control trajectory for the prediction horizon $\{u(k), u(k+1), \ldots, u(k+N-1), u(k+N)\}$.

3. Apply the first control action $u(k)$ on the actual system and update the discrete step $k$ as $k' = k$, $k = k' + 1$. This will move the system to the state $x(k'+1)$.

4. If the simulation has not reached the end of the simulation horizon, i.e. $k < M$ then return to step 1. Otherwise stop.

Although the method does not guarantee to find the optimal solution for the complete simulation horizon it has in practise given very good results. Together with the local optimization character of the MPC approach it has draw much attention to it and much academic research has been done to understand the global stability of it. When implemented correctly the method is easy to maintain, changes to the model can sometime be done on the fly, and the receding horizon allows for real-time optimization against
hard constraints [33]. Thus, although the sub-optimal character of the algorithm it will suit the purposes of this thesis.

2.1.4 PI-controller

One of the most common controllers used in the industry is the so called PID-controller. The controller has been used since the sixteenth century and can today be found in most industrial applications where some sort of control is necessary. The name PID-controller comes from the three main parts of the PID-controller: proportional part, integrating part and a derivative part. The control feedback mechanism of the PID-controller is based on continually calculating an error value $e(t)$, often set as the deviation from a certain set point/reference point, and then (based on the three main parts of the controller) apply a correcting control action. Mathematically this can be formulated as in

$$
\text{Error value: } e(t) = r(t) - x(t) \quad (2.13)
$$

$$
\text{Correcting control: } u(t) = K_P e(t) + K_I \int_{t_0}^{t} e(\tau)d\tau + K_D \frac{de(t)}{dt}. \quad (2.14)
$$

Here we have that $r(t)$ is some defined reference trajectory that the states (or more generally the output) of the system should follow. Furthermore, $K_P$, $K_I$ and $K_D$ are all non-negative scaling coefficients for the three parts of the PID-controller respectively.

All three parts of the PID-controller are not always needed or desired for all types of applications. In order to provide the appropriate controller for a specific application some of the coefficients can be set to zero. This will yield several variations of the PID-controller, one of which we will study in this thesis. This is the PI-controller which thus only has the proportional and integrating part of the PID-controller [34]. For a more thorough motivation to why we choose this controller see Section 4.1.

![Figure 2.2: Schematic figure over the feedback loop configuration of the PI controller.](image)
r(t) is the reference whilst x(t) is the measured variables and u(t) is the control action.
Chapter 2

The PI-controller will not give or guarantee the optimal control function and often the tuning of the two parameters $K_P$ and $K_I$ will mean some work to ensure a stable and responsive controller. Tuning these coefficients must be done for each application separately. This because the characteristics of the response from the controller heavily depends on the response from the system itself and possible signal delays in the feedback system. Typically, with prior knowledge about the system the controller is applied to, these coefficients can be given approximate values that give stable results. Further refinements of the tuning of the parameters, and thus the controller, can often be done with more advanced tuning methods or by empirically experimenting with the step response of the feedback system shown in Figure 2.2.

2.1.4.1 Integral Windup

Because of the simple formulation of the PI-controller there exist some obstacles that need further attention. One of these obstacles that will be taken into consideration in this thesis is the Integral Windup of the integral part of the controller. This problem can be visualized as in the left part of the Figure 2.3 where we have a step in the reference which will induce a large control response from the PI controller.

![Figure 2.3: A Simple illustration of a case where Integral Windup for the PI-controller occurs. Left part of the figure shows the problems with Windup. The right side shows a desired behavior in the same situation. The top figures show the response (green) to a step in the reference (black). The lower figures show the control action, PI-control(green) and actual control (blue).](image)

As can be seen in the lower left part of the figure above we have an external limit on the magnitude of the control action. This is common for many systems, for example we have a maximal driving force for road vehicles. From the formulation of the PI controller it is easy to see that the controller does not know about this limit of the control. It will thus try and "think" that it can apply a large force (green trajectory) which is necessary to...
follow the reference. In reality the applied force will be clamped by the external limit (blue trajectory). At the same time the integral part of the controller will accumulate a large value (see the blue area in the top left part of the figure). This will give rise to the so called "Windup" delay and overshoot that can be seen in the figure. Because the accumulated value of the integral part has grown so large it will induce a delayed response to the change, step back, of the reference. It has to accumulate some values of different sign before it gives a response to the step back of the reference.

The desired behavior of the PI-controller in a situation as the one shown in the left part of Figure 2.3 is the one shown in the right part of the same figure. The actual control output should follow the external limit and the response of the PI-controller should be quick and stable for changes in the reference signal. This problem is common for the PI-controller and there exists many solutions to the problem in the literature [35], [36]. The most common solution is to clamp both the integral part of the PI-controller as well as the resulting control action. Exactly how this is done is problem specific and an empirical study will be done to find the best method for our specific problem.

### 2.2 FIR-filter

In this thesis simple signal processing tools will be implemented, and one of them is the implementation of a Finite Impulse Response (FIR) filter. FIR-filters, as they also can be called, are filters that have a finite duration of their impulse response inside a certain limited interval and zero outside it [37]. If we introduce the interval as M points back from the current position we can mathematically formulated the filter as in

$$y(n) = \sum_{k=0}^{M-1} h(k)x(n-k).$$

Thus we can see that the output $y(n)$ can be formulated as a weighed linear combination of the past $M$ inputs $x(n-k)$ with weight coefficients $h(k)$, where $h(k) = 0$ if $n-k < 0$ or $k \geq M$. One often says that this filter has a memory of M inputs back to generate the n:th output.

The most basic type of Finite Impulse Response filter is the running average filter. This is the filter that will be implemented in this thesis and what is referred to as the FIR-filter. This is simply the above formulation of the FIR-filter, (2.15), where we set all weights within the interval to $h(k) = 1/M$ where $M$ is the interval length and otherwise $h(k) = 0$. 


Chapter 2

2.3 Linear Interpolation and Regression

In this thesis linear interpolation and regression will be used repeatedly to make the approximations but also to format the logged data correctly. Because of this we present the mathematical theory behind the two mathematical tools briefly here.

2.3.1 Linear Interpolation

Linear interpolation is a mathematical tool that uses linear functions to find or construct new data points within the interval of the known discrete data points. In this way one can get a linear approximation of the set of data points expressed in a new basis, as long as it is within the range of the given data.

Given two discrete data points \((x_1, y_1)\) and \((x_2, y_2)\) we can geometrically derive a formula for a new data point \(y_{\text{new}}\) at position \(x_{\text{new}}, x_1 \leq x_{\text{new}} \leq x_2\), by a linear function between the two given data points and the equation for the slope. This will yield us the Linear Interpolation formula as in

\[
y_{\text{new}} = y_1 + (x_{\text{new}} - x_1) \frac{(y_2 - y_1)}{(x_2 - x_1)}.
\]

(2.16)

This can easily be extended for a set of given data points by simple concatenation of the linear interpolations between each pair of points. The result of a linear interpolation of a set of points will be a new set of points in a predefined new basis. Thus we can use this mathematical tool to change the basis of the given data points, within the range of the given data, and thus get an approximation of the values in the new basis [38].

2.3.2 Linear Regression

Given two variables and observed data of them, one sometimes want to find or model the mathematical relationship between them. One powerful mathematical tool to achieve this is the tool of mathematical regression. There exists many forms of regression and one of the simplest ones is the simple Linear regression. This method attempts to find a linear relationship between the two variables given the observed data, thus estimating the parameters in the linear model of the mathematical relationship between the variables.

If we call the two variables for \(y\) and \(x\), and are given a set of \(n\) observed data points for the two variables \(\{y_i, x_i\}_{i=1}^{n}\), we can model the linear relationship between them as in

\[
y_i = \beta x_i + \epsilon_i, \quad i = 1, \ldots, n.
\]

(2.17)
Here we introduced the estimation parameter $\beta$ and error term $\epsilon_i$. Thus the goal is to try to find the value of the estimation parameter with the introduced error or noise term $\epsilon_i$ describing all other factors that affect $y_i$ other than the $x_i$ values. This can be seen as a random variable [38]. To estimate the parameter, and thus the linear relationship between the variables, one has to implement a separate method. One of the most common methods is the method of least-squares. The method tries to minimize the sum of the squared distance to the linear model and leads to a neat closed form solution shown below as

$$\hat{\beta} = \left(\sum(x_i x_i)^{-1}\right) \left(\sum x_i y_i\right).$$ (2.18)

An important assumption for this method is that we assume that the error term has finite variance and is uncorrelated to all $x_i$. This can be problematic for experimental or observed data. In this thesis we will only have two variables and use the simple linear regression formulation. The details of the parameter estimation will not be studied in depth and commercial estimation tools will be used for this purpose [39].

### 2.4 Zero Order Hold

In order to discretize a continuous time-invariant state space realization we will be using the method of Zero Order Hold. This because it gives us an exact match between the continuous and discrete time systems for piece-wise constant inputs. For the MPC algorithm we will get a constant control actions for each discrete step. This will also hold for the PI approach and thus the zero order hold will suit the purpose of discretizing our system model well.

Zero order hold is a method for converting a continuous time system into a discrete one. This by holding the input signal constant over each sample period. If we are given a continuous state space realization of a system, i.e

$$\dot{x}(t) = A_c x(t) + B_c u(t)$$ (2.19)

we can derive the general solution to the system as in

$$x(t) = \Phi(t - t_0)x(0) + \int_{t_0}^{t} \Phi(t - \tau)B_c u(\tau)d\tau.$$ (2.20)

Here we have introduced the state transition matrix $\Phi$ as in (2.2). Now, if we apply the zero order hold on the input signal $u(t)$ with the sample time $T$, initial time $t_0 = kT$ and final time $t_f = (k + 1)T$ we get that
\[
\begin{aligned}
\begin{cases}
u(t) = u(kT), & kT \leq t \leq (k + 1)T \\
x(t) = \Phi(t, kT)x(kT) + \int_{kT}^t \Phi(t, \tau)B_c d\tau u(kT), & kT \leq t \leq (k + 1)T
\end{cases}
\end{aligned}
\] (2.21)

where we have moved out the control from the integral because we only consider one sample time above where the control is held constant [40]. From the above formulation, (2.21), we can now formulate the discrete system as

\[
x[k + 1] = A_dx[k] + B_du[k]
\] (2.22)

where the matrices \(A_d\) and \(B_d\) are given by

\[
A_d = \Phi((k + 1)T, kT),
\]
(2.23)

\[
B_d = \int_{kT}^{(k+1)T} \Phi((k + 1)T, \tau)B_c d\tau.
\] (2.24)

For time-invariant system we can simplify the notation even further and with some basic mathematical system theory [28] get that the discrete, zero order hold, system can be expressed according to

\[
x[k + 1] = A_dx[k] + B_du[k] \quad \text{where} \quad \begin{cases}
A_d = e^{A_c T} \\
B_d = \int_0^T e^{A_c \tau} d\tau B_c.
\end{cases}
\] (2.25)

Where we again have that the sample length is given by \(T\).
2.5 Linear and Nonlinear ARX Model

There exists today numerous methods for predicting, forecasting or estimating the future behavior of a system. Many of the methods are collected into different subcategories of system identification methods. These are often called grey box models, black box models or ad-Hoc/combined models [18]. In this thesis, and under this section specifically, we will present one black box model called the Nonlinear Auto Regressive eXogenous (NARX) model.

In a block box model the system is modeled, as the name suggest, as a black box without any knowledge about the details of the internals but only with knowledge about the inputs and outputs of the system. One such model is the (linear) Auto Regressive eXogenous model (ARX), which is given by the following equation

\[
y(k) + a_1y(k-1) + \ldots + a_{n_a}y(k-n_a) = b_1u(k-n_k) + \ldots + b_{n_b}u(k-n_k-n_b+1)
\]

(2.26)

where \(y\) and \(u\) are the outputs and inputs respectively of the system, \(k\) is the discrete time instance, \(n_k\) is the delay (in terms of numbers of samples) between input and output, \(n_a\) is the number of autoregressors and \(n_b\) is the number of exogenous regressors. The triplet \((n_a, n_b, n_k)\) is often called the model order [41]. From the (2.26) we can derive a compact formulation of the predicted next output as in

\[
\hat{y}(k) = z^T(k)\Theta \text{ where } \begin{cases} 
z(k) = [y(k-1), \ldots, y(k-n_a), u(k-n_k), \ldots, u(k-n_k-n_b+1)] \\
\Theta = [-a_1, \ldots, -a_{n_a}, b_1, \ldots, b_{n_b}].
\end{cases}
\]

(2.27)

The goal of the model is thus to find the regressor parameters \(\Theta\) using the past inputs and outputs of the system such that the prediction error is minimized. For ARX models this can for example be done by using the method of least squares which has the advantage of a closed form solution, as mentioned earlier in Section 2.3.2.

Now if the system itself has a nonlinear behavior one would also want the model to be able to “catch” this behavior to make a better prediction. Based on the linear model presented above a nonlinear ARX model, the NARX model, can be formulated. This model uses a nonlinear mapping \(F\) between the output and inputs of the system. This, rather than the weighted sum present in the linear ARX model. Mathematically we can formulate this as in

\[
\hat{y}(k) = F(z(k)) \text{ where } F(z(k)) = g(z(k) - r(k)) + L^T(z(k) - r(k)) + d.
\]

(2.28)
Here we see that the nonlinear mapping $F$ can consist of both a nonlinear part $g(z(k) - r(k))$ and a linear part $L^T(z(k) - r(k)) + d$. The choice of adding the linear part in parallel to the nonlinear mapping is dependent on the system and application [42]. In Figure 2.4 we see an illustration of the general model structure for a NARX model.

\[ F(z(t)) = g(z(t)) + L^T(z(t) - r(t)) + d. \]

The regressors for the nonlinear mapping can be nonlinear combinations of the so called "standard regressors" we defined as $z(t)$, for example $y(k - 2)^2$ or $y(k - 3)u(k - 10)$. The $r(t)$ is the mean of the regressors $z(t)$ and is usually used when implementing a wavelet network for the nonlinear part of $F$. How the exact form of $F$ will look depends on the choice of the nonlinear estimator. One common choice is the aforementioned wavelet network but in this thesis we will not go too deep into exactly how this function is constructed. Commercial software, such as the NARX tools available in Matlab will be used to build our NARX model in this thesis [43].

### 2.6 Evaluation of Predictions and Approximations

In order to be able to assess the accuracy of the approximations and predictions made in this thesis we have to define an accuracy measure. One well used measure is the so called Normalized Root Mean Square Deviation, NRMSD. The measure is often expressed as an percentage where high values indicate lower residual variance and a better fit. Given an estimation $\hat{x}$ and measured data $x$, the NRMSD can be formulated as given below

\[
NRMSD(\hat{x}) = 1 - \frac{\sqrt{E[(\hat{x} - x)^2]}}{E[(E[x] - x)^2]}. \tag{2.29}
\]

Where we have used $E[x]$ as the expected value of the argument variable $x$. One can also note that $E[(E[x] - x)^2] = Var(x)$, is the variance of the variable $x$ [18].
Chapter 3

Vehicle Models

In this chapter we will present the overall system model for both the HDV as well as for the preceding vehicle. The vehicle model for the HDV is based on Newton’s second law and do not include any advanced powertrain properties. It takes the external as well as the controllable forces into consideration and constitutes a simple force based model for the HDV, which is seen as a point mass. First the basic model for the HDV is presented followed by the two system extensions, regenerative braking and distance dependent air drag coefficient. The discretized versions of the models are derived and lastly some notes on the preceding vehicle are given.

The basic force model of the vehicle dynamics are inspired by [8] and [22]. The regenerative braking extension is modeled after the methodology used in [10] and the air drag coefficient extension is inspired by the works done in [44], [45] and [46].

3.1 Vehicle Model

In this thesis we implement a simple vehicle model for the HDV where we do not take any advanced powertrain aspects into consideration. The vehicle is seen as a point mass with external forces acting on it as well as controllable forces, which we are able to control directly. The forces that we consider in this thesis are only the forces acting along the longitudinal direction of the vehicle. All lateral forces are ignored, meaning that the vehicle model developed only describes the longitudinal dynamics of the HDV. With these assumptions and delimitation’s in mind the next step is to begin to formulate the vehicle model by considering the well known and well used Newton’s second law,
\[ ma = \sum F. \]  

(3.1)

Here we have that \( m \) is the mass of the vehicle, \( a \) is the acceleration and \( \sum F \) represents the total force acting on the vehicle. The total force include both the external longitudinal forces as well as the controllable forces.

First and foremost we have the external forces acting on the HDV. The gravitational force will affect the longitudinal dynamics of the vehicle in ascending (\( \alpha > 0 \)) as well as descending (\( \alpha < 0 \)) parts of the road. This force will act, as illustrated in Figure 3.1, on the HDV according to the following formulation

\[ F_g = -mg \sin(\alpha) \]  

(3.2)

where \( g \) is the gravitational constant. Another external force that depends on the inclination of the road is the force originating from the resistance between the road surface and the tires of the vehicle. This force is called the rolling resistance force and can be formulated as

\[ F_r = -mgc_r \cos(\alpha) \]  

(3.3)

where \( c_r \) is the rolling resistance coefficient. In this thesis this coefficient will be assumed to be constant. This is not always the case, tire ware, road conditions, weather and so on can affect this coefficient and thus the force quite heavily. Although all results in this thesis will be relative to the constant value this coefficient is set to, it is a necessary
assumption to make in order to keep the complexity of the model at a reasonable level\footnote{By reasonable level, we mean that the model should be of a complexity level so that the optimization in the MPC can successfully execute, even for complex situations. Furthermore, in order to have time to analyze the solutions some assumptions have to be made, the estimation of the rolling resistance is not the focus of the thesis.}. Both the gravitational force and rolling resistance force can easily be derived by simple geometric considerations of the case illustrated in Figure 3.1.

The last external force that acts upon the HDV is the air resistance. We assume that it only acts on the cross-sectional area of the vehicle and can thus be formulated as

$$ F_a = -\frac{1}{2} \rho A f C_D v^2 $$

(3.4)

where $\rho$ is the air density, $C_D$ is the air resistance coefficient, $A$ is the cross-sectional area and $v$ is the vehicles speed. As for the case with the rolling resistance coefficient, we set the air resistance coefficient to a set value for the basic model. A study of a distance depending air resistance coefficient will also be done, see following sections.

The controllable forces are the tractive force which is provided by the HDV:s engine and the directly controllable braking force given by the brakes of the HDV. These forces are called $F_T$ and $F_B$ respectively. Now we are ready to formulate the complete basic longitudinal vehicle model as

$$ m \frac{dv}{dt} = F_T + F_B + F_a + F_g + F_r $$

(3.5)

where we have used the fact that the acceleration can be rewritten as a function of the velocity.

3.1.1 Regenerative Braking Extension

The first model extension to the basic vehicle model presented above will be to consider the introduction of regenerative braking on the HDV. The idea behind regenerative braking is to regenerate or store some of the braking power using a battery and an electric machine. This will become more and more interesting as more resources and attention is raised to the development of HEV:s. The details of how the regenerative braking is included in the full optimization problem can be seen in Section 4.2.1.2. Here we present the extension to the vehicle model, which is to split the newly introduced controllable braking force $F_B$ into two separate forces, as can be seen in

$$ F_B = F_{BR} + F_{BL}. $$

(3.6)

In (3.6) above we can see that we have split the force into two parts, $F_{BR}$ as the part of the braking force we can regenerate and $F_{BL}$ as the part of the braking force which
we can not regenerate. The reason why we introduce to braking force’s, as done above, is that all braking power can not be regenerated. The battery has a limitation on how much power it can regenerate and thus we have to split the force into the part that can be regenerated and the part that constitute pure braking losses. The motivation behind this model decision will become clearer as the full optimization model is formulated.

3.1.2 Air drag Model Extension

As mentioned earlier, the air resistance coefficient will be set to a constant value if nothing else is mentioned. In reality this will not always be the case, for example weather and distance to the preceding vehicle will affect the air resistance on the HDV and thus the solution. An attempt to model a varying air resistance coefficient will be made in this thesis, with respect to the distance to the preceding vehicle.

The intermediate distance between the HDV and the preceding vehicle is denoted as \( d \). The air drag coefficient can be modeled as a function of this distance, thus we introduce \( C_d(d) = C_D G(d) \). Here we model the distance dependent air drag coefficient \( C_d(d) \) as the product of the fixed parameter value \( C_D \) and the air drag coefficient reduction function \( G(d) \). This function is derived using empirical experiments of the air drag reduction of HDV:s driving in platoon formation [47].

![Figure 3.2: Experimental data over the reduction of the air drag coefficient for HDV:s whilst driving in a platoon formation based on [47]. Red line is the linear approximation for the reduction from one preceding HDV.](image)
In Figure 3.2 we see the experimental data along with a linear approximation of the reduction of the coefficient as a function of the distance to the preceding HDV. This approximation has been made with linear regression where we have used that $G(d)$ can be expressed as

$$G(d) = \left(1 - \frac{H(d)}{100}\right)$$

where $H(d)$ was approximated to

$$H(d) = Q_1 d + Q_2 = -0.45d + 43.$$  

This will only hold for a maximum inter-vehicle distance of 95m, longer distances will not be considered in this thesis. In this case we assume that the preceding vehicle is another HDV. Thus, we can formulate the air resistance for this model extension as

$$F_a(d) = -\frac{1}{2} \rho A_f C_d v^2 = -\frac{1}{2} \rho A_f \left(1 - \frac{-0.45d + 43}{100}\right) v^2.$$  

Further details on how this will be implemented into the optimization model can be seen in the following sections and in the next chapter.

### 3.1.3 States and Discretized Vehicle model

The vehicle models developed above are all in the continuous time domain. In order to simulate the system the vehicle models have to be discretized. In this section we present the nonlinear discretization of the basic vehicle model, which will be used as the approximation of the real system in the MPC algorithm.

First and foremost we make the model choice to convert the vehicle model from the time domain $(t)$ to the spatial domain $(s)$ and introduce the state variable $K$, representing the kinetic energy of the HDV. We make the quite unusual choice of having the position $s$ as the independent variable, rather than the usual time variable $t$, because the road topography as well as speed limits are given as a function of position and not time. This information are usually collected from maps where these variables are given in spatial coordinates. Thus it is natural to convert the system to the position domain where, as we soon will see, we get additional mathematical advantages by the state choice $K(s)$. 
Now, we begin by rewriting the left hand side of (3.5) to the new spatial domain $s$. We begin by the well know relationship between the kinetic energy $K$ and the velocity $v$ which can be written as

$$K(s) = \frac{1}{2}mv^2. \quad (3.10)$$

Furthermore the transition of the derivative between the spatial and time domain can be derived as

$$\frac{d}{ds} = \frac{dt}{ds} \frac{d}{dt} = \frac{1}{v} \frac{d}{dt} \quad (3.11)$$

which we in combination with (3.10) can rewrite the left hand side of (3.5) as

$$md\frac{dv}{dt} = mvd\frac{dv}{ds} = \frac{1}{2} m \frac{d}{ds} v^2 = \frac{d}{ds} K(s). \quad (3.12)$$

The right hand side of the basic vehicle model can easily be transformed to the spatial domain as

$$F_T + F_B - mgsin(\alpha(s)) - mgc_r \cos(\alpha(s)) - \rho A_f C_D \frac{K(s)}{m} \quad (3.13)$$

where we used (3.10) to rewrite the air resistance. With this in mind we can now formulate the continuous state space realization of the basic vehicle model, the continuous vehicle model (CVM) as

$$\dot{K}(s) = \left( -\frac{\rho A_f C_D}{m} \right) K(s) + \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} F_T(s) \\ F_B(s) \end{bmatrix} = -mg(sin(\alpha(s)) + c_r\cos(\alpha(s))) \quad (CVM)$$

where we introduced the continuous domain matrices $A_c$ and $B_c$ according to the notation in Section 2.4. Here we also can observe the additional mathematical advantage of the spatial domain in combination of the state choice of the kinetic energy. The relation between the derivative of the kinetic energy with respect to the position and the sum of the forces becomes linear. This will be advantageous when implementing the MPC algorithm.

In order to discretize the model we will here use the zero order hold method presented in the previous chapter. Defining the discrete control vector as the two controllable forces $F_T$ and $F_B$, as seen below

$$u_k = \begin{bmatrix} F_{T,k} \\ F_{B,k} \end{bmatrix} \quad (3.14)$$
the sample distance as $\Delta s$ and using the introduced state variable $K_k$ we can now write the basic vehicle model as a state space representation on discrete form, the discrete vehicle model (DVM) as

$$K_{k+1} = A_d K_k + B_d u_k + h_{d,k} \quad \text{(DVM)}$$

where $A_d$, $B_d$ and $h_{d,k}$ have been derived using the continuous (CVM) model and the theory behind zero order hold approximations. Here we have that

$$A_d = e^{A_c \Delta s},$$

$$B_d = \left( \frac{e^{A_c \Delta s} - 1}{A_c} \right) B_c,$$

$$h_{d,k} = -\frac{1}{2} B_d B_c^T mg (\sin(\alpha_k) + c_r \cos(\alpha_k)).$$

The kinetic energy of the HDV has been introduced as the only state of the model so far. It will turn out that it will also be useful to define the time as a state variable. The choice of time as the additional state variable will become clearer in the Methodology chapter, but to for now we just accept it as a reasonable model choice.

We introduce the state variable time as $t$. The update equation for the time variable will not depend explicitly on the control and we choose to approximate it with Euler forward. Generally we can write the update equation for the time variable now as

$$t_{k+1} = t_k + \Delta t_k.$$ 

To find $\Delta t_k$ we assume constant acceleration between sampling points. In Figure 3.3 we see an illustration of the scenario between two sample points.

**Figure 3.3:** An illustration of the scenario between two sample points. Given the kinetic energy and the time.
From the figure above we can approximate the constant acceleration between two sample points as
\[
\frac{\Delta K}{m\Delta s} = \frac{K_{k+1} - K_k}{m\Delta s} = a_k.
\] (3.19)
Given the assumption of constant acceleration \(a_k\) between two sample points we can use the following formula
\[
\Delta s = v_k \Delta t + \frac{1}{2}a_k \Delta t^2
\] (3.20)
to derive the following formula for \(\Delta t\)
\[
\Delta t = \frac{v_k}{a_k} + \text{sign}(a_k) \sqrt{\left(\frac{v_k}{a_k}\right)^2 + \frac{2\Delta s}{a_k}}
\] (3.21)
where \(v_k = \sqrt{2K_k/m}\) and \(\text{sign}(a_k)\) is the sign function returning -1 if \(a_k < 0\) and 1 if \(a_k > 0\). For the case the approximated value of the acceleration becomes zero we assume constant velocity between two sample points.

This give us now the complete nonlinear discretized state space realization of the basic vehicle model (NDBVM) as
\[
\begin{align*}
K_{k+1} &= A_d K_k + B_d u_k + h_{d,k} \\
t_{k+1} &= t_k + \Delta t_k
\end{align*}
\] (NDBVM)
where all matrices and parameters are given according to the above equations.

### 3.1.3.1 Model extension considerations

In this case the model extension will only have a minor affect on the nonlinear discretization of the state space realization. For the first model extension, the regenerative braking case, the change consist only of substituting the control vector
\[
\begin{bmatrix}
F_{T,k} \\
F_{BR,k} \\
F_{BL,k}
\end{bmatrix}, \quad B_c = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}
\] (3.22)
and the \(B_c\) matrix as shown above. For the second model extension, distance dependent air drag coefficient, the change is to set the \(A_c\) matrix to the value shown below
\[
A_{c,k} = -\frac{\rho A f C_d(d_k)}{m}, \quad \text{where} \quad C_d(d_k) = \left(1 - \frac{-0.45d_k + 43}{100}\right).
\] (3.23)
Where \( d_k \) is the current distance to the preceding vehicle. This can be computed separately by using linear interpolation (given that we know the velocity of the preceding vehicle for some horizon \([s, s + \Delta s \cdot M]\), where \( M \) is large enough) \(^2\).

### 3.1.4 Linear Vehicle model

The (NDBVM) model can be used as the state update equation in the optimization model of the MPC algorithm as well, and not only as the approximative model of the real system. The disadvantages with this approach are many, for example the computational complexity of the optimization problem will become higher which will most probably mean a longer execution time of the MPC algorithm. Since we are trying to achieve an MPC model that could be solved online on an HDV, with limited computational resource, a quick and computationally light algorithm is desirable. One way to do this is to formulate the optimization model as an LP-problem. This in turn means that we will linearize the discrete vehicle model (NDBVM) above to achieve linear state update equations.

In the spatial domain we know the sample distance \( \Delta s \) but need to approximate the sample time \( \Delta t_k \). This can be done, assuming a small sample distance and constant velocity \( v_k \) between sample points, as

\[
\Delta t_k \approx \frac{\Delta s}{v_k} = \Delta s \sqrt{\frac{m}{2} K^{-1/2}_k} \tag{3.24}
\]

where we used (3.10) to rewrite the velocity \( v_k \) in terms of the state variable \( K_k \). The sample time approximation in (3.24) is not linear, thus we have to linearize the approximation with respect to the kinetic energy. This can be done using a first order Taylor approximation as

\[
\Delta t_k = \Delta s \sqrt{\frac{m}{2} K^{-1/2}_k} \\
= \Delta s \sqrt{\frac{m}{2} \left( \frac{1}{\sqrt{K_k}} \right)} \\
= \Delta s \sqrt{\frac{m}{2} \left( K^{-1/2}_{0,k} - \frac{1}{2} K^{-3/2}_{0,k} (K_k - K_{0,k}) \right)} \\
= \Delta s \sqrt{\frac{m}{2} \left( \frac{3}{2} K^{-1/2}_{0,k} - \frac{1}{2} K^{-3/2}_{0,k} K_k \right)} \\
= 3\Delta s \sqrt{\frac{m}{8} K_{0,k}^{-1/2}} - \Delta s \sqrt{\frac{m}{8} K_{0,k}^{-3/2} K_k} \tag{3.25}
\]

\(^2\)This will only be considered in the Deterministic case, thus we will have information about the preceding vehicles trajectory into the future. Furthermore, "large enough" means that the interval is so large that it at least reaches the time point of our own vehicle.
where we linearized around a reference trajectory $K_{0,k}$. The exact choice of this reference trajectory is explained in the next chapter. This will give us the linear update equation for the time variable as

$$t_{k+1} = t_k + 3\Delta s \sqrt{\frac{m}{8}} K_{0,k}^{-1/2} - \Delta s \sqrt{\frac{m}{8}} K_{0,k}^{-3/2} K_k$$

$$= A_{L,4} t_k + A_{L,3,k} K_k + h_{L,t,k}$$

(3.26)

where we have introduced the parameters

$$A_{L,4} = 1,$$  \hspace{1cm} (3.27)

$$A_{L,3,k} = -\Delta s \sqrt{\frac{m}{8}} K_{0,k}^{-3/2},$$ \hspace{1cm} (3.28)

$$h_{L,t,k} = 3\Delta s \sqrt{\frac{m}{8}} K_{0,k}^{-1/2}.$$ \hspace{1cm} (3.29)

For the update equation for the kinetic energy we already have a linear discrete formulation. This was given by the zero order hold approximation in (DVM).

Now we can formulate the complete linear discretized basic vehicle model (LDBVM) using the introduced parameters in the equations above as

$$\begin{bmatrix} K_{k+1} \\ t_{k+1} \end{bmatrix} = \begin{bmatrix} A_d & 0 \\ A_{L,3,k} & A_{L,4} \end{bmatrix} \begin{bmatrix} K_k \\ t_k \end{bmatrix} + \begin{bmatrix} B_d \\ 0 \end{bmatrix} u_k + \begin{bmatrix} h_{d,k} \\ h_{L,t,k} \end{bmatrix}.$$ \hspace{1cm} (LDBVM)

For notation purposes one can also introduce the state vector as

$$x_k = \begin{bmatrix} K_k \\ t_k \end{bmatrix}$$ \hspace{1cm} (3.30)

so as to make the notation cleaner.

### 3.1.4.1 Model extension considerations

As for the nonlinear discretization case we will have some adaptations of the LDBVM for the two model extension. For the case of regenerative braking we will only have a minor adaption of the basic model. The difference being the control vector and the $B_c$ vector. These are changed according to

$$u_k = \begin{bmatrix} F_{T,k} \\ F_{BR,k} \\ F_{BL,k} \end{bmatrix}, \hspace{1cm} B_L = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$ \hspace{1cm} (3.31)
which is the same change as for the nonlinear vehicle model extension. For the second model extension, distance dependent air resistance coefficient, there are other required adaptations of the basic vehicle model LDBVM. In this case we will have a nonlinear air resistance force as

\[
F_{a,k} = -\rho A f C_d(d_k \frac{K_k}{m})
\]

\[
= -\rho A f C_D \left(1 - \frac{Q_1 d_k + Q_2}{100}\right) \frac{K_k}{m}
\]

\[
= -\rho A f C_D \left(1 - \frac{H(d_k)}{100}\right) \frac{K_k}{m}
\]

(3.32)

which we have to linearize to get a linear model. We apply the same method as for the time update equation and use a first order multivariate Taylor expansion of (3.32) to get the linear expression of the force \( F_{a,k} \) as

\[
F_{a,k} \approx \rho A_f C_D \left(1 - \frac{H(d_{0,k})}{100}\right) \frac{K_{0,k}}{m} - \rho A_f C_D \frac{Q_1}{100} \frac{K_{0,k}}{m} (d_k - d_{0,k})
\]

\[
+ \rho A_f C_D \left(1 - \frac{H(d_{0,k})}{100}\right) \frac{K_{k} - K_{0,k}}{m}
\]

(3.33)

where \( Q_1 \) is given by the linear regression in (3.8). Here we linearize around both the reference kinetic trajectory \( K_{0,k} \) as in (3.26) and a reference inter vehicle distance \( d_{0,k} \). Details of how this reference distance is chosen can be seen in Section 4.4, as well as how the variable distance \( d_k \) that the optimization in the MPC algorithm should decide upon is modeled.

Furthermore, with this formulation of the air resistance we choose to reformulate the discrete form of the update equation of the kinetic energy. This is done because the zero order hold formulation will become rather complex, and in the end this change will not affect the results (assuming a small sample distance). Thus we reformulate the update equation, in order to make the implementation easier, using Euler forward as

\[
\dot{K}_k \approx \frac{K_{k+1} - K_k}{\Delta s}
\]

(3.34)

\[
\Rightarrow K_{k+1} = K_k + \Delta s \dot{K}_k
\]

(3.35)

\[
\Leftrightarrow K_{k+1} = K_k + \Delta s (F_{T,k} + F_{B,k} + F_{g,k} + F_{r,k} + F_{a,k})
\]

(3.36)

where we in (3.36) used the right hand side of (CVM). Now, the forces are already on a linear form and thus we can state the update equation for the kinetic energy as

\[
K_{k+1} = A_{L,1} K_k + B_L u_k + h_{L,K,k}
\]

(3.37)
where we have introduced the parameters

\[ A_{L,1} = \left( 1 - \frac{\rho A_f \left( 1 - \frac{H(d_0,k)}{100} \right) \Delta s}{m} \right), \quad (3.38) \]

\[ B_L = \begin{bmatrix} \Delta s & \Delta s \end{bmatrix}, \quad (3.39) \]

\[ h_{L,K,k} = -mg\Delta s(\sin(\alpha_k) + c_r \cos(\alpha_k)) + \rho \Delta s A_f C_D \frac{Q_1}{100} \frac{K_0,k}{m} (d_k - d_0,k) \quad (3.40) \]

and the control vector \( u_k \) on the same form as in (CVM).

### 3.1.5 Limitations on Controllable Forces

The controllable forces, the tractive force \( F_T \) and the braking force \( F_B \), have their physical limitation depending on the system. These can be modeled as follows

\[ 0 \leq F_{T,k} \leq F_{T,\text{max}}(K_k), \quad (3.41) \]

\[ -F_{B,\text{min}} \leq F_{B,k} \leq 0 \quad (3.42) \]

where we introduce some maximal tractive force as a function of the kinetic energy \( F_{T,\text{max}}(K_k) \) and a constant maximal braking force \( F_{B,\text{min}} \). The lower and upper limitations respectively for the two forces are set to 0 for obvious reasons. This to separate the two forces, a braking force is defined as negative whilst a tractive force is defined as positive. Thus these limits are enforced on the two model variables \( F_{T,k} \) and \( F_{B,k} \).

The upper limit on the tractive force can be modelled as in [10]. Here we on the one hand have a constant maximal tractive power, \( P_{T,\text{max}} \), that the engine and powertrain of the HDV can deliver. This can be reformulated to a maximal tractive force through

\[ F_{T,\text{max}}(K_k) = \frac{P_{T,\text{max}}}{v_k} = P_{T,\text{max}} \sqrt{\frac{m}{2} K_{k}^{-1/2}} \]

(3.43)

where we again used (3.10) to rewrite the relation from a function of the velocity to a function of the kinetic energy of the HDV. Because these system limitation will also be used in the linear optimization model the expression above for the maximal tractive force has to be linearized. A first order Taylor approximation gives that

\[ F_{T,\text{max},L}(K_k) = P_{T,\text{max}} \sqrt{\frac{m}{2} \left( \frac{3}{2} K_{0,k}^{-1/2} - \frac{1}{2} K_{0,k}^{-3/2} K_k \right)} \]

\[ = 3P_{T,\text{max}} \sqrt{\frac{m}{8} K_{0,k}^{-1/2}} - P_{T,\text{max}} \sqrt{\frac{m}{8} K_{0,k}^{-3/2} K_k} \]

\[ = P_1 + P_2 K_k \]

(3.44)
where we introduced the parameters

\[ P_1 = 3P_{T,max}\sqrt{\frac{m}{8}K_{0,k}^{-1/2}}, \]

\[ P_2 = -P_{T,max}\sqrt{\frac{m}{8}K_{0,k}^{-3/2}} \]

as functions of the reference trajectory \( K_{0,k} \). On the other hand we can easily see that this formulation of the maximal force will yield an infinite force when \( K_k \to 0 \). This behavior is unwanted, it is not physically possible to get an infinite force \(^3\), and thus we have to apply a cut-off limit on this model. This is done by introducing a fixed maximal level \( F_{T,max} \) on the tractive force.

In Figure 3.4 we see an illustration of the desired maximal tractive force. The blue dotted area is the feasible set for \( F_{T,k} \) whilst the blue line is the desired maximal force. Here we also see the desired property of the cut-off level, that depending on the value of \( F_{T,max} \) we follow the maximal power curve up to the point where the power becomes higher than \( F_{T,max} \). From there we follow the constant maximum power line (the dotted line in the figure). Below we show how this can be formulated mathematically, i.e. as

\(^3\)This would imply that we could get an infinite amount of energy from the engine, which is not possible.
\[ F_{T,k}(K_k) = \text{minimum} \left( \{F_{T,max}\}, \{P_{T,max} \sqrt{\frac{m}{2}} K_k^{-1/2}\} \right) \]  

or 

\[ F_{T,k}(K_k) = \text{minimum}(\{F_{T,max}\}, \{F_{T,max,L}(K_k)\}) \]  

For a nonlinear version of the maximum tractive power we use (3.47) and for a linear representation of the maximum tractive power we use (3.48).

For the lower limit on the braking power we simply assume that we have a fixed maximal applicable braking force, i.e. that we are given a fixed value of \( F_{B,min} \).

### 3.2 Vehicle Parameters

All vehicle parameters and natural constants are set according to the following values. We choose to set the values after the values used in [10] and [8] as the studies made in these are similar to this one. The values are set after a general Scania HDV that is used for distribution purposes. Most trucks driving in urban environments are distributions trucks but a study with other parameter values such as changing the weight of the HDV will be made as well.

<table>
<thead>
<tr>
<th>Description</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air density</td>
<td>( \rho )</td>
<td>1.3 kg/m(^3)</td>
</tr>
<tr>
<td>Air drag coefficient</td>
<td>( C_D )</td>
<td>0.5</td>
</tr>
<tr>
<td>Rolling resistance coefficient</td>
<td>( c_r )</td>
<td>0.006</td>
</tr>
<tr>
<td>Vehicle mass</td>
<td>( m )</td>
<td>26 000 kg</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>( g )</td>
<td>9.81 m/s(^2)</td>
</tr>
<tr>
<td>Cross-sectional area</td>
<td>( A_f )</td>
<td>10 m(^2)</td>
</tr>
<tr>
<td>Fixed maximal tractive force</td>
<td>( F_{T,max} )</td>
<td>25 000 N</td>
</tr>
<tr>
<td>Maximal tractive power</td>
<td>( P_{T,max} )</td>
<td>250 000 W</td>
</tr>
<tr>
<td>Fixed maximal braking force</td>
<td>( F_{B,min} )</td>
<td>100 000 N</td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>( Q_1 )</td>
<td>-0.45</td>
</tr>
<tr>
<td>Regression coefficient</td>
<td>( Q_2 )</td>
<td>43</td>
</tr>
</tbody>
</table>

**Table 3.1:** Standard vehicle parameters and natural constants.

In Table 3.1 we see what we call the standard vehicle parameters and natural constants. We choose to call them the standard parameters because all simulations in this thesis will be using these parameter values as long as nothing else is said. This means that these values are, for this thesis, the standard/default values.
3.3 Preceding Vehicle and Terrain Model

The preceding vehicle and topography of the road will be in part constructed from scratch and in part from logged data given by Scania. For the details of the manipulation of the logged data see Section 5.1.2. In this section we will only quickly mention how and which equations are used to construct the own simulation cases, i.e. the preceding vehicle trajectory as well as the road topography.

In Figure 3.5 we see a schematic illustration of the preceding vehicle, that can be any vehicle not only a passenger car, and the road topography. The simulation cases generated in this thesis will consist of functions that generate the velocity trajectory for the preceding vehicle for a certain sample distance into the future. From these values the time at every sample position of the preceding vehicle is calculated. The road topography is generated in the same manner from desired values. That is, give an desired height at a position the angel of inclination is computed such that the slope is constant.

For the generation of the velocity trajectory as well as the time at each sample point for the preceding vehicle, the following equations are used

\[
\Delta s = v_{p,0} \Delta T_{p,i} + \frac{1}{2} a_{p,i} \Delta T_{p,i}^2, \tag{3.49}
\]

\[
v_{p,i} = v_0 + a_{p,i} \Delta T_{p,i}, \tag{3.50}
\]

\[
a_{p,i} = \frac{v_{p,N} - v_{p,0}}{\Delta T_{p,i}}. \tag{3.51}
\]

Here we assume that we are given a constant acceleration as well as the initial point and the desired end point (N) for the preceding vehicle. The result of repeated iteration of these equation is the following two important vectors that are crucial for the MPC algorithm and the optimization model.
where $T_p$ is the time points for each sample distance of the preceding vehicle from sample point 1, current position, to sample point $N$, $N$ sample points into the future, and $V_p$ is equivalently the velocity of the preceding vehicle. These two vectors will describe the velocity and position of the preceding vehicle. For the simulations cases where we construct the trajectories from scratch, i.e. specifying accelerations, initial and final velocities, these vectors are constructed from the above equations. For logged data or the stochastic case other methods are used.

Finally we construct the topography of the road by specifying the height ($h_1$) at a certain point ($s_1$) on the road together with the rate of change in height expressed in percent. We also specify for how long the change in height should go on, i.e. $s_2$. Below, in Figure 3.6, we see a figure over the situation.

![Figure 3.6: A sketch over the topography as it is created in the manually created simulation situations.](image-url)

We implement this in Matlab by constructing an algorithm that puts together these piece wise linear trajectories to one. To get the angle of inclination at each sample point we employ the following equation
\[ \alpha_k = \begin{cases} \tan \left( \frac{h_2-h_1}{s_2-s_1} \right), & \text{if } \frac{h_2-h_1}{s_2-s_1} > 0 \\ -\tan \left( \frac{h_2-h_1}{s_2-s_1} \right), & \text{if } \frac{h_2-h_1}{s_2-s_1} < 0 \end{cases} \] (3.53)

Furthermore we make some assumptions on the preceding vehicle. The cases where the preceding vehicle moves backwards or stands still are not studied in this thesis. This is to avoid problems that can occur when the velocity of the preceding velocity change sign.

In Figure 3.7 we see an illustration of the trajectory of the vehicle as a function of position and time. As the assumption is stated above we can say that the trajectory in the above figure will be a one-to-one function with respect to position and time. The preceding vehicle will only reach each position \( s_k \) once, i.e. only at one point in time \( T_{p,k} \).

**Figure 3.7:** The trajectory of the preceding vehicle, position on the y axis and time on the x axis.
Chapter 4

Methodology

In this chapter the fundamental methodology for the implementation of the methods presented in Chapter 2 in combination with the vehicle models constructed in Chapter 3 is presented. First the methodology as well as the open loop optimization problem of the MPC algorithm is described for the deterministic case. This for the basic vehicle model as well as for the two model extensions, regenerative braking and distance dependent air drag coefficient. Furthermore the implementation of the reference controller (the PI-controller) is described followed by the methodology for the time and distance approximations. The stochastic methodology, including the rule based logic and the implementation of the NARX model is presented and finally the chosen simulation scenarios are described.

**Figure 4.1:** A sketch over the basic flow of procedures of the implementation of the controllers in this thesis.
In Figure 4.1 we see a basic sketch over the methodology of the implementation of the controllers in this thesis. First we measure the current velocity of the preceding vehicle along with the future topography of the road. The road topography is often given by maps or other V2I communication. Then, depending if we study the deterministic or stochastic case, we either receive the future velocity trajectory for the preceding vehicle via V2V communication for a prediction horizon or predict the same using different strategies and models. Given the road topography and the velocity/time point trajectory of the preceding vehicle we apply the MPC and PI controller algorithms. This will give a control action, one each, which we apply to the current vehicle model. This is repeated until the simulation horizon is reached. Thereafter the results are evaluated.

4.1 PI-controller

In this section we describe the methodology behind the PI-controller implemented in this thesis. As stated in (2.13) and (2.14) we will formulate the PI-controller by an error term and the two parts, the proportional part and the integral part. This will mean that we can formulate the PI-controller generally as

\[ u_k = K_P e_k + K_I \sum_{i=0}^{i=k} e_k, \quad \text{where} \quad e_k = r_k - x_k \]  

(4.1)

where we have discretized the formulation given in the earlier mentioned equations. Here we have that \( r_k \) is the reference trajectory and \( x_k \) is the state variable. The PI-controller is implemented as the reference or benchmark controller to enable a comparison with the developed MPC controller. The purpose of it is to act as a simple CC or as a less intelligent driver that does not compensate for predicted future actions of the preceding vehicle\(^1\).

Now to keep the controller simple the main goal of the controller will be to track the preceding vehicle with a set time gap. The time gap is set to the "three seconds rule" which is a common rule taught to drivers in Sweden [48]. To achieve this we begin by constructing the control error \( e_k \) as can be seen below

\[ e_k = [e_{K,k} \quad e_{t,k}]. \]  

(4.2)

In (4.2) we make the model choice to divide the control error into two parts, one part for each state variable. In order to get a stable and quickly tuned controller we also set the controller to track the acceleration of the preceding vehicle. With these model choices in mind we define the control error as

\(^1\)Thus we exclude the derivative term in the PID-controller, which gives us the PI-controller.
$e_{K,k} = \left( \frac{m_p V_{p,k}^2}{2} - K_k \right), \quad (4.3)$

$e_{t,k} = (t_k - T_{p,k}) - \Delta T_{ref} \quad (4.4)$

where we have the state variables as $(t_k, K_k)$, preceding vehicle speed and point of time at sample $k$ as $(v_{p,k}, T_{p,k})$ and the reference time gap the controller should track as $\Delta T_{ref}$. We see in (4.3) that the controller will try to minimize the relative velocity, i.e. follow the velocity of the preceding vehicle as well as track the time gap $\Delta T_{ref}$ to the preceding vehicle, (4.4). We will also define the tuning parameters after this division of the control error into two parts, one for each state, as can be seen in

$$K_P = \begin{bmatrix} K_{P,1} \\ K_{P,2} \end{bmatrix}, \quad K_I = \begin{bmatrix} K_{I,1} \\ K_{I,2} \end{bmatrix}. \quad (4.5)$$

The tuning parameters defined above will be tuned by empirically experimenting with the values of them until the solution is stable.

The PI-controller will also obey the limitations on the control variable, i.e. follow the following equations

$$0 \leq F_{T,k} \leq F_{T,k}(K_k), \quad (4.6)$$

$$-F_{B,\text{min}} \leq F_{B,k} \leq 0 \quad (4.7)$$

where $F_{T,k}(K_k)$ is given by (3.47). An Anti-Windup solution will also be implemented and derived through simple step response tests on the system. There exists, as earlier mentioned, several ways to solve the Wind up problem for PI-controllers. To find the solution that fits these problems and vehicle model best we will try three different methods. These methods are:

**Anti-Windup Method 1:** If the PI-controller tries to implement a control action that violates (4.6) or (4.7) we do the following

1. Cap the control action to the nearest limit, i.e. if $u_k > F_{T,k}(K_k)$ then set $u_k = F_{T,k}(K_k)$ or if $u_k < -F_{B,\text{min}}$ then set $u_k = -F_{B,\text{min}}$.

2. Cap the integral part of the PI-controller. This means that we let the integral part keep the same value, stop integrating the error signal, from the point where the control violation occurs to the point where the control given by the PI-controller again becomes feasible.
Anti-Windup Method 2: If the PI-controller tries to implement a control action that violates (4.6) or (4.7) we do the following

1. Same as for method 1

2. Set the integral part of the PI-controller to zero when a control violation occurs. Let the integral part become active, starting from zero, when the control again becomes feasible. Thus only having a P-controller during situations like these ones.

Anti-Windup Method 3: If the PI-controller tries to implement a control action that violates (4.6) or (4.7) we do the following

1. Same as for method 1

2. Set the integral part of the PI-controller to only be the current error values. This means essentially that we increase the proportional part by the values of the $K_I$ parameters. As the control action again becomes feasible, let the integral part start again from the latest value of the error term.

The evaluation of their step response will determine which method that will be implemented. A short description of the algorithm of the PI-controller follows below.

**Algorithm 1** PI-control Algorithm

1: $M$ Simulation horizon ← Given
2: $x_0$ Initial conditions ← Given
3: while $k < M$ do
4: \hspace{1em} Compute $u_k$ from (4.1)
5: \hspace{1em} if $u_k > F_{T,k}(K_k)$ then
6: \hspace{2em} $u_k = F_{T,k}(K_k)$
7: \hspace{1em} else if $u_k < -F_{B,k}$ then
8: \hspace{2em} $u_k = -F_{B,k}$
9: \hspace{1em} Implement Anti-Windup method ← Cap the integral part
10: \hspace{1em} Update system with $u_k$ ← Equations NDBVM and $x_k$
11: \hspace{1em} Update to $e_{k+1} \leftarrow x_{k+1}, T_{p,k+1}, V_{p,k}$
12: \hspace{1em} Update $k \leftarrow k + 1$

Above, in Algorithm 1, we can see the overall procedure flow of the PI-algorithm implemented in this thesis. The explicit implementation of the Anti-Windup solution and the results of it can be see in the next chapter. Method 3 was the one that gave the best results.
4.2 Model Predictive Control

In this section we describe the methodology of the MPC algorithm that is implemented in this thesis. The MPC includes the open loop optimization of an optimal control problem as well as the state update of the real or in this case approximated system. In the sections below we present the optimization model, including the objective function and constraints, that will be used in this thesis. The methodology behind the approximations made is also described as well as the choice of end point penalization. In Figure 4.2 we see a basic overview of the implementation of the MPC algorithm.

![Figure 4.2: An overview of the MPC implementation.](image)

4.2.1 Optimal Control Problem

First we begin by describing the optimal control problem that should be solved at each iteration of the MPC algorithm. The problem will be formulated as an LP-problem with the linear vehicle model included. The problem consist of, as the given definition in Chapter 2, an objective function (including the end point term which we treat separately), vehicle model and model constraints.

4.2.1.1 Constraints

The constraints of the optimization problem are of different character. Some of the constraints are pure system limitations whilst others are model choices, made such that
the control action follows certain specified rules and behaviors. In this section we present the constraints one by one.

First we have the vehicle model that the optimization model should follow. Here we will use the linear basic vehicle model which can be formulated as

\[
\begin{bmatrix}
K_{i+1} \\
t_{i+1}
\end{bmatrix} =
\begin{bmatrix}
A_d & 0 \\
A_{L,3,i} & A_{L,4}
\end{bmatrix}
\begin{bmatrix}
K_i \\
t_i
\end{bmatrix} +
\begin{bmatrix}
B_d \\
0
\end{bmatrix} u_i +
\begin{bmatrix}
h_{d,i} \\
h_{L,t,i}
\end{bmatrix}
\]  

(4.1)

where all matrices are given according to (3.27) - (3.29) and (3.15) - (3.17), and \( k \) is the current sample position and \( i \) is the sample position for the prediction horizon. Furthermore we also have that the controllable forces are limited by certain values both from above and from below. These have been described earlier and the linear formulation of these limits have been formulated as

\[
0 \leq F_{T,i} \leq F_{T,max}(K_i), \quad i = k, \ldots, k + N - 1 \tag{4.8}
\]

\[
-F_{B,min} \leq F_{B,i} \leq 0, \quad i = k, \ldots, k + N - 1 \tag{4.9}
\]

where \( F_{T,max}(K_i) \) is given by (3.48) and \( N \) is the prediction horizon length. These constraints constitute the physical as well as the system limitations that we so far have defined for our HDV. Furthermore, we have also assumed that the preceding vehicle as well as our HDV always have a positive velocity. This means that we will always have an increasing time variable. This can be formulated as a constraints on the following form

\[
t_i \leq t_{i+1}, \quad i = k, \ldots, k + N - 1 \tag{4.10}
\]

where \( t_i \) is the time variable for the HDV.

Next we go on to the constraints that are not physical limitations of the vehicle if self but rather limitations we impose on the system so that the controller behaves properly under predefined conditions. The most important constraint in this regard is the constraint that couples the HDV with the preceding vehicle. This is done with the time variable, and similarly to the PI-controller we define a time gap to the preceding vehicle the controller should follow.

\[
\begin{align*}
\Delta T_{max} & \quad \cdots \cdOTS
The time gap defined for the MPC algorithm is not on the same form as the time gap defined for the PI-controller. Here we defined the time gap, unlike the PI-controller case, as a time interval the HDV can move within behind the preceding vehicle. As can be seen in Figure 4.3 we have defined a minimal time gap $\Delta T_{\text{min}}$ and a maximal time gap $\Delta T_{\text{max}}$ to the preceding vehicle. The minimal time gap can be motivated from a security perspective, it is not safe to lie too close to the preceding vehicle if we do not have full control over both vehicles. The maximal time gap is motivated from the perspective that we want to reach the end destination as quickly as possible. Thus we want the HDV to follow the preceding vehicle as quickly as possible. One could also argue for that, in urban environments as well as on country roads, it can be beneficial for the overall traffic flow to not let go of the preceding vehicle, and if possible keep up with it. Otherwise the HDV could end up in position where it causes traffic jams or provokes hazardous take overs and irritation from other divers on the road.

![Figure 4.4: An overview of the time gap model.](image)

In Figure 4.4 we see an overview of the time gap model for the MPC algorithm. The HDV is free to move inside the two blue lines behind the preceding vehicle in the figure above. Mathematically we can formulate this as in

\[ t_i \leq T_{p,i} + \Delta T_{\text{max}}, \quad i = k, \ldots, k + N - 1 \]  
\[ t_i \geq T_{p,i} + \Delta T_{\text{min}}, \quad i = k, \ldots, k + N - 1. \]
It is not realistic and mathematically ”flexible”\(^2\) to constrain the HDV to only be able to act in the often small time window behind the preceding vehicle. If the preceding vehicle accelerates or decelerates quickly the solver should still be able to find a solution although outside this time window. To enable this we use the approach of *Soft-constraints* described in Chapter 2, and introduced slack variables \(RM_i\) and \(Rm_i\). These are introduced to the constraints as in

\[
t_i \leq T_{p,i} + \Delta T_{max} + RM_i, \quad i = k, \ldots, k + N \tag{4.13}
\]

\[
t_i \geq T_{p,i} + \Delta T_{min} - Rm_i, \quad i = k, \ldots, k + N \tag{4.14}
\]

\[
RM_i \geq 0, \quad Rm_i \geq 0, \quad i = k, \ldots, k + N. \tag{4.15}
\]

These slack variable will also be introduced in the objective function with corresponding weight parameters. This in order to penalize deviations from the defined time window behind the preceding vehicle, but at the same time enabling the solver to find solutions outside it if necessary.

The road the HDV is travelling on will most probably have speed restrictions which it has to follow. Here, we will include this in the model as a constraint on the kinetic energy of the HDV. Given that we get the speed restriction \(K_{i,max}\) of the road as a function of position, as for the topography of the road, we can formulate the constraint as

\[
0 \leq K_i \leq K_{i,max}, \quad i = k, \ldots, k + N - 1. \tag{4.16}
\]

As for the time gap constraint we will allow the vehicle to exceed the speed restriction but for a cost. This will be necessary, in part so that the solver finds feasible solutions and in part so that it in some situations can utilize the terrain more for fuel efficient driving. Here a balance between fuel efficiency and allowed speed violations have to be made, see coming sections. By introducing the slack variable \(KE_k\) we formulate the speed restriction constraint as

\[
0 \leq K_i \leq K_{i,max} + KE_k, \quad i = k, \ldots, k + N - 1 \tag{4.17}
\]

\[
KE_k \geq 0, \quad i = k, \ldots, k + N - 1. \tag{4.18}
\]

At last we will also take driveability into consideration and enforce limitations on the jerk of the HDV. This is done inspired by the implementation made in [8]. The optimal solution to the designed model will not always be a smooth solution, and as will be mentioned in Chapter 5 there will also be some problems (probably originating in the

---

2By flexible we mean that with this formulation the solver will have a hard time to find feasible solution. If we relax these equation the optimization solver will be able to execute successfully even in thought conditions.
LP-solver) to find the fuel optimal solutions. The control actions, the tractive and braking forces, will sometimes exhibit spikes or large changes in magnitude over a small sample distance. These solutions are not always optimal and a discussion of this can be seen in Section 5.2.1. To solve this problem as well as ensuring some level of driving comfort, minimizing the jerk of the solution, we implement the following condition

\[
\begin{align*}
\text{minimize} \quad | \Delta F_{T,k} | + | \Delta F_{B,k} | .
\end{align*}
\]  (4.19)

Where we have defined \( \Delta F_{T,k} \) and \( \Delta F_{B,k} \) as

\[
\begin{align*}
\Delta F_{T,k} &= \frac{F_{T,k+1} - F_{T,k}}{\Delta s}, \\
\Delta F_{B,k} &= \frac{F_{B,k+1} - F_{B,k}}{\Delta s}
\end{align*}
\]  (4.20) (4.21)

in order to minimize the rate of change in the controllable forces. This is also often the reason to what is often called jerk, the rate of change in the acceleration of the HDV.

The condition given in (4.19) is not a constraint but rather an addition to the objective function. Furthermore, the equation is not linear which means that it has to be reformulated in terms of linear functions. This can be done by introducing the additional variables \( RT_k \) and \( RB_k \) as

\[
\begin{align*}
RT_k &= | \Delta F_{T,k} | , \\
RB_k &= | \Delta F_{B,k} |
\end{align*}
\]  (4.22) (4.23)

and observing that if we introduce the following four linear inequalities

\[
\begin{align*}
\Delta s \Delta F_{T,k} &\leq RT_k \quad \text{and} \quad - \Delta s \Delta F_{T,k} \leq RT_k, \\
\Delta s \Delta F_{B,k} &\leq RB_k \quad \text{and} \quad - \Delta s \Delta F_{B,k} \leq RB_k
\end{align*}
\]  (4.24) (4.25)

and impose the following condition in the objective function

\[
\begin{align*}
\text{minimize} \quad RT_k + RD_k
\end{align*}
\]  (4.26)

it will be mathematically equivalent to imposing only condition (4.19), but on a linear form. Thus the last constraints added to the model are the four constraints
\[ \Delta s \Delta F_{T,i} \leq RT_i, \quad i = k, \ldots, k + N - 1 \] (4.27)
\[ -\Delta s \Delta F_{T,i} \leq RT_i, \quad i = k, \ldots, k + N - 1 \] (4.28)
\[ \Delta s \Delta F_{B,i} \leq RB_i, \quad i = k, \ldots, k + N - 1 \] (4.29)
\[ -\Delta s \Delta F_{B,i} \leq RB_i, \quad i = k, \ldots, k + N - 1. \] (4.30)

### 4.2.1.2 Regenerative Braking Extension

For the model extension case of regenerative braking the constraints are changed to the extent that the extended basic vehicle model is used. This means that we apply the changes described in (3.31) to the basic vehicle model (LDVMB). Furthermore, the constraints for the limitations on the controllable force will be changed according to

\[ 0 \leq F_{T,i} \leq F_{T,max}(K_i), \quad i = k, \ldots, k + N - 1 \] (4.31)
\[ -F_{B,min} \leq F_{BL,i} + F_{BR,i} \leq 0, \quad i = k, \ldots, k + N - 1 \] (4.32)

where again \( F_{T,max} \) is given by (3.48), \( F_{BL,i} \) is the braking force corresponding to pure energy losses and \( F_{BR,i} \) is the part of the braking force that can be regenerated.

As for the tractive force, the part of the braking force that can be regenerated will not only be restricted by the fixed minimum limit in (4.32) but also by the maximal power that can be regenerated. This is can be formulated analogous to the maximum limit of the tractive force as

\[ F_{BR,min}(K_k) \leq F_{BR,k} \leq 0, \] (4.33)
\[ F_{BR,min}(K_k) = \frac{P_{BR,max}}{v_k} = P_{BR,max} \sqrt{\frac{m}{sK_k}} \] (4.34)

where we introduced the maximal regenerative power as \( P_{BR,max} \). This value is set to 100 000 W for all simulations in this thesis. As for the tractive power, we linearize (4.34) and get

\[ F_{BR,min}(K_k) = P_{BR,max} \sqrt{\frac{m}{2}} \left( \frac{3}{2} K_0^{-1/2} - \frac{1}{2} K_0^{-3/2} K_k \right) \]
\[ = 3P_{BR,max} \sqrt{\frac{m}{8}} K_0^{-1/2} - P_{BR,max} \sqrt{\frac{m}{8}} K_0^{-3/2} K_k \]
\[ = P_{1,BR} + P_{2,BR} K_k \] (4.35)

where we introduced the parameters
This yields that we also ad the following constraint to the model for this model extension

\[ F_{BR,min}(K_i) = P_{1, BR} + P_{2, BR}K_i, \quad i = k, \ldots, k + N - 1. \]  

4.2.1.3 Air Drag Model Extension

For the air drag model extension the basic vehicle model is adapted according to the adaptations made in Section 3.1.4.1. The constraint found in (4.51) will also be added to the model so as to define the inter vehicle distance. No further additions are made.

4.2.2 Objective Function

In this section we present the objective function of the optimization model used in the MPC algorithm.

The objective function determine the criterions that should be optimized, minimized or maximized, under the constraints given in the sections above. The objective function \( J \) can generally be formulated on discrete form as in Section 2.1.1.1

\[
\text{minimize} \quad J = \phi(x(s_f), s_f) + \sum_{s=s_0}^{s_f} f_0(s, x(s), u(s))\Delta s
\]

where \( \phi(x(s_f), s_f) \) is the terminal condition. Here we will treat the terminal condition and the rest of the objective function separately.

The main purpose of this thesis is to find a speed controller that minimize the fuel consumption given a preceding vehicle. The fuel consumption will here be approximated with the energy consumption for the vehicle given that it moves from position \( s_k \) to position \( s_{k+N} \). Thus we want to penalize all added energy from the engine and powertrain of the HDV during its driving mission. In the variables and parameters defined in this thesis this can be formulated as

\[
\sum_{i=k}^{k+N-1} \Delta s F_{T,i}.
\]
Furthermore, we have also defined a number of slack variables when constructing the constraints. These variables should all be minimized with corresponding weight parameters that decide the importance of the deviations from the original constraints without slack. First we have the variables $RM_k$ and $Rm_k$ which are slack variables corresponding to the maximal and minimal time gap respectively. These can be introduced to the objective function as

$$
\sum_{i=k}^{k+N-1} \beta RM_i + \gamma Rm_i
$$

where we introduced the weight parameters $\beta$ and $\gamma$. These values are set so that the fuel optimal solution is found in the basic simulation case, case 1. Another constraint that has been modified with slack variables is the constraint concerning the speed restrictions. Here we have introduced the slack variable $KE_k$ so as to allow some small speed violations. This can be added to the objective function as

$$
\sum_{i=k}^{k+N-1} q(K_{i,max})KE_i
$$

where we introduced the weight parameter $q(K_{k,max})$ to penalize speed violations. These values depend on the maximum velocity because we penalize speed violations more at lower speed restrictions than at higher. From experimental testing the parameter is given, so that no speed violations occur for speed restrictions below 30 km/h, by

$$
q(K_{k,max}) = -\frac{3}{36}K_{k,max} + \frac{29}{17}.
$$

These values are computed before the optimization and given as a vector of fixed values to the LP solver. Thus the linear property of the model is preserved.

At last we also introduced the driveability condition to the objective function where $RT_k$ and $RB_k$ are to be minimized. This can be added as

$$
\sum_{i=k}^{k+N-1} \sigma(RT_i + RB_i)
$$

where $\sigma$ is the penalization parameter for jerk in the system.

### 4.2.2.1 Model extension considerations

For the model extensions we will have some additions to the above stated terms in the objective function. For the regenerative case we will introduce the regenerative part into the objective function. This because we will reuse some of the energy the HDV has used through regenerative braking. Thus we add
where $\epsilon$ is the ratio of regeneration, i.e. the amount of $F_{BR,k}$ that actually get regenerated to tractive power again. There are losses in the process of regeneration as well which means that $\epsilon$ usually is less than 1. In our simulations we set it to 0.7, i.e. 70 % percent.

For the air drag model extension there are no changes to the objective function.

### 4.2.2.2 Terminal Penalization

The last part of the objective function that is common for all models used in this thesis is the terminal penalization term $\phi(x(s_{k+N}), s_{k+N})$. This term should account for the rest of the simulation horizon when optimizing for the prediction horizon. This can be modeled in several different ways, and a more thorough description of the different ways to do this can be seen in Chapter 5.

Up to the terminal point of the prediction horizon any acceleration of the HDV has been penalized through (4.40). Thus it seems reasonable to include the kinetic energy of the HDV in the terminal point so that the HDV does not lose too much speed during the last sample points. Another aspect that is reasonable to include in the terminal point is the deviation to the reference $\Delta T_{ref}$ the PI-controller follows. This, so that if the MPC does not find any other optimal time gap to position the HDV on it should follow the same trajectory as the PI-controller.

With these considerations in mind we will try to find a good formulation of the terminal condition by experimenting on the basic simulation case, case 1, with

$$\phi(x(s_{k+N}), s_N) = \delta \left| K_{N+k} - K_{p,N+k} \right| + \tau \left| t_{N+k} - (T_{p,N+k} + \Delta T_{ref}) \right|$$

(4.46)

where we have introduced the weight parameters $\delta$ and $\tau$. The values of these parameters will be decide by the experiments made on simulation case 1.
4.2.2.3 Complete Optimization model

In this section we present the complete optimization problem for the basic case, i.e. excluding the model extension. The extension of this optimization problem to the model extension cases have been described in the sections above. The complete optimization problem can be formulated as

\[
\begin{align*}
\text{minimize} & \quad \delta \mid K_{N+k} - K_{p,N+k} \mid + \tau \mid t_{N+k} - (T_{p,N+k} + \Delta T_{ref}) \mid \\
& + \sum_{i=k}^{k+N-1} (\Delta s F_{T,i} + \beta R_{M_i} + \gamma R_{m_i} + q(K_{i,max}) K_{E_i} + \sigma(R_{T_i} + R_{B_i})) \\
\text{such that} & \quad K_{i+1} = A_{i,1} K_i + B_L u_i + h_{L,K,i}, \quad i = k, \ldots, k + N - 1 \\
& \quad t_{i+1} = A_{i,3} K_i + A_{i,4} t_i + h_{L,t,i}, \quad i = k, \ldots, k + N - 1 \\
& \quad 0 \leq F_{T,i} \leq F_{T,max}(K_i), \quad i = k, \ldots, k + N - 1 \\
& \quad -F_{B,min} \leq F_{B,i} \leq 0, \quad i = k, \ldots, k + N - 1 \\
& \quad t_i \leq T_{p,i} + \Delta T_{max} + R_{M_i}, \quad i = k, \ldots, k + N \\
& \quad t_i \geq T_{p,i} + \Delta T_{min} - R_{m_i}, \quad i = k, \ldots, k + N \\
& \quad 0 \leq K_i \leq K_{i,max} + K_{E_k}, \quad i = k, \ldots, k + N - 1 \\
& \quad \Delta s \Delta F_{T,i} \leq R_{T_i}, \quad i = k, \ldots, k + N - 1 \\
& \quad -\Delta s \Delta F_{T,i} \leq R_{T_i}, \quad i = k, \ldots, k + N - 1 \\
& \quad \Delta s \Delta F_{B,i} \leq R_{B_i}, \quad i = k, \ldots, k + N - 1 \\
& \quad -\Delta s \Delta F_{B,i} \leq R_{B_i}, \quad i = k, \ldots, k + N - 1 \\
& \quad t_i \leq t_{i+1}, \quad i = k, \ldots, k + N - 1 \\
& \quad R_{M_i} \geq 0, \quad R_{m_i} \geq 0, \quad i = k, \ldots, k + N \\
& \quad K_{E_k} \geq 0, \quad i = k, \ldots, k + N - 1 \\
& \quad K_k, t_k \quad \text{given.} \\
\end{align*}
\]

The above LP-problem is solved in each iteration of the MPC algorithm with given initial conditions \(K_k, t_k\) as well as the trajectory of the preceding vehicle for the prediction horizon \(\{T_{p,i}, V_{p,i}\}_{i=k}^{k+N}\). The built-in solver Linprog in Matlab is used to solve the optimization problem along with Yalmip [49], see Appendix A.1 to put the problem on the correct form.
4.3 Time Linearization

In order to put the optimization problem above on a linear form we had to linearize the time update equation (3.24) around a reference trajectory $K_{0,k}$. This approximation will most probably underestimate/overestimate the time and thus give rise to an error. This is not wanted in a system as the one formulated here, which depends on accurate time estimations in each iteration to preform the optimization. This is due to the crucial dependency to the time gap to the preceding vehicle. Thus a special methodology is formulated to deal with the somewhat simple time approximation.

Figure 4.5: Sketch of the methodology of the time approximation improvement loop.

In Figure 4.5 we see a basic sketch over the implementation of the time approximation improvement loop. It is not possible to apply higher order approximations and still keep the linear form of the time update equation. Thus we implement a method where we iterate the optimization step and apply a complementary filter on the reference trajectory until the approximation is good enough or until the maximum number of iterations of the so called time approximation improvement loop is reached. Convergence is not guaranteed and thus one has to limit the number of iterations of the loop.

The method is as follows. At the first simulation step $k = 0$ the algorithm creates a reference trajectory $K_{0,k}$ that starts at the given initial condition and accelerates or decelerates as quickly as possible to the preceding vehicles velocity trajectory, and then follows it. In Figure 4.6 we see an example of how this could look. After that, the optimization step is performed resulting in an optimal trajectory for the HDV for the prediction horizon, $K_j$ for $j = k, \ldots, k + N$. Now the evaluation of the reference trajectory is performed. Here we define the reference trajectory as good if the reference is close to the resulting trajectory. This definition of a good reference is made because we from Figure 4.8 can see that the approximation quickly deteriorates if we do not linearize around the actual points, i.e. close to the resulting trajectory.
Now, the evaluation is performed over the whole prediction horizon \((j = k, \ldots, k + N)\) and we make use of the NRMSD measure defined in (2.29), but as \(\text{NRN} = 1 - \text{NRMSD}\). This will yield us a value of the fit between the reference and actual trajectory we call \(\text{NRN}(K_j, K_{0,j})\). If this value is below 0.1 \% we accept it as a good reference trajectory and continue to the next MPC iteration. If it is above this value we consider it as a bad reference and apply the complementary filter

\[
K_{0,i} = 0.2K_j + 0.8K_{0,j}, \quad j = k, \ldots, k + N, \text{ where } i = j
\]

\[
\rightarrow K_{0,j} = K_{0,i}, \quad \text{if } j = i
\]

where we introduced the temporary vector \(K_{0,i}\). Here we have updated the reference vector as a linear combination of the old reference trajectory and the resulting trajectory to try to improve the reference. Thereafter we repeat the optimization step for the same prediction horizon but with the new reference trajectory. This is repeated while \((\text{NRN}(K_j, K_{0,i}) > 0.1)\) and is called the time approximation improvement loop in Figure 4.5. The improvement of the reference is not guaranteed to converge and thus we limit the number of iterations of the improvement loop to 20. Furthermore, to avoid many iterations in cases where the solutions early in the process stops converging we check the change between iterations. This is done similarly to the check above, if
NRN($K_{0,old}, K_{0,j}$) > 0.01 we perform the optimization once again with the new reference. If the change is smaller than 0.01 % we stop and move on to the next MPC iteration. Here we introduced $K_{0,old}$ as the reference trajectory before applying the filter in (4.49) and $K_{0,j}$ is the reference after applying the filter.

**Figure 4.7:** Time approximation improvement procedure.

In Figure 4.7 above we see an illustration of the flow of procedures in the time approximation improvement loop. When the approximation is good enough, or that the change of the reference trajectory between iterations is to small or that the maximum number of iterations is reached we continue to the next MPC iteration. This means that we apply the computed control action and update the system one sample point. The in-going reference trajectory to the new prediction horizon is the best reference trajectory from the iteration before it.

**Figure 4.8:** To the left: The linear estimation around the reference velocity 13.9 m/s (50 km/h). To the right: Normalized relative time error between the real $\Delta t$ and the linear approximation of the time variable around the reference velocity of 13.9 m/s.
4.4 Air Drag Approximation Update

A similar procedure is implemented to update the linear approximation of the distance dependent air resistance. As for the update equation of the time variable we had to linearize the air resistance with respect to both the kinetic energy $K_k$ and the distance to the preceding vehicle $d_k$. This will, as in the previous case, induce an error that will deteriorate both for the time update equation but also for the prediction of the system behavior in the optimization model. Thus a similar update method to the time approximation improvement loop is used here.

First and foremost we have to approximate the distance to the preceding vehicle on a form that the optimization algorithm can handle. The simplest way to solve this and still keep the linear properties of the model is to assume constant velocity of the preceding vehicle. This approximation will not work well for the cases where the preceding vehicle accelerates or decelerates, but is the simplest and most effective way to circumvent a nonlinear or integer optimization problem.

In Figure 4.9 we can see an illustration of the distance approximation we make in the optimization problem. Here we mathematically introduce the distance $d_i$ at sample point $i$ in the prediction horizon as

$$d_i \approx v_{p,i} \Delta t = \frac{\Delta s}{T_{p,i+1} - T_{p,i}} (t_i - T_{p,i}), \quad i = k, \ldots, k + N$$

(4.51)

where we have the state variable $t_i$, preceding vehicle points in time $T_{p,i}$ and the sample distance $\Delta s$. This approximation is made at each sample point in the prediction horizon. As can be seen in the figure above this approximation can deviate from the real value, specially if the preceding vehicle accelerates or decelerates quickly.

The reference kinetic trajectory is chosen and updated as described in the section above. The reference distance $d_{0,j}$ is chosen in the same manner. At the very first iteration...
it is chosen as the initial distance to the preceding vehicle for the entire prediction horizon, i.e. for \( j = k, \ldots, j + N \). This can easily be computed by linear interpolation. Then, we evaluate the choice of reference distance by computing \( NRN(d_j, d_{0,j}) \), i.e. the 1-NRMSD value between the reference distance and the resulting distance given by the solution of the optimization problem. With the same limits as for the time approximation improvement loop we either continue to the next MPC iteration or apply a complementary filter as

\[
\begin{align*}
d_{0,i} &= 0.2d_j + 0.8d_{0,j}, & j &= k, \ldots, k + N, \text{ where } i = j \\%
\rightarrow d_{0,j} &= d_{0,i}, & \text{if } j = i
\end{align*}
\]

(4.52) where we introduced the temporary variable \( d_{0,i} \). Thereafter we optimize for the same prediction horizon again and evaluate the reference distance once again in the same manner. Here we also have a maximum of 20 iterations before we by default go to the next MPC step.

### 4.5 Stochastic Case

In this section we will present the methodology of the stochastic case. The stochastic case uses the same methodology for the MPC implementation except that the information about the preceding vehicle has to be predicted and not, as in the deterministic case, given from the preceding vehicle. Thus we will here describe the implementation of the three different prediction methods used in this thesis. The first two simple rule based methods, constant velocity and acceleration predictions are described followed by the time series network approach, the NARX model.

#### Stochastic Case

**Prediction Models**

- **Velocity model**: Assume constant velocity
- **Acceleration model**: Assume constant acceleration
- **NARX model**: Train timeseries network

\[ T_{p,i}^{V_p,i} \rightarrow \text{MPC step} \]

**Figure 4.10:** Schematic figure over the stochastic methodology.

In Figure 4.10 we see an schematic view of the general flow of procedures for the stochastic case. First the preceding vehicle velocity is measured, then from this measurement, the preceding road topography and speed limits the future velocity for the prediction horizon of the preceding vehicle is computed. Furthermore, we use this predicted velocity to compute at which points in time the preceding vehicle will be located at the future sample points, i.e. \( \{T_{p,i}\}_{i=k}^{k+N} \). The next step is to feed this information to the
MPC algorithm and to the PI-controller which function as in the deterministic case, but now for predicted trajectories of the preceding vehicle. The only difference from the deterministic case is from where the control algorithms get the information about the future trajectory of the preceding vehicle.

In Figure 4.11 we see an illustration over the stochastic driving scenario. Given some radar or sensor measurements of the preceding vehicle we get the current velocity of it. From this we make our basic predictions. In the later case we also include the possibility that the preceding vehicle has some simple ACC or CC that give a rough estimate over how the preceding vehicle intends to drive for the coming prediction horizon \(^3\). The NARX model will try to make us of this information and learn the behavior of the preceding vehicle.

### 4.5.1 Rule Based Prediction

In the situation, as in this thesis, where one does not know much about the preceding vehicle a simple approach of predicting its behavior is through rule based logic algorithms. These methods base the prediction of the future trajectory of the preceding vehicle on one or several simple assumptions and rules. Two such methods will be implemented and tested in this thesis, the constant velocity approach and the constant acceleration approach. In the following sections the methodology behind these two methods is described.

#### 4.5.1.1 Constant velocity approach

Given a preceding vehicle and a measurement of the current speed of it one can implement a simple predictive algorithm. In the **Constant velocity approach** we assume that the preceding vehicle will keep the current velocity throughout the whole prediction horizon. This assumption can for urban driving seem to restrictive but in many cases the speed will oscillate around some mean velocity. Thus it is interesting to investigate

\(^3\) Although, large deviations from this trajectory can and will probably occur.
how the MPC as well as the PI-controller will act in situations where this occurs but also what will happen when the vehicle accelerate or decelerates for longer time periods.

The prediction of the preceding vehicle velocity trajectory for this approach is given by

\[ V_{p,j} = V_{p,k}, \quad j = k, \ldots, k + N \] (4.54)

from which we can compute the time vector for the preceding vehicle as

\[ T_{p,j+1} = T_{p,j} + \frac{\Delta s}{V_{p,j}}, \quad j = k, \ldots, k + N \] (4.55)

where we have \( j \) as the sample position of the prediction horizon and \( k \) as the current sample position of the simulation. The basic methodology of this approach can be seen in Figure 4.12.

Moreover, we assume that the preceding vehicle never exceeds the speed limit and never drives slower than 4 m/s. Both these assumptions are made to avoid complex situations, how to model the action of the controller properly when the preceding vehicle exceeds the speed limit and avoid solver problems for lower velocities. Thus, if the prediction of the constant velocity hits the speed restriction it will follow the speed restriction instead. The same is done if it tries to predict a velocity under the lower limit. Then it will predict that the preceding vehicle will have the lower limit of the velocity to the end of the prediction horizon. Thus we can formulate the complete prediction of this approach as

\[
V_{p,j} = \begin{cases} 
V_{p,k}, & \text{if } V_{\text{min}} \leq V_{p,k} \leq V_{\text{max},j} \\
V_{\text{max},j}, & \text{if } V_{p,k} > V_{\text{max},j} \\
V_{\text{min}}, & \text{if } V_{p,k} < V_{\text{min}}
\end{cases} \quad j = k, \ldots, k + N \quad (4.56)
\]

where we have introduced \( V_{\text{min}} = 4 \text{ m/s} \) as the lower limit on the predicted velocity and \( V_{\text{max},j} \) as the upper speed limit at position \( j \) of the prediction horizon.
In Figure 4.13 we see an example of the constant velocity approach prediction for a prediction horizon of 1000m. We can see that for longer prediction horizons the estimation of the velocity can deteriorate, but how this effects the overall solution is not yet clear.

### 4.5.1.2 Constant acceleration approach

Another method that can be used to predict the future velocity of the preceding vehicle is called the constant acceleration approach, which make use of the acceleration, both current and past. It is not unreasonable to try to implement a predictor that also considers the acceleration of the preceding vehicle. If the vehicle starts to accelerate it is reasonable to predict that it will continue to accelerate for a certain horizon into the future. Thus the constant acceleration approach has been developed.

Unlike the constant velocity approach we will now compute the acceleration of the preceding vehicle assuming constant acceleration between sample points, as

$$a_{p,k} = \frac{V_{p,k} - V_{p,k-1}}{T_{p,k} - T_{p,k-1}}.$$  \hspace{1cm} (4.57)

This is done for each simulation point \(k\) we reach. Thus we will have information about the current and past acceleration of the preceding vehicle. The idea now is to predict the velocity of the preceding vehicle based on the average acceleration of the past five
sample points. The average is taken so that noise or sudden jerk movements does not effect the overall result too much. This is formulated as

\[
\bar{a}_{p,k} = \frac{1}{5} \sum_{i=k-4}^{k} a_{p,i}.
\] (4.58)

We will also assume that the preceding vehicle will keep this acceleration only for a certain horizon \( h \) and then keep constant velocity after that. It is reasonable to cut the acceleration short and not assume that the acceleration keeps on for the full prediction horizon. This because it is reasonable to assume that most accelerations do not persist for more than a few sample points. The acceleration horizon has been decided to be \( h = 50m \), this after several simulations where this horizon gave the best results. See Chapter 5 for more information.

Thus we can formulate the velocity prediction for the preceding vehicle over the prediction horizon as

\[
V_{p,j+1} = \begin{cases} 
V_{p,j} + \bar{a}_{p,k} \Delta T_j, & \text{if } j \leq h \\
V_{p,j}, & \text{if } j > h
\end{cases}
\] (4.59)

where \( \Delta T \) for the acceleration phase is give by

\[
\Delta T_j = \frac{V_{p,j}}{\bar{a}_{p,k}} + \text{sign}(\bar{a}_{p,k}) \sqrt{\left(\frac{V_{p,j}}{\bar{a}_{p,k}}\right)^2 + \frac{2\Delta s}{\bar{a}_{p,k}}}.
\] (4.60)

which is updated for each prediction step. After the acceleration phase the time point prediction \( T_{p,i} \) is computed using (4.55). In Figure 4.14 we can observe the basic steps of the constant acceleration prediction approach.

The constant acceleration approach will, analogous to the constant velocity approach, follow the speed limits, both the speed limit of the road as well as the lower limit introduced in (4.56). Thus, as a last step of the constant accelerations approach we filter the predicted velocity according to
\[ V_{p,j} = \begin{cases} 
V_{p,j}, & \text{if } V_{min} \leq V_{p,k} \leq V_{max,j} \\
V_{max,j}, & \text{if } V_{p,k} > V_{max,j} \\
V_{min}, & \text{if } V_{p,k} < V_{min} 
\end{cases} \quad j = k, \ldots, k + N \quad (4.61) \]

before the time prediction is computed and fed to the control algorithms. In Figure 4.15 we see an example of a prediction with the constant acceleration approach for a prediction horizon of 250m. In this case it can be noted that the approach catches the future acceleration of the preceding vehicle well. This is not always the case. See Chapter 5 for more analysis of this method.

![Graph showing position and velocity](image)

**Figure 4.15:** Example of a prediction over a prediction horizon of 250m with the constant acceleration approach.

### 4.5.2 Nonlinear ARX Prediction

The last prediction method explored in this thesis is a simple Nonlinear ARX model. These kinds of models have earlier been explored in works as [18] where it has been shown to give promising results. The structure of the model described in Section 2.5 allows for modeling complex nonlinear behaviors of a system by a flexible learning algorithm. These aspects of the method will be, to some extent, explored in this thesis to evaluate if there are some potential in predicting the preceding vehicle velocity in an MPC environment with a NARX model.
In this case we have the scenario that we can measure the current velocity of the preceding vehicle but also that there exists some communication between the vehicles. This communication consist of a reference trajectory that the preceding vehicle give the HDV for each prediction horizon. The assumption here is that the preceding vehicle itself has an ACC or CC that computes a rough estimate of how it intends to drive during the coming prediction horizon. This reference velocity will be called $V_{p,\text{ref}}$. We will also use the static information available such as the road topography as well as the speed restrictions.

A general formulation of the NARX model can be seen below as

$$\hat{y}(k) = F(z(k)) \quad \text{where} \quad F(z(k)) = g(z(k) - r(k)) + L^T(z(k) - r(k)) + d$$

(4.62)

where we have $\hat{y}(k)$ as the predicted output, $z(k)$ as the regressors and $F(z(k))$ as the nonlinear mapping between the regressors and the future output. In this implementation the output will be the velocity of the preceding vehicle and the input will the road topography as well as the given reference trajectory, as

$$y_k = V_{p,k}, \quad u_k = \begin{bmatrix} u^a_k \\ u^b_k \end{bmatrix} = \begin{bmatrix} \alpha_{i+1} \\ V_{p,\text{ref},k} \end{bmatrix}.$$  

(4.63)

In (4.63) we introduced the input variables as $u_k$ for sample point $k$. The model orders of our NARX model were decided to be $(n_a, n_b, n_k) = (20, [20, 15], 0)$ after extensive experimentation on test cases. Here we have divided the model order $n_b$ for each input signal, $n_a^a$ for the road topography and $n_a^b$ for the reference trajectory. The regressors $z(k)$ then become

$$z(k) = (y_{k-1}, \ldots, y_{k-n_a}, u^a_{k-1}, \ldots, u^a_{k-n_a^a}, u^b_{k-1}, \ldots, u^b_{k-n_b^b}),$$

(4.64)

$$z\text{num} = (1, \ldots, n_a, n_a + 1, n_a + 2, \ldots, n_a + n_a^a, n_a + n_b + 1, \ldots, n_a + n_a^a + n_b^b).$$

(4.65)

Here all regressors are not used for the nonlinear block of the NARX model. It turns out to be beneficial both for the model complexity but also for the result that not all regressors are used in the nonlinear block. Thus we have introduced the numbering of the regressors as can be seen in (4.65). By using optimization tools available in the Matlab's NARX toolbox we found that the following regressors were best to have in the nonlinear block ($g(z(k) - r(k))$) of the NARX model

$$z\text{num}_NL = (15, 20, 25, 30, 35, 40, 45, 50, 55),$$

(4.66)

$$\Rightarrow z(k)z\text{num}_NL = (y_{k-15}, y_{k-20}, u^a_{k-5}, \ldots, u^a_{k-20}, u^b_{k-5}, \ldots, u^b_{k-15}).$$

(4.67)
where we have expressed the regressors by their numbering. All regressors $z(k)$ are used in the linear block $L^T(z(k) - r(k)) + d$. Here we see that most inputs signals are used in the nonlinear block. This gives us that our NARX model can be formulated as

$$\hat{y}(k) = F(z(k)) \quad \text{where} \quad F(z(k)) = g(z(k)_{znumNL} - r(k)_{znumNL}) + L^T(z(k) - r(k)) + d$$

(4.68)

where the notation $z(k)_{znumNL}$ means that we only use regressors with numbers given in $znumNL$. The network itself is a wavelet network of 20 units. This is also decided after simulations on test cases.

The next step is to describe the implementation of the above defined NARX model structure. The methodology of the NARX model implementation can be divided into two stages.

1. **Training stage**, given past and current input data as well as past output data compute the regressor parameters and form the nonlinear mapping according to chosen algorithm.

2. **Prediction stage**, given past data, and possibly future input data, predict the future output of the system using the nonlinear mapping constructed in the training stage.

As described above the methodology is divided into a training stage and a prediction stage. The model is constructed during the training stage where the software finds the values of the parameters $L$, $r$, $d$ and other hidden parameters in the wavelet network of the nonlinear block of the nonlinear mapping function $F(z(k))$. This is done for a training data set, which we will choose as the first couple of kilometers of the driving scenario. During this phase other prediction algorithms are implemented on the HDV so that the NARX model learns the behavior of the preceding vehicle. Then, during the prediction stage, the NARX model is live on the HDV and predicts the future velocity trajectory of the preceding vehicle for the prediction horizon. This is done using the past data which we define as

$$\text{PastData} = \{y_k-1, \ldots, y_0, u_{k-1}, \ldots, u_0\}$$

(4.69)

where $y_i, i = k-1, \ldots, 0$ is the measured speed of the preceding vehicle at each simulation point up to the current simulation point and similarly for the input data $u_i$. We also make use of the future input data which we define as

$$u_k, \ldots, u_{k+N}$$

(4.70)
for the current prediction horizon. Using the trained NARX model with the past data and future input data we can predict the future velocity trajectory for the preceding vehicle over the prediction horizon. This is done by recursively using the one step prediction made by the NARX model (4.68) and utilizing that we know the past data as well as the future input data. With the future input data known we do not need approximations of these variables as well. This can be written as

\[
\hat{y}_{K+k} = F(z(k)) \quad \text{where} \quad z(k) = (\hat{y}_{K+k-1}, \ldots, \hat{y}_{K+k-n_a}, u_{K+k}, u_{K+k-1}, \ldots, u_{K+k-n_b})
\] (4.71)

for a prediction \( K \) steps into the future. In (4.71) we see the recursive aspect of the prediction step. This is thus made recursively for \( K = 0, \ldots, N \), i.e. the prediction horizon. This will give us the complete prediction of the velocity of the preceding vehicle \( V_{p,j} \). The time prediction is given by (4.55). These predictions are fed to the control algorithms which find a control action. Then the system is updated one step as well as the past data, future input data and initial conditions (measurement of current velocity of preceding vehicle). Thereafter a new prediction is made for the new prediction horizon. This is iterated until the end of the simulation horizon.

**Figure 4.16:** Methodology of the NARX prediction approach.

In Figure 4.16 above we see an illustration of the basic methodology of the NARX prediction approach. As for the other prediction methods described in this thesis, the NARX prediction approach will be limited to the speed restriction as well as the lower speed limit. As a last step before the time prediction is computed and the information is fed to the control algorithms, the velocity prediction is filtered as in (4.56).
Chapter 5

Results

In this chapter we present the simulation cases as well as the results of the simulations with the algorithms and methods developed in the previous chapters. First the different simulation cases as well as the logged data manipulations are described before the parameter and penalization variable analysis is presented. Thereafter the Deterministic case results are described, both for the basic models as well as the two different model extensions. The evaluation of the time and distance approximations are presented as well as further analysis such as the effect of the weight of the HDV and the choice of the maximal time gap in the MPC algorithm. At last the Stochastic case results are presented for all three prediction approaches.

5.1 Simulation

Many of the results shown in the sections below will be simulations on several different cases. These cases have been in part constructed, using the methodology in Section 3.3, to showcase the optimal trajectory in specific situations and in part taken from logged data. The later case is included to test the algorithms on a full driving cycle with varying velocity as well as road topography. This in order to see how the algorithms react to a scenario close to a real life setting, excluding the hardware limitations and effects that are not included in the model (for example weather and lateral dynamics).

5.1.1 Constructed simulation cases

In this section we present the main simulations cases that we have constructed from using the methodology presented in Section 3.3. These cases will be named and tested in the Deterministic case for all three models, the basic model and the two model extensions.
Chapter 5

The first simulation case is the case where the preceding vehicle drives with constant velocity on a flat road. This is used to tune the penalization terms in the vehicle models as well as to choose the correct values of the weight parameters in the terminal penalization function.

**Case 1:**

![Figure 5.1: The basic simulation case, Case 1. Velocity for the preceding vehicle and the topography of the road.](image)

In Figure 5.1 we see that velocity of the preceding vehicle and the altitude of the road for the first basic simulation case, case 1.

The second simulation case is the case where the preceding vehicle drives with constant velocity and where we have a hill to get over. The hill has two slopes, one up and one down with a flat section in between them. The slope in both directions is at 5%.

**Case 2:**

![Figure 5.2: Case 2, velocity for the preceding vehicle and the topography of the road.](image)

In Figure 5.2 we see that velocity of the preceding vehicle and the hill of case 2.
The third simulation case involves an oscillating velocity of the preceding vehicle. In this case we simulate a preceding vehicle that change velocity around a mean value of 15 m/s. This to see what the optimal behavior becomes but also how much the MPC saves in comparison to the PI-controller in such situations. Note that we here have a flat road.

**Case 3:**

![Graph](image)

**Figure 5.3:** Case 3, velocity for the preceding vehicle and the topography of the road.

In Figure 5.3 we can observe the third simulation case. Where we see that the preceding vehicles velocity oscillates ±2 m/s around 15 m/s within a distance of 600 meters.

**Case 4:**

![Graph](image)

**Figure 5.4:** Case 4, velocity for the preceding vehicle and the topography of the road.

In Figure 5.4 above we see the fourth and last simulation case studied in this thesis. The preceding vehicle drives with a constant velocity, 10 m/s, on a flat road. This case is created in order to study the solution when the HDV catches up with a slow driving preceding vehicle.
5.1.2 Logged Data

As mentioned earlier we will not only simulate the control algorithms developed in this thesis on created driving scenarios but also on logged data. This data is gathered from a Scania truck on a driving cycle near Södertälje. The data consists of several signals of which we will use five, the CC set speed, the altitude, the measured speed, the Distance travelled and the time. These signals will all be used to simulate a preceding vehicle with varying speed over a section with varying road topography and speed limits.

For the Deterministic case we will try to use a general speed trajectory for a preceding vehicle over the road section the data was taken for. This rather than the speed of the specific vehicle the logged data was collected on. We make this choice in order to not get results that are too dependent on the specific vehicle, in this case a specific HDV, and rather get a more general speed trajectory representing how a general preceding vehicle would drive. To achieve this we choose the CC-set speed as the base for the speed of the preceding vehicle for the Deterministic case.

![Figure 5.5: The CC-set speed (red) and the model for the preceding vehicle velocity (blue).](image)

In Figure 5.5 we see the CC-set speed (red) from the logged data along with the manipulation of it (blue), which will work as the model for the preceding vehicle. The CC-set speed is not a good model for a preceding vehicle in itself because of the sudden changes in the velocity, which implies unreasonable accelerations.
Chapter 5

The accelerations for the two velocity trajectories are given as

\[ a_{\text{max}} = 4.5 \text{ m/s}^2, \quad a_{\text{max}} = 1.1 \text{ m/s}^2 \]  \hspace{1cm} (5.1)

\[ a_{\text{min}} = -7.5 \text{ m/s}^2, \quad a_{\text{min}} = -1.8 \text{ m/s}^2. \]  \hspace{1cm} (5.2)

In the above equations we can see that we have succeeded to get reasonable accelerations for the preceding vehicle by applying the FIR-filter methodology described in Section 2.2. Here we use the FIR-filter with a memory of four points back, as in

\[ V_{p,k} = \frac{1}{5} \sum_{i=k-4}^{k} V_{CC,i}. \]  \hspace{1cm} (5.3)

Which give us the speed used for the preceding vehicle, seen as the blue trajectory in Figure 5.5. Here we have that the CC-set speed is given by \( V_{CC,i} \) for sample point \( i \). The speed restriction is set to \( V_{CC,i} + 1.5 \text{ m/s} \). Thus we simulate a preceding vehicle that drives slower than the allowed speed.

The road topography is also filtered, so that noise and unreasonable values of the slope do not affect the results too much. This is done in the same manner as for the velocity but with a FIR-filter with a memory of 6 points back.

![Figure 5.6: The altitude of the road for the logged data case. In red we have the logged altitude and in blue we have the filtered altitude.](image)

In Figure 5.6 we see the logged altitude and the filtered altitude. We observe that the filtered altitude is somewhat phase shifted but only slightly. Furthermore, we see that we get rid of some of the extreme values on the slope. These are given as
\[ \alpha_{\text{max}} = 13.5\% \quad \alpha_{\text{max}} = 4.9\% \quad (5.4) \]
\[ \alpha_{\text{min}} = -11.1\% \quad \alpha_{\text{min}} = -5.1\% \quad (5.5) \]

In the equations above we can observe that the filtered altitude does not exhibit the extreme values on the slope that we find in the logged data. Here \( \alpha_{\text{max}} \) stands for the largest slope upwards and \( \alpha_{\text{min}} \) for the largest slope downwards.

With these manipulations of the logged data we have our *Logged data* case. For the stochastic case we will use the actual velocity of the Scaina truck these data signals were gathered from. This to see if the predictions models can catch and learn the behavior of a specific vehicle rather than a general velocity trajectory.

### 5.2 Tuning MPC parameters

In this section we will present the simulations made to choose the values of the penalization weights as well as the parameters for the final penalization term of the objective function. The values are chosen so that we find the fuel-efficient solution in the first simulation case, case 1. In this case we know the solution, keep constant velocity behind the preceding vehicle, and thus we can calibrate the model to find this solution. The other cases are also used in the cases where a more subjective choice has been made.

#### 5.2.1 Slack parameters

For the slack variables we have simulated the response of the model for all cases above. This to find the limits on the variables so that the solutions follow the desired trajectories\(^1\). If we begin with the slack variables \( \beta \) and \( \gamma \) that corresponds to the deviation from the maximal and minimal time gap respectively, we choose these values so that the model in all cases chooses solutions inside the time window. This was done so that if the initial conditions were extreme, meaning a much higher initial velocity (+10 m/s) or much lower initial velocity (-5 m/s) than the preceding vehicle, the solutions were always to brake maximally or apply maximal tractive power. So that the model always tries to keep within the defined time

---

\(^1\)With “desired trajectories” we mean for example that the solver finds solutions inside the define time window and without visible force peaks.
window and if ends up outside it, it tries to optimally get back inside again. In Figure 5.7 we seen an illustration over the desired behavior of the model.

\[ \text{Relative Time Distance} \quad \text{Position} \quad \text{Force} \]

\[ \text{Relative Time Difference [s]} \quad \text{Time Window} \]

\[ \text{Realtive Time distance to Preceding vehicle} \]

**Figure 5.7:** The relative time difference between the HDV and the preceding vehicle and the applied braking force in an extreme case.

The initial velocity of the HDV is \( V_{p,0} + 10 \text{ m/s} \), and thus we want the solution to be to brake in order to stay inside the time window. We see that the solution becomes to apply maximal braking power. This corresponds to the gamma value \( \gamma = 150 \text{ J/(s \cdot kg)} \). This means that if we end up 1 second closer to the preceding vehicle than the minimal time gap it is penalized as much as applying maximal tractive force for 150 samples. This in order to always keep the safe distance. For the other case, i.e. when we have much lower velocity we do not want to be as restrictive as in the first case. To lose 0.5 s or less, more than the maximal time gap will be considered as a minor violation if it helps to lower the fuel consumption. Thus we do not penalize deviations from the maximal time gap as much. The solver should still find, if possible, solutions within the time window and solutions outside it will come with a cost. Thus the long term solution always will be to stay in the time window. But small deviations for shorter time periods will not affect the solution too much. In Figure 5.8 we see an example of where the solution only deviates a little from the maximal time gap and does not accelerate more than enough to get inside again.
This is achieved, using more experiments, by setting $\beta = 15$ J/skg. These values are set as low as possible so that the solver, LP-solver in Matlab, can execute properly. With higher values, the solver had problems to solve the problem at all and the smooth solutions as seen in Figure 5.8 were lost.

The weight parameter for exceeding the speed restrictions on the road was earlier defined as

$$q(K_{k,\text{max}}) = -\frac{3}{36}K_{k,\text{max}} + \frac{29}{17}$$

(5.6)

to penalize speed violations more at higher velocities than lower. From all simulations made in this thesis the following data was gathered, Table 5.1.

<table>
<thead>
<tr>
<th>Speed restriction</th>
<th>Amount of violations</th>
<th>Maximal speed violation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-30 km/h</td>
<td>0 %</td>
<td>0</td>
</tr>
<tr>
<td>30-60 km/h</td>
<td>0.2%</td>
<td>+2 km/h</td>
</tr>
<tr>
<td>60-90 km/h</td>
<td>0.5%</td>
<td>+4 km/h</td>
</tr>
</tbody>
</table>

Table 5.1: The amount of sample points where a speed violation occurred, for all simulation cases, for different speed restriction intervals. Also, the maximal speed violation for each speed restriction interval.

Here we can see that no speed violations occurred for lower speed restrictions, whilst the solver chose to break the speed restriction more often for higher speed restrictions. Though the violations in these cases were not too large. This is how
the values of the definition in (5.6) were chosen, in an iterative process where we increased the values slowly to the point where no speed violations occurred in the lowest speed restriction interval.

At last we have the driveability parameter $\sigma$. This was chosen so as to get rid of the force peaks that appeared in the solutions. The parameter value was slowly increased until the force peaks disappeared. This approach was more subjective than for the other parameters, where we here only relied on the visible smoothness of the resulting force of the solution.

<table>
<thead>
<tr>
<th>$\sigma$</th>
<th>Portion of energy consumption</th>
<th>Visible force peaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 %</td>
<td>Yes</td>
</tr>
<tr>
<td>0.01</td>
<td>97 %</td>
<td>Yes</td>
</tr>
<tr>
<td>0.1</td>
<td>96 %</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>96%</td>
<td>No</td>
</tr>
<tr>
<td>10</td>
<td>97.5 %</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 5.2: Here we showcase the fuel consumption for different values of $\sigma$. We use $\sigma = 0$, i.e. the case without jerk penalization as the baseline.

In Table 5.2 above we see the results for different values on the jerk penalization parameter $\sigma$ for the simulation case where the preceding vehicle decelerates from 25 m/s to 8 m/s with an acceleration of $-1 \text{ m/s}^2$, see Appendix A.1. Here we have used the case where $\sigma = 0$ as the baseline. When the parameter is small the peaks appear and the solution is not optimal. If the value is too large some of the optimal behavior is penalized too hard. Sometimes a step in the force signal is optimal for an energy consumption point of view. These solutions should still appear. Thus we choose the value to $\sigma = 1$ for all simulation cases in this thesis if nothing else is said. Some of the simulations will have a higher value of sigma.

![Figure 5.9](image-url)  
(A) Force peaks, $\sigma = 0$  
(b) Smooth force, $\sigma = 1$  

Figure 5.9: The resulting force for the case seen in Appendix A.2. Note: Scaling.
In Figure 5.9 we see the force peaks as well as the desired solution for $\sigma = 1$. For higher values of $\sigma$ the step in the force signal is suppressed leading to an overall higher energy consumption.

5.2.2 Terminal penalization parameters

The terminal penalization term of the objective function was formulated in (4.46) with parameters $\delta$ and $\tau$. These two parameters were set after simulations on the first case defined above, case 1. In this case we know, given that we start with the same velocity as the preceding vehicle inside the time window behind it, that the optimal solution is to keep constant velocity. Thus we know what the desired solution is and how we should set the parameters.

![Figure 5.10](image)

(A) For $\delta = 0, \tau = 0$
(B) For $\delta = 1.1, \tau = 0$
(C) For $\delta = 1, \tau = 0$

**Figure 5.10:** Relative time difference between the HDV and the preceding vehicle for the prediction horizon for different values of $\delta$.

In Figure 5.10 above we see the solution for the prediction horizon for simulation case 1 given that we start with the same velocity as the preceding vehicle and 3 seconds behind it. The left figure shows the solution for $\delta = 0$, the middle figure for $\delta = 1.1$ and the figure to the right for $\delta = 1$. In all figures we have that $\tau = 0$ J/s/kg. In the figure to the left we find the optimal solution for the prediction horizon but not for the entire simulation horizon. This case corresponds to not having any terminal penalization term and will generate a solution where the HDV accelerates down to the minimal distance and stays there. This is not optimal for the simulation horizon, due to the air resistance term being proportional to $K_k$, thus we try a higher value. The most fuel efficient case is found for $\delta = 1$, unfortunately this leads to oscillatory solutions in certain cases and thus we reject it. The best case, which gives a stable solution is $\delta = 1.1$. 


Now, given that $\delta = 1.1$, we try experimenting with the value of $\tau$. We know that it should be optimal to stay at the same distance to the preceding vehicle and not, as in the cases above, lose relative time down to the maximal distance.

In Figure 5.11 we see the value of $\tau$ that give us the desired behavior. The solution to the right is given by $\tau = 0.8$ J/kg. Lower values give the solution to the left and higher values restrict the solution to much in other situations. Remember that $\tau$ corresponds to the deviation from the reference gap at the end point. This penalization should be as small as possible for reasons discussed in Section 4.2.2.2.

<table>
<thead>
<tr>
<th>$(\delta, \tau)$</th>
<th>Energy consumption (Prediction horizon)</th>
<th>Energy consumption (Simulation horizon)</th>
<th>Stable solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>100 %</td>
<td>100 %</td>
<td>Yes</td>
</tr>
<tr>
<td>(1,0)</td>
<td>116 %</td>
<td>99 %</td>
<td>No</td>
</tr>
<tr>
<td>(1.1,0)</td>
<td>118 %</td>
<td>99.2 %</td>
<td>Yes</td>
</tr>
<tr>
<td>(1.1,0.8)</td>
<td>119 %</td>
<td>98.4 %</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 5.3: The energy consumption for different sets of values of the penalization parameters for the simulation case, case 1. The (0, 0) case is used as a baseline.

In Table 5.3 above we see the energy consumption for the different sets of parameter values. As can be seen the chosen set is not optimal for the prediction horizon but is best for the simulation horizon, given that the solution is stable. The purpose of the model is to find the optimal solution on the simulation horizon and thus we choose the parameter values $(1.1, 0.8)$. This calibration gives the same results if we calibrate $\tau$ first and $\delta$ last. Below we collect all parameters and their values

$$\beta = 15 \text{ J/kg}, \quad \gamma = 150 \text{ J/kg}, \quad \sigma = 1, \quad \delta = 1.1 \quad \tau = 0.8 \text{ J/kg}. \quad (5.7)$$
5.3 PI-controller

In this section the tuning of the PI-controller parameters and the analysis of the Anti-Windup methods are presented.

5.3.1 Tuning parameters

The tuning of the four PI-controller parameters \( K_{P,1} \), \( K_{P,2} \), \( K_{I,1} \) and \( K_{I,2} \) have been done by testing the controller on all simulation cases in this thesis. For each simulation case a set of parameter values were chosen such that the controller was able to follow the reference. No more advanced methods for tuning were used.

The most challenging case for the PI-controller was the logged data case. Thus we choose to set the parameter values after the ones that gave the best results for this case.

![Figure 5.12: The solution of the PI-controller for the defined parameter values on the logged data case.](image)

In Figure 5.12 above the solution of the PI-controller with the defined parameter values, Table 5.4, for the logged data case is shown. Here it can be seen that the PI-controller manages to follow the reference time gap as well as the velocity of the preceding vehicle well. This for both accelerations and varying road topography.
In Table 5.4 the chosen parameter values for the PI-controller are presented. These are the parameter values that gave the best results, stable and fuel efficient solution, on the logged data case. These values will be used in all simulations in this thesis.

### 5.3.2 Anti-Windup

The Anti-Windup methods described in Section 4.1 will be tested on a step in the input signal and the results will be presented in this section. The method that succeeds to suppress the wind up effect best on these tests will be chosen as the Anti-Windup method for the PI-controller.

In Figure 5.13 we see the response of the PI-controller to a step in the input signal for the three different Anti-Windup methods described earlier. This can be seen to the left in the figure above, to the right the trajectory for the third method is shown. Here one can observe the step in the input signal, a step up at 100 m and step back at 500m. From the left figure one clearly can see that method three (red) has the smallest delay and overshoot. It is also the method that is quickest to reach the reference again after the step back in the input signal.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$K_{P,1}$</td>
<td>0.2</td>
</tr>
<tr>
<td>$K_{P,2}$</td>
<td>14</td>
</tr>
<tr>
<td>$K_{I,1}$</td>
<td>0.04</td>
</tr>
<tr>
<td>$K_{I,2}$</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.4: Tuning parameter values for the PI-controller.
In Figure 5.14 we see the response of the three different Anti-Windup methods for a step in the other direction in the input signal. This step is first down and then back up again at 100 m and 150 m respectively. Again it can be noted that method 3 performs best. Thus we choose method three as our Anti-Windup method for the PI-controller.

5.4 Deterministic case

In this section the results from the simulation cases in the deterministic case are presented. This for all the constructed simulations cases as well as the logged data case. The results for every simulation case for the basic model is presented separately below and the method of presentation is inspired by [10].

5.4.1 Basic Simulation Model

The first case that is studied is the simulation case called Case 1. Here the preceding vehicle drives with constant velocity on a flat road. The initial condition
is taken to be the velocity of the preceding vehicle and the reference distance to it.

As can be seen in Figure 5.15 the energy consumption is equal between the PI-controller and the MPC control, as expected. Remember that it was for this case the parameters were tuned so as to give the same result.
In Figure 5.16 the resulting trajectories for the two control algorithms for case 1 are displayed. The speed restriction is set to $V_{p,i} + 1.5$ m/s and the time window is set to $\Delta T_{\text{min}} = 2.5$ s and $\Delta T_{\text{max}} = 4.5$ s. These values will hold for all simulations below. As expected, the trajectories for the two algorithms are almost identical in this case.

For *Case 2* the resulting energy consumption for the two control algorithms and different prediction horizon lengths are as follows.

![Figure 5.17: The energy consumption for case 2. PI controller is set as benchmark.](image)

Here one can observe that it is the braking energy that the MPC algorithm succeeds to reduce both versus the PI-controller but also for longer prediction horizons. The amount of energy that the MPC algorithm manages to save in comparison to the PI-controller seems to converge at a prediction horizon of 500m. In Figure 5.18 we see the trajectories that the MPC and PI-controller finds for this case. Here one can see that it seem to be optimal to increase the speed before the uphill, keep the minimum distance to the preceding vehicle in the uphill until just before the crest. Roll over the crest without applying any force and reach the lowest velocity just before the downhill. In the downhill manage the speed so that the velocity is greatest in the bottom of the hill and apply tractive force as late as possible, so as to reach the reference.
Figure 5.18: The trajectory for both the MPC and PI implementations for the second case, case 2. This for both the prediction horizon of 250 and 1000m.

In Figure 5.19 one can observe the applied forces for the same situation.

Figure 5.19: The applied tractive as well as braking force for the PI and MPC algorithms.
For Case 3, the oscillating velocity on the preceding vehicle, the resulting energy consumption for the PI and MPC algorithms were as follows, see Figure 5.20.

Here one can see that already for shorter horizons the MPC algorithm is up to 35 % better than the PI-controller. This is expected because we know that the optimal solution in this case, due to the air resistance being proportional to $K_k$,
is to have near to constant velocity. This can be seen in Figure 5.21 where the trajectories for the PI algorithms as well as for the MPC for the prediction horizons 50 m and 500m are displayed. The MPC algorithm converges to a solution where it has constant speed whilst the PI-controller follows the velocity changes of the preceding vehicle.

In Figure 5.22 one can observe that the MPC solution converges to applying constant force with higher prediction horizons. The small difference from a prefect constant speed can in part be due to the sampling of the preceding vehicles velocity.

The fourth and last constructed case is Case 4, which was the case where the HDV catches a slow driving preceding vehicle on a flat road. The preceding vehicle drives with constant velocity of 10 m/s. The initial condition for the HDV is a velocity of 20 m/s starting 6.5 seconds behind the preceding vehicle. The energy consumption for the two control algorithms for this case is shown in Figure 5.23. Here one can see that, again, the MPC algorithm manages to save more versus the PI-controller. It is almost only the braking energy it succeeds to decrease and thus save energy. As before the amount of energy that the MPC manages to save versus the PI-controller seem to converge at a prediction horizon of 500m.
Figure 5.23: The energy consumption for case 4. PI controller is set as benchmark.

In Figure 5.24 below the resulting trajectories and applied force is displayed.

Figure 5.24: The applied forces for both control algorithms for the fourth simulation case, case 4, and the resulting trajectories.
Here one can observe that the MPC does not decelerate as quickly as the PI-controller. The applied force is smoother for longer prediction horizons than for shorter prediction horizons.

The last simulation case is the logged data case. Here the energy consumption is shown in Figure 5.25.

![Figure 5.25: The energy consumption for the logged data case. PI controller is set as benchmark.](image)

As for the earlier cases the MPC algorithm succeeds to save more energy than the PI-controller. It is the braking energy that it manages to lower and it seems to converge at a horizon of 500m, similarly to the other cases.

In Figure 5.26 one can observe the trajectories for the two control algorithms for this case. Here we see the trajectories for the MPC controller for 250m and 1000m. What one can observe is that for the longer horizon length the solution is to use more of the time window the controller has available. For the horizon length of 1000m we see that we reach the limits of the time gap window more often and that jumps from limit to limit occur several times. This to make use of the topography of the road maximally and coast as long as possible without ending up outside the time window or breaking the speed limit. In Appendix A.3 one can observe the applied forces for this simulation case.
5.4.1.1 Regenerative braking Model

In this section the results of the simulations with the regenerative brake model are presented. First the results from the hill case, *Case 2*, are presented. This both with respect to a PI-controller with and without regenerative braking. Then, the results of the simulations made on the *Logged data* case are presented, again both with respect to a PI-controller with and without regenerative braking. The results are presented with respect to two different PI-controller in order to compare the results to the model without regenerative braking.

The first simulation results are from simulations on the second case, case 2, which consisted of a hill and a preceding vehicle keeping constant velocity. In Figure 5.27 one can see the energy consumption with respect to a PI-controller without regenerative braking for both the MPC algorithm with and without regenerative braking for case 2.
Here the black numbers above each column signify the total energy consumption corresponding to the energy needed for traction minus the regenerated energy. The red numbers signify the energy consumption required for traction. Here one can see that the MPC manages to save more energy with regenerative power, although the total amount (red numbers) of energy used is higher.

**Figure 5.27:** PI act as benchmark and is without regenerative braking in both figures.

**Figure 5.28:** The resulting trajectories for case 2 with regenerative braking and without for a prediction horizon of 500m.
In Figure 5.28 one can see the resulting trajectories for the two different control algorithms for a prediction horizon of 500m. Observe that the MPC algorithm with regenerative braking uses the brake more in the downhill and on the crest. It uses some more tractive power in the uphill in order to be able to use the brake on the crest of the hill. It reaches the same lowest speed just before the downhill and then uses the brakes more during the downhill section. At the end of the hill it rolls out longer (not applying any tractive power), again applying some extra braking power in comparison to the MPC algorithm without regenerative braking.

Now one can compare the MPC algorithm against a PI-controller that also uses regenerative braking on the same simulation case. This result can be seen in Figure 5.29.

![Figure 5.29: The resulting energy consumption versus a PI-controller that implements regenerative braking. Black numbers above the columns signify total energy consumption, red numbers signify total energy consumption before reusing the regenerated energy.](image)

It is clear that the MPC still manages to save energy in comparison to the PI-controller and that it seems to converge at around a prediction horizon of 500m.

The regenerative braking model will also be simulated on the Logged data case. First the simulation results versus the PI-controller that do not apply regenerative brake is shown. The results on the logged data case can be seen in Figure 5.30. Here one again can see that the regenerative braking case saves more energy than the case without. Furthermore, the algorithm does use more energy in total but can thus also regenerate more energy in order to in the end save more. The decrease in total energy consumption with respect to the horizon length is not as large as for the case without regenerative braking. Thus it seems to be the case that this controller is not as sensitive to horizon length as the MPC controller that is without regenerative braking.
Again it can be interesting to see the amount that can be saved versus a PI-controller that also uses regenerative braking for the logged data case. If we implement a PI-controller that also uses regenerative braking the results become as in Figure 5.31.

Figure 5.30: PI act as benchmark and is without regenerative braking in both figures.

Figure 5.31: The resulting energy consumption versus a PI-controller that implements regenerative braking. Black numbers above the columns signify total energy consumption, red numbers signify total energy consumption before reusing the regenerated energy.

Here one can again see that the MPC algorithm manages to save energy in comparisons to the PI-controller and that this seems to converge at a prediction horizon of 500m. The qualitative results of the trajectories are in the same manner as shown in Figure 5.28, more brake is applied in downhills and during crests. For more results on this topic contact the author of this thesis.
5.4.1.2 Air Drag coefficient Model

The second model extension in this thesis was the distance dependent air drag coefficient model presented in Section 4.4. In this section some of the results for this model are presented for the deterministic case. For this model all simulation cases have been performed but we will only present the Logged data case in this thesis. This case gave the most interesting results and included all effects that could be seen in the other simulation cases.

If one compare the distance dependent air drag coefficient model to a PI-controller with constant air drag coefficient we are able to compare the two MPC algorithms as well. This is analogous to the approach made for the regenerative braking scenario presented in the section above. For the logged data case we get the following results, shown in Figure 5.32.

As expected the loss of energy due to air resistance is lower when implementing the distance dependent model. What is more interesting is that we have a larger amount of energy loss due to braking for the same length of the prediction horizon with the distance dependent model than for the model with constant air drag coefficient. It seems like the HDV is ”pushed” towards the preceding vehicle in and after downhill sections which leads to that a larger amount of braking power has to be applied. The model is not as effective to avoid this as in the constant coefficient case. Overall the lower drag closer to the preceding vehicle leads to an overall lower energy consumption.

In Figure 5.33 the resulting trajectories for a prediction horizon of 500m with and without a distance dependent air drag coefficient are presented. As can be seen in the figure the two trajectories are very similar.
During sections with hills the optimal solution for the two models seem to converge to the same trajectory. During sections where the road is more flat, with minor altitude changes, the optimal solution for the distance dependent model seem to be to lie closer to the preceding vehicle in comparisons to the model with constant air drag coefficient. This pattern has also been observed in the other simulation cases. The corresponding applied forces can be seen in Appendix A.4.

In this case it is also interesting to see how the MPC model with distance dependent air drag coefficient will do against a PI-controller that also implements the same force model. In Figure 5.34 one can see the results for the case where both models apply the distance dependent air drag coefficient model. Here one can again observe that the MPC model manages to save more energy than the PI-controller. This by lowering the losses due to braking actions. Furthermore, one can observe that the losses due to air resistance increase with horizon length, this in order to lower the losses due to braking. It seems like the optimal solution is a combination of positioning the HDV close enough to get the air drag reduction benefits but
not too close in certain sections, after downhills and flat regions, where the HDV will be forced to brake to not cross the minimum time gap limit to the preceding vehicle.

\[\begin{array}{cccccc}
100 & 97.2 & 93.3 & 90 & 90 \\
21 & 19 & 14.6 & 10 & 10 \\
25 & 24.2 & 24.7 & 26 & 26 \\
54 & 54 & 54 & 54 & 54 \\
\end{array}\]

\textbf{Figure 5.34:} Energy consumption versus PI-controller with distance dependent air drag coefficient.

### 5.4.2 Evaluation of Time and Distance Approximation

In this section the results concerning the time and distance approximations are presented. The first part of this section will consider the basic simulation model, i.e. the model without any of the model extensions, and the time approximation made in it. This will be done for the logged data case. The other simulation cases showed the same results. The second part of the section will consider the distance approximation made in the second model extension. Here the effect on the solution and time approximation will be displayed.

#### 5.4.2.1 Time Approximation in Basic Model

The linear approximation of the time variable is made in order to formulate the model as an LP-problem. This approximation will lead to an error which is improved by the \textit{time improvement approximation loop} defined in Section 4.3. The method acts in an iterative process to improve the reference trajectory $K_0$. Results of this method can be seen in Figure 5.35.
In the figure above one can see the error of the kinetic energy versus the reference \( K_0 \) and the error in the time approximation versus the real time update for a prediction horizon of 250m on the logged data case. This is shown for the first 7 iterations of the loop in a case where the convergence is slow. The \((1-NRMSD)\) value for the approximation of the time is also shown. It can be seen that it gets better by each time the reference trajectory is updated.

<table>
<thead>
<tr>
<th>Time deviation</th>
<th>Horizon</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>0.007%</td>
<td>0.037%</td>
<td>0.12%</td>
<td>0.00001%</td>
<td></td>
</tr>
<tr>
<td>500m</td>
<td>0.043%</td>
<td>0.01%</td>
<td>0.08%</td>
<td>0.0002%</td>
<td></td>
</tr>
<tr>
<td>1000m</td>
<td>0.055%</td>
<td>0.012%</td>
<td>0.09%</td>
<td>0.0001%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Horizon</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>1</td>
<td>0.018</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>500m</td>
<td>1</td>
<td>0.018</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1000m</td>
<td>1</td>
<td>0.018</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

**Table 5.5:** The deviation in the time approximation taken as a mean over each prediction horizon for the logged data case.
Furthermore, one can also observe that in this case the rate of convergence get slower for every iteration. These results are for a single prediction horizon. The data collected for the whole simulation horizon can be seen in Table 5.5. Here one can note that the number of iterations of the improvement loop is almost the same for all prediction horizon lengths and that it is to a larger extent stable. However it is in average worse for longer horizons. The number of iterations are similar and limited to the low values shown here by the fact that the convergence rate in most cases is slow or that the approximations is good enough already in the first couple of iterations.

![Figure 5.36: The normalized difference between actual and predicted step in the state variables for a prediction horizon of 50m for the entire simulation horizon.](image)

The difference between the predicted step in the state variable, $t_{k+1}$, and the actual step applied with the nonlinear model is shown in Figure 5.36. This for the logged data case. Here one can see that the difference in the time-step ($\Delta t$) of the time variable is small compared to the step taken in the nonlinear model, our system approximation. If one instead use the linear model approximation as the system that the control actually is applied to, thus both in the prediction and update stage, one gets the results found in Figure 5.37. In the figure the time difference between applying the two models in each point for the logged data simulation case is shown. The time difference is small for the longer prediction horizons but larger for the shorter prediction horizon. This is due to that the solver finds another trajectory as the optimal one for the shorter horizon, see Figure 5.38. One can also note that the difference in the amount of energy that is saved versus the PI controller is small. The linear model manages to save around 0.11 % more energy for the longer predictions horizons in comparison to the model applying the nonlinear system approximation. For the shorter horizon, even though the
time difference is larger, the linear model manages to only save around 0.002 % more than in the nonlinear case.

In Figure 5.38 below we see the resulting trajectories for the nonlinear and linear models respectively.

(A) For the prediction horizon of 50m.  
(B) For the prediction horizon of 1000m.

Figure 5.38: Comparison of the resulting trajectories between the nonlinear and linear model. The y-axis represents the relative time difference to the preceding vehicle.

Here one can see that the solver finds a new solution for shorter horizons whilst it for longer ones tries to correct for the model errors made in the linear approximation.
5.4.2.2 Time and Distance Approximation in Second model extension

For the model extension with the distance dependent air drag coefficient both the time and distance were approximated by linear functions. These approximations are hard to evaluate separately but some results will be presented here inline with the once found in the section above.

The first results presented are the statistics over the distance and time approximations made for the entire simulation horizon. This is data collected from the logged data case, with distance dependent air drag, where the improvement algorithms have been implemented. See Table 5.6 for the results.

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>0.008%</td>
<td>0.040%</td>
<td>0.14%</td>
<td>0.000008%</td>
</tr>
<tr>
<td>500m</td>
<td>0.032%</td>
<td>0.023%</td>
<td>0.36%</td>
<td>0.004%</td>
</tr>
<tr>
<td>1000m</td>
<td>0.12%</td>
<td>0.025%</td>
<td>0.65%</td>
<td>0.01%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>0.08%</td>
<td>0.20%</td>
<td>1.4%</td>
<td>0.0015%</td>
</tr>
<tr>
<td>500m</td>
<td>0.12%</td>
<td>0.74%</td>
<td>19%</td>
<td>0.0028%</td>
</tr>
<tr>
<td>1000m</td>
<td>0.21%</td>
<td>0.67%</td>
<td>16%</td>
<td>0.0043%</td>
</tr>
</tbody>
</table>

Table 5.6: Statistics of the distance and time approximations for the logged data case.

Here one can see the mean deviation from the nonlinear approximations of the time and distance variables. In this case the mean is taken as the mean of the (1-NRMSD) values for each prediction horizon for the entire simulation case. As for the basic model, the time approximation is worse in average for longer horizons. Furthermore, one can note that the time approximation is worse in comparison to the basic model. This is due to the distance approximation, as can be seen in Table 5.6, being quite bad even for shorter prediction horizons.

One can also observe the difference between the predicted state step and the actual step taken with the computed control action on the nonlinear system. This is presented in Figure 5.39 where both the kinetic energy and time errors are presented but also the difference between the one step approximated distance and actual distance in each simulation point. As for the basic model the error in the time variable is quite small and the error in the kinetic energy show that the Eucl forward approximation is near to identical to the zero order hold in this case. For the distance approximation we see that the error of the one step prediction can be relatively large during phases where the preceding vehicle or the HDV accelerates or decelerates, as expected.
Chapter 5

(a) Kinetic Energy error.  
(b) Time approximation error.  
(c) Distance approximation error.

**Figure 5.39:** Difference between predicted and actual step in state variables and inter vehicle distance for a prediction horizon of 500m on the logged data case.

One can also visualize the difference between applying the computed control to the linear system ("no model error")\(^2\) and to the nonlinear system (with model error). In Figure 5.40 one can see the time point difference for the resulting trajectory between having the linear or nonlinear model as the system model.

<table>
<thead>
<tr>
<th>Horizon length</th>
<th>Energy consumption difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>50m</td>
<td>-0.680%</td>
</tr>
<tr>
<td>500m</td>
<td>0.230%</td>
</tr>
<tr>
<td>1000m</td>
<td>0.263%</td>
</tr>
</tbody>
</table>

**Table 5.7:** Difference in energy consumption between applying the linear or nonlinear model as system model, for the second model extension.

As for the basic model one can observe that the difference is quite small and that the solver finds an alternative solution for shorter horizons. Again, this is due to the final penalization term of the model. Otherwise, with the nonlinear model the solver tries to compensate for the model errors and we get the same oscillatory

\(^2\)Here no model error means that there is no difference between the predictive model and the actual system model.
behavior around the optimal trajectory given by the linear model as for the basic model.

In Table 5.7 one can see the difference in energy consumption for the case shown in Figure 5.40. Here, as for the basic model, the difference in the energy consumption is quite small. The largest difference is, in contrast to the basic model, found for the shorter horizon. Here the difference in air drag will cause the nonlinear solution to be better than the linear one. In Figure 5.41 one can see the trajectories for both applying the control action to the linear and nonlinear model separately for prediction horizons 50 and 1000m.

(A) For the prediction horizon of 50m.  
(B) For the prediction horizon of 1000m.  

Figure 5.40: The difference between applying the control action to the nonlinear system approximation and the linear one. This for the logged data case with distance dependent air drag coefficient.

Figure 5.41: Comparison of the resulting trajectories between the nonlinear and linear models for the second model extension. Time represents the relative time difference.
5.4.3 Analysis of the Mass and Maximal Time gap of the Model

In this section a brief analysis of the affect the mass of the HDV and the maximal time gap to the preceding vehicle have on the resulting energy consumption is presented. This is only made for the basic vehicle model.

The mass of the HDV has been set to 26 000 kg during all simulation in this thesis. For other traffic than distribution in urban environments the weight of the HDV can vary up to 60 000kg. To see how this could affect the energy savings in the current model we simulate the logged data case for the prediction horizon of 500m for the weights 40 and 60 tons as well.

![Figure 5.42](image.png)

**Figure 5.42:** The energy consumption on the logged data case for the prediction horizon of 500m. The energy consumption is given in comparison to a PI-controller that should control an HDV with the same mass as the MPC.

In Figure 5.42 one can see the energy consumption relative to a PI-controller which controls an HDV with the same mass as the MPC. This mean that every column, simulation case above, is given relative a separate reference. One can note that the MPC saves more in comparison to the PI-controller when the mass is higher. With higher mass the roll resistance accounts for more of the total losses as well as the braking power. The resulting trajectory can be seen in Figure 5.43. Here one can note that the trajectories are almost identical except for some occasions where the heaviest HDV do not manage to follow the same trajectory. This in contrast to the PI-controller that do not manage to keep the reference as well for heavier HDV:s, and thus the MPC manages to save more energy.
Furthermore, it is interesting to see how the maximal time gap to the preceding vehicle effects the overall energy consumption of the MPC algorithm in comparison to the PI-controller. Thus a simulation with $\Delta T_{\text{max}} = 4, 4.5, 5, 5.5$ s will be performed. For these values of the maximal time gap the statistics found in Table 5.8 were collected from the logged data case for the prediction horizon of 500m.

<table>
<thead>
<tr>
<th>Maximal Time gap</th>
<th>4 s</th>
<th>4.5 s</th>
<th>5 s</th>
<th>5.5 s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Time deviation</td>
<td>3.32 s</td>
<td>3.62 s</td>
<td>3.96 s</td>
<td>4.3 s</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.47 s</td>
<td>0.62 s</td>
<td>0.77 s</td>
<td>0.91 s</td>
</tr>
<tr>
<td>Maximal Time deviation</td>
<td>4 s</td>
<td>4.5 s</td>
<td>5.01 s</td>
<td>5.5 s</td>
</tr>
<tr>
<td>Minimal Time deviation</td>
<td>2.49 s</td>
<td>2.5 s</td>
<td>2.49 s</td>
<td>2.5 s</td>
</tr>
<tr>
<td>Total trip Time</td>
<td>953 s</td>
<td>953.2 s</td>
<td>954 s</td>
<td>954.6 s</td>
</tr>
</tbody>
</table>

Table 5.8: Statistics for the logged data case.

In all simulation cases above the full time window to the preceding vehicle is used. The difference in total trip time is at most 1.6 seconds and the mean time gap to the preceding vehicle increases with increased maximal time gap. For all simulation cases the mean time gap lies above the reference gap of 3 seconds and above the middle of the time window. For the total energy consumption see Figure 5.44.
Here one can observe that the total energy consumption only differs a small amount between the simulation cases. With a larger time gap the MPC algorithm manages to save more energy than for smaller time gaps, as expected. A time window that is 1.5 seconds larger makes the MPC save 1% more energy versus the PI-controller on the same simulation case.

### 5.5 Stochastic case

In this section the results of the stochastic model are presented. First the simulation case is presented, then the results from the prediction models, one by one, are given. At last a small comparison between the prediction models is made.

First a small test concerning if the model succeeds to manage sudden changes in the prediction horizon was made. This by simulating a sudden take over, i.e. that a new preceding vehicle suddenly appears in front of the HDV. This was made for a simulation case similar to the second case, where the preceding vehicle accelerates in the uphill. In Figure 5.45 one can see the results of this test. Both the MPC and PI-controller manage to successfully and in a stable manner follow the new preceding vehicle as soon as it appears in front of the HDV. This is promising for the prediction algorithms.
The simulations in this section will be made on the logged data case. One difference from the deterministic case is that the real logged speed and not the CC-set speed of the HDV the data was collected on will be used to simulate the preceding vehicle. In Figure 5.46 the logged data case for the stochastic approach is displayed.
5.5.1 Performance of Rule Based Prediction

In this section the results of the rule based prediction models are presented.

5.5.1.1 Constant Velocity Approach

The constant velocity approach was described in Section 4.5.1.1 and is based on the assumption that the preceding vehicle will have constant velocity throughout the prediction horizon. In Figure 5.47 one can see four examples of the prediction made by the model for the logged data case.

![Figure 5.47: Four examples of the constant velocity approach on the stochastic logged data case. Prediction horizon of 250m.](image)

Here one can see that the prediction is good when the preceding vehicle does not accelerate. One also can see the effect of the assumption that we never predict that the preceding vehicle is speeding, see example 3 in Figure 5.47. The total energy consumption versus the PI-controller on the logged data case can be seen in Figure 5.48. It can be seen that the MPC still manages to save energy versus the PI-controller in this case, although the poor prediction quality.
Figure 5.48: Total energy consumption for the constant velocity approach on the logged data case.

The amount of energy saved does not increase much with longer prediction horizons. One can also see that it gets worse for the longest prediction horizon in comparison to 500m and 250m.

5.5.1.2 Constant Acceleration Approach

The constant acceleration approach was described in Section 4.5.1.2 and is based on the idea to use the acceleration of the preceding vehicle in the prediction.

Figure 5.49: Total energy consumption for the constant acceleration approach.
In Figure 5.49 we can observe the total energy consumption for the constant acceleration approach. Here one can observe that this approach manages to save even more than the constant velocity approach but that it for longer prediction horizons gets worse. Below, in Figure 5.50 we can see four examples of the constant acceleration approach on the logged data case.

![Figure 5.50: Four examples of the constant acceleration approach on the stochastic logged data case. Prediction horizon of 500m.](image)

Here we see that the constant acceleration approach catches the future acceleration of the preceding vehicle, in many cases, for the first few steps of the prediction horizon.

### 5.5.2 Performance of NARX Based Prediction

The NARX model was described in Section 4.5.2 and will be implemented on a subset of the logged data case. First the model is trained, given data of the preceding vehicle, before it is used as the prediction model. In Figure 5.51 one can see the different sections the logged data case has been divided into.
Chapter 5

Title and Content
Training
Prediction with NARX model

Figure 5.51: The division of the logged data into training and simulation sets.

Here the bright yellow part (0-2.5km) is the training data set and the darker yellow section (2.5km-16km) is the data set where the NARX model is used as the prediction model in the simulations. During the training phase the constant acceleration model is used as the predictive model. One can also note that in the NARX model the reference velocity is also used and can be seen in the figure above. In Figure 5.52 one can observe the results of the training phase for the NARX model.

Figure 5.52: The fit of the NARX model on the training data.

Here we can see that it finds a good fit to the training data. It matches the training data up to 93.39%. In Figure 5.53 we observe four examples of the NARX prediction model on the simulation data set of the logged data case.
Here we observe that the model succeeds in some cases to predict the overall velocity trajectory of the preceding vehicle. However, in some cases the prediction is completely wrong and even worse than the rule based methods, example 3.

![Figure 5.53: Four examples of the NARX model approach on the stochastic logged data case. Prediction horizon of 250m.](image)

![Figure 5.54: Total energy consumption for the NARX model.](image)
In Figure 5.54 the total energy consumption for the full simulation, i.e. both the training phase with the acceleration approach and the rest of the simulation case with the NARX model, is shown. Here one can observe that the model manages to save energy in comparison to the PI-controller and is overall better than the previous prediction models.

5.5.3 Comparison between the Predictive Models

In this section a comparison between the three different prediction models presented above and the deterministic approach is made. Both the energy saving differences and predictive differences are presented.

First the predictive differences are shown. Here the mean difference from the actual speed trajectory of the preceding vehicle is computed for the three different prediction models. To highlight the difficulties and sources to the largest differences between the models we make the following division of the simulation case.

![Figure 5.55: The division of the logged data case into data set 1 and 2 for evaluation of velocity prediction.](image)

The division is made so that we can look at the values of the mean difference between real and predicted speed for each prediction horizon over two separate data sets. Data set 1, the red set shown above, does not include the training set or the middle part where the preceding vehicle is far from the reference trajectory. Data set 2, the blue set shown above, does not include the training set. In Table
5.9 the mean deviation between real and predicted velocity for all three models, four prediction horizon lengths and the two data sets are given.

<table>
<thead>
<tr>
<th>Model</th>
<th>50m</th>
<th>250m</th>
<th>500m</th>
<th>1000m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant Velocity</td>
<td>1.4%</td>
<td>0.9%</td>
<td>6.0%</td>
<td>8.6%</td>
</tr>
<tr>
<td>Constant Acceleration</td>
<td>0.7%</td>
<td>3.9%</td>
<td>6.9%</td>
<td>8.0%</td>
</tr>
<tr>
<td>NARX model</td>
<td>0.9%</td>
<td>3.2%</td>
<td>6.0%</td>
<td>5.3%</td>
</tr>
</tbody>
</table>

Table 5.9: Mean deviation of the velocity predictions made for the prediction horizons over the logged data case. This is displayed for all three prediction models and all four prediction horizon lengths used in this thesis. Blue values are over data set 2 and red values are over data set 1.

Here one can observe that the acceleration model is on average better than the velocity model. Furthermore, the NARX model is worse than the acceleration model for data set 2 on average but better for longer horizon for data set 1. In Figure 5.56 one can observe the difference in velocity predictions between the models for the data that is not included in data set 1. Thus in the gap between 10km to 13km where the preceding vehicle is far from the reference velocity.

![Figure 5.56](image_url)

(A) Example 1.  
(B) Example 2.

Figure 5.56: Two examples where the NARX model is worse than the rule based model predictions.

The first example is just after the second velocity peak, i.e. where the preceding vehicle quickly decelerates heavily and then accelerates, and the second example is a couple iterations from the first. Here the solution has been oscillatory just before which can be seen in the resulting prediction. The same is seen at 13 km where the solution is pushed down to the reference.
The energy consumption between the prediction models and the deterministic model on the same simulation case can be seen in Table 5.10.

<table>
<thead>
<tr>
<th>Model</th>
<th>50m</th>
<th>250m</th>
<th>500m</th>
<th>1000m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Constant Velocity</td>
<td>+ 0.1%</td>
<td>+ 8.9%</td>
<td>+11.2%</td>
<td>+13.5%</td>
</tr>
<tr>
<td>Constant Acceleration</td>
<td>+ 0.0%</td>
<td>+ 7.6%</td>
<td>+ 9.5%</td>
<td>+11.2%</td>
</tr>
<tr>
<td>NARX model</td>
<td>+ 0.4%</td>
<td>+ 7.1%</td>
<td>+ 7.6%</td>
<td>+ 9.7%</td>
</tr>
</tbody>
</table>

Table 5.10: The total energy consumption for the three prediction models with the deterministic solution as the reference. The deterministic energy consumption is set as the norm (1), then the difference from this norm is displayed for each prediction model and prediction horizon.

Here one can note that only the acceleration model for the shortest horizon manages to be as good as the deterministic case. Otherwise all models consume up to 13.5% percent more energy than the deterministic solution for this simulation case. Best is the NARX model, for longer horizons it is closer to the deterministic case and it has for these lengths of the horizon the most energy saved.

One can also look at the resulting trajectories of the four different models. In Figure 5.57 one can see the resulting time and velocity trajectory for the four different models. In Appendix A.5 one finds the controllable forces and altitude profile for this simulation.

![Figure 5.57: The resulting trajectories for the predictive models for a predictive horizon of 500m. Here time represents the relative time difference to the preceding vehicle.](image-url)
Chapter 6

Discussion

In this chapter the results as well as methodology and difficulties of the project will be discussed. The main focus will be on the results of the deterministic and stochastic cases which was the main focus of this thesis. The chosen solution to certain problems and problems that still are left to be solved are brought up as well as the evaluation of them made in the results chapter. At last the significance of the results of the predictive models are discussed.

6.1 Models and Simulation cases

During the work with this project many different models were developed in order to find the energy effective trajectories for an HDV that is limited by a preceding vehicle. Some of the models were more promising than others and a great effort was made to get stable and reliable results. Many working hours were spent on tuning the model parameters, developing methodology to deal with the approximation errors and constructing good simulation cases. This for many different interesting topics such as regenerative braking, distance dependent air drag and predictive algorithms. The results of the models presented in this thesis showed, in large, that there is a potential to save energy by an MPC based velocity controller on the HDV in situations where the preceding vehicle limits the HDV. The exact amount of energy that can be saved, shown in this thesis, is not the most important result but rather that it shows that there is a potential for energy savings even for tough situations, such as where the HDV does not have reliable future information about the velocity of the preceding vehicle.
In this section the results of the two main cases study in this thesis will be discussed in short. The weights of the penalization terms, common for both approaches, will also be discussed as well as the development of the reference controller, the PI-controller.

6.1.1 PI-controller

We begin with the developed reference controller, the PI-controller. The main focus of this thesis was not to develop a prefect reference controller but to study the potential of the MPC algorithm on the stipulated driving scenario. For this a good enough and simple reference controller was needed. The choice fell upon the well studied and well used PI-controller. Some effort has been taken to make the PI-controller stable and reliable. Many hours have been spent tuning the parameters of the controller as well as the implementation of the Anti-Windup methodology. The choice of control error was also carefully chosen after some experimentation. The goal always being a controller simulating a simple cruise controller or human driver that tries to keep a certain distance to the preceding vehicle.

As can be seen in the results given in the previous chapter the developed PI-controller manages to keep the reference in almost all simulation cases. Thus achieving its goal. This is not an energy effective controller but, as mentioned earlier, a controller simulating a human driver or simple CC-controller. In some simulations the controller was quite poor and used large amounts of energy in order to keep the reference. This behavior was not desired but was tough to get rid off. This resulted in quite high values for the amount of energy the MPC managed to save in comparison to the PI-controller. Which made the MPC algorithm seem better than it actually was. More time and energy on a better reference should be made in the future to further evaluate exactly the potential of the MPC implementation. Nevertheless, the results still shows on the potential for an energy effective velocity control using the MPC methodology.

6.1.2 Deterministic Case

In this section the results of the deterministic models and simulations are discussed. The model assumptions as well as the results for each developed model is brought up. At last the chosen values of the penalization weights are discussed.
6.1.2.1 Model Assumptions

The deterministic case consisted of a basic model and two model extension. In all of these models the underlying assumption was that there existed a V2V communication between the HDV and the preceding vehicle. Furthermore, that the preceding vehicle knew its future velocity trajectory for the prediction horizon and could send this information without delay to the HDV behind it. Both these assumptions, but especially the last, are idealizations of the real driving scenario an HDV encounters today. To assume that there exists some sort of communication between the vehicles is today not as extraordinary as before. The development of V2V communication is on the rise today and many new methods and tools are implemented each year. Despite this, the amount and delay of the information that can be sent today is not take into consideration in this case.

The assumption that the preceding vehicle know its future velocity trajectory is a large deviation from the real driving scenario. In many situations the preceding vehicle would not know the future trajectory and thus not be able to send this information to the HDV. To have this information when optimizing the velocity trajectory of the HDV is an important idealization. In many cases this will put a lower bound on the amount the MPC can save versus the PI-controller. This is also why the stochastic case is studied and the results between them are analyzed.

6.1.2.2 Basic model

The basic deterministic model showed that the MPC implementation could save up to 20% in comparison to the PI-controller. Depending on the mass of the HDV and the set allowed time window behind the preceding vehicle this could changed ±2 %. The amount of energy saved converged at around a prediction horizon of 500m. For longer prediction horizons the amount of energy saved increased but only slightly. Depending on the hardware system on the HDV, an online implementation of the MPC algorithm would preferably use a shorter prediction horizon. It is not desirable to have an algorithm with a high computational complexity and thus we choose to end the analysis at 1000m.

More energy could be saved for certain situation if one tuned the penalization terms for each situation separately. This would although require an algorithm that could recognized the correct situation and use the correctly tuned terms. Furthermore, one would also have to identify all kinds of situations and find an
optimal tuning of the model for each one. This was not made in this thesis, and may be an improvement one can consider for future studies.

6.1.2.3 Model extensions

The deterministic case had two model extensions, the regenerative braking extension and distance dependent air drag coefficient extension. Both model extensions were included to see how the developed MPC framework would manage to solve the problem given, in the first case regenerative power and in the second case distance dependent air drag.

For the regenerative braking extension it could be seen that the MPC managed to save even more energy than the basic model, as expected. During downhills and shorter crests the solution became to use the brake more in order to regenerate some of the potential energy the HDV had. Otherwise the trajectory became almost identical to the basic model case. This is an indication that the basic model would work as a good reference even for HDV:s with regenerative braking and electrical vehicles in the future. Furthermore we could see that the model was not as sensitive to prediction horizon length. This would mean that the computational complexity could be kept at a lower level by lowering the horizon length in comparison to the basic case.

At last, the second model extension showed that energy could also be saved with the distance dependent air drag model in place. Again, versus the model with constant air drag the model with the extension could save up to 5 % more energy. This through less air resistance by placing the HDV closer to the preceding vehicle in flat sections. The comparison versus a PI-controller with the same extension showed instead that the energy saved was almost the same as for the basic case. The final trajectory was again similar to the basic model solution but in general closer to the preceding vehicle. Depending on the reliability of the communication between the vehicles the minimum time gap could be lowered and even more energy could possibly be saved.

6.1.3 Stochastic Case

The stochastic case showed that, although predictive models with quite large predictive error were implemented instead of having full information about the future velocity of the preceding vehicle, up to 11 % could be saved versus the PI-controller.
This is an unexpected but exciting result. This shows that although the HDV do not get full information about the preceding vehicle trajectory there is still a potential to save energy with this approach. This even with simple rule based algorithms.

As could be seen in the results chapter the trajectories for the three different prediction models were not far from the deterministic solution, that can be regarded as the optimal trajectory. For the acceleration and NARX models the results seem really promising and further development and research of them could give good results. One important fact to have in mind when evaluating the results are that the NARX model, in contrast to the rule based models, uses some future information about the preceding vehicle, $V_{p,ref}$. The reference velocity could be considered to be reasonable information that the HDV could get, but in some cases this may not be possible. Attempts to design a NARX model without this information was made without any success. One should also not that all results originate from one data set, one simulation. This makes these results highly uncertain and for future studies a larger collection of logged data from different vehicles should be used. Still, the results show on the potential for both simpler and more advanced prediction algorithms in the MPC framework.

### 6.1.4 Penalization weights

In the developed model there are several penalization weights that must be tuned to get stable and reasonable result from the solver. These included the jerk penalization, final term penalization and speed limit penalization weights. These were tuned on the first simulation case on the flat road with a preceding vehicle keeping constant velocity. These values turned out to not always give the desired results.

For the jerk penalization the value of the weight was set so that all visible large changes in the control vanished. During the development of the model, instabilities with the control action were encountered. The solution became to limit the jerk. Unfortunately this will also give a higher energy consumption for certain situations such as where the preceding vehicle decelerates or accelerates heavily. The value is, in this thesis, set somewhat ad-hoc after visual results on specific simulation cases. A better methodology for the value of this parameter would be desirable in order to get more reliable and stable results.

The final penalization weights turned out to have a significant impact on the final results of the model. In many cases a small change in the weight would...
give a completely different result. The values set in this thesis were again set on the first simulation case. This because it was the case which we knew on beforehand what the optimal solution was. As could be seen in the evaluation of the time approximation the model error itself was enough, for shorter prediction horizons, to make the solver find another solution. This because of the final penalization term. Given other values on the penalization weights the solver would find other solutions, which are not always the desired solutions i.e. energy effective or following the reference. Here a dynamic methodology for the parameter values, dependent on horizon length, would be desirable.

At last, one important drawback of the model is that all results given are relative to the values of these penalization terms and parameter values. A smarter methodology for these weights and parameters could possibly improve the results even further, and most of all make for a more stable model.

6.2 Force peaks - Instability in the model

As could be seen in Figure 5.9 a problem with peaks in the applied force was encountered with the developed model. Given that we only use a linear model in the optimization and have a model of the HDV purely based on outer forces, these force peaks are not expected. In fact, they do not constitute an optimal solution and should not appear in the solution as such. A large effort was made to identify the source of these force peaks without success. Different approximation methods and solver algorithms were tested but all with the same results.

During the testing it became clear that the solver quickly encountered problems with the model and at some occasions threw internal error messages. This leads me to believe that these force peaks originate from the internals of the solvers used in Matlab. Although, it can not be excluded that they also can originate from the implementation of the model itself and not the solvers. The final and conclusive answer to the origin of these force peaks was not found during the work with this project.

6.3 Linearizations and Approximations

In order to get a linear optimization problem we had to approximate the time variable by a first order Taylor approximation. This will give us a model error that
the optimization model continuously will try to correct for. By the results seen in Section 5.4.2.1 we could see that the time approximation, with the developed improvement methodology, was quite good. Both the average and maximum time deviation from the actual time trajectory was small, under 0.055%. On the other hand the system is time critical which means that a high accuracy of the time is needed.

From Figure 5.36 we could see that the difference between predicted step and taken step in the state variables was small. During phases of acceleration or deceleration the error grew but still within the set limits. What was more unexpected was the results found in Figures 5.37 and 5.38. Here we could see that the largest deviation was found for the shortest horizon, although the energy consumption followed the expected pattern. The reason behind these results are the final penalization weights. For shorter horizons the final point will matter more, under the assumption that we have constant weight parameters. Thus a small error in the final point will have a greater impact on the solution for shorter horizons. For the case shown in Figure 5.38 we see that this leads the solver to find an alternative solution and thus a higher time deviation. Nevertheless, we see that there are more flat regions than for the longer horizons that oscillate around 0. This means that the solver constantly compensates for the model errors, which in turn means a higher energy consumption. Overall the difference in energy consumption is small indicating that the approximation on average is good.

For the final term penalization the weights could depend on the length of the prediction horizon to overcome this problem for shorter horizons. However, because the total energy consumption and time approximation on average is good no further effort was made to implement such weight functions.

For the distance approximation the exact position in time behind the preceding vehicle matters, how close you are to each other. Thus the separation of the trajectories for shorter horizon will have a larger impact on the overall energy consumption and explains the difference we see in Figure 5.40. Otherwise we could see that the rather simple distance approximation was on average quite good, but for some cases really bad. This is expected, as is mentioned earlier the approximation deteriorates when the preceding vehicle accelerates. Fortunately, the affect of small accelerations seem to not have a significant impact on the results. For future studies a smarter approximation of the distance would be desirable.
6.4 Prediction models

Three prediction models have been developed and implemented on the logged data case. As can be seen from the results for the stochastic case the MPC algorithm has no problems with the predictive models and manages to save energy versus the PI-algorithm. The amount saved is quite far from the deterministic case, as expected, that can be regarded as a lower bound for the energy consumption. With full information about the future the deterministic model should beat the predictive models every time. What is more unexpected is how well the predictive models, even the simple rule based models, do in comparison to the PI-controller. This is an indication on that the PI-controller may not be as good as we thought but also that there is some potential for predictive algorithms in an MPC framework.

The velocity model is the simplest and worst of the three predictive models. Both the amount of energy saved and the predictions themselves are the worst of all three models. Nevertheless it manages to save 8% at most in comparison to the PI-controller. This is somewhat unexpected because we can see in Figure 5.47 that the predictions can differ much from the actual speed in many cases. Thus the MPC algorithm seems to not be terribly sensitive for the prediction of the preceding vehicle. One advantage of the model is its simplicity which makes it easy to implement online on an HDV.

The second prediction model was the acceleration model. From the results we see that both the predictions and energy consumption is better than for the velocity model. The model manages to save up to 10% more energy than the PI-controller. Furthermore, as can be seen in Figure 5.50 it catches some of the accelerations the preceding vehicle makes. Here the set acceleration horizon of \( h = 50 \) m can be modified and improved. Attempts of making this horizon length dynamic i.e. dependent on the confidence (based on variance) of the acceleration and road topography has been made without success. The best strategy found was to set a fixed value of 50m. For future work a dynamic methodology for the acceleration horizon would probably give even better results.

The last and most complex prediction model was the NARX model. The model had to be trained before it was used and thus the results is a combination between the NARX and acceleration model. From the results section we can see that this model had the lowest energy consumption of all three predictive models. Although this, it had 7.6 % higher energy consumption than the deterministic case. Furthermore it did not have the best predictions on average over the complete simulation
horizon. It had some difficulties, examples shown in Figure 5.56, with the cases where the preceding vehicle was far from the reference trajectory and had large oscillations in the velocity. Outside these sections, i.e. where the preceding vehicle velocity oscillated around the reference the NARX model had the best predictions.

What one has to have in mind is also that the model parameters of the NARX model has been tuned to give good results on the particular training set. Thus it will probably not be as good on other data from other vehicles. This is a vast drawback of the model and one would have to implement a special methodology to find a good set of parameter values for every new vehicle that comes in front of the HDV. The complexity of the model might also make it hard to implement online. Nevertheless, with future developments of connected vehicles and learning algorithms this could be solved. The potential for smart predictive energy efficient speed controllers is to good to not be further explored.

At last we will also comment on one unexpected results connected to all three prediction models. For all three models the best results, from an energy perspective, was found for a prediction horizon of 500m. For both shorter as well as longer horizon lengths the energy consumption increased. That it would be higher for short horizons did not come as a surprise, but that it also did that for longer horizons was more unexpected. This is probably because the model will base the control action earlier on in the simulation on incorrect predictions of the preceding vehicle velocity far into the future. It seems to be the case that there is a sweet spot between giving the MPC algorithm enough information about the future road topography and too much uncertain velocity predictions. For all three models this seems to occur at a prediction horizon of 500m.
Chapter 7

Conclusions

In this chapter the overall conclusions for the two main simulation cases, Deterministic and Stochastic case, are presented. Comments about possible future work are also mentioned.

7.1 Deterministic Case

In the deterministic case it have been shown that there is potential to save up to 20% energy versus the reference and thus both improving the fuel economy for the haulers but also reducing the emissions from road based vehicles. Although the V2V communication and assumption of full information of the preceding vehicle velocity trajectory is somewhat idealistic the results show that much can be done to reduce the fuel consumption in situations where the HDV is limited by a preceding vehicle. Furthermore, it also shows that a smart cruise controller with an allowed time window behind the preceding vehicle can manage to save significant amounts of energy. Thus we can conclude that the results above speak for the concept of a smart controller, as the one developed in this thesis, that keep up with the preceding vehicle but at the same time drives efficiently to save energy.

7.2 Stochastic Case

In the stochastic case we have seen that although the predictive models are quite poor the MPC algorithm succeeds to reduce the fuel consumption of the HDV compared to the PI-controller. More complex predictive models such as the NARX
model show that it is possible to reduce the gap between the deterministic and predictive simulations, but also that there is much to be done. Both the algorithms themselves and the technology is not yet there today. But with the ongoing development of both electrified and more autonomous vehicles these obstacles might soon be solved. Thus making it possible to implement smart cruise controllers of the type shown here, that uses the information available such as the road topography and the preceding vehicles speed to drive both smarter and more fuel efficient.

7.3 Future Work

In this thesis only a small segment of all traffic scenarios have been studied, the simplified case of a preceding vehicle. To further develop the methodology and making it ready for implementation in real traffic scenarios further research has to be done. In this section some possible extensions to the developed methodology are mentioned.

First and foremost the model also has to consider the lateral resistance and dynamics of the vehicle. There are important limitations and restrictions on the HDV that are not included in the existing model because they have their origin in the lateral dynamics of the HDV. This would be one aspect that could be considered in a future development of the model.

Another possibility is to model the powertrain of the HDV in detail instead of the pure force model that is used here. This will also account for the specific control of the different parts as well as energy losses in the powertrain of the HDV. This will in turn also give a more explicit control of the vehicle rather than the more abstract tractive and braking power used in the developed model.

Furthermore, the reality of the traffic situation is that there will not only be a preceding vehicle on the road together with the HDV. Most probably there will be many other vehicles on the road that our vehicle has to take into consideration. This will need further analysis and extensions of the existing model. Weather, stop signs, traffic lights and pedestrians are only a few other aspects that have to be taken into consideration to get the full traffic situation and a smart and safe controller.
With the development of better learning algorithms, communication and hardware more advanced and efficient predictive methods can be developed and implemented. With the ongoing shift towards more autonomous and electrified vehicles the stochastic case studied here will more probably be the base of a future product for smart vehicle controllers rather than the deterministic case. Here artificial intelligence (AI) and other track planing algorithms could come to use.

At last, the model and results shown in this thesis could be further analyzed. The deterministic case but especially the predictive models in the stochastic case would need further analysis in order to make the results more reliable. Due to limitations on the number of working hours and knowledge of the author of this thesis only a few driving scenarios have been studied. To get a more complete evaluation of the potential of the developed models more driving scenarios have to be tested. A future study could further refine the model and simulate it for a larger amount of data as well as implementing it online on a real HDV. This would most probably give more reliable results of the potential of the developed methodology and models.
Appendix A

In this appendix we will showcase more of the results that did not make it in to the results chapter of this thesis. It is first and foremost the full solution to many of the simulation cases described in the results chapter.

**Force Peaks simulation:**

*Figure A.1:* The solution to the case of where the force peaks were studied. Here the preceding vehicle decelerates from 25 m/s to 8 m/s with $-1 \text{ m/s}^2$. Here we have $\sigma = 0$. 
In the figure above we see the solution for $\sigma = 0$ and below we see the solution for $\sigma = 1$.

**Figure A.2:** The solution to the case of where the force peaks were studied. Here the preceding vehicle decelerates from 25 m/s to 8 m/s with $-1 \text{ m/s}^2$. Here we have $\sigma = 1$. 
Deterministic simulation of logged data case:

**Figure A.3:** The forces applied by the PI and MPC algorithms for the deterministic logged data case.

**Figure A.4:** The resulting forces for the air drag model extension for the prediction horizon 500m.
Figure A.5: The resulting forces for the predictive models for a predictive horizon of 500m.

A.1 Yalmip

The actual implementation of the MPC algorithm has been done in Matlab and specifically using the toolbox Yalmip [49]. Yalmip is a modeling language that is used in Matlab to model and solve optimization’s problems such as the ones in an MPC setting. It greatly simplifies the implementation of the MPC completely removing all tedious algebra needed otherwise to rewrite the system on the appropriate form. In this section we briefly describe how the Yalmip toolbox was used in this thesis.

With the toolbox installed the procedure of setting up the system and creating the optimization model in Matlab becomes simple. The first step is to defined the variables (state, controls, slack etc.) as sdpvar. These are so called symbolic decision variables that are used in Yalmip in order to set up the model correctly. One example could be as follows

\[
x_{\text{Kin}} = \text{sdpvar}(\text{repmat}(1,1,N+1), \text{repmat}(1,1,N+1))
\]
\[
\text{Vel} = \text{sdpvar}(1,1).
\]

Here we have created one variable (x\text{Kin}) as a parameterized square N+1 times N+1 matrix and one variable (Vel) consisting of only one element. The next step, after all
variables are created is to instantiate the \texttt{objective} and \texttt{constraints} vectors. These will hold the objective function and constraints of the optimization model and can created as

\begin{align*}
\text{objective} &= 0 \quad \text{(A.3)} \\
\text{constraints} &= [ ] \quad \text{(A.4)}
\end{align*}

The actual optimization model is defined by a simple \texttt{for loop} over all terms in the model, i.e. all terms in the objective function and all constraints as

\begin{verbatim}
for k = 1 : N
    objective = objective + f(xKin, Vel) \quad \text{(A.5)}
    constraints = [constraints, g(xKin, Vel) \leq 0] \quad \text{(A.6)}
end.
\end{verbatim}

Above we seen an example over how this can be achieved. Here \( f \) and \( g \) are some functions, which can be both linear, nonlinear or other Matlab specific functions. The added constraint here is just one example, equality’s are also possible and defined with \( == \).

The last step is to define the in-going and the out-going parameters as \texttt{paramin} and \texttt{paramout}, and call the optimization algorithm. This is done in the following manner

\begin{verbatim}
controller = optimizer(constraints, objective, sdpsettings, paramin, paramout).
\end{verbatim} \quad \text{(A.7)}

Where we have that \texttt{sdpsettings} defines the used solver and solver output. This will be the \texttt{controller} that can be called in every iteration of the simulation horizon, if implemented in an MPC fashion.

\section*{A.2 NARX in Matlab}

The implementation of the NARX model in this thesis have been made in Matlab using the system identification toolbox. The toolbox makes the procedure of creating, training and simulating with the NARX model simple and quick. By just a few commands a NARX model is build.
First all data is collected as output data and input data separately and defined as \texttt{iddata} in Matlab as in

\[
data = \text{optimizer}(\text{outputdata}, \text{inputdata}, \text{Steplength})
\]

(A.8)

\[
\text{training} = \text{data}(1:i)
\]

(A.9)

\[
\text{validation} = \text{data}(i:end).
\]

(A.10)

Here we have also split the data into training data and validation or simulation data, for some specified split point \(i\). The next step is to create and train the NARX model with the above defined data as

\[
\text{NARX} = \text{nlarx}(\text{training}, [n_a, n_b, n_k], \text{wavenet}(\ldots), \text{Options}).
\]

(A.11)

Here we have chosen a wavenet network, other exists such as sigmoid networks, with certain specification denoted as (\ldots). One example of a specification available is the number of layers the network should have. In the \texttt{Option} parameter any other specifications of the model are give, such as which regressors should be included in the nonlinear block of the NARX model and which method should be used to train the model. With the \texttt{compare} command one can test the trained model on the training data or validation data.

To predict the future output values of the system, for example for a prediction horizon in the MPC algorithm, one can use the \texttt{forecast} command. This is done by defining the future inputs values and past input and output values as \texttt{iddata} objects and calling the \texttt{forecast} command as in

\[
\text{prediction} = \text{forecast}(\text{NARX}, \text{PastData}, K, \text{FuturInput}).
\]

(A.12)

Here \(K\) is the number of steps into the future the prediction should be made over and, \texttt{PastData} and \texttt{FuturInput} are the past (input and output) and future (input) data objects.

For the implementation in the MPC framework the data objects for the past and future data is constantly updated for each step in the simulation.
Bibliography


