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On the Accuracy of Equivalent
Antenna Representations – A Case Study
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Abstract—
The accuracy of two equivalent antenna representations, near-

field sources and far-field sources, are evaluated for an antenna
installed on a simplified platform. We show that the accuracy of
the installed far-field and surface current for the investigated
weakly scattering platform, depends strongly on the configu-
rations associated with the equivalent antenna representation.
The root-mean-square error for the installed far-field error
vary between 4.4%− 8.4% for the considered configurations of
near field equivalent representations installed on the investigated
platform. When using far-field sources, the design parameters
have an even larger influence of the achieved accuracy. There
is also a varying accuracy depending on the type of numerical
method used. Based on the results, some recommendations on the
choice of sub-domain for the equivalent antenna representation
are given associated with the platform. In industrial antenna
applications, the accuracy in determining e.g. installed far-fields
and antenna isolation on large platforms are critical. Equivalent
representations can reduce the fine-detail complexity of antennas
and thus give an efficient numerical descriptions to be used in
large-scale simulations. The results in this paper highlights to
antenna designers and system engineers the accuracy challenges
associated with the use of equivalent antenna representations.

Index Terms—Antenna modeling, Computational electro-
magnetics, Electromagnetic analysis, Electromagnetic modeling.

I. INTRODUCTION

THE INCREASING accuracy of full-wave large-scale sim-
ulation of complex electromagnetic (EM) problems has

changed the industrial design-process of radio frequency (RF)
systems. The construction of scaled models for measurements
has widely been replaced by simulations. This work flow saves
both time and money as compared to building prototypes
for measurements [1]. For simulations to be trustworthy, in
particular in industrial design processes, an a-priori predictable
accuracy is essential.

The reason for the large interest in simulations within the
electromagnetic community is that electromagnetic scattering
problems are rarely possible to solve analytically. Problems
involving realistic antennas are therefore usually solved nu-
merically. For small-scale systems, a detailed model of the
physical antenna serves as a good model for accurately de-
termining associated fields, impedances, and currents with
numerical methods. This is documented by e.g. the annual
benchmarks given by the EurAAP working group on software
[2], where different simulation methods and measurements are
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compared [3]. Increasing agreement over the last few years
between simulations and measurements has been reported [4].
For electrically large platforms, it is problematic to include
models of the antenna and the complete platform in the
same simulation, since the computational time and memory
requirement grow with the electrical size [5].

Simulations of electrically large platforms in combination
with complex antennas, can lead to extreme computational
time and memory requirement. In these cases, a less complex
antenna model can significantly reduce the overall complexity
of the simulation. Using an equivalent representation of the
antenna is one way to reduce the complexity of the antenna
model. An equivalent antenna representation also opens the
possibility to utilize different numerical methods in different
parts of the simulation domain, sometimes referred to as a
hybrid method.

On large platforms, special techniques can be used to reduce
memory requirements, e.g. asymptotic methods (physical op-
tics or geometrical optics), or domain decomposition methods
(DDM). In DDM, a large simulation is split into several
smaller sub-problems that are solved in parallel [6]. It has been
used in e.g. [7–10]. A drawback with domain decomposition is
that the complexity is increased as compared to a full-domain
simulation, since information has to be exchanged over the
interface between adjacent sub-domains.

One way of decomposing a large EM problem is to analyze
the antennas in isolation, and imprint the results in the platform
model. In a basic domain decomposition, multiple scattering
effects between structures in different domains are neglected,
which implies that there is no need for iterations over the
interface between adjacent sub-domains. In that case, the sub-
domain with the antenna serves as an equivalent representation
of the antenna, in the same way as in this work. When
installing antennas on a platform, the antennas are often placed
so that the scattering on the platform is low. In those cases, it
is a minor approximation to neglect multiple scattering over
the interface.

Source modeling in electromagnetics has been of scientific
interest for a long time, where major contributions have been
made by e.g. Hallén, King and Harrington. Some of these
works are reviewed in e.g. [16]. These classical works focus
mainly on antenna excitations for a specific type of antenna,
e.g. wire antennas. The two here studied equivalent represen-
tations, near-fields sources and far-field sources, are general
in the sense that they can be used to represent any type of
antenna. The underlying theories for these two representations,
the equivalence principle and far-field pattern generation, are
both described in literature; see e.g. [17] and the references
within. They are also implemented in several commercial
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software, see e.g. [11], [13]. Results from using equivalent
representations are described in several articles, e.g. [10], [18–
21], where near-field sources are used, and e.g. [22] that shows
examples when using far-field sources.

Commercial software for computational electromagnetics
(CEM), see e.g. [11–14], and recommendations for using CEM
has been thoroughly discussed in the literature see e.g. [15].
From an industrial perspective it is of major interest to get
a highly accurate solution, but equally important to get a
predictable accuracy. Equivalent antenna representations are
becoming more important tool in EM-simulations. Software
documentation can give designers valuable rule-of-thumb rec-
ommendations about preferred configurations of equivalent
antenna representation, but the recommendations seldom give
any information about the expected accuracy when using the
equivalent representation on platforms. Unfortunately, it is
not obvious which configuration of the equivalent antenna
representation that is most accurate or how large error the
equivalent antenna representation introduce.

In this paper we make a first effort to investigate accuracy
errors associated with using equivalent antenna representations
for antennas installed on platforms. To emphasize the depen-
dence of the parameters and geometries associated with the
equivalent antenna representations, we consider one small and
low-scattering platform. Different equivalent antenna represen-
tations are tested on this platform.

The accuracy of two key antenna parameters are investi-
gated: the installed far-field, which is one of the most im-
portant characteristic of an installed antenna, and the induced
surface current on the platform, which is important in both
EMC applications and in antenna placement studies [1].

This study illustrate the sensitivity of the far-field and sur-
face currents with respect to different equivalent antenna rep-
resentations, as well as for different parameter configurations
and different numerical methods. We show that the remnant
part of the platform used when the equivalent representation
of the installed antenna is determined strongly influence the
accuracy. The results of the paper indicate what order of
magnitudes of errors that equivalent antenna models introduce
for the given platform. Even though it is non-trivial to translate
these errors to other platforms, an essential result of this study
is to demonstrate the need for accuracy studies in the use
of equivalent antenna representations for platform installed
antennas.

The paper consists of the following sections. Section II
describe the theory used in the article and Section III the used
methods and models. The results are presented in Section IV.
We evaluate the accuracy of near-field sources in Section IV-B,
far-field sources in Section IV-C, and their combination with
different numerical methods in Section IV-D. The paper ends
with a discussion and conclusions in Section V.

II. EQUIVALENCE THEORY

Two types of equivalent antenna representations are eval-
uated in this paper; near-field sources and far-field sources.
Both representations are applicable to any kind of antenna or
radiating structure.

A. Near-field Sources

The equivalence principle, introduced by Love [23] and re-
fined by Schelkunoff [24], implies that any radiating structure
can be represented by electric J and magnetic M surface
currents on a fictitious surface Γe enclosing the radiating
structure [25]. If the material outside Γe is homogeneous, it
can be deduced that J and M reproduce exactly the same
electric and magnetic fields outside Γe as the original antenna,
whereas the fields inside Γe are zero [25], [26]. A near-field
source (NFS) is the set of surface currents J , M on the surface
Γe, a Huygens’ surface. With the presence of a platform, the
homogeneous requirement is not fulfilled and the near-field
source only reproduces the original fields approximately.

The surface currents J and M , which we hereafter refer
to as currents, are directly related to the discontinuity of the
tangential electric and magnetic fields on the surface Γe. Since
the currents J , M produce zero fields inside the surface Γe,
the currents on Γe can be written as [25], [27]

J = n̂×H, (1)
M = −n̂×E, (2)

where E and H are the electric and magnetic fields on Γe
and n̂ is the outward pointing normal to the surface Γe.

It can be beneficial to use a near-field representation of an
antenna instead of a model of the physical antenna. One reason
is if the number of mesh cells in the model including the plat-
form decreases. Also, it opens up for using different numerical
methods when analyzing the antenna and the platform.

When an antenna is installed on a platform, the surrounding
material is non-homogeneous; the platform is typically made
of conducting or dielectric material that is surrounded by e.g.
air or vacuum. Using a near-field source to represent the
antenna in a situation when the homogeneous condition is
violated introduces an error because the surface currents are
not correctly described. Hence, using a near-field source under
this common circumstance is an approximation. The error from
this approximation is effected by the choice of sub-domain.

B. Far-field Sources

Antenna radiation patterns are commonly used to character-
ize antennas. They describes magnitude, phase and polariza-
tion of the propagating waves generated by the antenna, for
directions ϕ, θ, and a fixed distance r. The far-field radiation
pattern is the leading order behavior as r →∞ [25].

A far-field radiation pattern can be used as an equivalent
source in electromagnetic simulations. We will then refer to
it as a far-field source (FFS). For reciprocal antennas, it also
describes the receiving characteristics of the antenna. The far-
field source is characterized by its far-field radiation pattern
imposed as an infinitesimally small source at a given position.
This position, together with the approximation of the platform
when generating the far-field source, are the design parameters
for far-field sources. Their impact on the accuracy of the
solution is non-trivial, and is examined in Section IV-C.

Far-field sources are, compared to near-field sources, more
a primitive representation, and are not expected to perform as
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Fig. 1. The platform geometry G with the mono-cone antenna A placed on
its flat top.

good. On the contrary, they provide very efficient represen-
tations in numerical methods, from an implementation point
of view. The error introduced by the far-field approximation
is small when the far-field source is far from surrounding
structure, e.g. a horn antenna feeding a parabolic reflector, see
e.g. [28]. However, far-field sources have be used also near
structures, see e.g. [22].

A far-field can be represented with spherical wave expansion
(SWE) [27]. Such an expansion can increase the accuracy
close to the source point, i.e. in the near field region. However,
with a far-field source installed on a platform, SWE cannot
be used, since it requires that there is no charge or current
carrying structure within a certain distance from the center
point of the expansion [27]. Therefore, SWE is not further
considered in this paper.

Using a far-field source, its emitted radiation will locally
be a plane wave, irrespective of the true distance between the
far-field source and an evaluation point. A far-field source can
be used e.g. in an integral equation formulation, where the
point source is used as a field source within the computation
domain. Implementation details of the point-shaped far-field
source depend on the type of numerical method used, see e.g.
[5], [29], [30] for general discussions.

III. METHODS

We use a series of case studies to investigate the accuracy of
equivalent antenna representations for different configurations
in the presence of a platform. For electromagnetic problems,
where analytic solutions can rarely be found, the case study
is an effective tool to compare configurations.

A. Geometrical Model

We choose here a platform geometry G and an antenna A.
The platform geometry G should have a simple and well

defined shape, but still retain platform specific features. The
chosen platform geometry G is depicted in Fig. 1. The
geometry is a cut 200 mm diameter half-sphere, where the
top diameter is 100 mm. It is perfectly electrically conducting
(PEC). The geometry G is of electrical size of about 7λ at
10 GHz and has the following platform like properties:
• Finite support of surface currents,
• weak back-scattering from its edges to the antenna,
• radiating creeping waves on the curved surface.
The antenna A is a mono-cone antenna, also depicted in

Fig. 1, with 20 mm top radius and 20 mm height. The antenna

D0

(a) (b)

D1

Γe

(c)

D0

Γe

(d)

D0

h

Fig. 2. Calculation domains: (a) The full domain D0 is used when solving the
reference case, (b) the sub-domain D1 is used when generating the equivalent
sources. The domain D0 is used for imprinting the equivalent sources, (c)
near-field sources on the interface Γe and (d) point-shaped far-field sources
placed a distance h above the flat platform top surface.

is mounted centrally on the flat top surface of the platform
with a 2 mm feed gap. It is fed with a wave-guide port via
a 10 mm long coaxial cable. A mono-cone antenna has an
isolated far-field radiation pattern similar to a mono-pole but
is more wideband.

We are interested in determining fields and currents in the
domain on and outside the geometries G ∪ A. Both the main
geometry G and the mono-cone antenna A are rotational
symmetric, implying that fields and currents will have the same
symmetry. Hence, it is sufficient to evaluate these quantities
at a fixed azimuth ϕ.

B. Calculation Domains

For usage in the rest of this paper, the following domain,
as in Fig. 2, are defined:
• The domain D0 that contain the platform geometry G

and the antenna A.
• A sub-domain D1 that contain the antenna and a selected

part of the platform. As the equivalent source is intended
to improve calculation time and memory use, the sub-
domain D1 should be much smaller than the domain D0.

• A Huygens’ surface Γe, i.e. a fictitious surface enclosing
the antenna. The Huygens’ surface Γe is completely
included in the sub-domain D1.

In a platform specific problem, e.g. with aircraft or ships, the
domain D0 is often electrically very large. However, a com-
paratively small domain D0 is used in this work, which allows
us to obtain a highly accurate reference solution for the fields
and currents that is subsequently used in our benchmarks. The
equivalent sources can be used on electrically large structures
as well, so the methods and observations are applicable to
antennas on e.g. ships or aircraft.

An antenna induces currents on surrounding structures. Such
currents also contribute to the equivalent source. By using
a smaller platform approximation domain D1 to determine
the equivalent sources, we implicitly ignore currents outside
D1. The larger part of the platform that is included in the
platform approximation domain D1, the smaller the error will
be, but the computational cost to determine the equivalent
source increases with growing size of D1.

1) Work Flow for Using an Equivalent Near-field Source:

• In the sub-domain D1; Calculate the tangential electric
and magnetic fields, n̂ × E and n̂ ×H , on the surface
Γe generated by the antenna, see Fig. 2(b).
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• In the domain D0; Remove the model of the physical
antenna1 and imprint the equivalent currents J = n̂×H
and M = −n̂×E on Γe, see Fig. 2(c).

• Determine the fields in the domain D0 using J , M as
equivalent sources.

We use a rectangular box as surface Γe for the equivalent
currents that define the near-fields source.

2) Work Flow for Using an Equivalent Far-field Source:
• In the sub-domain D1; Calculate the far-field radiation

pattern generated by the antenna, see Fig. 2(b). This is
the equivalent far-field source.

• Choose a height h over the main geometry where the
far-field source is imprinted.

• In the domain D0; Remove the model of the physical an-
tenna and determine the fields using the far-field source,
see Fig. 2(d).

The procedures described above in III-B1–III-B2 is general
and applies to any kind of structure, not only the platform and
the antenna used in this case study.

C. Evaluation

The results in e.g. [2–4] indicate that full-wave simulation
results can be used as a benchmark of antenna behavior.
We evaluate the electric current and the installed far-field
pattern by comparing simulations with equivalent antenna
representations against an accurate reference solution using
a model with the physical antenna.

When comparing results from simulations, one must keep
in mind that different settings, e.g. the mesh, will affect the
results. The results in this paper are from simulations where
the solver settings are not the main limiting factor for the
accuracy, but rather the representation of the antenna.

Two of the most important antenna quantities are installed
far-field patterns and isolation between antennas [1]. The
installed far-field patterns are of large importance when de-
termining the functionality of a radio frequency (RF) system,
which is determined e.g. by the coverage for a sensor installed
on a vehicle. There can be a large difference between an
antennas isolated radiation pattern, which is the radiation
pattern for the antenna in free space, and its installed radiation
pattern, which is the radiation pattern when installed on a
platform. Hence, as is well known, antennas must be analyzed
within their complete environment [33]. The isolation between
antennas is related to the risk for interference between the
antennas. It is an important quantity in antenna placement
studies [1]. The isolation between antennas are mainly deter-
mined by direct propagating waves and surface currents, see
e.g. [34]. The accuracy of surface currents is thus an important
contribution to the accuracy of isolation between antennas, in
particular for antennas without line-of-sight.

The following quantities are used for evaluating the accu-
racy of the results using the equivalent sources:
• The electric current J along the red curve in Fig. 3(b).

1Instead of removing the antenna model, it can be replaced by a simplified
model to include some of the multiple scattering effects that the model of the
physical antenna model would give.

x

y

z

θ

ϕ

(a) (b)

Fig. 3. Definition of (a) the spherical angles θ and ϕ, and their relation to the
Cartesian coordinates x, y, z, (b) the curve used for evaluation of currents.
The curve is parametrized by the arc length `, where ` = 0 is the center of
the flat top, and ` ≈ 155 mm is the periphery of the bottom of the geometry.

• The installed far-field E(ϕ, θ) for all inclination angles
θ = [ 0, 180◦] and a fixed azimuth ϕ = 90◦.

We use (1) to evaluate the current J based on the magnetic
field H . The magnetic field H can be separated into compo-
nents parallel and orthogonal to the azimuthal unit vector êϕ,

Hϕ = êϕ ·H, (3)
|Hr,θ| = |̂eϕ ×H|. (4)

The propagating component Hϕ is dominant outside the
reactive region, so that H ≈ Hϕêϕ. With this approximation,
the electric current J can be calculated as

J = n̂×H ≈ Hϕ (n̂× êϕ). (5)

The rotational symmetry implies that n̂× êϕ = −êt, where êt
is the outward pointing tangent unit vector along the curve in
Fig. 3(b). The tangential current Jt along the curve is

Jt = êt · J ≈ −Hϕ. (6)

We denote the complex tangential current from the references
solution J ref

t (`) and when using an equivalent source Jt(`).
The scalar ` is the arc length along the curve in Fig. 3(b). We
define the relative magnitude error δrel|Jt(`)| and the phase
error 6 δJt(`) of the complex current as

δrel|Jt(`)| =
|Jt(`)| − |J ref

t (`)|
|J ref
t (`)|

, (7)

δ 6 Jt(`) = 6 Jt(`)− 6 J ref
t (`), (8)

where 6 (·) denotes the argument of a complex number.
When calculating the current Jt, by using (6), we evaluate

Hϕ a small distance d > 0 above the surface. The reason for
this is numerical stability. The field H will be zero inside
the PEC structure, and by setting d > 0 we assure that the
evaluation points are not inside the structure. We use d =
0.5 mm, which is empirically determined to be the smallest
distance for which all evaluation points fall outside the PEC.

The installed electric far-field E is separated into its com-
ponents parallel and orthogonal to the azimuthal unit vector
êϕ, so that

Eϕ = êϕ ·E, (9)
|Er,θ| = |̂eϕ ×E|. (10)

Due to symmetry, Eϕ = 0. On large distances from the
antenna, the radial component vanishes, so that

E ≈ Eθ êθ. (11)
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We denote the complex electric far-field component from the
references solution Eref

θ (ϕ, θ), and when using an equivalent
source Eθ(ϕ, θ). From the electric far-fields Eref

θ (ϕ, θ) and
Eθ(ϕ, θ), we can evaluate both the magnitude error and the
phase error. In this paper, we only evaluate the magnitude error
of the installed far-field, which is the most commonly used
quantity to classify installed antennas. The relative magnitude
error δrel|Eθ(ϕ, θ)| is defined as

δrel|Eθ(ϕ, θ)| =
|Eθ(ϕ, θ)| − |Eref

θ (ϕ, θ)|
|Eref
θ (ϕ, θ)|

. (12)

By evaluating the far-field component Eθ, we will be
able to see systematic errors, which would be hidden in the
normalization if e.g. the directivity was evaluated.

Note that it is the field components Hϕ and Eθ in their
respective regions that are used as inputs to the benchmarks
in (7)–(8) and (12). Hence, the approximations in (6) and (11)
do not affect the accuracy of the benchmark2. The introduced
notation, δrel|Jt(l)|, δ 6 Jt(l) and δrel|Eθ(ϕ, θ)|, is motivated by
the physical relevance of these quantities.

D. Solvers and Simulation Settings

The equivalent sources are generated using FIT. In the eval-
uation of the equivalent sources, we examine their robustness,
with respect to design parameters, by using them as excitations
and solve in the full domain using FIT or MoM, as well
as the asymptotic method Shooting-Bouncing-Rays (SBR).
All simulations are performed using CST Microwave Studio
(MWS) [11].

The frequency, 10 GHz, is chosen so that fields in the
domain D0 can be calculated with full-wave methods on a
desktop computer. The size of the domains D0 and D1 is set
so that they contain the structure of interest and 1.5λ of space
on each side.

IV. RESULTS

A. The Reference Solution

In order to get reliable estimates of the accuracy, it is crucial
to have a highly accurate reference solution with the model of
the physical antenna, as in Fig 1. We verify that the solution
is accurate by examining the variability of the results from
three different numerical methods; Finite integration technique
(FIT), Method of moments (MoM), Finite element method
(FEM), see e.g. [5], [31], [32].

The magnitude of the tangential electrical current, |J ref
t (`)|,

along the line in Fig. 3(b), is depicted in Fig. 4. The currents
calculated with different methods agree well, with a relative
RMS difference between FIT and MoM currents of 3.4 %. The
difference between FIT and FEM is 9.3 % and between MoM
and FEM it is 9.9 %.

The installed far-field magnitude |Eref
θ (ϕ, θ)| is depicted in

Fig. 5 for the azimuthal direction ϕ = 90◦ and θ ∈ [0, 180◦].
Again, the results from the numerical methods agree well, with
a relative RMS difference between the far-fields calculated

2For a rotational symmetric problem, as in this case, the expressions (6)
and (11) are exact.
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Fig. 4. Reference case: The current |J ref
t (`)| tangentially along the curve in

Fig. 3(b), solved with three different numerical methods. The vertical line at
l = 50 mm marks the edge of the flat top.
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Fig. 5. Reference case: Installed electric far-field magnitude |Eref
θ

(90◦, θ)|,
solved with three different numerical methods.

with FIT and MoM of 3.1 %. The difference between FIT and
FEM is 7.4 % and between MoM and FEM it is 6.2 %.

The agreement of the results from the different numerical
methods indicate that the reference solutions are accurate. We
see in Fig. 4 that the solutions using MoM and FIT conform
best with the expected exponential decay of the current on
the curved surface. Of these two solutions, with good mutual
agreement, the FIT solution is chosen as the reference, since
FIT is the native solver in CST MWS.

We can relate some of the properties seen in Fig. 4–5 to the
platform. The slope of surface current in Fig. 4 for ` > 50 mm
depends on the curvature of the sphere. The double beam at
θ ≈ 17◦, θ ≈ 78◦, and the local minimum between, of the
installed far-field in Fig. 5 is an effect of the flat top surface
of the platform. A smaller radius of the flat top would lift the
beams, i.e. decrease the inclination angle θ. The oscillations
for θ ∈ (100◦, 180◦) in Fig. 5 are caused by reflections in the
bottom edge of the platform G.

B. Results for the Near-field Source Configuration

The realization of near-field sources depend on the choice
of the sub-domain D1 and the placement of the surface Γe, see
Fig. 2, but also on the choice of ground-plane geometry. The
aim here is to evaluate the freedom of choice with respect
to these geometrical parameters. We consider six different
configurations of surfaces Γe and ground planes, as defined in
Fig. 6, with dimensions given in Table I. The configurations
evaluated are motivated briefly below.
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TABLE I
DIMENSIONS OF SURFACES Γe FOR EVALUATED CONFIGURATIONS.

Conf. x y z

NFS (a) |x| = 25 mm |y| = 25 mm |z| = 25 mm
NFS (b) |x| = 25 mm |y| = 25 mm |z| = 25 mm
NFS (c) |x| = 25 mm |y| = 25 mm z = 0, z = 25 mm
NFS (d) |x| = 25 mm |y| = 25 mm |z| = 25 mm
NFS (e) |x| = 25 mm |y| = 25 mm |z| = 25 mm
NFS (f) |x| = 25 mm |y| = 25 mm z = 1 mm, z = 25 mm

(a) (b) (c)

(d) (e) (f)

Fig. 6. The configurations of ground plane (blue) and surface Γe (yellow)
when generating near-field sources; the ground-plane is (a) a thin 100 mm
diameter PEC plate, (b) a thin infinite PEC plate, (c) and (f) a thin 50 ×
50 mm2 PEC plate, (d) a solid 100 mm diameter, 25 mm thick PEC plate,
(e) the part of the structure G contained inside the interface Γe. Note that
the bottom of the surface Γe coincide with the ground plane in (c), whereas
it is 1 mm above the ground plane in (f).

Configuration (a) is generated with a thin sheet PEC plate
and has non-zero currents also on the lower half of Γe, as
can be seen in Fig. 7(a) and Fig. 8(a). The same applies
to (e), because Γe coincide with the PEC boundary. The
infinite ground plane in (b) is estimating the whole platform
as a ground plane, whereas (a) and (d) account for the local
geometry of the platform. The diameter of the circular PEC
plate in configurations (a) and (d) is 100 mm (3.3λ) and
corresponds to the diameter of the flat platform top, see Fig. 1.

Configurations (d) and (e) have with solid ground-planes,
resulting in 90◦ edges on the ground plane. In the config-
urations (a), (c), and (f), the ground planes are thin sheets,
resulting in sharp edges. In configuration (b), with an infinite
ground-plane, there are no ground-planes discontinuities.

One of the key features in (a) and (d) is that they capture a
larger part of the platform geometry as compared to the other
configurations. Configurations (c), (e), (f) all take a ground
plane with a side length 50 mm (1.7λ) that correspond to
the horizontal size of the equivalent surface Γe. The effect
caused by the currents on the ground plane can be observed by
comparing (c) and (f), since the surface Γe coincide with the
ground plane in (c) whereas it is 1 mm above the ground plane
in (f). Note that the square ground plane in configurations (c),
(e), (f) does not conform to the azimuthal symmetry of the
original problem. However, the field solutions corresponding
to configurations (c) and (e) show less asymmetry than (f), as
can be seen in Fig. 8, possibly due to the effects of the ground
plane that coincide with Γe in (c) and (e), but not in (f). An
advantage of setting the ground-plane size equal to the size of
the surface Γe, as in (c), (e), and (f), is that the sub-domain
D1 is minimal, leading to shorter simulation times.

(a) (b) (c)

(d) (e) (f)

Fig. 7. Tangential magnetic field magnitudes |n̂ × H| on Γe for the
configurations in Fig. 6. The logarithmic color scale ranges from 0 to 1 A/m.

(a) (b) (c)

(d) (e) (f)

Fig. 8. Tangential electric field magnitudes |n̂×E| on Γe for the configura-
tions in Fig. 6. The logarithmic color scale ranges from 0 to 320 V/m.

TABLE II
ROOT-MEAN-SQUARE ERRORS USING NEAR-FIELD SOURCE AND FIT.

Configu-
ration

RMS (linear scale)
δrel|Jt(`)|,
` ∈ (25, 155] mm

δ 6 Jt(`),
` ∈ (25, 155] mm

δrel|Eθ(90◦, θ)|,
θ ∈ (0, 180◦)

NFS (a) 10.1 % 4.8◦ 6.0 %
NFS (b) 8.2 % 5.9◦ 4.4 %
NFS (c) 9.2 % 7.1◦ 8.4 %
NFS (d) 9.3 % 5.0◦ 5.1 %
NFS (e) 9.7 % 6.9◦ 7.4 %
NFS (f) 8.9 % 5.7◦ 7.3 %

The work flow described in Section III-B1 is followed when
generating and using the near-field sources. Since the reference
solution was solved with FIT, we use FIT again to determine
the fields with the near-field sources imprinted on the platform.

The resulting near-field source representations of the an-
tenna are depicted in Fig. 7–8, for each of the configurations
used. The strong fields on the bottom surface of (c) and (f) is
due to the coaxial feed cable that penetrates the surface Γe.

The accuracy is evaluated by the tangential current errors
δrel|Jt(`)| and δ 6 Jt(`), according to (7) and (8). They are
presented in Table II as RMS errors and depicted in Fig. 9
for the interval ` ∈ (25, 155] mm, i.e. outside the equivalent
surface Γe. The installed far-field errors δrel|Eθ(90◦, θ)|, ac-
cording to (12), are depicted in Fig. 10 and the RMS errors
for θ ∈ (0, 180◦) are listed in Table II.

The behavior in terms of δrel|Jt(`)| RMS errors are similar
in all configurations, with small variations in the relative error
between 8.2 % and 10.1 %. A correct local geometry of the
ground-planes, as in (a) and (d), is important for the accuracy
of the surface currents close to the source. We see this clearly
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Fig. 9. The relative surface current magnitude error δrel|Jt(`)| (top) and
surface current phase error δ 6 Jt(`) (bottom), for different near-field source
configurations, see Fig. 6. The errors are evaluated along the curve in Fig. 3(b).
The vertical line at ` = 50 mm marks the edge of the flat top of the geometry.
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Fig. 10. Relative installed electric far-field errors δrel|Eθ(90◦, θ)| using the
equivalent near-field sources illustrated in Fig. 6.

in Fig. 9(a) close to the equivalent source ` < 50 mm.
For the installed far-field in Fig. 10, we see that the

variation is smaller between the different configurations, as
compared to the current error in Fig. 9. This is expected due
to the smoothing effect for far-fields. The smallest RMS error
δrel|Eθ(90◦, θ)| are for (b) with 4.4 % and (d) with 5.1 %,
which are comparable with the variations of the reference

solutions on 3.1 %. In Fig. 10, the difference between con-
figuration is particularly large in the region θ ∈ [30◦, 80◦],
motivating a closer study. The max-norm deviations in this
region range from 4◦ with (b) to 18◦ with (c) and (f). We see
that the edge of the ground-plane seems to play an important
role for the accuracy in this region, where (b) performs best
(no discontinuity), and the configuration with a square thin
sheet ground-plane, (c) and (f), give the least accurate results.
Comparing (a) and (d), we see that (d) with a solid ground-
plane (90◦ edge) is more accurate than (a) with a thin ground-
plane (sharp edge). We see the same pattern when comparing
(c) with (e); the solid ground-plane performs better than the
thin sheet ground-plane with a sharp edge. The size of the
ground plane also plays a role. A small ground plane gives
a lifting effect of the pattern from the horizontal plane (as
discussed in Sec. IV-A). The large errors for (c), (e), (f) is
partly caused by this effect, where the beam maximum is
shifted from θ ≈ 78◦ to θ ≈ 72◦. The computationally simple
configuration (b) with an infinite ground-plane gives accurate
results, especially for the installed far-fields.

The expected higher sensitivity of the currents as compared
with the far-field is clearly observed in Table II. Compared
with the estimated RMS uncertainty in the reference solutions
in Section IV-A (3.4 % for the current magnitude and 3.1 % for
the installed far-field magnitudes), we see in Table II that the
near-field sources increase the current magnitude uncertainty
with a factor of 2.4–5.6 and the far-field magnitude uncertainty
with a factor of 1.4–2.7.

To conclude this section, we note that the RMS errors of
the currents, is about 9 % for the best case (see Table II),
with max-norm deviations up to ±20 % for ` ∈ (25, 150] mm,
rising up to ±50 % close to the bottom platform edge at ` =
155 mm (see Fig. 9). Similarly, the phase has about 5◦ RMS
error for the best configurations (see Table II), with max-norm
deviation up to ±15◦ (see Fig. 9). For the installed far-fields,
we note that the RMS errors are about 5 % for the best cases,
with corresponding max-norm deviations up to ±10 % over
θ ∈ [0, 160◦]. We note that the RMS errors of the far-field
vary with a factor of two between the most and least accurate
configurations.

C. Results for Far-field Source Configuration

When generating the far-field sources, we consider three
configurations, as defined in Fig. 11. From these configura-
tions, we use FIT to calculate their far-field patterns. The
results, which are used as far-field sources, are depicted in
Fig. 12(a) for the vertical cut ϕ = ±90◦ and Fig. 12(b)
for the horizontal cut θ = 70◦. The inclination θ = 70◦

is depicted since the three far-field patterns have similar
magnitude making it easy to compare the curves and identify
asymmetries. Note that configuration (b), with an infinite
ground plane, results in a far-field pattern that is identical to
zero in the lower hemisphere, θ > 90◦. Configuration (c) will
not preserve the symmetry in ϕ of the original problem, but
the effect is small, as can be seen in Fig. 12(b).

The work flow described in Section III-B2 is used for gener-
ating and using the far-field sources. Because of the rotational
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(a) (b) (c)

Fig. 11. The configurations of ground plane when generating far-field sources;
(a) a 100 mm diameter PEC plate, (b) a infinite PEC plate, and (c) a 50 ×
50 mm2 PEC plate. All three plates are infinitesimally thin.

(a) (b)

FFS (a)
FFS (b)
FFS (c)

−20
−10010

θ = 0
30 30

60 60

90 90

120 120

150 150
180

−5
0

5

ϕ = 0
30

60

90

120

150
180

210

240

270

300

330

Fig. 12. Realized gain of far-field sources for the configurations illustrated
in Fig. 11, for (a) azimuths ϕ = ±90◦ and inclinations θ ∈ [ 0, 180◦], and
(b) azimuths ϕ =∈ [ 0, 180◦] and inclination θ = 70◦.

symmetry of the platform geometry G, the far-field source is
placed on the symmetry axis x = 0, y = 0. In contrast, the
position h on the vertical axis is not trivial. Compared to e.g. a
geometrical theory of diffraction (GTD) formulation [35], the
source, in that case a dipole moment, can be placed both on
the conducting surface or above it. We investigate four cases
of the design parameter h = (0, 2, 4, 10) mm, i.e. the distance
above the flat platform top, see Fig. 2. The resulting problem
is solved with MoM, since FIT in CST Microwave Studio [11]
cannot handle far-field sources.

The accuracy of the far-field sources are evaluated with the
current errors δrel|Jt(`)| and δ 6 Jt(`), according to (7) and (8).
These errors are depicted in Fig. 13 and listed as RMS errors
in Table III for the investigated configurations. The far-field
errors δrel|Eθ(ϕ, θ)|, according to (12), are depicted in Fig. 14.

The ground plane in (c) is smaller than the flat surface of G.
Despite that, as depicted in Fig. 12, far-field source (c) radiates
less in the lower hemisphere, as compared with (a) and (b). We
note in Table III that the far-field error δrel|Eθ(ϕ, θ)| is smallest
with (c), especially for θ > 90◦. This is somewhat surprising,
since (a) captures the local geometry of the platform better.
However, the asymmetry of (c) makes it less attractive to use.

If (b) is installed on a height h > 0 mm, there are no fields
impinging on the platform, resulting in zero currents on the
platform and also zero field for θ > 90◦ (which is the reason
for the omitted numbers in Table III). Hence, when generating
a far-field source using an infinite ground plane, the resulting
far-field source should be installed on the platform surface,
i.e. h = 0. For the other far-field sources, i.e. (a) and (c), it is
hard to give any recommendations for the value of h.

Compared with the estimated RMS uncertainty in the
reference solutions in Section IV-A (3.4 % for the current
magnitude and 3.1 % for the installed far-field magnitudes), we
see in Table III that the far-field sources increase the current
magnitude uncertainty by a factor of 11–48 and the far-field
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Fig. 13. The relative current magnitude errors δrel|Jt(`)| (top) and current
phase errors δ 6 Jt(`) (bottom) evaluated along the curve in Fig. 3(b) using
the far-field sources in Fig. 11, installed on height h above the flat top of G.

TABLE III
ROOT-MEAN-SQUARE ERRORS USING FAR-FIELD SOURCE AND MOM.

Configu- RMS (linear scale)
ration δrel|Jt(`)|,

`∈
δ 6 Jt(`),
`∈

δrel|Eθ|,
θ∈

δrel|Eθ|,
θ∈

h = (3, 155] mm (3, 155] mm (0, 180◦) (0, 90◦)

FFS (a)

0
m

m 89 % 52◦ 133 % 44 %
FFS (b) 163 % 44◦ 77 % 57 %
FFS (c) 70 % 69◦ 46 % 41 %
FFS (a)

2
m

m 112 % 40◦ 133 % 47 %
FFS (b) – – 74 % 27 %
FFS (c) 79 % 52◦ 54 % 41 %
FFS (a)

4
m

m 105 % 45◦ 127 % 30 %
FFS (b) – – 74 % 27 %
FFS (c) 66 % 44◦ 45 % 14 %
FFS (a)

1
0

m
m 61 % 61◦ 115 % 31 %

FFS (b) – – 74 % 27 %
FFS (c) 39 % 58◦ 40 % 25 %

magnitude uncertainty by a factor of 13–43 (for θ ∈ (0, 180◦)).
Since the near-field behavior is not captured with far-field

sources, it is expected that the surface currents are inaccurate.
It is notable, however, that also the installed far-fields depicted
in Fig. 14 are more inaccurate, as compared to using NFS. It
is also notable that the placement h of the far-field source has
such a strong impact, see Fig. 13–14. Its influence is in same
order of magnitude as the choice of configuration.
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Fig. 14. The relative installed far-field errors δrel|Eθ(90◦, θ)| using the far-
field sources in Fig. 11 installed on height h above the flat top of G.
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Fig. 15. The relative installed far-field errors δrel|Eθ(90◦, θ)| using three
different numerical methods; FIT, MoM, and SBR.

D. Results on the Impact of the Numerical Method

The above discussed results evaluate the accuracy of two
different types of equivalent antenna representations. To de-
termine how the estimated accuracy depends on the choice of
numerical method, we use the best near-field configurations,
see Fig. 10, and the best far-field source, see Fig. 14, with dif-
ferent numerical methods. For near-field sources, we compare
the accuracy of FIT with the accuracy of MoM and SBR. For
the far-field sources we compare the accuracy of MoM with
SBR. We do not consider FIT for far-field sources since it is
not implemented in the current version of CST.

We use a subset of the equivalent sources from previ-
ous sections; three near-field sources; NFS (b) with best
δrel|Eθ(90◦, θ)|, NFS (d) with best δrel|Jt(`)|, and NFS (f) with
best δ 6 Jt(`), and three far-field sources, FFS (a) h = 2 mm
with best δ 6 Jt(`), FFS (c) h = 4 mm with best δ|Eθ|,
and FFS (c) h = 10 mm with best δrel|Jt(`)|. The relative
installed far-field errors δrel|Eθ(90◦, θ)|, defined in (12), from
these equivalent sources are calculated with different numer-
ical methods, FIT, MoM, and SBR. The resulting errors are
depicted in Fig. 15 and also listed as RMS errors in Table IV.

We see in Table IV that, when using near-field sources, FIT

TABLE IV
ROOT-MEAN-SQUARE ERRORS FOR DIFFERENT NUMERICAL METHODS

AND EQUIVALENT SOURCES.

RMS (linear scale)
Configuration δrel|Eθ(90◦, θ)|, θ∈(0, 180◦)

FIT MoM SBR
NFS (b) 4.4 % 23 % 56 %
NFS (d) 5.1 % 16 % 57 %
NFS (f) 7.3 % 18 % 65 %
FFS (a), 2 mm – 133 % 195 %
FFS (b), 4 mm – 74 % 74 %
FFS (c), 4 mm – 45 % 88 %
FFS (c), 10 mm – 40 % 91 %

performs significantly better than MoM and SBR. On average,
RMS errors are 3 times higher with MoM and 9 times higher
with SBR, as compared with FIT.

When using far-field sources, MoM gives more accurate
results than SBR, as seen in Table IV. None of the numerical
methods give accurate results for θ > 90◦ with far-field
sources, see Fig. 15. With the combination of FFS (b), h > 0
mm and SBR, there are no fields impinging on the platform,
resulting in a zero field for θ > 90◦. In Fig. 15, it is clear that
the near-field sources are an order of magnitude more accurate
than the far-field sources. Similar effects are observed in the
currents as seen by comparing Table II with Table III.

V. DISCUSSION AND CONCLUSIONS

Electromagnetic simulations of antennas installed on large
platforms are challenging problems. The often complex an-
tenna in combination with an electrically large platform leads
to very high memory requirements and long simulation times.
One way to reduce the complexity is to represent the antenna
with an equivalent model that is more effective to use in
simulations.

This paper presents one of the first accuracy studies of
equivalent sources on platforms. The considered platform
has weak backscattering and one installed antenna. Several
different configurations has been considered, with respect to
the approximation of the platform and geometrical parameters
associated with the generation of the equivalent sources.

The determined deviations from the reference solution are
presented for each of the examined configuration of the
equivalent sources. The results give a first indication of errors
associated with equivalent sources on a platform. Translating
error levels to generic platforms are challenging, however, it
is clear from the study that the platform associated back-
scattering is important for the accuracy of the equivalent
representation.

In agreement with knowledge from using equivalent rep-
resentations in homogeneous environments (i.e. not on plat-
forms), near-field sources perform significantly better than far-
field sources for all configurations considered. The near-field
sources, in the presence of the considered weakly scattering
platform, are comparably robust, with respect to location and
size of the equivalent surface. The resulting RMS accuracies
of the best cases evaluated are about 8 % and 5◦ for the surface
current magnitude and phase, respectively, and about 4 % for
the installed far-field magnitude.
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The accuracy of the far-field sources with respect to surface
current phase in the considered cases is rather low. In our
opinion, far-field sources should not be used when current
phase information is required. In the best case investigated,
the installed far-field RMS error on the magnitude is about
31 % and for the current 23 %. The installed height above
the platform of the far-field source has a strong effect on the
accuracy, which introduce an uncertainty in the use of far-field
sources. One should bear in mind that a far-field source, even
though less accurate compared to a near-field source, is an
efficient representation to use in numerical calculations. If the
expected accuracy is within requirements, far-field sources can
still be an attractive representation.

For the implementations in CST Microwave Studio, the
most accurate results for the investigated platform are ob-
tained when using near-field sources in combination with the
full-wave solver FIT. With far-field sources, the accuracy is
similar with MoM and SBR for directions within line-of-sight,
whereas MoM performs better for non-line-of-sight directions.
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