Fast filtering of mobile signals in radar warning receiver systems using machine learning

JORGE ANDRES MUNOZ CACERES
Fast filtering of mobile signals in radar warning receiver systems using machine learning

JORGE ANDRES MUNOZ CACERES
Abstract

The radio frequency spectrum is becoming increasingly crowded and research efforts are being made both from the side of communication and from radar to allow for sharing of the radio frequency spectrum. In this thesis, suitable methods for classifying incoming signals as either communication signals or radar signals using machine learning are evaluated, with the purpose of filtering communication signals in radar warning receiver systems. To this end, a dataset of simulated communication and radar signals is generated for evaluation. The methods are evaluated in terms of both accuracy and computational complexity since both of these aspects are critical in a radar warning receiver setting. The results show that a deep learning model can be designed to outperform expert feature-based models in terms of accuracy, as has previously been confirmed in other fields. In terms of computational complexity, however, they are vastly outperformed by a model based on ensemble decision trees. As such, a deep learning model may be too complex for the task of filtering communication signals from radar signals in a radar warning receiver setting. The classification accuracy needs to be weighed against the model size and classification time. Future work should focus on optimizing the feature extraction implementation for a more fair classification time comparison, as well as evaluating the models on recorded data.
Sammanfattning

Contents

1 Introduction .. 1
 1.1 Purpose .. 2
 1.2 Research question 2

2 Theory ... 3
 2.1 Signal processing 3
 2.1.1 Communication signals 4
 2.1.2 Radar signals 6
 2.1.3 Signal to noise ratio 8
 2.2 Feature-based machine learning 9
 2.2.1 Decision trees 9
 2.2.2 Ensemble learning 10
 2.2.3 Support vector machines 10
 2.2.4 Expert features 11
 2.3 Deep learning 14
 2.3.1 Artificial neural networks 14
 2.3.2 Convolutional neural networks 15
 2.3.3 Residual networks 16

3 Method ... 18
 3.1 Data collection 18
 3.1.1 Mobile signals 19
 3.1.2 Radar signals 20
 3.1.3 Normalization 20
 3.1.4 Dataset generation 21
 3.2 Classification models 21
 3.2.1 Feature-based machine learning 22
 3.2.2 Deep learning 24
 3.3 Experiments 25
Chapter 1

Introduction

The radio spectrum is being used by everything from small Internet of Things (IoT) devices to large military ships to send and receive data in different forms. Thus, the Radio Frequency (RF) spectrum is becoming increasingly congested, resulting in a flood of signals being transmitted at all times. This places great demands on devices performing analysis on signals received over a larger span of the RF spectrum.

One such device is a Radar Warning Receiver (RWR), which is developed within the field of Electronic Warfare (EW) for analyzing incoming RF signals in order to detect and identify hostile radar emitters. By extracting information from the incoming signals it is possible to determine certain characteristics of the radar emitters, such as location and identity, and warn the operators of potential threats. Due to the congested nature of the RF spectrum, RWR systems can easily become overwhelmed by the number of incoming signals.

Mobile communication signals are one of the main contributors to RF spectrum congestion within the context of RWR systems. Mobile signals are quite strictly regulated in terms of allowed frequencies and interference levels. Therefore it is tempting to simply filter out the frequency band allocated to mobile signals. However, this is not a suitable approach in RWR systems since possibly hostile radar emitters can escape detection by simply using frequency bands originally allocated to mobile signals. Thus, there is a need for a more powerful approach to filtering out mobile signals in RWR systems. There are similarities between this problem and modulation recognition, which is a problem within the research area of Cognitive Radio (CR), as well as within radar waveform recognition.
CHAPTER 1. INTRODUCTION

Modulation recognition aims to identify the modulation method used on intercepted mobile signal samples. This is a sub-problem in the field of CR needed for understanding what communication technology is being used in order to utilize the same channel without disturbing whoever was already using the channel [33].

Historically research on modulation recognition has focused on developing and using expert features together with classical Machine Learning (ML) tools such as Support Vector Machines (SVMs) [30], decision trees [6] or simpler Artificial Neural Networks (ANNs) [24]. Recently, however, the focus has shifted towards a data-driven Deep Learning (DL) approach [27] which has previously shown great success in other fields, such as image and voice recognition as well as natural language processing [17].

Automatic radar waveform recognition is a problem within EW which is very similar to modulation recognition, with the main difference being the characteristics of communication and radar signals. As such, different features and algorithms have been employed for the purpose of radar waveform recognition [22]. The methods emerging from this field which show most promise are inspired by image recognition [20] and use Convolutional Neural Networks (CNNs) as the classification model.

However, there is no published research on distinguishing communication from radar signals for filtering in an RWR setting.

1.1 Purpose

The purpose of this report is to evaluate methods for automatically deciding whether an intercepted signal is a communication or a radar signal with the goal of reducing congestion in devices operating on the RF spectrum in general and RWRs in particular.

1.2 Research question

How well does a DL approach perform compared to a simpler classification model using expert features in terms of accuracy and computational complexity for the task of classifying communication signals in RWR systems?
Chapter 2

Theory

The first section covers radio signal representation and processing both in the communication and radar setting. The second section covers the traditional feature-based ML approach as well as some common features used in signal classification. Finally, an overview of ANNs is given along with a description of the DL approach.

2.1 Signal processing

In signal processing, it is common practice to use a complex-valued, analytic representation of the real-valued signal as it facilitates many mathematical operations on the signal [21]. The basic idea is that the negative components in the Fourier transform of the real-valued function carries no additional information and can be discarded if one is willing to deal with a complex-valued function instead. Thus the analytic representation is the result of calculating the inverse Fourier transform after discarding the negative components. The real part of the complex-valued representation is called the I, or In-phase, signal component, and the imaginary part is called the Q, or Quadrature, signal component.

These components are best understood with an example. Consider the simple signal $s(t)$ with constant amplitude A and angular frequency ω,

$$s(t) = A \cos \omega t, \quad \omega > 0.$$

Then its analytic representation, $s_a(t)$, is as follows (for the derivations,
please refer to the book by Levanon and Mozeson [21]):

\[s_a(t) = I + jQ = A (\cos(\omega t) + j \sin(\omega t)) = Ae^{j\omega t}, \]

where \(j \) is defined as \(j = \sqrt{-1} \). They can be visualized using the unit circle as in Figure 2.1 where the sample \(s_a(t_0) \) is shown along with the corresponding amplitude \(A \) and the angle \(\phi(t_0) \).

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.1.png}
\caption{Visualization of the IQ components in the signal representation.}
\end{figure}

Using this visualization it is clear that

\[\phi(t_0) = \arg\{s_a(t_0)\} = \arctan \left(\frac{Q}{I} \right), \]

\[A = |s_a(t_0)| = \sqrt{I^2 + Q^2}. \]

The angle \(\phi(t_0) \) of the sample \(s_a(t_0) \) is defined as the instantaneous phase of the signal. It is used to define the instantaneous frequency of the signal as the rate of change in instantaneous phase between consecutive samples. In the rest of this thesis, the signal \(y(t) \) or the sampled signal \(y[n] \) is assumed to be the analytic representation.

2.1.1 Communication signals

For communication signals the goal is to transmit information over the air using the RF spectrum [11]. To this end, a carrier signal, with constant frequency \(f_c \) and amplitude \(A \), is altered in some way, i.e., modulated, in order to carry the information that is to be transmitted.
There are many different kinds of modulation schemes such as Frequency Modulation (FM), Amplitude Modulation (AM), Phase Shift Keying (PSK) and Quadrature Amplitude Modulation (QAM). In FM, the frequency of the carrier signal is altered depending on the information to be transmitted. For example, a sound wave can be used to modulate the frequency of a carrier wave in order to transmit the sound over long distances. However, since the RF spectrum is very crowded, especially in urban areas, more efficient ways of modulating the carrier signals are preferred. Also, the bulk of the information being transmitted is in the form of binary data, which use digital modulation schemes.

PSK is one example of a digital modulation scheme used for transmitting binary data. This modulation scheme changes the phase of the carrier signal to represent symbols. Different variations include Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK) and 8 Phase Shift Keying (8PSK). The difference between them is in the number of pre-defined symbols used. This pre-defined number of symbols used makes it possible to encode a number of bits, as visualized with the constellation diagrams in Figure 2.2.

QAM is another modulation scheme which can be used for digital modulation. The concept is similar to PSK but in this scheme both amplitude and phase offset of the signal is modulated, which can allow for a larger number of symbol possibilities and more bits per transmitted symbol. Figure 2.3 depicts possible constellations for 4QAM, 16QAM and 64QAM.
Orthogonal frequency division multiplexing

In order to further increase the efficiency of radio spectrum usage, and to increase data transfer rates, a common modulation scheme is Orthogonal Frequency-Division Multiplexing (OFDM). The technicalities of how it works are beyond the scope of this thesis but the interested person may refer to the book by Gopi [14].

The basic idea is to send a long sequence of bits over several sub-carriers, which have orthogonal frequencies, meaning they will not interfere with each other. Thus, the long bit sequence can be split into many shorter sequences, each sent on a different sub-carrier. Each of the sub-carriers can, in theory, be modulated using any modulation scheme. This modulation scheme is commonly used for wireless communications such as LTE and WiFi [28].

2.1.2 Radar signals

The goal with radar signals is mainly to detect potentially hostile vessels, called targets, as well as determine the range and relative velocity of the target [21]. Therefore, the modulation schemes used are focused on facilitating the aforementioned tasks. Since detection range is heavily dependent on the power, i.e., amplitude of the signal, this parameter is typically not modulated. This leaves FM and Phase Modulation (PM).

In Continuous-Wave (CW) radar signals the frequency is typically modulated, in order to have a timing mark which can be used for range measurements. Figure 2.4 depicts some common modulation schemes.
for Frequency-Modulated Continuous-Wave (FMCW) radar signals.

\[f(t) \]

(a) Sawtooth.

(b) Triangular.

(c) Rectangular.

(d) Staircase.

Figure 2.4: FMCW modulation example schemes.

Low probability of intercept waveforms

By varying different properties of the radar, Low Probability of Intercept (LPI) radars attempt to avoid being detected by RWRs. Many properties can be varied, such as emitted power, scan patterns and the type of antennas used. Another type of LPI measure is to modulate the signal waveform used.

Kong et al. [20] present twelve common LPI modulation schemes. Three modulation schemes which are significantly different are presented below. The chosen modulation schemes are Linear Frequency Modulation (LFM), Costas frequency hopping and BPSK. In LFM the frequency is linearly increased or decreased within a certain bandwidth, \(B \), during the pulse. For Costas, the frequency jumps between multiples of a base frequency within the pulse, where the multiples are defined using a Costas array [12] of size \(L_C \). For BPSK the phase offset of the signal is altered within the pulse according to a code of length \(L_B \). The following are the mathematical formulations for the chosen LPI waveforms as defined by Kong et al. [20].

The emitted signal \(x[n] \), sampled at a frequency of \(f_s = 1/T_s \), can be described as

\[x[n] = A \exp (j(2\pi f[n]nT_s) + \phi[n]) , \]
where \(A \) is the constant amplitude of the signal, \(f[n] \) is the instantaneous frequency and \(\phi[n] \) is the phase offset. The different modulation types are then defined using the formulas for the instantaneous frequency and phase offset as in Table 2.1.

Table 2.1: LFM radar waveforms as defined in the work by Kong et al. [20].

<table>
<thead>
<tr>
<th>Modulation type</th>
<th>(f[n]) (Hz)</th>
<th>(\phi[n]) (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LFM</td>
<td>(f_0 \pm B \frac{n}{N_{\text{amps}}})</td>
<td>(\phi_{\text{constant}})</td>
</tr>
<tr>
<td>Costas</td>
<td>(f_l)</td>
<td>(\phi_{\text{constant}})</td>
</tr>
<tr>
<td>BPSK</td>
<td>(f_{\text{constant}})</td>
<td>0 or (\pi)</td>
</tr>
</tbody>
</table>

2.1.3 Signal to noise ratio

Signal to Noise Ratio (SNR) is a dimensionless ratio \(R \), between the power of the signal \(P_s \) and the power of the noise \(P_n \) in the sampling of the signal [16]:

\[
R = \frac{P_s}{P_n}.
\]

It is used in research of both mobile communication signals as well as radar signals. When the signal is deterministic its power is defined as

\[
P_s = \frac{1}{T} \int_0^T s^2(t) dt.
\]

Noise is typically modeled using a random variable with an expected value \(\mu_n = 0 \) and some standard deviation \(\sigma_n \). In this case the power of the noise is defined as

\[
P_n = \sigma_n^2.
\]

Furthermore it is common in engineering to express SNR in decibels \(R_{\text{dB}} \), defined as

\[
R_{\text{dB}} = 10 \log_{10} \frac{P_s}{P_n}.
\]

For the remainder of this thesis, \(\text{SNR} \) or \(R \), will refer to the latter definition, \(R_{\text{dB}} \).
2.2 Feature-based machine learning

This section contains the basic theory needed to understand the approaches based on feature extraction and simple machine learning classification models. For more detailed explanations, refer to the original sources.

2.2.1 Decision trees

Decision trees can be most easily described by a flow-chart of multiple-choice questions as in Figure 2.5. Once constructed, a decision tree is a simple, intuitive and fast algorithm which can be used for either classification or regression [31].

![Figure 2.5: Simple example of decision tree.](image)

There are many different approaches to automatically constructing decision trees but the main goal is generally to maximize the information gained with every traversed node in the tree. In this manner, the depth of the tree is kept short which gives a very fast evaluation time [23].

The main advantage of decision trees is that they are computationally inexpensive to construct and evaluate compared to many other ML algorithms. They are, however, not as powerful as other algorithms when it comes to expressiveness and flexibility. The fact that they are very fast does make them an attractive choice for ensemble learning.
2.2.2 Ensemble learning

The basic idea behind ensemble learning is that multiple classifiers might be better than one classifier \[23\]. This generally holds as long as the classifiers are independent and diverse. Independence is important since adding heavily correlated classifiers does not increase the expressiveness of the ensemble. Diversity is important in order to be able to capture the variations in the data.

There are multiple methods of ensuring diversity and independence of the classifiers when training, the most well-known ones being boosting and bagging. Bagging is based on generating a new dataset for every new classifier by randomly choosing points to include from the original dataset. Boosting involves training classifiers focusing on different parts of available data for every classifier. This can be achieved by using weights on each input data point as follows.

The first classifier is trained using equal weight for all points. Then misclassified points are given a larger weight for training the next classifier. This is repeated until enough classifiers have been trained.

Ensemble training methods are, in theory, applicable to any classification algorithm. However, due to the need for training large numbers of classifiers, simpler models are usually preferred in order to keep the computational complexity at a reasonable level.

2.2.3 Support vector machines

Support vector machines (SVMs) are based on the insight that if data is projected into higher-dimensional space, it usually becomes linearly separable \[5\]. Thus, the aim is to project the input data non-linearly into a high-dimensional space and find a hyperplane in this space to separate the data. The hyperplane is then represented using a number of data points in the training data, the support vectors. For classification, the support vectors are used to determine which side of the hyperplane a new data point ends up in, and thereby which class it belongs to. Thus the number of calculations needed for classification is proportional to the number of support vectors used to represent the hyperplane.

In order to ensure good generalization, the hyperplane should be placed so that the distance between the plane and positive or negative data points is maximized. This is called maximizing the margin of the hyperplane, and is the mathematical problem that is optimized in SVMs.
It would be computationally unfeasible to calculate the projections of each data-point into a high-dimensional space. Especially considering this space may even have an infinite number of dimensions. This is where the Kernel trick is applied. A Kernel K, is a function that calculates the result of a dot product between two data-points, $K(x_1, x_2)$, when projected to a high-dimensional space, without actually projecting the points to this dimension. The most common and successful kernel function is the Radial Basis Function (RBF) K_{RBF}, defined as

$$K_{\text{RBF}} = \exp(-\gamma \|x_1 - x_2\|^2),$$

where $\gamma > 0$ is a hyperparameter. The optimization problem used for SVMs can be reformulated in terms of dot products between data points which makes it possible to take advantage of the benefits of high-dimensional spaces without the extensive computational costs associated with them.

2.2.4 Expert features

As mentioned in Chapter 1, approaches for modulation recognition have historically been heavily dependent on features designed by experts in the field, coupled with classification algorithms such as simpler ANNs, SVMs or similar. This is in fact the case for most ML problems [13].

The DL approach has already surpassed the approach based on expert features in the fields of image recognition, speech recognition, and natural language processing [17]. Furthermore, DL has also shown great promise in the fields of modulation recognition [27] and radar waveform recognition [20].

Despite these facts, expert features are still worth understanding and investigating. Firstly, the specific problem being investigated in this thesis has not been researched previously and expert features can therefore not be ruled out. Secondly, the inclusion of expert features may improve the accuracy of a model [4], possibly enabling the use of simpler models which would result in a low computational complexity. Finally, a very simple classifier coupled with expert features can serve as a good baseline for comparing to other models.

The following are mathematical descriptions of some of the most common features used in modulation recognition and radar waveform
recognition. Note that this section is included for completeness. Understanding the details in this section is not crucial for understanding the rest of the thesis.

Analog signal features

Analog features capture the statistical behaviors of the signals and can be easily calculated. The features are the estimated mean μ, standard deviation σ, and kurtosis κ of: the amplitude A, phase ϕ, instantaneous frequency ω, and absolute instantaneous frequency $|\omega|$ [24].

The kurtosis of a random variable X, is defined in terms of rth central moments m_r [19] as

$$\text{Kurt}(X) = \frac{m_4}{m_2^2}.$$

The central moments of a vector x of samples from X can be estimated as

$$m_r = \sum_{j=0}^{r} \binom{r}{j} (-1)^j m_{r-j}' \bar{x}^j,$$

where $\bar{x} = \mu$ is the estimated mean and m_r' is the rth order moment about the origin:

$$m_r' = \frac{1}{n} \sum_{i=1}^{n} x_i^r,$$

Note that these features are all relatively inexpensive to calculate, which can be done in time $O(n)$ where n is the length of the input signal.

Choi-Williams time-frequency distribution

The Choi-Williams Distribution (CWD) is a time frequency distribution based on the Cohen class using an exponential distribution kernel. It can be formulated as a 2-dimensional Fourier transform, generating a 2-dimensional representation of the signal [8].

This representation can be viewed as a grayscale image and either be fed directly to an image classification model or features can be extracted from it which are then used for classification. Both techniques have been used with great success in the field of radar waveform classification since different LPI radar waveforms have visually different image representations [20].
Due to the fact that a 2-dimensional Fourier transform is used, there is a high computational cost for calculating the CWD $O(n^3)$ \[20\] where \(n \) is the length of the input signal.

Higher order statistics

Higher Order Statistics (HOS) in the form of Higher Order Moments (HOMs) and Higher Order Cumulants (HOCs), have been used successfully as features for the purpose of classifying signal modulation types in previous research \[27, 10, 2\].

HOCs C_{pq} can be estimated from the intercepted signal using HOMs M_{pq}. Both cumulants and moments have been used as features in classification models for modulation recognition for communication signals \[27\].

For a complex-valued stationary random process y, the \(p \)th order moment \[10\] is defined as

$$M_{pq} = E \left[y^p \cdot (y^*)^q \right],$$

where y^* is the complex conjugate of y. HOCs are generally expressed in terms of HOMs and Table 2.2 shows these expressions for cumulants used in the literature \[2\]. In order to reduce processing time in classifiers, and to reduce the sensitivity to shifts in constellations, the magnitude of the complex-valued cumulants and moments are typically used.

Note that the complexity for calculating each \(p \)th order moment is $O(n^3)$. Since the HOCs can be expressed in terms of HOMs they have the same complexity, differing only by a multiplicative constant.
Table 2.2: HOCs expressed in terms of HOMs as defined by Abdelmutalab, Assaleh, and El-Tarhuni [2].

<table>
<thead>
<tr>
<th>HOCs</th>
<th>HOMs expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_{20}</td>
<td>M_{20}</td>
</tr>
<tr>
<td>C_{21}</td>
<td>M_{21}</td>
</tr>
<tr>
<td>C_{40}</td>
<td>$M_{40} - 3M_{20}^2$</td>
</tr>
<tr>
<td>C_{41}</td>
<td>$M_{40} - 3M_{20}M_{21}$</td>
</tr>
<tr>
<td>C_{42}</td>
<td>$M_{42} -</td>
</tr>
<tr>
<td>C_{60}</td>
<td>$M_{60} - 15M_{20}M_{40} + 30M_{20}^3$</td>
</tr>
<tr>
<td>C_{61}</td>
<td>$M_{61} - 5M_{21}M_{40} - 10M_{20}M_{41} + 30M_{20}^2M_{21}$</td>
</tr>
<tr>
<td>C_{62}</td>
<td>$M_{62} - 6M_{20}M_{42} - 8M_{21}M_{41} - M_{22}M_{40} + 6M_{20}^2M_{22} + 24M_{21}^2M_{20}$</td>
</tr>
<tr>
<td>C_{63}</td>
<td>$M_{63} - 9M_{21}M_{42} + 12M_{21}^3 - 3M_{20}M_{43} - 3M_{22}M_{41} + 18M_{20}M_{21}M_{22}$</td>
</tr>
</tbody>
</table>

2.3 Deep learning

This section contains the basic concepts needed to understand the DL approach. For more details, refer to the original sources.

2.3.1 Artificial neural networks

ANNs are inspired by the understanding of how neurons in the brain work [13]. Biological neurons receive input from other neurons and depending on the input configuration, they either remain inactive or become active, sending an impulse to the neurons they are connected to. Artificial neurons are modeled to mimic these characteristics: with a certain number of input lines, a summation component, a non-linear function which is applied to the result of the summation, and an output. The non-linear function is typically a threshold-like function and the non-linearity is necessary for allowing the model to classify non-linearly separable data in deeper networks. Each input to a neuron is associated with some weight, which is set by the training algorithm.

The basic idea behind the training algorithm, i.e., optimization algorithm, is to calculate the gradient of a loss function with respect to
the weights in the network and update the weights in the direction
specified by the gradient. The loss function is basically a measure of
how well the algorithm performed on the available training data. This
process is repeated for a number of iterations, called epochs. Different
optimization algorithms exist, one of the most popular being the
Adam optimizer [18]. Optimization algorithms differ mainly in how
the gradient is calculated and how much the weights are updated.

The most simple artificial neural networks are single layer perceptrons. In this type of network, there are a certain number of input
nodes, one for each dimension in the data, and a certain number of
output nodes, one for each dimension in the output. For this type of
network, the only weights to train are the ones connected to the out-
put nodes. Due to its simplicity, this type of network is only capable
of correctly classifying linearly separable data.

By increasing the number of layers between input and output, data
that is not linearly separable can be classified. Increasing the number
of layers further, and how neurons are connected, allows classification
of more complex patterns in data.

ANNs have been researched since the 1940s, but lately state-of-the-
art results have been surpassed in many fields by the DL approach
for designing and training ANNs. This means designing the network
so that the first few layers have the capability to automatically learn
to extract features from raw input data while the final layers perform
the classification using these features. DL has surpassed the previous
state-of-the-art in image recognition, voice recognition, natural lan-
guage processing and has shown great potential in modulation recog-
nition for both communication and radar signals.

2.3.2 Convolutional neural networks

A convolution can be described as the weighted average between two
functions. Although not all CNNs perform the exact mathematical
definition of a convolution, this is the inspiration for them [13]. This
type of network is useful for reducing the dimension of the data as well
as for processing data that is known to have a grid-like structure. The
typical example is within image recognition, where each individual
pixel value is not as important as the structures formed by neighbor-
ing pixels. A convolutional layer is visualized in Figure 2.6. It can be
thought of as a filter of size $m \times n$ being passed over the image and each
output value saved in the output layer. The value in the output layer to the right corresponds to the weighted sum of all the values in the square to the left, where each position in the filter has a corresponding weight that is set during training.

![Image of convolutional layer](image)

Figure 2.6: Visualization of a convolutional layer on an image with a depth of 1.

The number of filters used, m, n, and how much the filter is moved for each value in the output, i.e., step size, are all hyperparameters that can be altered. The choice of hyperparameters determines the number of trainable parameters in the model and thereby the model complexity and expressiveness.

CNNs have been successfully employed for the task of image recognition and especially so using the DL approach. They are generally placed early in the network in order to learn translation invariant image features with increasing complexity as each layer is traversed.

2.3.3 Residual networks

As computational capacity increases and new training methods are researched, ANNs have become deeper and deeper. When depth is increased too much, a degradation problem has been observed which is not connected to overfitting since both training and testing error increase. To address this problem, Residual Networks (RNs) have been proposed \([15]\). The intuition is that a deep network should be able to achieve at least as good performance as a shallow network, since it
CHAPTER 2. THEORY

should be possible for the last layers to be the identity mapping and the rest of the network be equal to the shallow network. As mentioned, however, deeper networks have shown a degradation problem, which could suggest that it is difficult for networks to create the identity mapping. He et al. [15] propose to make this identity mapping explicit through the use of shortcut connections, basically connections that bypass a number of layers in the network.

This method has allowed the use of deeper networks with the result of increased accuracy [15]. RNs were also used by O'Shea, Roy, and Clancy [27] for more shallow networks with great success for modulation recognition.
Chapter 3

Method

The first section describes the dataset used and how it was generated. The second section describes the classification models, and the last section covers the experiments performed.

3.1 Data collection

There are many stages in an RWR at which mobile signal filtering could be attempted and in this thesis the analytic representation, i.e., IQ representation, is investigated for multiple reasons.

As stated in Section 1.1 the purpose of this work is to reduce the overall congestion. Therefore the filtering should happen as early as possible to avoid wasting resources on communication signals. Furthermore, communication and radar signals are well-defined in terms of their IQ representation, but how they appear at later stages in an RWR depends heavily on the particular implementation. Previous research, presented in Chapter 2 has also focused on classifying the IQ representations of the signals. Finally, communication and radar signals are visually very different in their IQ representations for reasonable SNRs as can be seen in Figure 3.1. This should allow for very simple and fast classification models, which is crucial in an RWR.
CHAPTER 3. METHOD

Thus the intercepted signal is modeled using the analytic signal representation, as described in Section 2.1, such that the complex signal vector $y[n]$ contains the IQ values of the signal $y(t)$ sampled at a rate of $f_s = 1/T_s$. The length of the vector is N, i.e., N samples are collected during a period of τ_p, meaning $N = f_s \tau_p$.

3.1.1 Mobile signals

For simulating mobile signals, the GNU Radio toolbox \[3\] was used for producing an OFDM-modulated signal at baseband from a random bit-stream. Three different modulation types were used for the sub-carriers, namely BPSK, QPSK and 8PSK. The different modulation schemes are described in Section 2.1.1. Figure 3.1 showcases the resulting signal using BPSK modulation.

Within the field of modulation recognition for communication signals, it is common to model different kinds of noise sources such as carrier frequency offset, symbol rate offset and delay spread \[27\]. In an RWR setting delay spread is not as relevant since RWRs generally have line-of-sight to the emitting antennas. The symbol rate offset makes it more...
difficult to demodulate the signal and extract the transmitted information, which is not the goal in this thesis and is therefore not considered. Thermal noise and carrier frequency offset, however, are relevant and are modeled using the additive white Gaussian noise channel in the GNU Radio toolbox.

3.1.2 Radar signals

Two types of radar signals were simulated: FMCW and pulsed radar signals. For FMCW, the Radar module [32] in the GNU Radio toolbox [3] was used to generate the signals. The modulation schemes used were: sawtooth, triangular and rectangular, as described in Section 2.1.2.

Pulsed radar signals

Pulsed radar signals were simulated using the formulas for LPI radar waveforms from Table 2.1 using parameters randomized uniformly within the intervals defined in Table 3.1.

<table>
<thead>
<tr>
<th>Radar waveforms</th>
<th>Parameters</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>A</td>
<td>(U(1, 10))</td>
</tr>
<tr>
<td>LFM</td>
<td>(f_c)</td>
<td>(U(f_s/6, f_s/5))</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>(U(f_s/20, f_s/16))</td>
</tr>
<tr>
<td>Costas</td>
<td>(L_C)</td>
<td>{3, 4, 5, 6}</td>
</tr>
<tr>
<td></td>
<td>(f_{base})</td>
<td>(U(f_s/30, f_s/24))</td>
</tr>
<tr>
<td>BPSK</td>
<td>(L_B)</td>
<td>{7, 11, 13}</td>
</tr>
<tr>
<td></td>
<td>(f_c)</td>
<td>(U(f_s/6, f_s/5))</td>
</tr>
<tr>
<td></td>
<td>(N_{cc})</td>
<td>(U[20, 24])</td>
</tr>
</tbody>
</table>

3.1.3 Normalization

In order to avoid the case where classifiers simply find differences in amplitude between the signals, the energy of the signal vectors \(y\) of
length $N = 1024$ are normalized as proposed in the work by O’Shea and West [26]:

$$y_{n}^{\text{Norm}} = \frac{y_n}{N\mu_A}, \forall n \in 1, 2, \ldots, N.$$

3.1.4 Dataset generation

Data samples were generated at different SNRs, as defined in Section 2.1.3, for every modulation type as summarized in Table 3.2. For each modulation type and SNR $R \in \{-20, -19, \ldots, 20\}$, 300 samples of length $N = 1024$ were generated. Thus, the total size of the dataset was 86100.

<table>
<thead>
<tr>
<th>Signal type</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulsed radar</td>
<td>LFM</td>
</tr>
<tr>
<td></td>
<td>Costas</td>
</tr>
<tr>
<td></td>
<td>BPSK</td>
</tr>
<tr>
<td>CW radar</td>
<td>FMCW</td>
</tr>
<tr>
<td>Communication</td>
<td>BPSK</td>
</tr>
<tr>
<td></td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td>BPSK</td>
</tr>
</tbody>
</table>

Table 3.2: Modulation types used in the generated data.

Training data was separated from testing data by including only SNRs $R \in \{-5, -4, \ldots, 10\}$, and only 150 of the 300 samples per modulation type and SNR. The size of the training data was thus 16800. The remaining 150 samples for all generated SNRs and modulation types were kept as testing data. The reason for this was to see how well the models generalized to unseen data.

3.2 Classification models

This section describes the approaches used for the different classification models.
3.2.1 Feature-based machine learning

The features chosen are the analog statistics described in Section 2.2.4 and the magnitude of the HOS as described in Section 2.2.4. Due to the constraint on evaluation time, features based on CWD are not considered. The features were calculated using Python and NumPy for vector operations. A summary of all the features is presented in Table 3.3.

Table 3.3: Summary of expert features used. The total number of features used is 29.

<table>
<thead>
<tr>
<th>Analog features</th>
<th>HOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_A, σ_A, κ_A</td>
<td>$</td>
</tr>
<tr>
<td>μ_{ϕ}, σ_{ϕ}, κ_{ϕ}</td>
<td>$</td>
</tr>
<tr>
<td>μ_{ω}, σ_{ω}, κ_{ω}</td>
<td>$</td>
</tr>
<tr>
<td>$\mu_{</td>
<td>\omega</td>
</tr>
</tbody>
</table>

Thus the complex sample $y[n]$ of length N is converted into an $N_F = 29$ dimensional representation and passed to the feature-based classification models.

Feature normalization

For the performance of many ML models, it is important to normalize the features. Thus, the feature vectors y^F are normalized by subtracting the mean μ_f of each feature and dividing by the estimated standard deviation σ_f of the feature, both calculated over the training dataset. The normalization can be expressed as

$$y^F_f = \frac{y^F_f - \mu_f}{\sigma_f}, \forall f \in 1, 2, \ldots, N_F.$$

Decision trees

The XGBoost library was used as one of the classification models for the feature-based machine learning approach. The XGBoost library provides a highly scalable implementation of the Gradient Boosted
Machine (GBM), which is a successful and widely used theoretical framework for training ensemble tree models. Decision trees and ensemble methods are described in Sections 2.2.1 and 2.2.2 respectively.

The XGBoost library has been used successfully by O’Shea, Roy, and Clancy [27] as a baseline model for modulation recognition in the field of communication signals. The hyperparameters that were specified to the model are depicted in Table 3.4. They were found using grid search, within the space specified in the same table, using 3-fold cross-validation on 10% of the training data.

Table 3.4: Ranges for searches and final value used for the hyperparameters of the GBM model.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Search space</th>
<th>Best value</th>
</tr>
</thead>
<tbody>
<tr>
<td>max_depth</td>
<td>{2, 4, 6, 8, 10, 12}</td>
<td>8</td>
</tr>
<tr>
<td>n_estimators</td>
<td>{1, 5, 10, 20, 50, 100, 200, 500}</td>
<td>100</td>
</tr>
<tr>
<td>subsample</td>
<td>{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}</td>
<td>0.7</td>
</tr>
<tr>
<td>colsample_bytree</td>
<td>{0.1, 0.3, 0.5, 0.7, 0.9, 1.0}</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Simple baseline

The XGBoost library was used to create a very simple baseline model by specifying the hyperparameters max_depth and n_estimators to 1. This resulted in a model where a simple threshold, or if-statement, on the kurtosis of the magnitude of the instantaneous frequency, \(\kappa_{\omega} \), was used for classification. Section 2.2.4 contains a description of this feature.

Support vector machines

The SVM model uses the implementation made available through the Scikit-learn [29] library. Scikit-learn is a popular library which contains simple to use and efficiently implemented tools for data mining and data analysis.

Although the SVM model was reportedly outperformed by the one based on GBM in the work by O’Shea, Roy, and Clancy [27], it was included in this thesis for completeness. The visual simplicity of the classification problem, when compared to modulation classification, means the SVM model will not necessarily get outperformed in this problem.
The RBF kernel was used and the hyperparameters for this model were set as specified in Table 3.5. They were found using grid search and 3-fold cross-validation on 10% of the training data, within the search space specified in the same table.

Table 3.5: Ranges for searches and final value used for the hyperparameters of the SVM model.

<table>
<thead>
<tr>
<th>Parameter name</th>
<th>Search space ((10^x))</th>
<th>Best value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>(x \in {-3, -2, -1, 0, 1, 2, 3})</td>
<td>10</td>
</tr>
<tr>
<td>(gamma)</td>
<td>(x \in {-3, -2, -1, 0, 1, 2, 3})</td>
<td>(10^{-2})</td>
</tr>
</tbody>
</table>

3.2.2 Deep learning

For the ANN model, the Keras [9] library was used along with TensorFlow [1] as a backend. Keras is a high-level DL library which allows for easy and fast prototyping of neural network models.

The complex signal \(y[n]\) is divided into its real \(I\) and imaginary \(Q\) parts, and the \(2 \times N\) matrix is the input to the network. The output of the network is defined with two nodes; one for each class: communication signal or radar signal.

For training, the Adam optimizer was used with the default parameters as defined by Kingma and Ba [18]. Default training parameters were used for training due to time constraints. A maximum of 50 training epochs was used with early stopping if the validation loss became smaller than \(10^{-4}\) to avoid overfitting. The validation set consisted of 10% of the available training data.

The key consideration when designing the ANN was evaluation complexity since the early positioning of the filter demands extremely fast computations and due to the large visual difference between the classes.

Network layout

The neural network model was designed to mimic the feature extraction performed for the feature-based ML approaches. To this end, the network was designed as follows. First, two convolutional layers with ReLU activation functions were used, followed by a max pooling layer to reduce the dimensionality of the data. Then two fully connected lay-
ers and finally a softmax activation layer was added for achieving an estimated probability distribution. One dropout layer was also added between the two fully connected layers with a dropout rate of 50%, in order to reduce overfitting. The network layout and the output dimensions of each layer are described in Table 3.6.

Table 3.6: CNN model layout and dimensions.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Output dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>$2 \times N$</td>
</tr>
<tr>
<td>Convolutional/ReLU</td>
<td>$16 \times N$</td>
</tr>
<tr>
<td>Convolutional/ReLU</td>
<td>$16 \times N$</td>
</tr>
<tr>
<td>Max pooling</td>
<td>16×32</td>
</tr>
<tr>
<td>Fully connected/ReLU</td>
<td>32</td>
</tr>
<tr>
<td>Dropout</td>
<td></td>
</tr>
<tr>
<td>Fully connected</td>
<td>2</td>
</tr>
<tr>
<td>Softmax</td>
<td></td>
</tr>
</tbody>
</table>

Note that the input layer depends on the window size N. The first convolutional layer uses filters of size 2×3 in order to merge the information in the I and Q dimensions, while the second convolutional layer uses filters of size 1×3 and is therefore simply a 1-dimensional filter. The stepsize was set to the default value of 1 for both layers.

3.3 Experiments

The following are descriptions of how the models were compared.

3.3.1 Accuracy

The main goal of the following tests was to determine what models perform best on unseen data at different noise levels and with varying window sizes N.

To this end, data was simulated and divided into train and test data as described in Section 3.1. The key for testing generalization is that the range of SNRs is greater in the testing data, $[-20, 20]$, than in the training data, $[-5, 10]$. For each of the time-window sizes N in $\{64, 128, 256, 512, 1024\}$ the following experiment was executed. The
models were trained on all available training data and then the total test set accuracy was recorded for each model and noise level in the data. Due to the stochasticity in the model initialization, particularly for the CNN model, the experiment was repeated 20 times and the average accuracy was calculated and recorded.

To get different window sizes, the same generated data was used by selecting a window of length N from each sample. This window was chosen to start at a random index from the original sample of length $N = 1024$. The index was sampled from a uniform distribution and all the samples of the same window size used the same starting index.

3.3.2 Model complexity

In order to evaluate the relative performance of the models in terms of computational complexity each model was first trained as described in Section 3.3.1. During classification, the execution time for classifying all the samples in the test set was measured and an average classification time per sample was calculated. This process was repeated 10 times and the average time was recorded. The same window sizes were used as in previous experiments to see how the models scale with window size.

The execution time for feature extraction was measured separately in order to not weigh down the actual models but still allow for comparing the time taken for different window sizes.

The implementation of the SVM model only uses a single core on the CPU as opposed to the other models which can either use multiple cores on the CPU or execute on the GPU, taking advantage of the ability to parallelize many calculations to shorten the classification time. Due to this fact, all models were forced to run on a single core of the CPU for the time experiment.

All models presented in Section 3.2 can benefit from executing calculations in parallel, except for the baseline model. The implementations of both the CNN model and GBM model allowed for executing on the GPU, taking full advantage of the parallelization. In order to get an understanding of how much faster the classification can be when parallelized, those models were evaluated as described above but on the GPU instead of a single CPU core.
Chapter 4

Results

This chapter presents the results from the experiments described in Section 3.3 starting with accuracy comparisons and continuing with model complexity comparisons.

4.1 Accuracy comparison

Figure 4.1 allows for comparisons between the models in terms of accuracy over a range of SNRs at the different time-window sizes evaluated, as described in Section 3.3.1. It shows that the CNN model outperforms the other models for SNRs below -5 and above 5 for all time-window sizes.
Figure 4.1: The graphs show the classification accuracy for each model at each of the SNRs for varying time-window sizes. Note that the naming EF and DL refer to expert feature and DL respectively. Also, the model named EF-IF refers to the baseline model using a single tree of depth 1.

(e) $N = 1024$.

(a) $N = 64$.
(b) $N = 128$.
(c) $N = 256$.
(d) $N = 512$.

(e) $N = 1024$.

Figure 4.1: The graphs show the classification accuracy for each model at each of the SNRs for varying time-window sizes. Note that the naming EF and DL refer to expert feature and DL respectively. Also, the model named EF-IF refers to the baseline model using a single tree of depth 1.
Figure 4.2 depicts the same experiments as in Figure 4.1 but with every model in its own graph. This figure shows that all the models perform better with an increased window size.

Figure 4.2: Each graph shows the classification accuracy for one model at each of the SNRs for varying time-window sizes. Note that the naming EF and DL refer to expert feature and DL respectively. Also, the model named EF-IF refers to the baseline model using a single tree of depth 1.

Confusion matrices

Confusion matrices showing, for each modulation type, the percentage of correct or wrong predictions can be seen in Figure 4.3. The confusion matrices are shown for SNR $R = 15$, and time-window size $N = 512$. From Figure 4.3a, it is clear that the CNN model had very few
misclassifications at this SNR. In Figure 4.3b we see that only communication signals were misclassified as radar signals by the SVM model. Figure 4.3c shows that the communication signals with a modulation scheme of the lowest order, BPSK, had the highest misclassification rate by the GBM model. Finally, the baseline model had higher classification rates on radar signals than on communication signals, as can be seen in Figure 4.3d.

Figure 4.3: The figures show the confusion matrices for the different models at an SNR of $R = 15$ and a window size of $N = 512$. Note that labels starting with R are radar modulations.

4.2 Model complexity comparison

This section presents the results from the execution time measurements presented in Section 3.3.2. In Figure 4.4 and Table 4.1 we see that the GBM model is clearly the fastest compared to the two other models: it
is not even visible in the figure. The SVM model becomes faster with an increased window size while the CNN model becomes slower with an increased window size. Finally, we see that the feature extraction is quite slow and that it becomes slower with an increased window size.

![Figure 4.4: Average classification time per sample. The label \(FE \) denotes the time taken for feature extraction.](image)

Table 4.1 depicts the same values as shown in Figure 4.4, with the difference being the addition of the baseline model. The baseline model was not included in Figure 4.4 since it is similar to the GBM model in terms of time and therefore it would not add clarity to the figure. We can see that the GBM model is vastly superior to the other models in terms of classification time, when disregarding the feature extraction time.
Table 4.1: Average classification time per sample, measured in µs. The label FE denotes the time taken for feature extraction. Note that the naming EF and DL refer to expert feature and DL respectively. Also, the model named EF-IF refers to the baseline model using a single tree of depth 1.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Window sizes</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>DL-CNN</td>
<td></td>
<td>4.09</td>
<td>7.13</td>
<td>13.05</td>
<td>26.34</td>
<td>53.76</td>
</tr>
<tr>
<td>EF-GBM</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>EF-IF</td>
<td></td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>EF-SVM</td>
<td></td>
<td>25.06</td>
<td>17.37</td>
<td>9.49</td>
<td>6.10</td>
<td>4.23</td>
</tr>
<tr>
<td>FE</td>
<td></td>
<td>98.20</td>
<td>102.33</td>
<td>107.35</td>
<td>119.57</td>
<td>136.33</td>
</tr>
</tbody>
</table>

SVM model size

Since the SVM model varies in size depending on the data it is trained on, the number of support vectors are presented for the different window sizes in Table 4.2. We can see that the number of support vectors decreases as the time-window size increases. The model sizes of the GBM and CNN models are constant, and are presented in Section 3.2.1 and Section 3.2.2 respectively.

Table 4.2: Number of support vectors for the SVM models on varying window sizes.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Window sizes</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF-SVM</td>
<td></td>
<td>4702</td>
<td>3261</td>
<td>1777</td>
<td>1137</td>
<td>785</td>
</tr>
</tbody>
</table>

Parallelization

Table 4.3 depicts a similar experiment as in Table 4.1 but executed on 10 cores. It illustrates the performance gains that can be made by running calculations in parallel.
Table 4.3: Average classification time per sample when executed on multiple cores, measured in μs.

<table>
<thead>
<tr>
<th>Model name</th>
<th>Window sizes</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
</tr>
<tr>
<td>DL-CNN</td>
<td>4.85</td>
<td>6.78</td>
<td>9.57</td>
<td>7.66</td>
<td>14.27</td>
</tr>
<tr>
<td>EF-GBM</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>EF-IF</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Chapter 5

Discussion

This chapter begins with a discussion of the results of the accuracy experiment, followed by the execution time experiment. The final section discusses the implications of the results in an RWR setting.

5.1 Accuracy comparison

The results from the accuracy experiment, presented in Figure 4.1, indicate that the CNN model is the best at generalizing to unseen data since the accuracy drops slower than for the other two models as the SNR decreases. Also, it seems to be monotonically increasing with increased SNR, meaning it achieves nearly a perfect score on the higher SNRs. This differs from the other models, which decrease in accuracy on data at SNRs above \(R = 10\). As explained in Section 3.1.4 only SNRs in the range \([-5, 10]\) were present in the training data.

It could be argued that not including all SNRs in training makes for an unfair comparison between the models, especially due to the normalization that is performed for the expert feature based models. The reason for this was to see how well the models performed on unseen data. Also, higher SNRs make for data that should be easier to classify. It may be a more fair comparison to include modulation types in the test set which were not present in the training set, for both communication signals and radar signals, in order to see how the models generalize on completely unseen data.

The GBM model seems to perform well on the SNR range used for training. It sometimes beats the CNN model for SNRs near \(R = 0\), which can be seen in Figures 4.1c, 4.1d and 4.1e. However, it drops
very fast in accuracy as the SNR decreases and it even drops a bit as the SNR increases beyond $R = 10$, for all window sizes. This suggests that this model is not as good at generalizing to unseen data as the CNN model.

The SVM model has very similar performance compared to the GBM model, with the same problem of performing worse as the SNR increases beyond the ranges used for training, as seen in Figure 4.1. This suggests that the difficulty in generalization lies in the approach, and that it is based on expert features.

Finally, the baseline model, which is basically a simple if-statement, still performs quite well. It achieves above 90% accuracy for SNRs in the range $[0, 10]$ for most window sizes. This shows the simplicity of the problem at reasonable noise levels. The fact that the accuracy drops as the SNR increases past the range used for training is further evidence for the fact that the feature based approach has difficulty generalizing on unseen data.

Confusion matrices

From Figure 4.3 we can see that at an SNR of $R = 15$, the CNN model performs best, and that the SVM model seems to mostly make mistakes predicting that a sample is a radar signal when it is actually a communication signal. This could be due to the fact that the modulation of communication signals is similar to radar signals at lower SNRs and that this affects the predictions at higher SNRs since the actual SNR is hidden to the model.

In Figure 4.3c we see that the GBM model seems to also misclassify communication signals as radar signals and not vice versa. It also seems like the BPSK modulation is mistaken more than the others. The reason for this could be that in the lower degrees of modulation the changes to the phase are quite large, as explained in Section 2.1.1 which could make them similar to for example BPSK modulation in radar signals.

5.2 Model complexity comparison

From Table 4.1 we can see that the classification time of the CNN model seems to depend approximately linearly on the window size N, meaning the slight gain in accuracy comes at a quite large cost in
terms of computations. Therefore, it would be critical to weigh the gained accuracy against this cost in computation time if this model was to be implemented in an RWR.

The baseline model is easily the fastest, which is expected considering the size of the model being a single if-statement. The second fastest is the GBM model, again as expected. It is important to remember that the time required for the feature extraction process does need to be added to the classification time of the models based on expert features. The time required for feature extraction, presented in Figure 4.4 and Table 4.1, is not representative of the time that can be achieved if implemented for optimal execution time. The scaling, with the window size N, of the feature extraction is still relevant, which is why it was included in the results.

In this thesis, the feature extraction was implemented in Python using NumPy for vector operations, as stated in Section 3.2.1. This results in a large overhead for the system when calculating these features and if it was to be implemented in an RWR, it could be made much more efficient. Some of the analog features used in this thesis are already calculated and used for other purposes in many RWRs, meaning that those would come at no additional cost.

As for the SVM model we see that the highest classification time is recorded on the lowest window size, although it is still faster than the slowest time of the CNN model when disregarding the feature extraction. This is most probably due to the fact that as the window size gets smaller the features used become more unstable, evidenced by the lower accuracy of both expert feature-based models on decreased window sizes as seen in Figures 4.2b and 4.2c. As the features become more unstable the SVM model compensates by including more support vectors to achieve a good result on the training set, which in turn increases the computational complexity for classification. This is further evidenced by Table 4.2, which displays the number of support vectors used at each of the window sizes. Since the SVM model also uses the features, the same arguments hold as for the GBM model.

Parallelization

As mentioned in Section 3.3.2, the measured times presented in Figure 4.4 are achieved when evaluating the models on a single core of the CPU. All three of the models, however, could benefit greatly from
running more calculations in parallel, as evidenced by Table 4.3.

In theory, it should be possible to calculate all the kernel evaluations for the support vectors in the SVM model in parallel and then simply sum the result, which would allow for a much shorter classification time. In the CNN model, a similar improvement in classification time could be made by parallelizing each layer of the model. The depth of the network would, in this case, be a limiting factor for parallelizing since the result of the previous layer must be known before being able to calculate the next layer. Thus, deeper networks mean slower classification times when fully parallelized. The fact that the classification time for window size $N = 64$ barely changed despite being executed on 10 CPU cores instead of 1 supports this claim. As for the GBM model, it is similar to the CNN model since the depth of the trees are the limiting factor for parallelization, as each tree in the model can be evaluated individually.

5.3 Radar warning receiver setting

As mentioned in Chapter 1, the RWR setting introduces many limitations on the classification model. The model size is one of the primary limitations, i.e., the absolute size of the model and how it could be implemented in a system, either in software or in some kind of programmable hardware. To this requirement, the GBM and CNN models have an advantage compared to the SVM model, since they can be designed with a specific size constraint in mind and then trained on as much data as possible to achieve good performance in terms of accuracy. The CNN model is considerably larger than the GBM model, meaning the increased performance comes at a large cost in terms of model size. For the SVM, the model size depends on the variance of the data that is used, as discussed in Section 5.2.

As mentioned in Section 3.1 the stage at which IQ data is available is basically the first step in the signal processing chain. This means there needs to be a high throughput of signals. Therefore, the time allowed for classification is another primary limitation, which is closely tied to the model size and the same arguments for the CNN and GBM models still hold. The CNN model can gain performance in terms of classification time if parallelized further, as evidenced by Table 4.3. This makes the actual model size a stronger limitation in an RWR.
The advantage of performing the filtering at this stage, is that the signals are visually very different at this point for reasonable SNRs which should allow for a very simple and fast model to perform the classifications, as evidenced by the if-statement baseline performing above 90% for SNRs in the range \([0, 10]\).

Although the results show that simple classification models using expert features do not generalize very well on unseen data, this should not be used as an argument to rule them out completely. Considering the fact that radar signals and communication signals are quite well-defined in terms of their analytic representations, a reasonable assumption is that most of the samples that appear in a real-world scenario have already been seen during training and should therefore be classified correctly. This places more importance on collecting data that is realistic and covers the samples that appear in a real-world scenario.

Flexibility

The main difference between a DL approach for classification, such as the CNN model presented in this thesis, and an approach based on expert features is in terms of flexibility. For example, a new radar modulation type could be introduced which renders the features chosen for the classifier unsuitable. In this case, a model based on expert features would potentially require quite a large change in the RWR depending on how the feature extraction is implemented. For a DL model, on the contrary, a simple re-training of the model with the new modulation type would suffice to capture this new modulation type.

Furthermore, a DL model could easily be extended in order to fill several purposes with the same input. For example, if it is of interest to classify between radar modulation types, extending the network to allow for this is rather simple in a DL model, at the cost of a more complex network. For the approach based on expert features, on the other hand, it is likely that new features specifically designed for the new purpose would have to be introduced making this change involve more work to take it from idea to implementation.
Chapter 6

Conclusions

In conclusion the CNN model using the DL approach outperforms the models based on expert features in terms of accuracy, as has been clearly evidenced in multiple other fields. Furthermore, this type of model seems to be better at generalizing on completely unseen data, which is also of great importance in an RWR.

However, in an RWR setting the time constraint is quite significant and in this regard the GBM model is vastly superior with only a slight decrease in accuracy, assuming the feature extraction is implemented more efficiently than in this thesis. Although the results in this thesis indicate that the GBM model is worse than the CNN model at generalizing on unseen data, this is probably not a prohibiting factor considering how well-defined communication signals and radar signals are in their analytic representation. It does increase the importance of collecting enough realistic data to use for training the model.

Thus, both approaches have their strengths and if this type of filter was to be implemented in an RWR the performance in accuracy will have to be weighed against the model size and classification time.

Considering their flexibility and extendability, CNN models are probably better suited for more complex tasks. It would be interesting to investigate if a couple of different tasks in an RWR could be solved simultaneously using a DL approach. In this case, filtering communication signals could be one of the tasks to be included.

Future work should focus on optimizing the feature extraction process, in order to achieve a fair comparison in terms of classification time for the different models. Evaluating the models on recorded data could change the results, which is also left for future work.
Bibliography

