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Towards Immortal Wireless Sensor Networks by Optimal
Energy Beamforming and Data Routing

Rong Du Student Member, IEEE, Ayça Özçelikkale Member, IEEE,
Carlo Fischione Member, IEEE, and Ming Xiao Senior Member, IEEE

Abstract—The lifetime of a wireless sensor network (WSN)
determines how long the network can be used to monitor
the area of interest. Hence, it is one of the most important
performance metrics for WSN. The approaches used to prolong
the lifetime can be briefly divided into two categories: reducing
the energy consumption, such as designing an efficient routing,
and providing extra energy, such as using wireless energy transfer
(WET) to charge the nodes. Contrary to the previous line of work
where only one of those two aspects is considered, we investigate
these two together. In particular, we consider a scenario where
dedicated wireless chargers transfer energy wirelessly to sensors.
The overall goal is to maximize the minimum sampling rate of
the nodes while keeping the energy consumption of each node
smaller than the energy it receives. This is done by properly
designing the routing of the sensors and the WET strategy
of the chargers. Although such a joint routing and energy
beamforming problem is non-convex, we show that it can be
transformed into a semi-definite optimization problem (SDP).
We then prove that the strong duality of the SDP problem holds,
and hence the optimal solution of the SDP problem is attained.
Accordingly, the optimal solution for the original problem is
achieved by a simple transformation. We also propose a low-
complexity approach based on pre-determined beamforming
directions. Moreover, based on the alternating direction method
of multipliers (ADMM), the distributed implementations of the
proposed approaches are studied. The simulation results illustrate
the significant performance improvement achieved by the pro-
posed methods. In particular, the proposed energy beamforming
scheme significantly out-performs the schemes where one does not
use energy beamforming, or one does not use optimized routing.
A thorough investigation of the effect of system parameters,
including the number of antennas, the number of nodes, and
the number of chargers, on the system performance is provided.
The promising convergence behaviour of the proposed distributed
approaches is illustrated.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) enable several moni-
toring use cases of major societal importance. For example,
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Fig. 1: A wireless sensor network with dedicated wireless
energy chargers (base stations). The chargers form energy
beams such that the sensors can receive more energy, whereas
the sensors use proper routing to reduce their energy consump-
tions.

the realization of the emerging smart city vision is based
on various WSNs monitoring applications, such as electrical
grid monitoring, structural health monitoring, and pollution
detection. However, affordable WSNs consist of energy lim-
ited battery powered sensor nodes. With the ever increasing
number of such applications, a growing concern is how to
achieve longer WSN lifetime without the need of changing
batteries.

A promising framework to prolong the lifetime of such
WSNs is given by the recent paradigm of energy harvest-
ing [1], [2]. Sensor nodes with energy harvesting capabilities
can harvest the energy from the environment, for instance from
vibrations or solar radiations, and store the energy into their
rechargeable batteries. Therefore, it is possible to make a WSN
immortal if the energy harvested by each node is larger than
the energy it consumes. However, the major limitation of this
approach is the fact that the ambient energy is intermittent,
which potentially makes the network performance degraded
and inconsistent.

To overcome the problem above, wireless energy transfer
(WET) that transfers energy remotely to the sensor nodes pro-
vides an attractive alternative to harvesting ambient energy [3].
Dedicated transmitters enable us to control the charging to the
sensor nodes, and to optimize the network operations. There-
fore, in this paper, we consider such a wirelessly powered
WSN (WPSN) with multiple wireless chargers as shown in
Fig. 1. We propose to optimize the network performance in
terms of the minimum sampling rate of the sensors, under the
condition that the energy consumed by each node is less than
the energy it harvests. Therefore, the performance depends on
not only how the wireless chargers transmit the energy to the
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nodes, but also how the nodes consume the received energy.
Regarding the energy transmission task, the chargers form

energy beams [4] to improve the WET efficiency, such that
more energy could be harvested by the nodes. To maximize the
power received by the nodes, the existing solutions are based
on transmitting the energy beam according to the dominant
eigenvector of the effective channel [5], [6]. However, even
when the energy beamforming is optimized, if the nodes do
not consume energy efficiently, the energy would be wasted
and the network performance would degrade. Therefore, the
energy consumption of the nodes should be also well designed.

The major energy consumption of a sensor node comes
from data transmission. Consequently, we adopt a multi-hop
transmission scheme to reduce the transmission distance. Thus,
the routing of the WSN should be optimized. Based on the
motivation above, we propose to jointly reduce the energy
consumption of nodes by optimizing the data routing among
the sensor nodes and to improve the WET efficiency by
optimizing the energy beamforming of the chargers. This gives
us a novel joint energy beamforming and data routing problem.
Different from the one with only energy beamforming [5], [6],
the routing part of the problem introduces an additional linear
constraint to the optimization problem. Under such a scenario,
the optimal result is no longer the dominant eigenvector of the
effective channel. Thus, the solution of the new problem is not
trivial.

To summarize, the main contributions of this paper are as
follows:

• We jointly consider the energy beamforming on the wire-
less chargers side and the data routing on the WSN side to
maximize the monitoring performance and guarantee the
immortality of the WSN. To the best of our knowledge,
this technical problem has not been studied before, except
our preliminary work [7].

• We propose an algorithm that finds the optimal solution
by transforming the original optimization problem into a
semi-definite programming (SDP) problem. For the sake
of rigorousness, we prove the strong duality proposition
of the SDP problem (which, unlike linear programming,
does not always hold for SDPs), such that the optimal
value is achievable [8]. The simulations show that the
performance of the joint optimization is significantly
better than the case where only energy beamforming or
only routing is optimized.

• We propose a scheme with low complexity where time-
sharing among pre-determined beamforming vectors is
adopted. We show by simulation that, the selection of
the pre-determined beamforming vectors plays an impor-
tant role in the network performance, and the proposed
selection of beamforming vectors yields a near optimal
solution.

• Based on the alternating direction method of multipliers
(ADMM) [9], we provide a new hierarchical distributed
approach that offloads the computations to the wireless
chargers, such that communication burden in the back-
bone network and the overall computing complexity is
smaller.

The rest of the paper is organized as follows. In Section II,
we summarize the prior work on wireless energy beamforming
and data routing. The joint energy beamforming and data
routing problem is formulated in Section III. We propose the
centralized solution method for the optimization problem in
Section IV, then the distributed version in Section V. The
simulations are presented in Section VI. We conclude the paper
and discuss the future work in Section VII.

Notation: We denoteX = {xij} a matrix whose ith row and
jth column element is given by xij . For a vector x or a matrix
X , (·)T is the transpose of the vector or matrix, and (·)H is the
conjugate transpose of the vector or matrix. tr[X] =

∑
i xii is

the trace of square matrix X . For a Hermitian matrix X , the
notation X � 0 means that X is positive semi-definite. Given
a vector x, the diagonalization diag[x] constructs a matrix
whose diagonal elements are x1, . . . , xn.

II. RELATED WORK

The battery of wireless devices can be charged by WET
to improve the performance on throughput or lifetime [10],
[11]. In a WET system, the energy of electro-magnetic waves
transmitted from the wireless chargers can be harvested by
the rectifying antenna on the wireless devices, which are the
sensor nodes in our case. To improve the energy transmission
efficiency, the chargers can form energy beams to make
the energy more concentrated at certain directions. Thus, by
knowing the channel to the nodes, the chargers are able
to control the energy that will be received by the nodes.
From this point of view, WET will provide a more consistent
performance in energy provision than harvesting energy from
ambient environment. As a result, providing energy to wireless
devices by WET have been widely studied.

Most of the studies in this direction typically focus on the
optimization of throughput or similar communication theory
metrics [4], [12–14]. Reference [12] has considered a through-
put maximization problem over the energy allocation and time
of WET. Optimal beamforming with simultaneous information
transfer is considered under an interference scenario in [13].
A joint problem of designing energy beamforming vectors,
energy allocation and scheduling of WET durations among
different devices to maximize the minimum throughput has
been considered in [4]. The benefits of massive MIMO arrays
for WET are investigated in [14]. However, in these studies,
the energy receivers transmit the data or information to the
sink directly, and the possibility of using data routing is
not considered. Thus, the energy consumption part is not
optimized from a network perspective, and the results cannot
be applied directly to WSNs, where data routing can greatly
reduce the energy consumptions.

For sensor networks, the work in [15] has investigated a
throughput maximization problem for a WPSN by controlling
the duration of energy transmission. The authors formulated
a convex optimization and provided a closed form solution.
However, the data of the sensor nodes are transmitted directly
to the sink due to the fact that data routing is infeasible
in the underground model considered in this work. In [16],
the authors assumed that the base station forms a sharp
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energy beam to charge a sensor node in a given timeslot.
Then, they studied the problem of scheduling the energy
beams to maximize the WSN lifetime, and provided a greedy
algorithm to achieve the optimal solution. They also provided
the necessary conditions for a WPSN to be immortal. Based
on this result, the authors of [17] have considered a node
deployment problem, i.e., the problem of using the minimum
number of nodes while satisfying a condition that is necessary
for the WSN to be immortal. However, it is not clear whether
the selected energy beams, i.e., the dominant eigenvector of the
channel to each sensor, is optimal or not. To make the WSN
immortal, the authors of [18], [19] have studied an application
where a mobile charger charges sensor nodes at different
locations. They have formulated a path planning problem
for the mobile charger and proposed a solution approach.
Although data routing in considered in these papers, the
wireless charging is assumed to be done over short ranges over
direct links, and thus energy beamforming is not considered.

Optimizing data routing is a common approach to reduce
energy consumptions of the nodes. The seminal work of [20]
has modelled the energy consumption of the sensor nodes as a
linear function of the traffic flows, and we adopt such a model
in this paper. Based on this model, the work in [21] has inves-
tigated an optimal routing and sampling problem in a WSN
such that the network lifetime is maximized and the estimation
error based on the measured data of the nodes is within a given
threshold. The authors also provided a distributed solution
approach based on primal-dual decomposition.

Although optimal routing in WSN networks is a funda-
mental concern, only a limited number of studies jointly
consider routing together with energy harvesting, and even less
with WET. For the case where the nodes can harvest energy
from ambient environment, the work in [22] has proposed a
system where several rovers are used to harvest energy from
environment and to charge the sensor nodes to maximize the
data flow of the sensor network. The authors of [23] have
considered optimizing the routing and sensing for a WSN with
energy harvesting capabilities in order to maximize the quality
of monitoring. They formulated the problem as a resource
allocation problem and presented an algorithm that provides
a near-optimal solution. The work in [24] has investigated a
sampling rate and routing optimization problem for a WSN,
where the nodes can harvest solar energy. The sensor nodes are
assumed to be able to predict the energy that they can harvest.
Based on such predictions, the sensor nodes allocate their
energy consumptions for the subsequent period and change
their sampling rate and routings. The authors also provide a
distributed approach based on dual-decomposition and sub-
gradient approach.

Different from the aforementioned work, we consider the
case where dedicated energy transmitters charge the WSN.
Thus, we jointly optimize the routing of the WSN, and the
wireless energy transmission part, in terms of the energy
beamforming vectors and their time durations. Different from
some existing works on WET where energy is isotropically
broadcasted in all directions with a fixed power [15], [25],
the energy transmitters that we consider form sharp beams to
improve the received energy at the sensor nodes. This set-up

makes the optimization problem more challenging. To the best
of our knowledge, our previous work [7] is the first paper that
jointly considers the energy beamforming and the data routing
problem. Here, we provide the full proofs and we further
extend the centralized solution in the conference version to a
novel distributed approach based on ADMM [9]. In addition,
we have extensive simulations to show the performance, in
terms of sampling rate, of different energy beamforming
schemes under different system parameters, such as number
of antennas, number of sensors, number of chargers. We
also compare the convergence performance of the proposed
ADMM based algorithm to a block descent algorithm, which
is another widely used distributed approach.

III. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a WPSN in the paper. Specifically, we have
a WSN with N sensor nodes and a sink node to monitor
an area of interest, and NET wireless chargers to supply
energy to the nodes using energy beamforming, as shown in
Fig. 1. Each node vi makes measurements with the sampling
rate wi, and transmits the data to the sink in a multi-hop
manner to save energy. Then, the vector w = [w1, . . . , wN ]T

denotes the sampling rate of the nodes. The sensor nodes have
rechargeable batteries to store the energy received from the
wireless chargers. Such a network structure can be applied to
a wide range of applications, such as smart agriculture, smart
pipeline monitoring, and smart warehouse.

We use qij to represent the data flow from vi to vj , and
eOij the energy cost of sending a unit size of data. For a
node vi, its neighbor nodes are represented by a set Si. We
denote vj ∈ Souti ⊆ Si if there is an out-going data link
from vi to vj . Similarly, vj ∈ S ini ⊆ Si if there is an in-
coming data link from vj to vi. Then, S ini and Souti represent
the preceding neighbor nodes and succeeding neighbor nodes
of vi, respectively. Similar to many studies that consider
the routing of WSNs [19–22], the relationship of energy
consumption and data flow is considered as linear1. Then, the
energy consumption of a node vi is given by

EUi =
∑
j∈Sout

i

eOijqij . (1)

Here, the energy consumption for data communication over
the wireless channel between node i and j, eOij , is based on
the distance between them and other fading factors.

Recall that we have NET wireless chargers. Each charger
has M antennas. Note that the energy beam of a charger can
be time-varying, i.e., a charger l can form energy beam vectors
ul,1,ul,2, . . . ,ul,j , . . ., where ul,j ∈ CM×1. We assume here
that the number of the beam vectors is larger or equal to M .
We denote tl,j the average time charger l transmits beam ul,j .
Let the channel from charger l to node i be gl,i ∈ CM×1.

1This model is widely used for WSNs because the power that can be used
for data transmission by the sensor nodes is very limited, compared to other
wireless devices such as mobile phones.
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Then, using the similar model in [4], we have that the average
energy received by node i is

ERi =

NET∑
l=1

∑
j

ηtl,jEg[gHl,iul,juHl,jgl,i] , (2)

where the expectation is over the channels gl,i, η is the energy
conversion efficiency. The receiver noise is ignored, since
its energy is too little to be harvested [4]. We assume that
the frequency bands used for data transmission and energy
transmission are different, such that the nodes can harvest
energy and transmit data concurrently [6], [26]. However, for
the cases where the frequencies are the same, the results of the
paper are still valid if one applies a time-division scheme [15],
[27], which schedules the transmission of data and energy to
different time slots.

We assume that the sensor nodes have large enough battery
capacities. Then, the requirement that the WSN is immor-
tal can be expressed as ERi ≥ EUi ,∀i. Thus, we should
determine each node’s sampling rate and the route based
on the total energy that each node receives. In regard to
WSN performance, we want to have as much sampled data
as possible, but we also do not want to have many sensors
with very low sampling rates (balancing issue). Therefore, we
aim to set the minimum sampling rate of the nodes as large
as possible. We denote the monitoring performance of the
WSN by F (w) = mini{wi} , wmin, which is the minimum
sampling rate among the nodes. We stack qij ,∀i, j to form the
column vector q ∈ RL, where L is the number of candidate
data routing links of the whole WSN2. Then, the considered
problem can be formulated as:

max
wmin,w,q,u,t

wmin (3a)

s.t. wi +
∑
j∈Sin

i

qji −
∑

k∈Sout
i

qik = 0, ∀i , (3b)

EUi ≤ ERi , ∀i , (3c)∑
j

tl,ju
H
l,jul,j ≤ Pl, ∀l , (3d)∑

j

tl,j = 1, ∀l , (3e)

wmin, q, t ≥ 0 , wi ≥ wmin, ∀i , (3f)

where wmin, q, t are all non-negative, Constraint (3b) is
the flow conservation constraint, Constraint (3c) ensures the
immortality of the WSN, Constraint (3d) provides the power
constraint for each charger, and Constraint (3e) means that,
for each charger l, the summation of the percentages of
the time that each energy beam ul,j is used is 1. We
note that the problem is non-convex due to the quadratic
constraints (3c) even if tl,j were given. However, we propose
an original transformation of this optimization problem into
a SDP problem, as shown in the next section. Moreover, we
will show that the strong duality holds for the SDP, such that
we will be able to find the optimal solution efficiently.

2A simple example for a network with two nodes v1, v2, and a sink v3
with L = 3 candidate links: 〈v1, v2〉, 〈v2, v3〉, and 〈v1, v3〉. Then, q =
[q12, q13, q23]T .

TABLE I: Major notations used in the paper
Symbols Meanings
A candidate routing tables of the sensor nodes
B energy consumption matrix of the nodes

Ii
a matrix with 1 only at the i-th element of
its diagonal and with 0 for all the other entries

Kl,i
second moment of the channel from charger l
to vi, i.e., Eg[gl,ig

H
l,i]

L number of candidate links
M number of antennas of each wireless charger
N number of sensor nodes
NET number of wireless chargers
Pl the WET power constraint of charger l
U l auxiliary variable to represent

∑
j tl,jul,ju

H
l,j

W auxiliary matrix to represent diag(w)

eOij energy cost of sending one data unit from vi to vj
gl,i channel from charger l to node i
qij data flow from vi to vj
tl,j average time charger l transmits beam ul,j

ul,j the j-th energy beam vector of charger l
vi sensor node i
wi sampling rate of vi
η energy conversion efficiency

To improve readability, we provide the major notational
conventions of the paper in Table I.

IV. CENTRALIZED SOLUTION APPROACH

In this section, we will provide a centralized solution
method for Problem (3), and then focus on the pre-determined
beamforming scenario that provides a simpler but computa-
tionally more efficient approach for the optimization of energy
transfer.

A. Algorithm based on SDP

The idea of the solution algorithm is to first transform the
original problem to a new convex optimization problem that
is easy to solve. Then we convert the optimal solution of the
new problem back. We will show that the solution achieved
from the optimal solution of the new convex problem is also
the optimal solution for the original problem.

Recall that L is the number of candidate data routing links.
To make the problem more concise, we construct a matrix
A = {aij} ∈ RN×L that corresponds to the candidate
routing table of the nodes, where ai,j = 1 if link j goes
into node i; ai,j = −1 if link j starts with node i; otherwise,
ai,j = 0. This indicates that for each column of A, there is
always one −1, and at most one 1 (the column with no 1
corresponds the case that the link goes into the sink node).
Then, we re-write Constraint (3b) as w+Aq = 0. Similarly,
Bi = {bi,j} ∈ R1×L denotes the energy consumption vector
for each candidate link that starts with node vi, i.e., bi,j = eOi,k
if the candidate link j is from vi to vk. Then, EUi = Biq.
By stacking up the row vectors Bi, we construct the energy
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consumption matrix of the nodes, denoted by B ∈ RN×L. We
re-write Constraint (3c) as follows:

Biq ≤
NET∑
l=1

∑
j

ηtl,jEg[gHl,iul,juHl,jgl,i]

(a)
=

NET∑
l=1

∑
j

ηtl,j tr[Kl,iul,ju
H
l,j ]

=η

NET∑
l=1

tr[Kl,i

∑
j

tl,jul,ju
H
l,j ] ,

where Kl,i = Eg[gl,igHl,i] and it is a Hermitian pos-
itive semi-definite matrix. Step (a) comes from that the
trace is invariant under cyclic permutations, and it com-
mutes with expectation. Similarly, Constraint (3d) can be re-
written as tr

[∑
j tl,jul,ju

H
l,j

]
≤ Pl,∀l. Now, we substitute∑

j tl,jul,ju
H
l,j by a Hermitian positive semi-definite matrix

U l. Then, the original Problem (3) is equivalent to the
following one:

max
wmin,w,q,u,t

wmin (4a)

s.t. w +Aq = 0, (4b)

Biq ≤ η
NET∑
l=1

tr[Kl,iU l], ∀i , (4c)

tr[U l] ≤ Pl, ∀l , (4d)
U l � 0, ∀l , (4e)
wi ≥ wmin, ∀i, (4f)
wmin ≥ 0, q ≥ 0, t ≥ 0, ∀i , (4g)

U l =
∑
j

tl,jul,ju
H
l,j , ∀l , (4h)∑

j

tl,j = 1, ∀l . (4i)

Notice that if we relax Constraints (4h) - (4i), Problem (4)
can be expressed as the following relaxed problem:

min
wmin,w,q,U l,∀l

− wmin (5a)

s.t. (4b), (4c), (4d), (4e), (4f), (4g) .

Problem (5) is formed by relaxing the Constraint (4h) -
(4i) and keeping the objective function and the other con-
straints of Problem (4) unchanged. Thus, the feasible re-
gion of Problem (4) is a subset of the feasible region of
Problem (5). Recall that both of these problems are min-
imization problems, thus we have that the optimum value
of Problem (4) must be no less than the optimum value
of Problem (5). Therefore, if we achieve the optimal solu-
tion (w∗min,relax,w

∗
relax, q

∗
relax,U

∗
relax) for Problem (5), and

also t∗ and u∗ that satisfy Constraints (4h) - (4i), i.e.,
U∗l,relax =

∑
j t
∗
l,ju

∗
l,ju

∗H
l,j ,∀l and

∑
j t
∗
l,j = 1,∀l, then

(w∗min,relax,w
∗
relax, q

∗
relax,u

∗, t∗) is the optimal solution of
Problem (4). The idea here is to first solve Problem (5), and
then find t∗ and u∗. To begin with, we show the convexity of
Problem (5) by the following proposition:

Proposition 1: Problem (5) is equivalent to a convex semi-
definite programming problem.

Proof: Let W = diag(w), Q = diag(q). Since w ≥ 0,
we have that W � 0. Constraint (4b) can be written as
tr[IiW ] + tr[diag(Ai)Q] = 0,∀i, where Ai is the i-th row
of A, Ii is a matrix with 1 only at the i-th element of its
diagonal, and with 0 for the other elements. Constraints (4c)
are equivalent to tr[diag(Bi)Q]−

∑NET

l=1 tr[Kl,iU l] ≤ 0,∀i.
To summarize, Problem (5) is equivalent to the following
formulation:

min
wmin,W ,Q,U l,∀l

− wmin (6a)

s.t. tr[IiW ] + tr[diag(Ai)Q] = 0 , ∀i , (6b)

tr[diag(Bi)Q]− η
∑
l

tr[Kl,iU l] ≤ 0 , ∀i ,

(6c)
tr[U l] ≤ Pl , ∀l , (6d)
tr[IiW ]− wmin ≥ 0, ∀i , (6e)
Q � 0,U l � 0,W � 0, wmin ≥ 0 . (6f)

Recall that Ii, diag(Ai), diag(Bi), and Kl,i are Hermitian.
Hence the formulation is now cast as a standard form SDP
[28]. Since the objective function is linear and the feasible
region is convex, Problem (5) is a convex SDP formulation.

Since Problem (6) is a SDP problem, we have that if
the strong duality of the problem holds, the duality gap is
zero and therefore we can achieve the optimal solution of
Problem (6) with any sufficiently small error ε > 0 in time
O((L+N+NETM)4.5 log(1/ε)) [29]. However, unlike linear
programming, the strong duality of a SDP does not always
hold. Although the existing results [6] have shown that, when
routing is not considered, the strong duality of the problem
holds, it is unknown for the case with routing constraints.
Here, for the sake of rigorousness, we will prove that, with the
constraints introduced by routing, the strong duality still holds,
which means that the optimal value is achievable [8], [28]. To
show the strong duality, we first write the dual problem of
Problem (6) as follows:

max
y1,y2,y3,y4

∑
l

Ply3l (7a)

s.t.
∑
i

y1iIi −
∑
i

y4iIi � 0 , (7b)∑
i

y1iaij +
∑
i

y2ibij ≤ 0 , ∀j (7c)

η

N∑
i=1

y2iKl,i − y3lI � 0 , ∀l (7d)∑
i

y4i ≤ −1, (7e)

y2i ≤ 0, y3l ≤ 0, y4i ≤ 0 , ∀i, l, (7f)

where y1i corresponds to Constraint (6b), y2i corresponds
to Constraint (6c), y3l corresponds to Constraint (6d), y4i
corresponds to Constraint (6e). Then, we have the following
proposition:
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Proposition 2: Consider Problem (6) and its dual (7), where
A,B are constructed according to the topology of a connected
WSN3, Pl > 0. Strong duality holds, i.e., for both problems
there exist strictly feasible solutions.4

Proof: The proof consists of checking the existence of the
strictly feasible solutions for each problem. Since the WSN is
connected, the elements in Bi are bounded and positive.

For Problem (6), we can set U l = (1− ε)PlI,∀l. As Kl,i

is positive semi-definite, and Kl,i 6= 0, we have tr[Kl,i] > 0.
Thus, it is straightforward that we can find a small enough
routing decision Q, such that 0 < tr[diag(Bi)Q] < η

∑
l(1−

ε) tr[Kl,i],∀i. We can set wmin < (1 − ε)mini{tr[IiW ]},
such that tr[IiW ]−wmin > 0. It means that there exist strictly
feasible solutions for Problem (6).

For Problem (7), Constraints (7b) require that y1i < y4,i,∀i.
We can set y1i = −1 − ε1 < −1 − ε2 = y4,i < −1,∀i,
where ε2 > ε1 > 0 such that

∑
i y4i = −N − Nε2 < −1

strictly holds. Since A corresponds to the candidate routing
table, each column of which has at most one 1 and one
−1, Then, we have that

∑
i y1iaij ≤ 1 + ε1,∀j. Since B

corresponds to the energy consumption for each candidate
link, we have that bij ≥ 0, and

∑
i bij > 0. Thus, we can

set y2i = −(1 + ε1)/minj
∑
k bkj − ε3,∀i, where ε3 > 0,

such that
∑
i y2ibij < −1 − ε1 and Constraint (7c) strictly

holds. For Constraint (7d), it is also possible to find a small
enough y3l, such that y3l is smaller than the smallest eigen-
value of η

∑N
i=1 y2iKl,i,∀l, which makes Constraints (7d)

strictly hold. Thus, there exists a strictly feasible solution for
Problem (7).

Thus, we have that for Problem (6) and its dual Problem (7),
there exist strictly feasible solutions. Thus, strong duality
holds [8], [28]. This completes the proof.

Based on this proposition, we conclude that we can achieve
a solution, using interior-point methods, with a sufficient
small error ε > 0 to the optimum of Problem (6) in time
log(1/ε) [29]. Thus, this solution is taken as the global opti-
mal solution. Consequently, the main idea of the centralized
approach is to first find the optimal solution for Problem (6)
(equivalently the optimal solution for Problem (5)), denoted
by (w∗min,relax,w

∗
relax, q

∗
relax,U

∗
relax). Then in the second step,

based on U∗relax, we find u∗, t∗ that satisfy Constraints (4h) -
(4i) (and do not cause a change in the optimum). If there
exists such a u∗, t∗, then (w∗min,relax,w

∗
relax, q

∗
relax,u

∗, t∗) is
also an optimal solution for Problem (4). Next, we are going
to convert the optimal solution of Problem (6) to a candidate
solution for Problem (4), and then show its optimality.

Recall that U l,∀l is positive semi-definite. Hence, all the
eigenvalues of U∗l,relax are non-negative. Let us denote the
j-th eigenvalue of U∗l,relax by λl,j and the corresponding
eigenvector by dl,j . Then, tl,j = λl,j/

∑
i λl,i and ul,j =√∑

i λl,idl,j is a feasible point of Problem (4), such that
Constraints (4h)- (4i) are satisfied. Thus, we can let t∗ = {tl,j}
and u∗ = {ul,j}. Therefore, Problem (4) can be solved in 3
steps: 1) turning it into a convex SDP problem, 2) expressing

3It means that, for each column of A, there exists one −1 and at most one
1, whereas the other elements are 0. For B, all its elements are non-negative.

4It is also sufficient to show that the proposition holds for the case where
F (w) =

∑
αiwi.

the solution in terms of the spectral decomposition, and 3)
forming the final solution by re-scaling, as summarized in Al-
gorithm 1. The following proposition shows that Algorithm 1
achieves the optimal solution of Problem (3).

Proposition 3: Consider a feasible optimization Prob-
lem (3), where Kl,i is positive semi-definite. Then, Algo-
rithm 1 provides a global optimal solution for Problem (3).

Proof: Denote (wmin,ts,wts, qts,uts, tts) the output of
Algorithm (1). Recall that Problem (3) is equivalent to Prob-
lem (4). Thus, we first prove that (wmin,ts,wts, qts,uts, tts)
is feasible for Problem (4), and then prove its optimality.

Feasibility: According to Propositions 1 and 2, Problem (5)
is convex and strong duality holds. Thus, the result of
Step 1 of Algorithm 1,

(
w∗min,relax,w

∗
relax, q

∗
relax,U

∗
relax

)
, is

achievable, feasible, and optimal [8], [28]. Therefore, from the
output of the algorithm wmin,ts = w∗min,relax, wts = w∗relax,
qts = q∗relax, we know that (wmin,ts,wts, qts,uts, tts) satis-
fies Constraints (4b), (4f), and (4g). From Constraints (5c)-
(5d), we have that Biq

∗
relax ≤ η

∑
l tr[Kl,iU

∗
l,relax],∀i, and

tr[U∗l,relax] ≤ Pl,∀l. Lines 3-4 in Algorithm 1 give us that
ul,j,ts =

√∑
i λl,idl,j , tl,j,ts = λl,j/

∑
i λl,i, where λl,i

and dl,i are the eigenvalue and corresponding eigenvector of
U∗l,relax. Thus, we have that

Pl ≥ tr[U∗l,relax] =
∑
i

λl,id
H
l,idl,i

=
∑
i

λl,iu
H
l,i,tsul,i,ts∑
i λl,i

=
∑
i

tl,i,tsu
H
l,i,tsul,i,ts ∀l,

where the first equality holds due to the fact that U∗l,relax
is positive semi-definite, which is diagonalizable. Therefore,
(tts,uts) satisfies Constraints (4d), (4h) and (4i). Similarly,
we have that

Biq
∗
ts = Biq

∗
relax ≤ η tr[Kl,iU

∗
l,relax]

= η tr[Kl,i

∑
i

tl,i,tsul,j,tsu
H
l,i,ts] ,

which means that (w∗ts, q
∗
ts, tts,uts) satisfies Constraints (4c).

Furthermore, since U∗l,relax is positive semi-definite, its
eigenvalue λl,i is nonnegative and real, which means that
tl,i,ts is nonnegative and real. Thus, tts satisfies t ≥ 0.
Also, U l =

∑
i tl,i,tsu

H
l,i,tsul,i,ts is positive semi-definite,

which satisfies Constraint (4e). Therefore, we have that(
w∗min,relax,w

∗
relax, q

∗
relax, tts,uts

)
satisfies all Constraints of

Problem (4), thus it is a feasible solution of Problem (4).
Optimality: It is easy to show by contradiction. Suppose

that there exists a feasible solution (wmin,o,wo, qo, to,uo)
for Problem (4), such that wmin,o > wmin,ts. Then,
we can construct U l,o =

∑
i tl,i,oul,i,ou

H
l,i,o, such that

(wmin,o,wo, qo,U l,o) is feasible for Problem (5). Then,
wmin,o > wmin,ts = w∗min,relax contradicts the assumption

that
(
w∗min,relax,w

∗
relax, q

∗
relax,U

∗
relax

)
is an optimal solution

for Problem (5). Thus, the assumption is not valid and
(wmin,ts,wts, qts, tts,uts) is an optimal solution for Prob-
lem (4). This completes the proof of the optimality for
Problem (4).
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Recall that Problem (4) is equivalent to Problem (3).
Therefore, Algorithm 1 achieves a global optimal solution of
Problem (3).

Consequently, we can achieve the optimal sampling rate and
routing of the sensor nodes, as well as the beamformings of
the chargers by Algorithm 1 based on SDP. Next, we will
consider an alternative approach, which is suboptimal but of
lower-complexity.

B. Pre-determined beamforming vectors

In this subsection, we will discuss a special case of Prob-
lem (3). Specifically, the beamforming vectors of the chargers
are pre-determined, whereas the power and the time duration
for each beam should be optimized. The major motivation of
doing so is to reduce the complexity of Problem (3). Also, we
are interested in how the selection of the pre-determined beams
affects the network performance, which will be discussed in
the simulation section. We refer this scheme as pre-determined
beamforming. In this scheme, each charger l has MB pre-
determined beams, which are denoted by ul,j , 1 ≤ j ≤ MB,
and ‖ul,j‖2= 1. We denote the power and average time of
beam ul,j by pl,j and tl,j . Then, the optimization problem is

max
wmin,w,q,p,t

wmin (8a)

s.t. w +Aq = 0 (8b)

Biq ≤
NET∑
l=1

MB∑
j=1

ηpl,jtl,j tr[Kl,iul,ju
H
l,j ], ∀i ,

(8c)
MB∑
j=1

tl,j = 1, ∀l , (8d)

MB∑
j=1

pl,jtl,j ≤ Pl, ∀l , (8e)

w ≥ wmin ≥ 0, q ≥ 0,p ≥ 0, t ≥ 0 . (8f)

Problem (8) is non-convex, due to the multiplication of
the variables in the constraints. However, we can introduce
a new variable yl,j to represent pl,jtl,j . Based on this, we
can find the optimal solution of Problem (8) as follows: The
approach consists of two steps. First, we temporarily relax
Constraints (8d), and solve the following linear optimization
problem:

max
wmin,w,q,y

wmin (9a)

s.t. w +Aq = 0 (9b)

Biq≤
NET∑
l=1

MB∑
j=1

ηyl,j tr[Kl,iul,ju
H
l,j ], ∀i ,

(9c)
MB∑
i=1

yil ≤ Pl, ∀l , (9d)

w ≥ wmin ≥ 0, q ≥ 0,y ≥ 0 . (9e)

Suppose the optimal solution for Problem (9) is
(w∗min,w

∗, q∗,y∗). Then, in the second step, we need

Algorithm 1 Time-splitting beamforming algorithm
Require: A, B, Kil, P l

Ensure: wmin,ts,wts, qts,uts, tts
1: Find the optimal solution

(
w∗

min,relax,w
∗
relax, q

∗
relax,U

∗
relax

)
for

Problem (5).
2: for l = 1 to NET do
3: Find the eigenvalues λl = {λl,i} and the corresponding

eigenvectors dl={dl,i} of U∗
l,relax.

4: Construct ul,j=
√∑

i λl,idl,j , and tl,j=λl,j/
∑

i λl,i.
5: end for
6: return uts={ul,j}, wmin,ts = w∗

min,relax, wts=w
∗
relax,

qts=q
∗
relax, tts={tl,j}.

to find the feasible tl,j and pl,j , ∀l, j, such that the following
equations are satisfied:

pl,jtl,j = y∗l,j , ∀l, j∑MB

i=1
tl,j = 1, ∀l

0 ≤ pl,j , 0 ≤ tl,j , ∀l, j.

(10a)

(10b)

(10c)

There may exist several solutions for Equations (10). How-
ever, one simple solution is given by pl,j = MBy

∗
l,j , tl,j =

1/MB,∀l, j. Then, we have the following proposition:
Proposition 4: Consider feasible optimization Problem (8).

If (w∗min,w
∗, q∗,y∗) is an optimal solution for Problem (9),

then (wmin,pd=w
∗
min,wpd=w

∗, q∗,ppd = MBy
∗, tpd =

(1/MB)1
T ) is one of the optimal solutions for Problem (8).

Proof: The proof is similar to the one of Proposition 3.
Please refer to our technical report [30] for the complete proof.

One approach to set ul,i is ul,i = ĝl,i/‖ĝl,i‖, where ĝli
is the estimation of channel gl,i. This approach requires the
knowledge of instantaneous channel information. An alter-
native approach is to set it as the dominant eigenvector of
Eg[gl,igHl,i]. This can be interpreted as the charger l serving
node i by beamforming vector ul,i. This approach does not re-
quire the instantaneous channel information and only depends
on the channel covariance matrix. We use such beamforming
vectors as the pre-determined beamforming vectors in the
simulations, and will compare the performance with other
selections of ul,i in our numerical results.

V. DISTRIBUTED APPROACH

In the previous section, we have provided algorithms to
solve the optimal beamforming and routing problems for the
general case (Problem (3)) and for the pre-determined case
(Problem (8)). These approaches are centralized, and require
the collection of large amount of state information such as
channel covariance matrices Kl,i,∀l, i at the central decision
maker. This makes the method not scalable for networks with
large size and for the large number of antennas the chargers
may have. Moreover, the centralized approach needs to solve
the SDP problem with NET variables of size M ×M . The
time complexity of such a problem is growing rapidly with
NET and M as O((L+N +NETM)4.5) [29], which further
hinders the scalability of the centralized approach. Thus, it is
necessary to find a distributed approach that is scalable with
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the size of network, especially with the number of the chargers
and the antennas.

In this section, we provide distributed methods for the
optimal beamforming and routing problems, based on the
results achieved in the previous section. We will begin with
the general case, and then move on to the pre-determined
beamforming case.

A. Distributed solution for optimal beamforming

Recall that the optimal solution of Problem (4) can be found
using the optimal solution of Problem (5). Therefore, we can
achieve a distributed solution for Problem (4) if we can solve
Problem (5) in a distributed manner. Notice that the overall
network consists of two type of nodes: energy providers (i.e.
chargers) and energy consumers (i.e. sensor nodes). Utilizing
the ADMM method [9], we first decompose the problem
into two parts based on this classification as described in the
following.

We first introduce slack variables z = {zi}(zi ≥ 0) for
Constraint (4d), such that the constraint becomes Biq −
η
∑NET

l=1 tr[Kl,i,U l]+zi = 0,∀i. Thus, the partial augmented
Lagrangian (using the scaled dual variable) is Lρ = −wmin+

0.5
∑N
i=1

(
Biq − η

∑NET

l=1 tr[Kl,iU l] + zi + vi

)2
, where v

are the scaled dual variables. The updates of the optimization
variables are as follows:

For the energy consumers side, the updates are given by:(
w

(k+1)
min ,w(k+1), q(k+1), z(k+1)

)
= arg min

wmin,w,q,z
Lρ(wmin,w, q, z,U

(k),v(k)) (11a)

s.t.w +Aq = 0, (11b)
wmin, q, z ≥ 0 , wi ≥ wmin,∀i . (11c)

This problem is a convex quadratic optimization problem with
linear constraints, which can be efficiently solved by the off-
the-shelf optimization tools [31–33] 5.

For the energy providers side, the updates are as follows:

U (k+1) = argmin
U

Lρ(w
(k+1)
min ,w(k+1), q(k+1), z(k+1),U ,v(k))

(12a)
s.t. tr[U l] ≤ Pl,∀l (12b)
U l � 0,∀l . (12c)

Lastly, the scaled dual variables are updated at the sink node
as follows:

v
(k+1)
i = vki +Biq

(k+1) + z
(k+1)
i − η

NET∑
l=1

tr[Kl,iU
(k+1)
l ] ,

(13)

5Due to the convexity and differentiability, we can also apply primal-dual
decomposition and sub-gradient approach to solve the problem distributedly
[21], [24]. However, such an approach may suffer from low convergence
rate and consume more energy while exchanging information among sensor
nodes. However, for the proposed ADMM method, sensor nodes only update
information in the outer loop, and it takes approximately 100 iterations of
outer loops for convergence to optimal. Thus, the energy spent by the sensor
nodes for information exchange is comparatively small, as will be further
discussed in the simulations.

Notice that the decision variables of Problem (12) are NET

semi-positive definite matrices of size L× L. The dimension
of the decision variables makes the problem complicated. We
naturally hope to further decompose it into several subprob-
lems such that each wireless charger makes beamforming
decisions locally based on some shared information. We
rewrite Problem (12) in the following form:

min
U

N∑
i=1

(
η

NET∑
l=1

tr[Kl,iU l]− c(k)tr,i

)2

(14a)

s.t. tr[U l] ≤ Pl ,∀l , (14b)
U l � 0 ,∀l, (14c)

where c(k+1)
tr,i , Biq

(k)+z
(k+1)
i +v

(k)
i . Further, we introduce

auxiliary variables D , [d1,d2, . . . ,dNET ] ∈ R+
N×NET

,
whose element di,l denotes the energy that node i should
receive from base station l. Then, we can re-write Problem (14)
as follows:

min
D,U

‖
NET∑
l=1

dl − c(k)tr ‖22 (15a)

s.t. tr[U l] ≤ Pl , ∀l , (15b)
η tr[Kl,iU l] = di,l, ∀l, i , (15c)
U l � 0, di,l ≥ 0 , ∀l, i . (15d)

We further use ADMM to solve Problem (15) by relaxing
Constraint (15c). The partial augmented Lagrangian of Prob-
lem (14) is as follows:

Lρ(D,U ,µ) =‖
NET∑
l=1

dl − c(k)tr ‖22

+
ρ

2

NET∑
l=1

N∑
i=1

(
η tr[Kl,iU

(t)
l ]− di,l + µ

(t)
i,l

)2
,

where µ ∈ RN×NET
is the scaled dual variable.

Then, the sink node updates d by solving the following
quadratic problem:

D(t+1) = argmin
d≥0

{
‖
NET∑
l=1

dl − c(k)tr ‖22

+
ρ

2

NET∑
l=1

N∑
i=1

(
η tr[Kl,iU

(t)
l ]−di,l+µ(t)

i,l

)2}
. (16)

The problem is a quadratic optimization problem that can be
efficiently solved with standard numerical techniques [31–33].
The sink node broadcasts the result d(t+1) to the chargers, and
each charger l updates yl by:

U
(t+1)
l = arg min

U l�0

N∑
i=1

(
η tr[Kl,iU l]− d(t+1)

i,l + µ
(t)
i,l

)2
(17a)

s.t. tr[U l] = Pl (17b)

which is a convex problem and can be solved by off-the-
shelf optimization tools [31–33]. Then, the charger l uploads
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Fig. 2: Operations of the distributed approach for Problem (3),
where the solid lines represent the transmission of the vari-
ables, and the dashed lines represent the transmission of
energy.

η tr[Kl,iU
(t+1)
l ],∀i to the sink node, and the sink node

updates µi,l as

µ
(t+1)
i,l = µ

(t)
i,l + η tr[Kl,iU

(t+1)
l ]− d(t+1)

i,l . (18)

The update of d, U , and µ repeats until convergence. To
summarize, the distributed algorithm is hierarchical and it
consists of an outer loop and an inner loop. In the outer loop,
the sink node determines sampling rate wmin,w, routing q,
and the variables z,v, whereas in the inner loop, the sink node
updates d and µ, and each charger updates U l locally. For the
inner loop, we consider it converged if the difference of the
values of the objective function in two consecutive iterations
is smaller than a threshold, or the number of iterations exceeds
a given threshold.

Recall the inner loop. Although we decompose it into
more than two subproblems, the objective function of each
subproblem is strongly convex. Thus, U (t) achieved by the
inner loops following the ADMM approach converges to the
optimal solution for Problem (12). Furthermore, for the outer
loops, the problem is decomposed into two parts, and each
part achieves the optimal solution. Thus, w(k)

min converges to
the optimal solution, which gives us the following result:

Result 1: Assume that Problem (3) is feasible. w(k)
min in the

iteration of Algorithm 2 will converge to the w∗min, the optimal
solution of Problem (3).

To summarize, the distributed approach is given in Algo-
rithm 2, where Lines 11 to 16 are the inner loop for solving
Problem (14) by ADMM to get U (k+1). We can see that the
chargers do not need to transmit the channel matrix Kl,i to
the sink node, and the beamforming matrix U l is determined
locally by each charger. The operation of the algorithm in
terms of variables exchanges and energy transfer is presented
in Fig. 2. Due to the limited space, please refer to our
technical report [30] for more discussions on the computation
complexity and the amount of information exchange.

B. Distributed solution for pre-determined beamforming

The basic idea of the distributed solution to solve Prob-
lem (8) is similar to the one in Section V-A. Due to the limited
space, we skip the details, which can be found in our technical
report [30].

Algorithm 2 Distributed time-splitting beamforming algo-
rithm

1: Sink node initializes w(0)
min,w

(0), q(0),z(0),v(0),d(0)

2: Each charger l initializes U (0)
l , and transmits energy according

to U (0)
l

3: Sensor nodes upload received energy η
∑NET

l=1 tr[Kl,iU
(0)
l ] to

the sink
4: Sink node finds the optimal solution(

w∗
min,relax,w

∗
relax, q

∗
relax,U

∗
relax

)
for Problem (5).

5: k = 0
6: while not converge do
7: Sink node updates w

(k+1)
min ,w(k+1), q(k+1),z(k+1) by

solving convex quadratic Problem (11), and broadcasts
w(k+1), q(k+1) to the sensors.

8: Sink node updates c(k+1)
tr,i ← Biq

(k) + z
(k+1)
i + v

(k)
i

9: Sink node initializes µ(0) ← 0, t← 0
10: Each charger l initializes U (t)

l,in ← U
(k)
l

11: Reset t← 0
12: while ∃l,U l,in not converge or t ≤ tthreshold do
13: Sink node updates D(t+1) by solving Problem (16), and

broadcasts D(t+1) to the chargers
14: Each charger l updates U (t+1)

l,in in parallel by solving
Problem (17) and transmits η tr[Kl,iU

(t+1)
l,in ], ∀i to the sink

15: Sink updates µ(t+1) according to (18), and broadcasts it
to the chargers

16: t← t+ 1
17: end while
18: Each charger l sets U (k+1)

l ← U
(t)
l,in and transmits energy

according to U (k+1)
l

19: Sensor nodes upload received energy
η
∑NET

l=1 tr[Kl,iU
(k+1)
l ] to the sink

20: Sink node updates v(k+1) according to (13)
21: k ← k + 1
22: end while

VI. NUMERICAL RESULTS

In this section, we evaluate the monitoring performance of
the WSN with the optimal energy beamforming (by Algo-
rithm 1), the optimal pre-determined energy beamforming (see
Section IV.B), and the method that does not use beamforming
(omni-directional WET). Also, we will test the distributed
approach (Algorithm 2). We use Matlab for the simulations.

In the simulations, we randomly deploy N sensor nodes in a
region of size 30 meters by 30 meters, and a sink at the center
to collect data. The distance between each pair of nodes di,j
is then determined by the position of the nodes. For a node vi
and its neighbor node vj , the transmission power eOij is 10−7d2

Watts, and the data rate is 250kbps. The energy conversion
efficiency η is 0.016. For the charger, its transmission power in
WET is 1 Watts, and it has M antennas. The carrier frequency
of the energy transmission is 915MHz. The channel model
of energy transmission is considered as Rician fading model
as [14], and is described as gl,i =

√
βl,iK/(K + 1)gdl,i +√

βl,i/(K + 1)gsl,i, where gdl,i is a deterministic normalized
vector representing the line-of-sight (LOS) path from charger
l to node i, gsl,i ∼ CN (0, ‖gdl,i‖22I) is the scatter component,

6We choose η as this value in order to not be over-optimistic, especially
since in our case where the received power of the node is in the order of
10−4 to 10−5 Watts. This efficiency is consistent with the efficiency for low
power levels [34].
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TABLE II: Simulation Parameters
Parameter Area size Data rate Frequency of WET eOij Pl η

Value 30 m × 30 m 250 kbps 915 MHz 10−7d2 Watts / (m2·bit) 1 Watt(s) 1%

βl,i denotes the path loss that is determined by the distance
dl,i, K is the Rician factor, which is set to be either 100 to
show the cases where LOS path is much stronger than the
scatter component, or 4.5db (approximately 2.8) for the cases
where the strength of LOS path is similar to that of the scatter
component. Then, Kl,i = βKgdl,ig

dH
l,i /(K+1)+βI/(K+1).

The monitoring performance is defined as F (w) = minwi.
The parameters are summarized in Table II. In the following,
we will discuss the simulation results in different cases.

A. Centralized case
1) Single charger with fixed N : To begin with, we consider

the case where there is only one charger that transmits energy.
The charger is also the sink that collects data. We fix the
number of sensor nodes to be 15 and vary the number of
antennas M that the charger has from 50 to 100. For each
M , we simulate 200 times for different node locations. The
results are shown in Fig. 3, where x-axis is the number of
antennas and y-axis is the average minimum sampling rate of
the sensor nodes. The blue line with circles represents the case
of the optimal energy beamforming achieved by Algorithm 1.
The green line with squares, and the red line with crosses
represents the case of the pre-determined energy beamforming,
and the case of non beamforming, respectively. We observe
that, for both cases (K = 100 and K = 2.8), as the number of
antenna increases, the monitoring performance of all schemes
increases. The reason is that, with more antennas, the charger
can form sharper beams. Thus, more energy can be received
by the sensor nodes. It also shows that, the performance of
the optimal beamforming approach is much better than that
of the case without beamforming. This result illustrates the
benefits of using beamforming instead of broadcasting the en-
ergy. Moreover, the performance of the optimal beamforming
achieved by Algorithm 1 is slightly better than that of the pre-
determined beamforming found by solving Problem (8), where
the pre-determined beamforming vectors are the dominant
eigenvector of Kl,is. Recall that Problem (8) can be turned
into a linear optimization, whereas the optimal beamforming
requires solving an SDP. The time complexity for the pre-
determined beamforming is much lower than that of the
optimal beamforming. Thus, pre-determined beamforming is
a promising alternative for the optimal beamforming problem.

By comparing the performance with different values of
Rician factor K, we observe that the minimum sampling
rate is higher when K is smaller. The reason is that, with
smaller K values, more energy could be harvested from
scattering. Moreover, we also simulated the case of using the
pre-determined beamforming without optimizing their power,
as shown by the green dashed line with diamond markers in
Fig. 3(b). We can see that, in such a case, the sampling rate is
only slightly better than the energy broadcasting case. Thus,
the power of the energy beams needs be optimized for a good
performance.

2) Single charger with fixed M : In this case, we fix the
number of antennas of the charger as 100, and change the
number of sensors, N , from 15 to 100. For each N , we run
the simulation 800 times with different sensor node locations.
The simulation results are shown in Fig. 4, where x-axis is the
number of sensor nodes, and y-axis is the minimum sampling
rate of the sensor nodes. The solid lines correspond to the
cases where the routing is optimized, whereas the dashed lines
correspond to the cases where every node transmits data to the
sink directly without any data relaying.

In general, the monitoring performance obtained by using
energy beamforming is much better than the case of WET by
broadcasting. Pre-determined energy beamforming is slightly
worse than the optimal energy beamforming, which is similar
to the case where we vary the number of antennas of the
charger. If we check the monitoring performance (F (w) =
mini{wi}) of the optimal routing cases, we can see that the
trends of the optimal beamforming for both cases of K are
decreasing with the number of sensor nodes when N is small,
but increasing when N is large. The reason is that, with more
sensor nodes, the energy received by each node in average
decreases, whilst the energy consumption of a node may also
reduce due to the decrease in the average data transmission
distance. When N is small, the routing choices of the nodes are
limited. Thus, the reduced received energy of each node is the
major factor. However, when N is large, the network becomes
dense. Consequently, each node has more choices for routing
and the reduced energy consumption becomes the major factor
that makes the minimum sampling rate increase. This explains
why the performance of the optimal beamforming and the pre-
determined beamforming scheme in no routing cases decreases
with N .

We now consider the scenarios where no beamforming is
performed. In these scenarios, the minimum sampling rate
increases with N if routing is allowed. This is because the
energy consumption is slightly reduced by using node relaying
whereas the received energy does not change. When the nodes
are only allowed to transmit data directly to the sink, the
minimum sampling rate does not show any clear trend of
increase with increasing N .

We also note that, in the case of K = 2.8, when N is
very small, such as N = 6, the gap between the sampling rate
achieved by the pre-determined beamforming and the sampling
rate achieved by the optimal beamforming is not small. The
possible reason is that, the chosen pre-determined beams are
suboptimal. However, when N is large, it is more likely that
the chosen beams are close to the optimal beams, which makes
the gap smaller when N is large.

3) Multiple chargers with fixed M : We also test the case
with multiple chargers. The setting is similar to the case with
single charger. The difference is that we have four chargers,
which are located at (30, 0), (0, 30), (−30, 0), and (0,−30),
respectively. Each charger has 100 antennas and has a power
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Fig. 3: Comparison of minimum sampling rate with varying number of antennas, achieved by optimal energy beamforming, pre-
determined beamforming, and no beamforming, with the following parameters: (a) N = 15,K = 100, (b) N = 15,K = 2.8.
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Fig. 4: Comparison of minimum sampling rate with varying number of sensors, achieved by optimal energy beamforming, pre-
determined beamforming, and no beamforming, with the following parameters: (a) M = 100,K = 100, (b) M = 100,K = 2.8.

limit of Pl = 1 Watt. Due to the limited space, we only show
the results for K = 100 from here on. The result, as shown
in Fig. 5(a), is similar to the case with a single charger. More
specifically, the performance of pre-determined beamforming
is close to that of optimal beamforming, and both of them
are much better than the case with only energy broadcasting.
When data relaying is allowed, the average minimum sampling
rate first decreases with N , and then increases later, for both
beamforming scenarios. However, when data relaying is not
used, the minimum sampling rate decreases with N .

To gain insight into the case where the number of antennas
is small, i.e. M ≤ N , we also run some simulations where
the locations of the chargers are kept the same but the number
of antennas are reduced to 10. The number of sensor nodes
ranges from 15 to 60, and the result is shown in Fig. 5(b).
We also present the performance of the scenario with pre-
determined beams (Section IV-B). The green solid line with
squares represents the cases where ul,i corresponds to the
dominant eigenvector of the covariance matrix Kl,i. In this
case, we have more pre-determined beams than the number
of antennas. In such a case, the performance of the pre-
determined beamforming is close to that of the optimal beam-
forming. When we have an upper limit on the number of beams

that we can use, we set the pre-determined orthonormal basis
beams (green dashed lines with squares) as the orthonormal
basis for the range of [vl,1, . . . ,vl,N ],∀l using singular value
decomposition (SVD), where vl,i is the dominant eigenvector
of Kl,i. We also use random normalized vectors as the beam
vectors for the pre-determined random beams case (green
dotted line with squares). We observe that, if we limit the
number of beam patterns that each base station can have as
10, the performance degrades. The performance achieved by
the pre-determined orthonormal beams is approximately 3/4
of the performance achieved by the optimal beamforming,
but the performance of the case with randomly chosen pre-
determined beamformers is much worse. This indicates that,
the performance of the pre-determined beamforming scheme
greatly depends on the selection of the pre-determined beam
vectors. A good choice of pre-determined vectors will lead to
a smaller gap with the optimal solution, whereas a bad choice
may lead to a performance more closer to the performance
of the energy broadcasting case. Thus, how to select the pre-
determined beams, especially for the cases where we have an
upper bound on the number of such beams that can be used,
is an interesting research direction to explore.

We should also mention that, the performance of the pre-
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Fig. 5: Comparison of the minimum sampling rates with varying number of sensors, achieved by optimal energy beamforming,
pre-determined beamforming, and no beamforming from four chargers, with the following parameters: (a) M=100, K=100;
(b) M=10, K=100.
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Fig. 6: Comparison of the minimum sampling rates with
varying number of chargers and antennas achieved by optimal
energy beamforming and no beamforming.

determined beamforming depends on the accuracy of the esti-
mation of the covariance matrix of the channel, as shown by
the green solid line with diamond shaped markers in Fig. 5(b).
For the inaccurate covariance matrix cases, let K̂l,i 6= Kl,i

be the estimation of the channel covariance matrix in our
hands, and v̂l,i be the dominant eigenvector of K̂l,i. The line
represents the case where ‖Kl,i − K̂l,i‖2F /‖Kl,i‖2F= 1/10.
We observe that, when N = 15, the sampling rate of the case
is only approximately 60% of the case where the estimation
of the channel covariance matrix is exact. However, such a
performance degradation that dues to the inaccurate channel
covariance matrix estimation becomes smaller when we have
more sensor nodes.

4) Varying number of chargers and their antennas: Fur-
thermore, we are interested to see whether we should use
more chargers with a smaller number of antennas or a
smaller number of chargers with a larger number of antennas.
Consequently, we set the number of chargers as 2, 4, 8, 16, 32,
and 64, and the corresponding number of antennas per charger
as 32, 16, 8, 4, 2, and 1, respectively. This set of number
of antennas and the number of chargers pairs are chosen for
fair comparison between scenarios such that the total number
of antennas of the wireless chargers is constant, which is

64, in all scenarios. All chargers are deployed on the circle
with radius 30 meters centered at (0, 0) with equal angular
difference, e.g., for the case with 8 chargers, they are located at
(0, 30), (15

√
2, 15
√
2), (30, 0), . . . , (−15

√
2, 15
√
2). For fair-

ness, we set the total power the chargers transmit, NETPl, to
be 8 Watts. In total 30 sensor nodes are deployed at a disk
region with center (0, 0) and radius 15 meters. The result is
shown in Fig. 6, where the blue curve with circles shows the
minimum sampling rate of the optimal beamforming cases and
the red curve with crosses shows the minimum sampling rate
of the energy broadcasting cases. We can see that, when NET

is small, the performance improves with increasing NET. The
reason is that increasing NET makes the chargers cover the
sensor nodes better, i.e., it is less likely that there is a node that
is far away from all the chargers and become the bottleneck
of the network. However, when NET exceeds a threshold, the
performance degrades with the number of chargers. Let us
consider the scenario with NET = 64 chargers as an example.
Since the number of antennas is 1, no beamforming can be
performed and both strategies give the same performance. We
conclude that, when NET is large, the effect of having fewer
antennas on each charger becomes the dominating factor that
reduces the energy a node can harvest. Consequently, when
NET is larger than a certain number, which is 4 for the optimal
beamforming in our case, the sampling rate reduces with NET.

To summarize, compared to the case without using energy
beamforming, the monitoring performance improves signifi-
cantly by using the optimal energy beamforming. Also, the
performance of the pre-determined energy beamforming is
slightly worse than the optimal energy beamforming, and
the set of pre-determined beams affects the performance
significantly. We also show that, the configurations of the
wireless chargers, in terms of the locations and the number
of the antennas, also play an important role in the network
performance.

B. Distributed approach

We now focus on the distributed approach in this subsection.
As expected, in our simulations we have observed that it is
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possible to obtain the same optimum (approximately 10−5

relative gap) with the distributed approach. We now take a
closer look to the convergence properties of the distributed
approach.

1) Convergence of the distributed algorithms: In the sim-
ulations, ρ is chosen to be 0.2 to have a fast convergence.
We first test Algorithm 2 for the optimal beamforming case.
In the simulations, the number of wireless chargers is 4, and
they are located at (30, 0), (0, 30), (−30, 0), and (0,−30).
Each charger has 50 antennas. There are in total 15 sensor
nodes deployed in the field. We first use Algorithm 1 to find
the optimal solution (wmin) for Problem (3), and use it as a
reference for Algorithm 2. Then, we apply Algorithm 2 and
record the relative difference of minimum sampling rates in
each iteration (defined as ‖w(k)

min − w∗min‖/w∗min). The result
is shown in Fig. 7(a). The markers in circle correspond to
the updates of in the outer loops (Lines 6 to 21) and the
iterations count between two circles corresponds to the inner
loop updates (Lines 11 to 16). For the inner loop, we consider
it as converged if the values of the objective function in
two consecutive iterations are smaller than 10−3 during the
first 10 outer loop iterations and 10−4 for the remaining
iterations. To have a faster convergence, we set the maximum
number of iterations of inner loops per outer loop as 50. Thus,
we can see that the sampling rates and routing update 12
times (and the beamformings update in total 600 times) such
that relative difference of the sampling rate to the optimal
sampling rate is approximately below 0.01. In the last several
updates, the inner loops converge very fast (it takes one
or two iterations). Therefore, the markers are very dense at
the tail of the curve. After approximately 1200 updates of
beamformings, the relative difference of the sampling rate
achieved by Algorithm 2 to the optimum rate is below 10−4.
We can see that the resulting sampling rate converges to the
optimum value.

Then, with the same parameter setting, we test the dis-
tributed approach for the pre-determined beamforming case.
The convergence of the resulting sampling rate to the optimal
value of Problem (8) is shown in Fig. 7(b). Here, the maximum
number of iterations in an inner loop is set to be 100. We
can see that, it takes about 500 updates of beamformings
and 10 updates of sampling rates and routings, such that the
difference is within 10−2. After approximately 880 updates of
beamformings and 25 updates of sampling rates and routings,
the difference is below 10−4. The convergence speed of the
pre-determined beamforming case is faster than that of the
optimal beamforming case. Recall that the sampling rate of
the pre-determined case is close to that of the optimal case.
Therefore, although the pre-determined case is suboptimal, it
is still useful for us to achieve a close-to-optimal solution fast
and distributedly.

2) Comparison of different distributed approaches: We
also compare the convergence of the proposed ADMM based
approach to a block descent based approach. More specif-
ically, the block descent based approach iteratively updates
as follows: 1) by fixing the energy beamforming U l, update
sampling rate w and routing q; 2) by fixing the sampling rate
and routing, update energy beamforming. The result is shown
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Fig. 8: Comparison of the convergence of different distributed
approaches.

in Fig. 8. The blue line with circles represents the resulting
sampling rates achieved by Algorithm 2 in each iteration; the
green line with squares is the result of the ADMM approach
for Problem (8) (see Section V-B); the red line is the result
of the block descent based approach, where the wireless
chargers iteratively update local energy beamforming and the
sensor nodes update sampling rate and routing; the dashed
line in yellow is the optimum achieved by the centralized
approach. The result shows that, the sampling rate achieved
by Algorithm 2 converges to the optimal solution, whereas
the one achieved by Algorithm 2 adopted for Problem (8)
converges to a suboptimal solution. We should also mention
that, the sampling rate achieved by the block descent approach
keeps increasing with the number of iterations. However, the
increment is too small, which indicates a slow convergence
rate. Recall that, for the ADMM approaches, the sensor
nodes only exchange information in the outer loop of the
distributed approach, and the number of outer loop iterations
for convergence is small. However, for the block descent based
approach, the sensors share informations in each iteration to
update their sampling rates. Consequently, the sensor nodes
with the ADMM approaches spend much less energy in
exchanging information to update sampling rates than the case
where they use block descent based approach. To summarise,
Algorithm 2 is an efficient distributed approach for the joint
beamforming and routing problem.

VII. CONCLUSIONS AND FUTURE WORK

We considered a wireless sensor network whose energy
comes from wireless energy transmission from multiple wire-
less chargers. We investigated the problem of maximizing
the minimum sampling rate of the nodes, by jointly consid-
ering routing and energy beamforming for wireless energy
transmission. This set-up led to a non-convex problem for-
mulation. We transformed the original problem to a semi-
definite programming problem, for which strong duality holds.
We proved that the optimal solution of the new problem
is also the optimal solution of the original problem. Thus,
we proposed an efficient algorithm to solve the original
problem. We also provided a low-complexity scheme where
the beamforming vectors are pre-determined. To offload the
computation of the optimal solution, we further developed an



14

0 50 100 150 200
10

−6

10
−4

10
−2

10
0

Number of updates of sensors

R
el

at
iv

e 
ga

p

 

 

0 500 1000 1500

10
−6

10
−3

10
0

number of updates of chargers

R
el

at
iv

e 
ga

p
 

 

|w−w*|/w*

(a)

0 20 40 60 80 100
10

−8

10
−6

10
−4

10
−2

10
0

Number of updates of sensors

R
el

at
iv

e 
ga

p

 

 

0 500 1000

10
−6

10
−3

10
0

number of updates of chargers

R
el

at
iv

e 
ga

p

 

 

|w−w*|/w*

(b)

Fig. 7: The relative difference of the minimum sampling rate achieved by (a) the distributed approach (Algorithm 2); (b) the
distributed approach (Algorithm 2 adopted for Problem (8)) with the optimum in each iteration.

efficient distributed algorithm. The simulation results showed
that significant performance gains can be obtained by using
the proposed optimal energy beamforming compared to non-
optimized energy broadcasting. Moreover, the performance of
the pre-determined energy beamforming scheme is observed
to be only slightly worse than the optimal case, which suggests
that it could be a good substitute for the optimal beamforming.

An interesting future research direction is to consider the
scenario where the energy beam vectors have further restric-
tions, such as the number of different beam vectors that can be
employed. In addition, we will also consider energy sharing
between sensor nodes and optimization of the location of the
wireless chargers.
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