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Abstract—Wirelessly powered sensor networks (WPSNs) are
becoming increasingly important to monitor many internet-
of-things systems. In these WPSNs, dedicated base stations
(BSs) with multiple antennas charge the sensor nodes without
the need of replacing their batteries thanks to two essential
procedures: i) getting of the channel state information of the
nodes by sending pilots, and based on this, ii) performing energy
beamforming to transmit energy to the nodes. However, the BSs
have limited power budget and thus these two procedures are
not independent, contrarily to what is assumed in some previous
studies. In this paper, we investigate the novel problem of how to
optimally allocate the power for channel estimation and energy
transmission. Although the problem is non-convex, we provide
a new solution approach and a performance analysis in terms
of optimality and complexity. We also provide a closed form
solution for the case where the channels are estimated based
on a least square estimation. The simulations show a gain of
approximately 10% in allocating the power optimally, and the
importance of improving the channel estimation efficiency.

I. INTRODUCTION

Wireless energy transmission (WET) [1], [2] can be used
to charge the wireless devices remotely. It is a promising way
to extend the lifetime of wireless sensor networks (WSNs), or
even to support the WSNs to work as long as possible. WSNs
with WET are called wirelessly powered sensor networks
(WPSNs) [3].

In a typical WPSN as shown in Fig. 1, a base station
(BS), acting as the energy source, provides energy to the
nodes using WET, and the nodes use the received energy
to make measurements and transmit them to a sink, which
could be the energy source. Compared to traditional energy
harvesting, because the energy source is dedicated, the process
of the energy transmission is more controllable, predictable,
and reliable. Consequently, the performance of the nodes is
potentially more consistent.

A major problem of WET is the energy transmission
efficiency, which greatly depends on the loss in the wireless
channel [1]. As a result, the energy received at the node
may be too limited for data transmission. To improve the
efficiency, we can use energy beamforming techniques [4–
6], which concentrate the power to the targets, and thus the
nodes can collect more energy than the case where the BS
broadcasts the energy. However, energy beamforming requires
the knowledge of the channel state information (CSI) of the
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Fig. 1: The wirelessly powered sensor network considered
in this paper. The base station uses energy beamforming to
transmit energy to the nodes, and the nodes use the received
energy for sensing and data transmission back to the base
station.

nodes [7]. Therefore, besides WET, the BS must also spend
some power to estimate the channel by sending pilots or energy
probing [2], as shown in Fig. 1.

In general, the more energy the BS spends in channel
estimation, the more accurate CSI it will have. In so doing,
the BS can form a better energy beam to the nodes and thus
increase the power received at the nodes. However, the BS
has power limits imposed by national regulatory authorities
and standards due to the safety issues [8], [9]. Consequently,
it faces the crucial trade-off of using more power to get better
CSI for higher WET efficiency but less power in energy
transmission, or using more power in energy transmission
with smaller WET efficiency due to less accurate CSI. In
the literature, there are some works that focus on the cases
with only one energy receiver. However, to the best of our
knowledge, no investigations can be found to address such an
important problem for the cases with multiple energy receivers.

Motivated by the problem above, we propose and investigate
the power allocation problem for channel estimation and
energy transmission. To summarize, the contributions of the
paper are as follows:

• We propose the novel problem of power allocation for
channel estimation and energy transmission for multiple
sensor nodes, to maximize the monitoring performance
of a WPSN.

• We show that the proposed power allocation problem
is non-convex in general. Thus, we develop a novel



solution method based on solving a convex optimization
iteratively. We show that our proposed algorithm can
achieve a solution that possesses the desired optimality.

• We provide extensive numerical simulations to test the
performance of the proposed algorithm. We show that the
performance in terms of the data rate that the nodes can
transmit is greatly improved. Besides, we also show how
the power efficiency of channel estimation can greatly
improve the performance of the sensor network.

The rest of the paper is organized as follows. In Section
II, we summarize the related works on wireless energy
transmission, especially for sensor networks. We provide a
detailed description of the WPSN system and formulate the
novel power allocation problem in Section III. Then, we
provide a solution approach and the corresponding analysis
of the approach in Section IV, followed by the numerical
simulations in Section V. Last, we conclude our work and
discuss the future directions in Section VI.

II. RELATED WORKS

WET is an important technique to recharge the sensor
nodes. It allows us to transmit energy with the electromagnetic
waves, and it is a promising way to provide energy to
rechargeable sensor networks constantly. Compared to the
ambient energy harvesting, WET has advantages in terms of
better predictability and controllability [10]. More specifically,
the energy sources can control the transmission of radio signals
to carry energy in a form of electromagnetic radiation to
the sensor nodes. Thus, there is a rich body of literature
investigating charging wireless devices with WET.

The structures of WET systems can be broadly divided
into two types, according to the transmission of the
data: simultaneous wireless information and power transfer
(SWIPT) [11] and wirelessly powered communication
networks (WPCN) [7]. In SWIPT, the transmitter transmits
data and energy at the same time, thus the receiver could
allocate time, power, or antennas for decoding information
and harvesting energy [12]. On the other hand, in WPCN [7],
[13], the receivers transmit data using the energy harvested
from the transmitters. In WPCN, most of the studies focus on
maximizing the throughput of wireless devices by properly
allocating the frequency or scheduling time for energy
transmission and data transmission [13–16].

Since in WET the energy is carried by electromagnetic
waves, the energy transfer efficiency greatly suffers path
loss. To improve the efficiency, energy beamforming [4],
[5] can be used to steer the signals towards the receivers.
With perfect CSI, the work in [17] shows that the optimal
energy beamforming in terms of received energy of a point-
to-point MIMO system can be achieved by the eigenvector
corresponding to the largest eigenvalue of the channel matrix.
For a WPCN with multiple energy receivers, the authors
of [14] study a joint time allocation and energy beamforming
problem to maximize the network sum-throughput, and
provide a solution approach based on semi-definite relaxation.
However, in practice, the energy transmitter always needs

power and time to achieve CSI, and the performance of WET
depends on the channel estimation or learning that provides
CSI. The accuracy of CSI estimation for WET has thus
been investigated in [2], [5], [18]. In particular, the work
in [18] considers the training design of WET for a single
transmitter and single receiver system, such that the channel is
sufficient accurate for energy beamforming whilst the energy
consumption is not too high. The work is further extended
in terms of multiple transmitters case in [5]. However, the
considered network consists only one energy receiver.

In this paper, we investigate WPSN [3], which is the
case of WPCN for sensor networks. Since sensor nodes
are low power devices, we do not consider the maximum
achievable rate as it is commonly done in WPCN. Instead,
the metrics for sensor networks are usually lifetime and
monitoring performance, which have not been considered
in [2], [5], [18]. Important instances of studies concerning
lifetime and monitoring performance are in [6], [19–21]. Such
works considered the WET schedules to prolong WSN lifetime
or improve monitoring performance. However, they assume
that the wireless charger has perfect CSI or do not take channel
estimation into account.

The work in [22] investigates the relationship of the power
that is used in channel estimation and the expected received
energy at the receiver. However, the power allocation for
channel estimation and energy transmission to maximize the
network performance has not been studied for WSNs. The
case for a point-to-point network is studied in [18], [23].
However, the problem of how to allocate the power for
different energy receivers has not been addressed. This means
that, with the current approaches, it might happen that the
BS transmits more power than needed to some nodes whilst
it transmits not enough power to other nodes. This will
significantly degrades the performance of the entire network.
Thus, the power allocation for multiple energy receivers is
still an open question. Therefore, in this paper we study the
new problem of power allocation for channel estimation and
energy transmission in a WPSN. The optimization takes the
performance of all sensor nodes in the network into account,
as opposed to what are done in the previous studies that
only considered a single node’s performance. To address the
problem, we develop an binary searching based algorithm
that iteratively checks the feasibility on the power, which is
substantially different from the approaches in [18], [23].

III. MODELLING AND PROBLEM FORMULATION

We consider a WPSN as shown in Fig. 1. The network has
one BS and N > 1 sensor nodes, v1, v2, . . . , vN , demanding
low energy consumption rates. The BS has Nt antennas and
uses energy beamforming to transmit RF energy to the sensor
nodes. Accordingly, the sensor nodes use the received energy
to make measurements and to transmit data. Here we consider
a star topology network where the sensor nodes transmit their
measurements directly to the BS1. Thus, the data rate of the

1We should note that for a multihop WSN, when the routing table is fixed,
the results of the paper still valid.
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Fig. 2: In each time block of interest, the base station allocates
its power for estimating the channels of the sensor nodes, and
the power for energy transmission for each sensor node.

sensor nodes can be considered as the sampling rate of the
nodes. Since energy of the sensor nodes is supplied by the
BS, the nodes’ performance depends on how the BS utilizes
its power, as we describe below.

We consider a block-fading channel where the channels
from the BS to the sensor nodes remain constant in a time
block [17]. The duration of the time block is normalized as 1.
In each time block of interest, the BS has a total energy E for
channel estimation and energy transmission. It uses power P p

to send energy pilots for CSI estimation in the first tp time,
and then uses the rest of the energy Et to transmit energy to
the sensors, as shown in Fig. 2. Based on the estimation of
the channels, the BS can form energy beams using the existing
approaches [2], [6] with a certain power. Thus, the harvested
energy depends on the transmitted power, the exact channel
gains, and the accuracy of the channel estimation. Specifically,
the BS uses a standard least square estimation to estimate the
channels, as described in the following.

Consider a fading channel hi with additive white Gaussian
noise. The BS transmits pilots (for simplicity the pilots are the
column vectors of identical matrix I) with power P p, then
the signal received by node vi is yi =

√
P p/Nthi + ni,

where hi is the channel, ni is the noise with covariance
σ2
nINt . The node transmits back yi and the BS uses the least

square estimator to estimate, i.e., ĥi = yi/
√
P p/Nt = hi +

ni/
√
P p/Nt. Then, during the energy transmission, the BS

transmits energy Et
i to vi with beamforming ĥi. The expected

harvested energy of vi would be Et
i = E[η|ĥ

H

i hi|2Et
i/‖ĥi‖2],

where η is the RF-DC conversion rate of the node. When the
BS has massive antenna, Et

i converges to

Er
i = η

Ntg
2
i P

p

giP p +Ntσ2
n

Et
i ,

where gi = E[hH
i hi]/Nt

2.
For a node vi, it uses a predetermined fixed power to

transmit data. We denote the power consumption to transmit
a unit data to the sink node by ei > 0. Besides of the

2Although the scheme for channel acquisition is forward-link channel
estimation based on least square, our approach is valid for general cases
including power probing scheme as long as Er

i is a monotone increasing
and concave function of Pp. More discussion can be found in our journal
version.

energy consumption for data transmission, its static power
consumption is ci, which accounts for sensing, local data
processing, circuits, and also sending feedback to the BS.
Denote the data rate of node vi by wi. Then, we have that
the total energy consumption of vi is eiwi + ci

3.
Regarding the monitoring performance of the WPSN, we

hope to have that the nodes make measurements as much as
possible. Besides, we do not want to have some nodes make
little measurements. Thus, we use the minimum sampling rate
of the nodes, wmin, as the monitoring performance metric
of the WPSN. Denote w = [w1, w2, . . . , wN ]T , and Et =
[Et

1, . . . , E
t
N ]T . Then, we are ready to formulate the power

allocation problem as follows:

max
wmin,w,Et,Pp

wmin (1a)

s.t. wi ≥ wmin ,∀i, (1b)
eiwi + ci ≤ Er

i ,∀i, (1c)

tpP p +
∑
i

Et
i ≤ E , (1d)

wi, E
t
i , P

p ≥ 0 ,∀i , (1e)

where the objective is to maximize the minimum data rate of
all the nodes, wmin; Constraint (1c) is the energy causality,
i.e., the consumed energy of a node should be no larger than
the energy it receives; Constraint (1d) is the energy limit of
the BS; and Constraint (1e) is the non negative constraint
of the data rates, the training powers, and the transmitting
powers. The problem is to allocate the power of channel
estimation and energy transmission for each sensor node such
that the minimum rate of the nodes is maximized. If we
check Constraint (1c), we have that the Hessian matrix is
not positive semidefinite. Consequently, Problem (1) is not a
convex optimization and the solution approach is non-trivial.
Notice also that when N = 1, such a problem can be
simplified to a convex optimization. Therefore, the difficulty
of Problem (1) mainly comes from the power allocation
for multiple nodes. Even though the problem is non-convex,
we propose a solution algorithm to find the solution to the
problem, as will be presented in the next section.

IV. SOLUTION APPROACH

In this section, we investigate a solution approach to solve
Problem (1). Then, we show the correctness and efficiency of
the algorithm by analysing its computational complexity.

To develop the solution algorithm, we first study a sub
problem to check the feasibility on the power, based on the
assumption that the rate is given.

3This model is commonly used for WSNs [20], [24], [25] due to that
the power that the sensor nodes use for data transmission is very limited,
compared to other cases such as mobile phones. However, with proper
modifications, our approach still valid for the Shannon capacity based model.



Assume that wmin is given. Then, we want to find the
minimum power to satisfies such a rate, and formulate the
sub problem as follows:

min
Es,Et,P p

Es (2a)

s.t. eiwmin + ci ≤
ηNtg

2
i P

pEt
i

giP p +Ntσ2
n

,∀i , (2b)

tpP p +
∑
i

Et
i ≤ Es , (2c)

wi, P
p, Et

i ≥ 0,∀i . (2d)

Constraint (2b) gives us that Et
i should be no less

than (eiwmin + ci)
(
giP

p +Ntσ
2
n

)
(ηg2iNtP

p)−1,∀i. Define
fi(wmin) = (eiwmin + ci)(ηgiNt)

−1, and Ñi = Ntσ
2
n/gi.

Then, Problem (2) is equivalent to the following one:

min
0≤Pp

Es(P
p|wmin) , tpP p+

∑
i

fi(wmin)

(
1+

Ñi

P p

)
,

(3)

where Es(P
p|wmin) is the total power to satisfy the required

sampling rate wmin, where the BS uses power P p for channel
estimation. We have the following proposition for Problem (3):

Proposition 1: Problem (3) is a convex optimization, and

P p,∗(wmin) =
√∑

i fi(wmin)Ñi/tp is the optimal solution 4.
Remark 1: Proposition 1 gives us that the optimum of

Problem (3) is

E∗(wmin) =
∑
i

fi(wmin) + 2

√∑
i

fi(wmin)Ñitp . (4)

Let E∗(w) be the optimum of Problem (3) given w, and
w∗

min be the optimum of Problem (1). If E∗(w) < E, we
have that w < w∗

min; otherwise w ≥ w∗
min. This gives us the

solution algorithm for Problem (1) based on binary searching.
The idea is as follows:

We first find the lower bound and upper bound of wmin,
which is denoted by wl

min and wu
min respectively. For the

lower bound, we can easily choose wl
min = 0. For the upper

bound, one can choose wu
min to be the optimal solution of the

following linear optimization problem:

max
wmin,Et

wmin (5a)

s.t. eiwmin + ci ≤ ηNtgiE
t
i ,∀i , (5b)∑

i

Et
i ≤ E , (5c)

wmin, E
t
i ≥ 0,∀i . (5d)

The interpretation of Problem (5) is that the BS has perfect CSI
beforehand, thus it will not consume any power for channel
estimation, and has more power to charge the nodes.

Once we have known the upper bound and lower bound of
wmin, we can check the feasibility of wmin = 0.5(wl

min +

4All the proofs can be found in our technical report [26]

Algorithm 1 Power allocation of channel estimation and
energy transmission
Input: αi, ei, ci, ηi(·), ηi,max, ∀i, E, ε
Output: Et

i , ∀i, P p, wmin

1: Set wl
min = 0

2: if
∑

i ci/(ηNtgi) > E then
3: The problem is infeasible and return w = 0.
4: else
5: Find the initial upper bound wu

min by solving Problem (5)
6: while wu

min − wl
min ≥ ε do

7: Set wmin = 0.5(wu
min + wl

min)
8: Solve Problem (3) and achieve E∗(wmin) according to (4)
9: if E∗(wmin)− E > 0 then

10: Update wu
min = wmin

11: else
12: Update wl

min = wmin

13: end if
14: end while
15: Set wmin = wl

min, and set P p =
√∑

i fi(wmin)Ñi/tp

16: Set Et
i = fi(wmin)(1 + Ñi(P

p)−1), ∀i.
17: return Et

i , P
p, ∀i, wmin.

18: end if

wu
min) for Problem (3). If wmin is feasible, we update the

new lower bound by wmin; otherwise, we update the new
upper bound by wmin. This proceeds iteratively, until the
lower bound and upper bound converge. The summary of the
algorithm is shown in Algorithm 1.

Remark 2: According to Remark 1, the optimal wmin

should satisfy that E∗(w∗
min) = E. This equation has a

unique and close form solution, which is wmin = (a2 −√
a22 − 4a1a3)(2a1)

−1, where a1 =
(∑

i ei(ηNtgi)
−1
)2

,
a2 = 2

∑
i ei(ηNtgi)

−1
(
E −

∑
i ci(ηNtgi)

−1
)

+

4
∑

i eit
p(ηgi)

−1, and a3 =
(
E −

∑
i ci(ηNtgi)

−1
)2 −

4
∑

i cit
p(ηgi)

−1. However, we keep the binary searching
part in Algorithm 1, such that the solution can be applied
to other channel models and estimation approaches (which
leads to a different form of P p,∗(wmin)), by appropriate
modification. Due to the limited space, we skip the detailed
discussion here.

Now, we are ready to analyze the performance of
Algorithm 1 to solve Problem (1). The performance is in terms
of optimality of the solution provided by the algorithm, and
algorithm’s complexity.

The near optimality of the algorithm is given by the
following theorem:

Theorem 1: Let Problem (1) be feasible and let its optimum
be wo

min > 0. Given any arbitrary small gap ε, Algorithm 1
will find a feasible solution (wmin,w,E

t∗, P p∗) that satisfies
wo

min − wmin < ε.
Remark 3: Although the channels are estimated by least

square based approach, the proposed approach is still valid (by
proper modification) for other channel models or estimation
approaches, such as the ones in [18], [22], [27], as long as the
variance of estimation error is a convex decreasing function
with P p. Due to the limited space, we skip the detailed
discussion here.



Regarding the complexity of Algorithm 1, we have the
following proposition:

Proposition 2: Let Problem (1) be feasible and let its
optimum be w > 0. The time complexity of Algorithm 1 is
at most O (N log(E/N)), where recall that N is the number
of nodes, and E is the total energy that the BS has in a time
block.

Consequently, we conclude that Algorithm 1 is an efficient
approach to find a close optimal solution for Problem (1). In
the next section, we will test the performance of the proposed
algorithm by numerical simulations.

V. NUMERICAL SIMULATIONS

In this section, we numerically evaluate the performance
of Algorithm 1 to solve Problem (1). We use Matlab for
performing numerical simulations. We first describe the set-
ups of the simulations. Then, we test the convergence of the
algorithm. Finally, we evaluate the average minimum data rates
achieved by the algorithm with different network parameters.

1) Simulation Set-ups: The set-ups of the simulations are
given as follows. We deploy N = 20 sensor nodes in a disk
region with radius 50 meters. One BS with Nt = 100 antennas
is located at the centre of the region to transmit energy and to
collect data. The total energy available at the BS for the time
slot of 1 second is 3 Joule. The frequency of the RF energy
carrier is 915 MHz, and the path loss depends on the distance
between the BS and the node, and is calculated according to
the Friis equation. The RF-DC conversion rate, i.e., ratio of
received energy to the stored energy of a node, is η = 0.1 by
default. For a sensor node, it transmit data with the standard
2.4 GHz frequency. The power consumption to transmit a unit
size data to the BS is 10−7d2 Watts, where d is the distance of
the node to the BS. The static energy consumption of a node,
ci, is 3× 10−7 Watts. tp is 0.1 second.

2) Convergence Tests: First, we will show the convergence
of the algorithm. In the running case, we set the channel
estimation noise is σ2

n = −90 dBm. The sensor nodes are
randomly deployed in the region. The termination parameter
ε in Line 6 of the algorithm is set to be 0.001 bit/s. Then, in
Fig. 3(a), we plot wmin and the corresponding needed power
P ∗(wmin) achieved by Algorithm 1 in each iteration step.
Initially, the rate is w = 24.7 bits/s, and it requires energy
2.4346 Joules. Since it is smaller than the power the BS
can allocate, the threshold data rate increases from the 2nd
iteration until the 7th iteration, where the needed power is
slightly above E = 3 Joule. Then, the threshold rate starts
decreasing. The algorithm terminates at the 14-th iteration,
where the resulting rate is 31.5 bits/s. The corresponding
energy is slightly less than 3 Joules, which indicates the rate
is near optimal and feasible. The total number of iterations is
not too large, which indicates that the algorithm is efficient.

3) Performance Tests: To evaluate the performance of
Algorithm 1, we make simulations with different noise level
of channel estimation. For each combination of parameter, we
simulate 1000 times with different deployments of the nodes,
and take the average.

The performance is compared to an upper bound, a data
rate achieved by a random based power allocation, a rate
achieved by a fixed power allocation, and a rate achieved
by energy broadcasting. The upper bound corresponds to the
solution of Problem (5), which is the case where the BS has
perfect CSI. For the random based power allocation, the idea
is that the BS first allocates the power for channel estimation
P p randomly, and then finds the solution of Problem (1)
with P p fixed. The fixed power allocation is similar to the
random based power allocation, where the difference is that
the BS always uses a fixed ratio of the total power (in
the simulation we use 0.3 Watts) for channel estimation.
Regarding the energy broadcasting case, the BS spends no
power in channel estimation and just broadcast energy with a
fixed power 3 Watts.

We test the performance of the algorithm with different
channel estimation noise, which could be considered as the
power efficiency of channel estimation. The lower noise level,
the higher efficiency it is for channel estimation. We change
the noise level from −40 dBm to −90 dBm, and the results
are shown in Fig. 3(b). The blue line with circles, the green
line with crosses, the red line with squares, the yellow line
with diamond marks, and the dashed purple line represents
the average minimum data rate achieved by Algorithm 1, the
random based power allocation, the fixed power allocation,
the energy broadcasting, and the upper bound, respectively. We
observe that, when the noise level is high, e.g. σ2

n = −50 dBm,
the gap of the data rate Achieved by 1 to the upper bound
is large. The reason is that, in such cases, the BS needs to
spend more power to learn the channel for a good enough CSI
for energy beamforming. However, this leads to insufficient
power in energy transmission, and the performance of WET
deteriorate. However, when σ2

n reduces to −70 dBm, we
observe that the gap reduces to be almost negligible. The
reason is that the BS needs much less energy in channel
estimation to get a good enough CSI. We also compare the
data rate achieved by Algorithm 1, the fixed power allocation,
and the random based power allocation. We observe that the
rate achieved by the random based power allocation is much
worse than the optimal case. If the pilot power is fixed, the
performance is close to the optimal one at certain noise level.
However, at other levels, the rate achieved by Algorithm 1 is
approximately 10% higher than the fixed PA.

To summarize, the simulation results show the convergence
of the algorithm, and its performance is close to the upper
bound if we have large power efficiency in channel estimation.
Also, Algorithm 1 outperforms other power allocations scheme
in terms of the data rate.

VI. CONCLUSIONS AND FUTURE WORKS

We considered a wirelessly powered sensor network where
a BS uses energy beamforming to supply energy to sensor
nodes for sensing and data uploading. To acquire channel
state information for energy beamforming, the BS needs to
consume energy. Thus, we studied the problem of power
allocation on channel estimation and energy transmission for
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Fig. 3: (a) Convergence of Algorithm 1; (b) Comparison of Algorithm 1 to other approaches with different noise level in
channel estimation

each node, such that the monitoring performance, in terms
of data rate, is maximized. We showed that the problem is
non convex in general. To solve the problem, we proposed a
solution algorithm of low complexity, based on a binary search
approach, to calculate the optimal solution numerically. The
simulation results showed that significant performance gains
can be obtained by the proposed algorithm, compared to a
fixed ratio power allocation. Also, the performance is close
to the upper bound of the data rate if the power efficiency of
channel estimation is large enough.

In the future, we will study the case with multiple BSs, and
the cases with general channel acquisition methods.
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