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Abstract—Advancements on analog integrated design have
led to new possibilities for complex systems combining both
continuous and discrete time modules on a signal processing
chain. However, this also increases the complexity any design
flow needs to address in order to describe a synergy between the
two domains, as the interactions between them should be better
understood. We believe that a common language for describing
continuous and discrete time computations is beneficial for such
a goal and a step towards it is to gain insight and describe more
fundamental building blocks. In this work we present an algebra
based on the General Purpose Analog Computer, a theoretical
model of computation recently updated as a continuous time
equivalent of the Turing Machine.

I. INTRODUCTION

Shannon’s formalization of the Sampling Theorem in 1949
established a formal model for the digital signal processing
development later on. It provides a framework to convert
continuous-time signals into a discrete sequence of numbers
that can be processed by a digital computer. The subject of
sampling can be considered a very mature discipline but some
fundamental issues still remain. Aliasing is a fundamental phe-
nomenon and some researchers propose the implementation of
continuous-time circuits as a way to overcome these effects
[1]. Recently, even signal processing algorithms traditionally
implemented on the digital domain, such as Wavelets [2] and
nonlinear differential equations solvers [3], have proposed
analog/continuous-time implementations with improvements
on computing speed and power consumption suggesting the
emergence of hybrid analog/digital computers for embedded
and cyber-physical systems (CPSs).

Despite his work on discrete time systems, Shannon also
proposed in 1941 a continuous time (CT) model of compu-
tation (MoC) called the General Purpose Analog Computer
(GPAC) as an effort to provide a better understanding about
such systems [4]. Recently, GPAC has been updated and
regarded as an equivalent of the Turing Machine in the CT
domain [5]. In this work we present the GPAC MoC defined by
basic units and composition rules. We present an algebra that
captures the GPAC notion as a step towards the development
of a simulation and synthesis language for hybrid systems.

II. GPAC: THE CONTINUOUS-TIME MODEL OF
COMPUTATION FORMAL BASIS

Shannon introduced the GPAC model [4] for the Differential
Analyzer, a mechanical device used to solve ordinary differen-
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tial equations (ODEs) before the popularization of the digital
computer. The model was further refined by Moore [6]. Graga
and Costa proposed the deterministic feedforward GPAC (FF-
GPAC) model by restricting the possible feedback connections
on Shannon’s model [7].

In the FF-GPAC, functions generated by the machine are
exactly those that satisfy differential equations of the form

y(t) = p(t, y(t)),

in which p is a polynomial, y is the output function, 3 denotes
the derivative of y and I is some time interval. An FF-
GPAC is capable of generating a large range of functions:
rational functions (e.g. quotients of polynomials), irrational al-
gebraic functions and algebraic-transcendental functions (e.g.
exponentials, logarithms, trigonometric, Bessel, elliptic and
probability functions) [4], [5]. The class of functions that
are generable by Eq. (1) is closed under the usual arithmetic
operations and thus one can replace p by any such generated
function, e.g. §(t) = sin(t) because sin(t) is in this class [8].
Besides its expressiveness power, GPAC is also prone to
functionally preserving transformations [9], a topic to be
further explored in the future as it may prove useful towards
design automation of continuous time systems.

Moreover, the notion of complexity is being further ex-
panded to enable comparisons between discrete and contin-
uous time computers. Recent works show that the FF-GPAC
has the same computational power as the Turing Machine [8],
[9]. Still, the FF-GPAC model is founded on simple units
that may be electronically implemented and that are familiar
to microelectronics and control systems engineers (e.g. the
continuous time computer implementation shown in [3] is
based on the same basic GPAC units). We believe this to be a
reasonable choice for an expressive MoC and so the FF-GPAC
will be considered the basis for the discussion that follows.
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A. GPAC Basic Units

The basic units define the most basic computations allowed

in the GPAC. Fig. 1 shows those basic units detailed next.

a) Constant Function: A unit with constant parameter k
generates a constant output y = k for any time t.

b) Adder: Given two inputs v and v, it generates an
output w = u + v, for all variations of w and v.

c) Variable Multiplier: Given two inputs u and v, it
generates an output w = uv.
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Fig. 1: GPAC basic units.
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d) Integrator: Given two inputs u(z) and v(x), it gener-
ates an output w(t) = wo + ftto u(ty)dv(t,) where wy is the
initial setting of the integrator at tq, u is called the integrand
and v is called the variable of integration. The arguments ¢,,
and ¢, denote a concept of local time as perceived by the
module that generated signals u and v respectively.

B. GPAC Composition rules

In order to construct an arbitrary deterministic function p
from basic units a set of composition rules need to be enforced.
First, we require that for each unit two inputs and two outputs
can never be interconnected (short-circuited). Also, inputs can
only be driven by either the independent variable ¢ or by a
single unit output. These are the original rules proposed by
Shannon [4].

The additional restrictions from FF-GPAC [7] follow by
defining acyclic (no feedback) configurations Ay, to be polyno-
mial circuits by using only constant function units, multipliers
and adders. Thus the following conditions shall hold:

1) each input of a polynomial circuit should be the input
t of the GPAC or the output of an integrator. Feedback
is thus allowed only from the output of integrators to
inputs of polynomial circuits.

2) each integrand input of an integrator should be driven
by the output of a polynomial circuit;

3) each variable of integration of an integrator is the input
t of the GPAC.

We note that the composition rules for the GPAC give rise to
a regular structure as shown in Fig. 4. The polynomial circuits
Ay, respond instantly to changes on its inputs thus resembling
combinational circuits. Integrators on the other hand are units
that impose a dynamic behavior for the system in the sense
that they restrict the outputs of the polynomial circuits Ay
to actually behave as gradient functions dictating the output
trend. For this, Graca’s and Costa’s FF-GPAC can be regarded
as a continuous-time version of the Register-Transfer Level
(RTL) abstraction in modern digital design.
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Fig. 4: A particular GPAC configuration is built as a composition of 4 pew instance of Peor to be executed in the future.

polynomial circuits Ay and integrators resembling the RTL abstrac-
tion in digital design.
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Fig. 2: GPAC composition operators
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III. THE MODELING ALGEBRA

We capture the GPAC MoC in an algebra looking forward to
implement it on a domain specific language (DSL) for analy-
sis, simulation and synthesis of continuous time hardware. As
such, from this point onward with GPAC we actually denote
the FF-GPAC MoC. In the definitions that follow, we call a
signal the set of functions generated by a GPAC, and a process
the GPAC basic units and compositions of units. We choose
to describe a set of operators that capture the notion of the
composition rules previously described, abstracting away the
signals themselves, i.e. signals are not manipulated directly
but are inferred from a composition of processes.

Interactions between the continuous time dynamics and dis-
crete events are actually outside the scope of GPAC itself but
are nevertheless essential for hybrid computers and CPSs. We
propose to extend Shannon’s original mechanical analogy [4]
and assume that every continuous time system is confined
inside a black box and the machine operator can only perform
one out of two non-simultaneous operations: 1) close the
black-box and let the machine execute for an arbitrary amount
of time. During the execution the operator has no access to the
internal state nor the outputs of the machine and the machine
provides no hint about what is happening inside, it is entirely
up to the operator to decide when to start and when to stop
the continuous time machine; 2) open the black-box to observe
its current state and reconfigure the machine if the operator
decides so, i.e. to set up a new particular structure using the
basic units and the composition rules discussed previously.

In a recent work [10], Lee studies the challenges of com-
bining discrete with continuous time semantics and proposes
modeling hybrid systems in a practical manner by including
continuous dynamics within state machines, as modal models.
This concept fits well with our intuition of describing GPACs
as black boxes operated by “discrete” operators. As such, a
GPAC could be embedded within a state machine which con-
trols its state and inputs and collects its values, but needs not
to understand the operation semantics or views of time. This
paves the way for an elegant orthogonalization of different
concepts of time and transition. However, a comprehensive
analysis of the mechanisms of synchronization and the causal-
ity issues which arise falls out of the scope of this paper.

We capture this intuition by defining processes as recursive
objects Pcor like in (8). An object of this type denotes a
function that takes a time instant 7 to be observed and m
input values o' and returns n values 3" corresponding to the
outputs of the machine at the observation time, together with

Por(a™,B8") : 7 x a™ — 8" X Per(a™, 8") (8)



constor : Por(o, B) )
constl,. = (t,a) — (k, constl.;.)

>: Por(a, B) x Por(B,7) = Por (o, )

p1>p2 = (t,a) = (¢, p) > ph)
where b,p}) =p1(t,a) (5) o
(c,py) = p2(t,b)

We then define the three stateless GPAC basic units, rep-
resented in Fig. 1. constf, in (2) is a function that takes
an observation time ¢ and an input a and outputs a constant
value k. addercr in (3) and mult o7 in (4) take an observation
time ¢ and two inputs a and b and output a + b, respectively
a X b.

Next we introduce three operators to capture GPAC com-
position rules for describing polynomial circuits depicted in
Fig. 2. The cascade operator > in (5) captures the notion of
serial composition: p; > po is a process that takes an input
and evaluates both processes at time ¢, using the output of
p1 as the input to po. The parallel operator || in (6) abstracts
parallel composition: p; || p2 is a process that takes two inputs
and evaluate both processes at time ¢ generating two outputs.
Finally, the fan-out operator x in (7) captures the notion of a
single input feeding two parallel processes: p1 xp2 is a process
that takes a single input and evaluates both processes at time
t to generate two outputs. The basic objects and operators
defined so far are sufficient to describe polynomial GPAC
circuits while ensuring that the machine structure does not
change in between function evaluations at different observation
times.

A. Integration and Feedback

Eq. (1) suggests an interesting fact, generally overlooked:
feedback is not a mere topological option for the designer
but is in fact an essential part of continuous time systems
specification. Consider the open loop GPAC shown in Fig. 3.
The open loop configuration leads to the system in (9),
i.e., the only possible generable functions on an open loop
configuration are polynomial functions. Feedback, on the other
hand, leads to the more general family of functions described
by Eq. (1).

y(t) = p(t),

y(t) =

Fig. 5: GPAC configuration that generates y(t) = sin(t).

A problem involving ODEs however, is not completely spec-
ified by its equations only. Consider the sine wave generator
described by the GPAC in Fig. 5 [8] defined as the system
of equations (10). The general solution for this circuit is
y(t) = ksin(t + 0) and z(t) = kcos(t +0), V k,0 € R. The
verification of this result is trivial by substituting it in Egs. (10)
and is left to the reader. As for the same system several
outputs are equally valid, the system (10) itself constitutes

adder : Por(a X a,a)
adder = (t,a,b) — (a + b, addcT)

I: Por (v, B) X Por(v,8) = Por(a X B,y X 3)
p1 |l p2 = (t,a) = (c,d,p} || p5) 6)
(b,p}) = p1(t,a)
(¢, py) = p2(t,b)

3) multor : Por(a X o, ) ()
multcr = (t,a,b) — (ab, multcr)

x: Per(a, B) x Per(a,y) = Por(a, B X 7)
p1xp2 = (t,a) — (b, c, p} *ph)
(b,p}) = p1(t,a) (7)

where (. p’2) _ pz(t b)

a nondeterministic model. A set of initial conditions is thus
the information that collapses this nondeterministic model into
a deterministic one. In fact, the knowledge of any pair of
conditions y(tp) = yo, 2(tg) = 2, completely determines the
system.

As of GPAC composition rules, feedback is only allowed
from an integrator unit to a polynomial (stateless) circuit.
Therefore we introduce a feedback operator ¢ that captures
this notion in Eq. (11), instead of an open-loop block like in
Fig. 1. The operator ¢ takes a CT process p; with two inputs
and transforms it into a single input process with the closed-
loop feedback structure shown in Fig. 3. The parameters t
and yo capture the initial conditions as part of the system
specification. In the definition of the feedback operator we
assume that time can only advance, i.e. t > %y, and thus the
initial conditions of the process generated by observing the
system encode the history of that system.

¢ : Per(a x B,7) = Por(a,v)
ftg’yo p1=(t,a) = (c, ft,d pll)

where ¢ = y(t) such that y(t) satisfies y(z) = p1(z, a,y(z))
with y(tg) = yo at time ¢, d is an arbitrary number and p}
an arbitrary new process. On the new process generated by
evaluating § to.yo P1 WE enforce time continuity by requiring
a new initial condition pair to be (¢,d), i.e. the new initial
condition can be any arbitrary state d but must be defined at
the observation time ¢. In the particular case in which ¢ = d,
i.e., the new initial condition is the output of the machine at
the observation time ¢, continuity on the output is guaranteed.
This setup is purely denotational, giving no hint about how to
actually solve the ODE. In Section IV we discuss one approach
to embed ODE solvers into an executable language aiming
simulation of such systems.

This setup provides the advantage of being sufficiently
expressive to model open-loop integrators out of closed-loop
ones by using the structure described by (12), where p; is an
arbitrary GPAC and id is an identity process that propagates
its input at an observation time ¢ to the output. This structure
simply implements equation y(t) = p1(t) + 0 X y(t) = p1(¢)
which is equivalent to (9).

{y = §to’y0 (p1 || loopBreaker) > addcr

(1)

12
loop Breaker = (const%T * id) > multer (12)

IV. SIMULATION

As a proof of concept, we developed an embedded domain
specific language (EDSL) on the functional language Haskell
that implements this algebra'. We briefly present two key
concepts we rely on: lazy evaluation and explicit ODE solvers.

'EDSL and experiments found at https://github.com/forsyde/
reactive-gpac



GPAC EDSL  Comments || GPAC EDSL  Comments

Pcr PCT constructor prCT T Time host type for time
constl, . constCT k ¢ intCT  solver as argument
addcor addCT > >>> infix operator
mulcr mulCT || *ok ok infix operator

idor idCT * §&& infix operator

TABLE I: GPAC algebra as EDSL in Haskell.

Lazy evaluation [11] is an strategy which delays the eval-
vation of an expression until its value is needed. One of its
useful features is the ability to propagate unknowns as a chain
of operations throughout a program, enabling the definition of
control flow as abstractions instead of primitives. This strategy
permits the abstraction of processes Pcor in a continuation
style data type in which the results of a computation bring a
new function to be evaluated in the next computation round.
This translates into a potentially infinite structure of discrete
processes to be evaluated.

The denotational nature of the feedback operator ¢, Eq. (11)
implies that there are potentially many possible implementa-
tions for such algebra. For this paper we chose to instantiate
the operator § by using a collection of explicit one-step
ODE solvers, i.e., algorithms in which y(t) = ®(¢o, yo,t, f),
i.e., y(t) is approximated by a function that depends on
the initial condition, the observation time and the system
topology. Explicit Runge-Kutta methods are a family of such
algorithms [12] and are used.

We introduce the semantic function at to the language in
which p ‘at’ t takes a top-level process p and observes
its output on the specified time ¢. In this way, we introduce
two notions of time in the framework: 1) the local time as
seen by each process as the result of its management of time
advancement for a certain computation; 2) the observation
time, or global time, as seen by the GPAC operator and
communicated to the system via the at function.

at :: PCT ()
p ‘at' t =pT
where (pT, _) =prCT p t ()

a —> Time —> a

We describe the GPAC of Fig. 5 and initial conditions
z(0) = 1, y(0) = 0 in our EDSL with the func-
tion sineGPAC, which implements (10) using the open-
loop integrator defined in (12). For simulation we define
three processes pl(t) = sin(t), p2(t) = sin(2t) and
p3(t) = sin(t + 7/2). The processes tScale and tShift
distort the local time as seen by sineGPAC. One can
prove, e.g., that time >>> tScale 2 >>> sineGPAC
= time >>> sineGPAC (\t —> 2xt) by algebraically
applying the composition operators definitions. Fig. 6 shows
the output of these processes as observed at the same time
instants. These examples also show how to introduce hierarchy
on the models by using the keyword where to hide a process
inside another one.

sineGPAC = intCT rk4 0 0 pl
where
pl = (constCT
integrator = intCT rk4 0 1 loopBreaker
loopBreaker = (idCT xxx constCT 0) >>> adderCT

(=1) **xx idCT) >>> multCT >>> integrator

tScale k = (1dCT &&& constCT k) >>> multCT
tShift k = (idCT &&& constCT k) >>> adderCT
pl = time >>> sineGPAC
p2 = time >>> tScale 2 >>> sineGPAC
p3 = time >>> tShift (pi/2) >>> sineGPAC
1 i .
0 1
N
— 02 ||
— D3
0 \
-1C ! ! ! ! ! 1 !
0 2 4 6 8 10 12 14 t

Fig. 6: Local time distortion.

V. CONCLUSIONS & FUTURE WORK

We define an algebra with basic symbols and composition
rules for a CT MoC. We propose modeling integration only
in the context of feedback, contrary to all other languages
we are aware of. As discussed, this approach enforces closer
agreement to the formal model of computation which is
tinkered to avoid giving rise to non-deterministic systems.
Finally, we show a work-in-progress EDSL implementing
the proposed algebra which we believe is an important step
towards simulation, formal verification and synthesis of hybrid
systems.
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