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Vocal sound imitations provide a new challenge for understanding the coupling between articula-

tory mechanisms and the resulting audio. In this study, the classification of three articulatory cate-

gories, phonation, supraglottal myoelastic vibrations, and turbulence, have been modeled from

audio recordings. Two data sets were assembled, consisting of different vocal imitations by four

professional imitators and four non-professional speakers in two different experiments. The audio

data were manually annotated by two experienced phoneticians using a detailed articulatory

description scheme. A separate set of audio features was developed specifically for each category

using both time-domain and spectral methods. For all time-frequency transformations, and for

some secondary processing, the recently developed Auditory Receptive Fields Toolbox was used.

Three different machine learning methods were applied for predicting the final articulatory catego-

ries. The result with the best generalization was found using an ensemble of multilayer perceptrons.

The cross-validated classification accuracy was 96.8% for phonation, 90.8% for supraglottal myo-

elastic vibrations, and 89.0% for turbulence using all the 84 developed features. A final feature

reduction to 22 features yielded similar results. VC 2018 Acoustical Society of America.
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I. INTRODUCTION

By imitating sounds with the voice, humans can por-

tray the surrounding world and convey meaningful infor-

mation; e.g., the noise of a broken engine in the neighbor’s

lawn mower. Although these sounds have articulatory simi-

larities to speech and singing, they also have many unique

characteristics. As these sounds have not been studied

extensively in the past, they represent a new interesting

research field, combining phonetics, vocal production and

audio recognition.

This study was part of the EU project SkAT-VG, the

goal of which was to provide tools for “vocal sketching” of

sounds, for the purpose of facilitating sound design.

Conventionally, product designers sketch with pencil on

paper. Sound designers need a similarly effective tool, and a

given candidate is one’s own voice, hence the term “vocal

sketching.” In previous experiments within the project

(Lemaitre et al., 2016a, 2016b, 2017), a large number of

vocal imitations were collected. For example, Lemaitre et al.
(2016b) showed that listeners could effectively recognize

which sounds the vocal imitations were referring to, which

suggests that vocal imitations of everyday sounds convey the

sound features that are necessary for sound identification.

These vocal imitations consist of imitations of either

basic mechanical interactions (e.g., hitting a table, pouring

water) or manufactured products (e.g., vehicles, domestic

appliances, video game sounds). The recordings were further

annotated by experienced phoneticians according to the

detailed articulatory function. In order to incorporate vocal

sketching into computer tools for sound design, the SkAT-

VG researchers deemed it necessary to understand the imita-

tions from an articulatory point of view, and to develop

computer tools that analyze them in such terms. Therefore,

in this study, we wanted to explore if some of the manual

annotations of articulations could be predicted from the

audio recordings.

A key aspect for quantifying and understanding voice,

speech and music has been the development of specific audio

features that provide relevant information from a recorded

audio signal. Therefore, a large number of features have pre-

viously been developed (see overview in Al�ıas et al., 2016),

ranging from low-level physical descriptions such as zero-

crossing rate (e.g., Burred and Lerch, 2004) to perceptually

modeled features such as musical speed (e.g., Elowsson

et al., 2013). In addition, voice specific features have been

developed for clinical applications, with the purpose of char-

acterizing voice qualities commonly perceived in dysphonic

voices, such as hoarseness, breathiness, or roughness. These

features include jitter, shimmer, cepstral peak prominencea)Electronic mail: afriberg@kth.se
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(CPP), and noise-to-harmonic ratio (NHR). To a varying

extent, they can predict perceptually estimated voice quality

measures. For example, Gorham-Rowan and Laures-Gore

(2004) found moderate correlations between the perception

of hoarseness and breathiness versus several acoustic mea-

sures including NHR, amplitude perturbation quotient, and

fundamental frequency standard deviation. Carding et al.
(2004), found that jitter, shimmer, and NHR were shown to

have a low or moderate reliability and effect size relating to

voice quality when comparing dysphonic patients before and

after treatment. The CPP measure was found to predict per-

ceived breathiness to a rather large extent (Hillenbrand

et al., 1994) and correlated well with dysphonia (Heman-

Ackah et al., 2002). In a meta-study, summarizing 25 studies

which compared perceived voice qualities with acoustical

features, Maryn et al. (2009) found that only six out of 39

acoustical features were considered “superior,” meaning that

they had an average correlation to voice quality higher than

r¼ 0.6. The CPP measure had the overall best average corre-

lation with r¼ 0.88.

Given that the present dataset contains sounds produced

by unusual combinations of vocal production mechanisms,

not found in singing or speaking, and that previous voice

features had limited success in describing voice quality (with

the exception of, e.g., CPP), it was natural to develop new

features that were tailor-made for each articulation category.

For example, Lemaitre et al. (2016b) studied how human

imitators imitated basic acoustic parameters (pitch, attack

time, spectral centroid, etc.). For some of these parameters,

general-purpose audio features (Peeters et al., 2011) were

sufficient to describe some of the characteristic features of

the referent sounds. For some other cases, specific features

had to be defined to analyze the unique articulatory mecha-

nisms used by the imitators. In addition, we had the possibil-

ity to use the recently developed Auditory Receptive Fields

(ARF) Toolbox, which provides a new starting point for

audio analysis in general (Lindeberg and Friberg, 2015a,b).

The purpose of the present study was to predict three

articulatory categories from recorded audio of vocal imita-

tions. The approach was not to find a specific descriptor for

each articulation category, but rather to define a range of fea-

tures for each category that potentially could be used in a

subsequent machine learning step in order to predict the final

articulation. The focus was on the development of new fea-

tures for voice analysis using the ARF Toolbox. We start by

describing the data set, give an overview of the auditory

receptive fields methods, the specific methods used to define

audio features, and finally present the results.

II. DATA SET

A. French recordings

Four French imitators (two male, 21 and 39 years old;

two female, 21 and 41 years old) with normal hearing were

selected for the experiment. None of them had received for-

mal training in music, audio, dance, or theater, nor any prac-

tice of vocal imitation or Foley artistry.

There were 52 referent sounds selected from three fami-

lies. The first family (20 sounds) consisted of basic

mechanical interactions: a hit on a board, the friction of a

wheel on the ground, aerodynamic turbulences, water drip-

ping, etc. The selection balanced an equal number of sounds

produced by solid objects, liquids, and gases (Lemaitre

et al., 2010). The second family of sounds (20 sounds)

focused on the sounds of manufactured products: vehicles

(cars, buses, motorcycles), domestic appliances (refrigerator,

etc.), and alarms. The third family (12 abstract sounds)

included artificial sounds recorded from human computer

interfaces (mobile phones, video games, computer operating

systems) or synthesized.

The imitators used a custom-made Max/MSP v.6.1

(Ircam/Cycling74) user interface and were seated in a

double-walled IAC sound isolated booth. The setup included

a microphone (DPA Microphones, model d:fine omni), and

an audio interface (RME model Fireface 800). The imitators

was recorded at a sampling rate of 64 kHz, in 16-bit PCM

WAV files. The user interface allowed the imitators to listen

and compare the referent sound, record and play back an

imitation. The imitators were alone during the recording ses-

sion. They were instructed to provide an imitation in such a

way that someone listening to them would be able to identify

the sounds within the family. The imitators were instructed

not to use any conventional onomatopoeia. There was a limit

of five trials for each recording. We considered only the last

trial, thus, resulting in 208 imitations in total.

B. Swedish recordings

Four Swedish imitators (two male, 25 and 48 years old;

two female, both 25 years old) took part in the experiment.

All were professional improvisational actors, recruited

through an agency and paid for their participation.

In total, the Swedish recordings comprised a total of 200

imitations, elicited using 50 referent sounds. The referent

sounds were selected from the same three basic families as

those selected for the French recordings: basic mechanical
interactions (17 sounds), manufactured products (20

sounds), and abstract (13 sounds). For the Swedish data, the

selection of referent sounds was also guided by the major

articulatory mechanisms that they were likely to elicit, such

that each of the major mechanisms would have adequate rep-

resentation in the data.

The referent sounds were presented using a custom-

made Max/MSP user interface, similar to the one used for

the French recordings. The data were recorded in a sound-

proofed booth. The audio signal was recorded using a minia-

ture boom microphone (DPA Microphones, model 4066)

and a digital audio interface (RME, model Fireface UFX)

and was recorded at a sampling rate of 48 kHz in 24-bit

PCM WAV files. Some periodic sounds can be imitated with

oscillation of other tissues than the vocal folds. To obtain

some indication of the occurrence specifically of vocal fold

vibration, an electroglottographic (EGG) signal (which mea-

sures the amount of contact between the vocal folds) was

recorded as well, using a dual-channel EGG device (Glottal

Enterprises model MC2-1). In addition, two video streams

were recorded, one on a Canon Legria G30 at a frame rate of

50 fps, and the second on a Hero GoPro3þat 100 fps. As in
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the case of the French recordings, the user interface allowed

the imitators to play referent sounds at will, as well as listen

to their efforts at imitating the referent sounds.

A more detailed description of the recording procedure

and the selection of referent sounds for both the French and

the Swedish recordings is found in Lemaitre et al. (2015)

and in Ternstr€om and Mauro (2015).

C. Annotations

The annotation of the combined database (408 imita-

tions in total) was performed by two experienced phoneti-

cians (co-authors P.H. and G.L.S.) using the software

program ELAN (version 4.9.2, Brugman and Russel, 2004),

an annotation tool that allows one to create, edit, visualize,

and search annotations for video and audio data. As ELAN

supports the display of speech and video signals, together

with the corresponding annotations, it was possible to syn-

chronize complementary signal sources (audio, video, and

EGG) for more robust analysis of the data.

In the database, eight separate articulatory/phonatory

variables were annotated by hand: airstream mechanism,

vocal fold activity, epilaryngeal activity, velopharyngeal

activity, lip manner of articulation, tongue manner of articu-

lation, place of tongue constriction, and tongue shape. For

the purposes of the present study, three main articulatory/

phonatory categories were extracted from the database using

scripted queries:

(1) Vocal fold phonation,

(2) Supraglottal myoelastic vibration (SMV),
(3) Turbulence.

The choice of these three main categories was motivated

from a previous exploratory analysis of the articulatory char-

acteristics of the vocal sound imitations, made within the

SkAT-VG project. This suggested that different combina-

tions of these three main source mechanisms would suffice

for a broad description of the majority of the imitated

sounds. These mechanisms correspond to different kinds of

modulations of the airflow coming from the lungs, namely,

phonation, i.e., the vibration of the vocal folds, causing a

periodic modulation of the glottal area; the vibration of other

structures, above the glottis; and the creation of turbulence

in the airflow, usually in the vicinity of a constriction or an

obstacle somewhere in the vocal tract. Each of these catego-

ries was further divided into subcategories and extracted

with the scripted queries from the original annotations. Note

that these subcategories were not used directly for the final

prediction, which was limited to the three main categories.

The subcategories are presented here in order to describe the

nature and origin of the different phonation types in more

detail. These subcategories were used both in the annotation

and extraction of examples, and for developing the features

in Sec. IV.

(1) The “vocal fold phonation” category had seven

subcategories:

• no vocal fold phonation (0),
• breathy voice (1),

• falsetto voice (2),
• modal voice (3),
• pressed voice (4),
• creaky voice (5),
• unspecified vocal fold phonation (6).

The numbers in parentheses refer to the coding of the

audio excerpts as described below. The voice qualities asso-

ciated with the subcategories breathy, falsetto, modal,

pressed, and creaky phonation (1 to 5) are extensively

described in the literature [cf., e.g., Laver (1980) for an over-

view]. In addition, we assigned category (6), “unspecified

vocal fold phonation,” to instances of fairly high pitched,

quasi-periodic vibrations that did not fit any of the more

established categories above and is not found in linguistic

descriptions of voice quality. These were typically short

(less than 150 ms) and occurred predominantly in association

with the onset or offset of vocal fold phonation.

(2) The category “supraglottal myoelastic vibrations”

(SMV) had eight subcategories:

• no vibration present (0),
• lax labial vibration (1),
• lax tongue tip vibration (2),
• lax uvular vibration (3),
• epilaryngeal vibration (4),
• velic vibration (5),
• tense labial vibration (6),
• tense dorsal vibration (7).

In the phonetic literature, the lax categories (1), (2), and

(3) are referred to as “trills” that can be produced at different

places of articulation (Ladefoged and Maddieson, 1996).

Typically, trills are produced with a fairly lax stricture result-

ing in a cycle rate of 20–40 Hz. The subcategory

“epilaryngeal” vibration (4) refers to constrictions in the lower

pharyngeal region that can induce tissue vibration. In using

the term epilaryngeal, we follow Moisik (2013, p. 91ff),

highlighting the encompassing structure for this vibratory pro-

cess rather than the exact way in which the stricture is made.

Typically, the frequency of such epilaryngeal vibrations in

speech ranges between 40 and 100 Hz (Moisik et al., 2010;

Moisik, 2013, p. 126ff). These factors, along with individual

anatomical variations, contribute to the wide range of epilar-

yngeal vibration frequencies. The “velic” subcategory of

vibration (5) refers to rare cases of ingressive sounds that set

the velum into vibration. In effect, this means that the velum

is set to vibrate while sucking air in through the nose, as in

some forms of snoring. Finally, for labial and dorsal articula-

tions, a tense stricture can be made that results in a higher fre-

quency of oscillation (150–700 Hz) than the more lax

strictures described above. These faster, tenser vibrations

(which are not used as speech sounds in any language) were

assigned the subcategories “tense bilabial” (6) and “tense

dorsal” (7). Intermediate frequencies between lax and tense

strictures were not encountered in the data, so the possible

transitions from lax to tense strictures appear to be discrete.

(3) For the turbulence category, we defined eight

subcategories:
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• no turbulence (0),
• labial turbulence (1),
• turbulence with a grooved tongue anterior (s- and sh-

like turbulence) (2),
• turbulence with a flat tongue stricture (th- and kh-like

turbulence) (3),
• turbulence with a lateral tongue stricture (lateral turbu-

lence) (4),
• glottal turbulence (h-like sound) (5),
• nasal turbulence (6),
• tissue-modulated turbulence (7).

This classification is based as much on the type of stric-

ture as the place of stricture. The reason is that, in general,

the type of stricture determines the character of the sound as

much as does place. The “labial” subcategory (1) includes

both bilabial and labiodental sounds. The subcategory refer-

ring to a “grooved tongue anterior” (2) corresponds to sibi-

lant speech sounds (such as [s] and [S], as in sun and shun),

without detailing their place of articulation. The subcategory

referring to a “flat stricture” (3) indicates articulations with a

flat tongue constriction (no groove), which corresponds to

speech sounds like [h] and [x] (as in moth and loch). The

“lateral stricture” subcategory (4) refers to constrictions with

a lateral (rather than central) outlet, corresponding to lateral

fricatives in languages. “Glottal turbulence” (5) can be

equated with the speech sound [h] as in hat. “Nasal

turbulence” (6), which occurs as air exits the nostrils, is

equivalent to voiceless nasals in languages. Last, we classi-

fied some dorsal articulations as having “tissue-modulated

turbulence” (7). These were articulations in which a fluctuat-

ing constriction resulted in intermittent and irregular

turbulence.

D. Final extraction

The annotation procedure described above generated a

list of segment data pointers into the original database files

for each articulation subcategory. The final audio excerpts

were extracted using a script in MATLAB, resulting in one

audio file for each example. All sounding segments were

extracted that had a combination of articulation annotations

(in the scheme described above) that was a fit for one of the

three main categories. Note that the three categories and

their subcategories give rise to a large number of possible

combinations in any given sound segment. Each file name

was marked with a three-number combination (SMV-phon-
turb) referring to each subcategory of the three articulatory

categories as described above. For example, the combination

(2-3-0) would signify an sound with modal voicing and with-

out turbulence.

The analysis of slow SMV in particular demands a cer-

tain time window. The duration limit of the included seg-

ments was therefore set to 150 ms. This corresponds to three

cycles of 20 Hz which is approximately the lower frequency

bound for these vibrations. This also made the balance

between the number of segments in the positive and negative

categories in each category more even.

The extraction resulted in a total of 2689 audio segments

of which 1242 were longer than 150 ms and thus kept for the

modeling. The final distributions of the three data sets are

provided in Table I. There is a reasonably even distribution

of the number of segments in the positive and negative

groups for phonation and turbulence. There are compara-

tively fewer SMV cases which result in a larger portion of

negative segments in this class. This is a natural consequence

of articulatory dependencies in the voice production. The

number of segments varies across speakers with compara-

tively more segments for the French speakers.

III. AUDITORY RECEPTIVE FIELDS TOOLBOX

The audio examples were analyzed using the ARF

Toolbox implemented in MATLAB. The ARF Toolbox imple-

ments numerically a new mathematical framework for ana-

lyzing sounds with qualitative similarity to neural functions

in the auditory pathway (Lindeberg and Friberg, 2015a,b).

The model has not been derived primarily from available

measurements or data about auditory neural functions.

Instead it is an idealized mathematical model in the sense

that it is primarily derived from a set of structural assump-

tions regarding auditory functions, for example, regarding

covariance and invariance with respect to translations in time

or frequency and glissando transformations. Specifically, ide-

alized receptive fields from this model have been shown to

closely approximate neural responses in both the inferior col-

liculus (ICC) and the primary auditory cortex (A1) in mam-

mals (Lindeberg and Friberg, 2015a,b).

The first stage is to transform the audio signal into a

time-frequency representation in terms of a multi-scale spec-

trogram. Its properties include logarithmic frequency bins,

constant bandwidth and time-causal temporal processing. In

subsequent stages, additional layers of receptive fields defin-

ing local areas in the time-frequency representation can be

applied to the first-layer spectrogram. Depending on the

shape and size of the receptive fields, different properties

can be enhanced, such as onsets, partials, and formants (see

Lindeberg and Friberg, 2015a,b). The ARF Toolbox was

developed quite recently, and this is the first time it has been

applied to a complex practical modeling problem.

TABLE I. The distribution of the number of segments in each of the three

articulation categories. Numbers for each participant refer to the number of

positive/negative segments.

Gender Nationality Total Phonation SMV Turbulence

Positive total 698 300 705

Negative total 543 941 536

Speaker 1 M Swedish 143 73/70 48/95 78/65

Speaker 2 M Swedish 81 45/36 23/58 41/40

Speaker 3 F Swedish 110 53/57 35/75 49/61

Speaker 4 F Swedish 87 47/40 62/144 43/44

Speaker 5 M French 206 120/86 36/152 128/78

Speaker 6 M French 188 115/70 48/70 72/116

Speaker 7 F French 223 127/96 10/213 183/40

Speaker 8 F French 203 118/85 57/146 111/92
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A. The first stage: Transformation from audio to
spectrogram using the ARF Toolbox

According to the theory in Lindeberg and Friberg

(2015a,b), a family of transformation methods can be used

to produce a spectrogram from audio. We have chosen here

to use the time-causal transformation using a series of first-

order integrators (truncated exponentials or recursive filters

in the discrete case). A continuous spectrogram Sh is defined

from a continuous signal f(t) using a time-causal temporal

window kernel hcomp in the following way [Eqs. (55), (33),

and (31) in Lindeberg and Friberg (2015a)]:

Shðt;x; lÞ ¼
ð1

t0¼�1
hcompðt� t0; lÞf ðt0Þe�ixt0dt0; (1)

hcompðt; lÞ ¼ �K
k¼1hexpðt; lkÞ; (2)

hexp t; lkð Þ ¼
1

lk

e�t=lk ; t � 0;

0; t < 0:

8><
>: (3)

For the discrete implementation in this study, we approxi-

mate the continuous kernel hcomp by the composition of

seven recursive filters with each layer of the form

fout tð Þ � fout t� 1ð Þ ¼ 1

1� lk

fin tð Þ � fout t� 1ð Þ
� �

: (4)

The filters are coupled in cascade with the temporal scale

levels sk ¼ c2ðk�KÞs0 determined from a logarithmic distribu-

tion with distribution parameter c ¼
ffiffiffi
2
p

and related to the

time constants lk according to [see Lindeberg and Friberg

(2015a), section “Computational implementation”]

sk ¼
Xk

i¼1

ðl2
k þ lkÞ (5)

from which the time constants can be computed according to

Eq. (151) in Lindeberg and Friberg (2015a). The resulting

composed temporal window kernel is shown in Fig. 1 [see

also Fig. 5 in Lindeberg and Friberg (2015a)]. The width of

the kernel in terms of its standard deviation rt was in the

middle frequency range eight cycles of the center frequency

of each bin. Thus, in this range, the frequency bandwidth

was constant with respect to logarithmic frequency for

quasi-stationary signals. In the upper and lower part of the

frequency range, the standard deviation of the kernel was

gradually flattened out to a constant value. In the lower

range, this prevented the kernel from becoming unrealisti-

cally wide for low frequencies.

The frequency bins were logarithmically spaced from

MIDI note number 36 to 132 (approximately 65 Hz to

16.7 kHz as given by f ¼ 2ðMIDI�69Þ=12 � 440 Hz) with a res-

olution of 48 bins per octave. The position in time of each

bin was time-compensated using the inflection point of the

kernel as the reference.

Finally, the magnitude of the spectrogram S was con-

verted to sound level with a range from 0 to 60 dB normal-

ized to the overall maximum value Smax,

SdB ¼ 20 log10

jSj
Smax

� �
þ 60: (6)

In comparison with other time-frequency transforms, the

unsymmetrical kernel used here gives a better sound onset

response than a discrete Fourier transform using a symmet-

rical window such as a Hanning window. It has also been

shown that this type of kernel, using another set of scale lev-

els with constant lk, is the same as the gamma-tone filter

that is often used in auditory models (Lindeberg and

Friberg, 2015a). Considering the constant bandwidth and

logarithmic spacing of the frequencies, it is in this respect

close to a constant-Q transform (CQT) (e.g., Brown and

Puckette, 1992).

B. The second stage: Transformations applied on the
spectrogram using the ARF Toolbox

A smoothing operation over frequency and time is

defined using a 2D spectro-temporal receptive field T2D

applied on the sound level spectrogram [Eq. (83) in

Lindeberg and Friberg (2015a)]

Sf iltðt; �; sf ;RÞ ¼
ð1

t0¼�1

ð1
�0¼�1

T2Dðt0; �0;RÞ

� SdBðt� t0; � � �0; sf Þdt0d�0; (7)

where R is a spectro-temporal covariance matrix of the 2D

spectro-temporal smoothing kernel of the form

T2Dðt; �; RÞ ¼ gð� � vt; sÞT1Dðt; sÞ: (8)

Here, g is a Gaussian smoothing kernel over logarithmic fre-

quencies �, T1D is a time-causal temporal smoothing kernel,

s is the log-spectral scale, s the temporal scale, and v is the

glissando parameter that describes how fast logarithmic fre-

quencies vary with time.

From such zero-order receptive fields, derivative based

spectro-temporal receptive fields can in turn be defined

according to

Aðt; �; RÞ ¼ @a
t @

b
� ðgð� � vt; sÞT1Dðt; sÞÞ; (9)

FIG. 1. (Color online) The time-casual kernel hcomp used for the spectro-

gram transformation with K¼ 7 and c ¼
ffiffiffi
2
p

.
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where a denotes the order of temporal differentiation and b
the order of log-spectral differentiation. In this study, we

did, however, not use the full flexibility of second layer

receptive fields (9) and only the basic smoothing operation

(7) with different time and frequency parameters.

IV. FEATURES

A group of features was developed specifically for each

of the three main articulation categories. For the phonation

and turbulence category, we first developed an enhancement

of the spectrum specifically targeted for each category using

the ARF Toolbox. Then, we extracted potentially relevant

features for each time frame. Finally, these frame features

were combined using different statistics to form the final fea-

tures used in the subsequent prediction. For the SMV cate-

gory, we also used extraction techniques based directly on

the audio waveform. The calculation of all features was

implemented in MATLAB.

A. Phonation features

The aim of the phonation features was to detect any reg-

ular harmonic signal considering also the case with a consid-

erable amount of noise present. Therefore, we used a method

that specifically enhances the fundamental frequency of a

periodic and harmonic signal by adding frequency-translated

copies of the spectrogram. This poses very few restrictions

on the signal and it can, for example, also be applied to sev-

eral simultaneous harmonic sources. For computing the pho-

nation features we applied the following steps starting with

the spectrogram SdB in Eq. (6).

a. Removal of silence before and after sound. Any

silence in the beginning and end of the spectrogram was

removed in the first stage. The spectrogram SdB was smoothed

using a second stage filtering as described in Sec. III B. A dis-

crete Gaussian kernel was used for both the time and frequency

dimension with the standard deviation in frequency rf ¼
ffiffi
s
p
¼

3 semitones, corresponding roughly to critical bands, and with a

standard deviation in time rt ¼
ffiffiffi
s
p
¼ 0:01 s:

A detection function di was calculated for each frame i
in the smoothed spectrogram Sf by taking the maximum

sound level in each frame. A fixed threshold was defined at

�25 dB below the maximum sound level for the whole

example,

di ¼ max
j

Sf ;i;j � ðmax
i;j

Sf � 25Þ: (10)

The beginning and end of the initial spectrogram, in which

dj was below zero, were removed.

b. Whitening in spectral dimension using an ARF

Gaussian filter. A 1D receptive field corresponding to a

smoothing filter across the frequency dimension was applied

on the cropped spectrogram from the previous calculation,

using a discrete Gaussian kernel with the standard deviation

of rf¼ 8 semitones, resulting in the spectrogram Sf. For each

time frame i and frequency bin j, the filtered spectrum Sf,i,j

was subtracted from the cropped spectrogram SdB,i,j using an

offset of 3 dB and a maximum range of 50 dB from the local

maximum in the frame,

Sw;i;j ¼
SdB;i;j � ðSf ;i;j þ 3Þ; SdB;i;j > max

j
SdB;i;j � 50;

0; SdB;i;j � max
j

SdB;i;j � 50:

8><
>:

(11)

An example of the resulting spectrogram Sw is shown in Fig.

2, middle.

c. Enhancement of harmonic fundamental

frequency. We assumed that the spectrum of the phonation

part of the sound was perfectly harmonic and the remaining

part of the audio consisted of some kind of noise. The

enhancement of the harmonic fundamental was done by add-

ing translated spectrogram copies according to the harmonic

series. For example, the spectrum translated one octave

down was added to the original spectrum. In this way, the

fundamental was enhanced, adding the magnitude of the first

partial. This will also add an extra partial one octave below.

However, the impact of these extra partials will be small

since they will not appear at the same frequency, and thus

will not be additively enhanced. Accordingly, the resulting

spectrogram Sh was computed as a sum of k translated copies

of the whitened spectrum Sw,

Sh;i;j ¼
X

k

ckSw;i;ðjþlkÞ; (12)

where ck are scalar constants and lk defines each translation

in frequency according to the harmonic series. For the fre-

quency translations that did not match the frequency sam-

pling points, the spectrum was interpolated. One example of

such a final harmonic enhancement is shown in Fig. 2 (bot-

tom). As seen in the figure, the fundamental (the most red

parts) is enhanced while the remaining partials are

suppressed.

d. Frame feature extraction. The following six frame-

based features were calculated from each time frame of the

enhanced fundamental: Sound level (hf0_maxsl) and fre-

quency (hf0_maxf0) of highest peak, sound level

(hf0_max2sl) and frequency (hf0_max2f0) of the second

highest peak, difference in sound level between the two

peaks (hf0_maxsldiff), and mean sound level for all peaks

except the highest one (hf0_meanrestsl).

e. Final features across frames. Statistical properties

were calculated across the time-frames for all frame-based

features in the preceding step. The statistics used for these

final features were the upper quartile (_uqt), the standard
deviation (_std), and the mean of the absolute difference
between frames (mean absolute derivative in time) (_mva).

They were calculated across the whole sound example. This

resulted in a total of 18 (6 � 3) features for the phonation
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category. Note that the mean absolute derivative is also used

as a feature in the image processing method surf (Bay et al.,
2008).

This method resembles the CPP previously used for esti-

mation of breathiness and other voice characteristics

(Hillenbrand et al., 1994; Hillenbrand and Houde, 1996).

The CPP estimates the amount of periodicity in the voice

signal by measuring the peak prominence in the cepstrum.

We use instead the summation of spectrograms to enhance

the fundamental frequency. Then similar to the CPP, the

periodicity (or the relative amount of an harmonic signal)

will be high if there are prominent peaks in the resulting

spectrum (e.g., as the bottom graph in Fig. 2). Also, instead

of selecting one final measure, we chose several different

possible features from the resulting spectrogram. The idea

was to let the importance of these varying aspects be discov-

ered by the machine learning algorithms in the subsequent

processing.

B. SMV features

The character of the supraglottal myoelastic vibrations

and their relation to the resulting audio signal is largely

unknown. Therefore, we used several different approaches

for the feature extraction, using the time-domain signal, the

instant sound level defined below, or the spectrogram as

input. One challenge was that the signal could contain also

phonation and turbulence at the same time. As specified in

Sec. II C, the frequency of SMV vibrations sometimes over-

laps with the frequency ranges of normal phonation. Our

approach was to focus on the amplitude modulations result-

ing from SMV for the different frequency ranges as specified

in the subcategories. That amplitude modulation is a strong

effect in SMV seems intuitive given that myoelastic oscilla-

tions of the lips results in an amplitude modulation of other

sounds produced by normal phonation in other parts of the

vocal tract.

1. Modulation filter bank

As mentioned above, SMV sounds can be viewed as

comparatively slow amplitude modulations of the turbulence

and/or phonation. Therefore, we developed a modulation fil-

ter bank for specifically detecting amplitude modulation in

the lower frequency range between 18 and 1000 Hz. The

design can be viewed as a simplification of the auditory

modulation filter bank proposed by Dau et al. (1997). The

following steps describe the procedure.

a. Instant sound level (ISL). The ISL was computed

from the RMS of the signal using a Hann window of 1 ms

and a hop size of 0.1 ms. A subsequent high-pass filter with a

cutoff at 15 Hz removed the DC component. As a result, the

ISL had a sampling frequency of 10 kHz and a frequency

range of 15 Hz–1 kHz.

b. Spectrum. An average spectrum was computed by

averaging over a series of short-time Fourier transforms with

a Hamming window of 1024 samples and an overlap of 512

samples.

c. Filter bank. Six filter channels were defined accord-

ing to the expected frequencies for the different type of

vibrations as specified in Sec. II C. They were approximately

logarithmically distributed with band 1, 18–35 Hz; band 2,

FIG. 2. The original spectrogram (top), the whitened spectrogram (middle),

and the resulting enhancement of harmonic fundamental (bottom). The

sound example is an imitation of an accelerating lorry containing both pho-

nation and turbulence.
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35–60 Hz; band 3, 60–110 Hz; band 4, 110–220 Hz; band 5,

220–500 Hz; band 6, 500–1000 Hz.

d. Final features. The maximum sound level in each

band was used as the final six features (vibspecdb1–6).

The final signal processing design (e.g., computing the

ISL) was determined from testing various solutions on a

small selection of examples. The efficiency is particularly

evident in the lower frequency range. An example is given

in Fig. 3, which illustrates how the supraglottal myoelastic

vibrations emerge in the averaged spectrum (calculated in

step 2 above). Notice also that the vibrations can be observed

in the upper/middle part of the spectrogram. A drawback is

that the frequency of the vibrations needs to be rather stable

during the whole example.

2. SMV features using vibrato extraction methods on
the sound level waveform

The ISL described in Sec. IV B 1 was used as input. The

ISL curve was filtered in three different frequency ranges. A

method developed for vibrato extraction (Friberg et al.,
2007) was used for the extraction of the dominant AM fre-

quencies in each frequency band. One advantage with this

method is that it allows accurate detection of the frequency

even if it varies on a cycle-to-cycle basis. The following

steps were applied.

a. Filtering. The ISL signal was low pass and high pass

filtered into three different bands corresponding to expected

frequencies for these types of vibrations. Band 1, 15–40 Hz;

band 2, 40–110 Hz; band 3, 100–250 Hz.

b. Detect regular amplitude variations. In each band,

cyclic variations of the SL curve were detected using the

three-point method suggested by Prame (1994) and imple-

mented by Erwin Schoonderwaldt (Friberg et al., 2007).

Local peaks and troughs of the band filtered SL curve were

detected with a simple peak-picking method. For each half-

cycle n (peak-trough-peak or trough-peak-trough) rate Rn

and extent En were calculated using a three-point estimation

involving the two adjacent peaks/troughs,

Rn ¼
1

tnþ1 � tn�1

; (13)

En ¼
1

4
jAnþ1 � 2An þ An�1j; (14)

where tn indicates the time instance of the peak/trough and A
is the filtered ISL. An example of the detected peaks and

troughs is shown in Fig. 4.

c. Final features. There were four features calculated

from the detected points for each of the three bands. The first

two features consisted of the median rate R and extent E
over all detected points (vibrate3–5 and vibext3–5). The

third feature LR was a calculation of the total length of

detected variations, relative to the total length of the example

(vibprop3–5). It reflects the relative duration of amplitude

vibration in the example. The fourth feature was a combina-

tion of two features via multiplication, LR � E, reflecting the

interaction between them (vibextprop3–5). In addition, two

combinations of the extent values were computed using the

maximum across band 1 and 2 (vibcomb34) and the maxi-

mum across band 1, 2, and 3 (vibcomb345). These last fea-

tures reflect a coarser division of the frequencies into two

regions. This resulted in a total of 4 features � 3 bands þ 2

combination-features ¼ 14 features.

FIG. 3. Spectrogram (top), power spectrum of original audio signal (mid-

dle), and power spectrum of the ISL (bottom). The sound example is a vocal

imitation of a lawn mower and contains both slow SMV and phonation. The

averaged power spectrum of the original audio signal (middle) is dominated

by the phonation frequency around 250 Hz (red line in spectrogram). The

power spectrum of the ISL (bottom), shows the emerging low frequencies

corresponding to the SMV, the comparatively lower amplitude for the fun-

damental frequency of the phonation, and the emergence of the second par-

tial at around 500 Hz.
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This method is rather sensitive to a signal containing a

mixture of frequencies that potentially can introduce errors in

the resulting calculations. This is partly compensated for by

using the median across several estimations. However, it is

also potentially less sensitive to frequency variations within

each band, since the calculations of the extent and rate are

based on just a half-cycle of the modulation frequency.

3. SMV features using vibrato extraction methods on
the spectrogram

It was evident that the supraglottal myoelastic vibrations

were visible as cyclic variations in the upper part of the spec-

trogram (see top graph in Fig. 3). Therefore, we also imple-

mented the vibrato extraction method using the spectrogram

SdB in Eq. (6) as input. However, due to the resolution of the

resulting signals fewer frequency bands were analyzed in

this case. The following steps were applied.

a. Extract sound level curve for upper spectrum. The

sound level curve of all frequencies above 1 kHz was calcu-

lated, using the median sound level across all frequency bins

for each time frame in the spectrogram.

b. Detect regular amplitude variations. From the sound

level curve, cyclic variations were detected using the same

three-point method previously used for vibrato detection, as

described in Sec. IV B 3 a.

In this case, we used a coarser division of just two bands

addressing both the relatively slow vibrations by the tongue

and lips (around 30 Hz) and the somewhat faster vibrations

produced by various inner parts of the throat and tongue

(around 70 Hz, but with a rather large span). For the slow

variations, a low pass filter with a cutoff of 50 Hz was first

applied and then the detection was made with a range of 15

to 40 Hz. For the fast variations the cutoff frequency was

220 Hz and the detection range was 40 to 200 Hz. This

resulted in two sets of discrete detection points marking both

each detected peak and trough for the two frequency bands.

The rate R and extent E were calculated from Eqs. (13)

and (14).

c. Final features. There were four features calculated

from the detected points for each analysis. The first two fea-

tures were extracted by computing the median across all

detected points for the rate R and extent E (vibrate1–2 and

vibext1–2). The third feature LR was a calculation of the

total length of detected variations relative to the total length

of the example (vibprop1–2). The fourth feature was a com-

bination of two features via multiplication, LR � E, reflecting

the interaction between them (vibextprop1–2). This resulted

in a total of eight SMV features.

4. SMV features using a difference function on the
waveform

As the periodicity of sounds can be detected by correlat-

ing an audio file with itself in the time domain (autocorrela-

tion), this strategy was also used for detecting the myoelastic

vibrations. It was accomplished by implementing the aver-

age squared difference function (ASDF) as used in the YIN

pitch detection algorithm [Cheveign�e and Kawahara, 2002;

see also Rao (2011)].

a. Difference function. The difference function dt is

defined as the cumulative sum of the squared difference

between each value xðnÞ and the value at xðnþ sÞ, where

n¼ 0,…,N � 1 is the index of a signal with N samples and s
the offset ranging from smin to smax,

dtðsÞ ¼
XN�1

n¼1

ðxðnÞ � xðnþ sÞÞ2: (15)

The input values in terms of smin to smax, hop and block size

N were specified manually, and were tested with different

values to ensure the best balance between speed and accu-

racy. The minimum frequency was chosen to be 20 Hz and

the maximum frequency was set to 200 Hz. Hop and block

size N were set to 10 and 20 ms, respectively. Note that

while the former parameter speeds up the calculation when it

is increased, the latter speeds it up when it is decreased.

b. Normalization and scaling. The difference function d
was further scaled with the cumulative mean difference

function (Cheveign�e and Kawahara, 2002). The resulting d’
reduces the sensitivity to strong formants and reduces the

sensitivity for peaks at multiple frequencies (Rao, 2011),

d0t sð Þ ¼

1 if s ¼ 0;

dt sð Þ
1

s

Xs

j¼1

dt jð Þ
otherwise:

8>>>><
>>>>:

(16)

FIG. 4. (Color online) The ISL (top) and the detected peaks and troughs in

the filtered waveform (bottom) for the lowest frequency band. The example

is the first part of the one shown in Fig. 3.
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c. Frequency detection. After having computed the dif-

ference matrix for a specific fragment, the lowest and second

lowest minima of the specified frequencies were identified

separately for each frame. The number of frames depends on

the input parameters mentioned above. Figure 5 shows an

excerpt from the output of the difference function d0 and the

detected minima.

d. Final feature extraction. Several features were

derived from the frequency minima values. For both the low-

est minimum and second lowest minimum in each frame, the

median, the mean of the absolute value of variation (deriva-

tive in time), and the standard deviation were computed

(cor_med1–2, cor_mva1–2, cor_std1–2). Additionally, two

global values were computed; the absolute value of the dif-

ference between the two median values (cor_diff), and the

weighted amplitude of the lowest minima using a Gaussian

curve, centered on the base frequency equal to 30 Hz (the

most likely slow SMV frequency) (cor_gaus). This resulted

in a total of eight features.

D. Turbulence features

Since turbulence generates noise, the main idea was to

estimate the noise part of the spectrum by removing the har-

monic partials, i.e. the spectral peaks. The spectrogram SdB

in Eq. (6) was used as input. The magnitudes of different fre-

quency bands of the remaining noise spectrum were used for

the final features. For the turbulence category we applied the

following steps.

a. Smoothing in time. The spectrogram was smoothed

in time using a second stage receptive field applied to the

spectrogram. A discrete Gaussian kernel was used with a

standard deviation of 30 ms.

b. Estimation of noise spectrum using a smoothing

filter. A smoothing filter was specifically designed to remove

the harmonic partials, taking into account the bandwidth of

the spectrogram and the variation of the partial density

across the spectrum. The filter has similarities to earlier

median filtering and order statistics filtering methods, used

for separating harmonic and percussive content (FitzGerald,

2010; Elowsson and Friberg, 2015). Instead of using the

median for filtering, the 15th percentile was used. The filter

window varied as a function of frequency according to a lin-

early interpolated break-point, using points at the logarith-

mic frequencies 15, 50, 96, 140 semitones (MIDI), and the

corresponding logarithmic window size at 2, 15, 4, 3 semi-

tones. The obtained spectral shape was further smoothed in

the frequency domain, using a similar frequency-dependent

filter with a Gaussian kernel. The percentiles, the window

sizes and the break-points were chosen manually, trying to

minimize the harmonic content while retaining most of the

turbulence (noise).

c. Estimation of spectral peaks using a smoothing

filter. The spectral shape following the peaks in the spectrum

was estimated using the same filter and smoothing as in step

2 above. The only difference was that the filter used the 95th

percentile instead.

An illustration of the resulting estimations of noise and

spectral peaks at a specific time is shown in Fig. 6, and for

the whole spectrogram in Fig. 7.

d. Frame feature extraction (spectral bands). The

remaining spectral shape of the noise obtained in step 2 was

divided both into seven octave bands (with boundaries at 36,

48, 60 72, 84, 96, 108, 120 semitones in MIDI units) and

into two bands (above or below 1 kHz). For each band (and

time frame) the median value across frequency was calcu-

lated (nosB2_1–2 and nosB7_1–7).

FIG. 6. (Color online) The smoothing filters with variable windows applied

on a spectrum section at t¼ 2.5 s for the same sound example as in Fig. 2.

The black line indicates the original spectrum, the dotted lines (blue in color

print) are the percentile filtered spectra, and the dashed lines (red in color

print) are the resulting spectra after Gaussian smoothing for the upper and

lower estimation.

FIG. 5. (Color online) Example of the resulting d0 as a function of period

length s for one frame in the same example as in Fig. 3. The circles indicate

the detected lowest and second lowest minima, respectively.
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e. Harmonics-to-noise ratio. Using the final upper and

lower estimation of the spectra obtained in step b, a measure

of harmonics-to-noise was defined as the maximum distance

between the two curves (nosH2N).

f. Final features across frames. The final features were

calculated in the same way as for the phonation features.

Thus, using the upper quartile (_uqt), standard deviation

(_std), and the mean of the difference between frames (mean

derivative in time) (_mva). This resulted in a total number of

30 (7 bands � 3 stats þ 2 bands � 3 stats þ 1 ratio � 3 stats)

features for the turbulence category.

V. PREDICTION CATEGORIES AND METHODS

As discussed above, the current prediction focused on the

three separate articulatory categories phonation, turbulence,

and SMV. The prediction of these categories was a new chal-

lenge for which we found no prior examples in the literature.

Each category can be active in a rather independent way. For

example, SMV using the tongue and lips can be combined

with both phonation and turbulence. Therefore, for each of the

three categories, we made an independent classification/

regression model. The ground truth was coded as 1 for the

positive segments and 0 for the negative ones. Note that in

this study we did not attempt to model the subcategories. See

Table I for the distribution across categories and participants.

In the selection of the prediction methods we wanted to

use both simple and more advanced models. Due to the rela-

tively large number of features (84) in relation to the total

number of cases (1242), we first applied partial least-square

(PLS) regression. PLS regression attempts to minimize the

number of independent features by a principal component

analysis in combination with a linear regression (Geladi and

Kowalski, 1986). The method can be used as an alternative

to traditional linear regression when there are a large number

of features. We used the PLS package in MATLAB for this

computation. For the classification of the positive and nega-

tive category, the regression data were simply categorized as

true (1) for values higher than 0.5 and otherwise false (0).

The number of factors in the PLS regression was selected

manually by choosing the minimum number that could still

explain a major part of the cross-validated variation.

As a second method we applied support vector machine

(SVM) classification (e.g., Smola, and Sch€olkopf, 2004).

using the LIBSVM version 3.22 package for MATLAB (Chang

and Lin, 2011). A radial basis function was used as the ker-

nel and the parameters were set at their default values.

As a third method, we applied an ensemble of multilayer

perceptrons (EMLP). This method was recently used to predict

performed dynamics in a study that also had many features in

relation to the number of cases (Elowsson and Friberg, 2017).

Each network of multilayer perceptrons (MLPs) had the same

topology and used the same input data. Since each MLP was

randomly initialized, they will converge at different local min-

ima. The ensemble of these networks will therefore act as a

regularization technique that enhances generalization capabili-

ties (Hansen and Salamon, 1990). In other words, when using

the average prediction of these models, we can expect a better

outcome than if we were to randomly choose one of them

(Polikar, 2006). After initial testing, the following setup was

chosen for each neural network (NN) of the ensemble:

• Each network had three hidden layers, with 15 neurons in

each layer. This resulted in an architecture (including

FIG. 7. An example of the resulting spectral shapes in the turbulence feature

extraction. The smoothed spectrogram (top), the spectral shape of the peaks

(middle), and the spectral shape of the noise after removal of narrow spec-

tral peaks (bottom). Same sound example as in Fig. 2.

J. Acoust. Soc. Am. 144 (3), September 2018 Friberg et al. 1477



input and output layer) of {84, 15, 15, 15, 1}. Each net-

work was thus rather deep, although the number of neu-

rons was still kept small.
• The non-linearities in the first two hidden layers were

hyperbolic tangent (tanh) units, and the non-linearities for

the last hidden layer were rectified linear units. The idea

of a mixture of non-linearities within an ensemble of

MLPs was previously used by Elowsson (2016). The out-

put layer had a sigmoid activation function.
• The networks were trained with scaled conjugate gradient

back propagation.
• Each network was trained for a maximum of 240 epochs

(240 complete cycles with all training examples). Training

was, however, set to stop if the gradient reached below 10�6.
• Each input feature was normalized within the range 6 1.

Two different cross-validation methods were used. The

first one was the traditional tenfold method with 20 random

permutations. The second was “leave-one-participant-out.”

Since there were a total of eight participants in this study,

the training was performed on seven participants and the

testing on the remaining one; and this was repeated for all

participants. This would correspond more closely to a real-

world case when a possible project prototype system is oper-

ated by a new user. However, due to the small number of

participants, it is sensitive to individual variations, and there-

fore less reliable as an estimate.

VI. RESULTS

A. Correlations with ground truth

As a first test, the point-biserial correlation coefficients

were computed between each feature and the ground truth.

Table II displays the correlations for the phonation, SMV, and

turbulence features, respectively. Due to the multiple testing,

the significance values should be interpreted with some cau-
tion and should be viewed only as an overall indication of the

correspondence. As seen in Table II, almost all features are
correlated to some extent with at least one of the three ground
truth measures. This makes it problematic to exclude any fea-

ture on the basis of the correlations. Note that even if one fea-
ture has a low correlation to the intended category, in most of
the cases this feature has a higher correlation to the other cate-

gories. For example, the phonation feature hf0_maxsl_mva
(see Table II) has a correlation of 0.08 to phonation ground

truth but a correlation of 0.44 to turbulence ground truth.
Thus, this feature can be potentially useful in the prediction of
turbulence when all features are used.

The highest correlations are found for the phonation cat-

egory in Table II with correlations up to rpb¼ 0.8 indicating

that these features are to a certain part capturing some of the

TABLE III. Correlations between SMV features and ground truth for the

three articulation categories.

Feature group Variable phonation SMV Turbulence

Modulation filter bank vibspecdb1 �0.52a 0.21a 0.21a

vibspecdb2 �0.52a 0.37a 0.25a

vibspecdb3 �0.44a 0.39a 0.20a

vibspecdb4 �0.20a 0.27a 0.13a

vibspecdb5 0.42a 0.20a �0.23a

vibspecdb6 0.65a 0.10a �0.42a

Vibrato extraction

from spectrogram

vibrate1 �0.28a 0.21a 0.12a

vibext1 �0.28a 0.25a 0.05

vibprop1 �0.26a 0.26a 0.03

vibextprop1 �0.22a 0.28a �0.03

vibrate2 �0.26a 0.17a 0.19a

vibext2 �0.28a 0.23a 0.11a

vibprop2 �0.24a 0.22a 0.06b

vibextprop2 �0.22a 0.10a 0.20a

Vibrato extraction

from ISL

vibrate3 �0.39a 0.23a 0.17a

vibext3 �0.32a 0.11a 0.12a

vibprop3 �0.44a 0.15a 0.20a

vibextprop3 �0.34a 0.12a 0.13a

vibrate4 �0.43a 0.24a 0.18a

vibext4 �0.33a 0.32a 0.08c

vibprop4 �0.44a 0.32a 0.17a

vibextprop4 �0.33a 0.37a 0.06b

vibrate5 �0.22a 0.11a 0.23a

vibext5 0.01 0.24a �0.02

vibprop5 �0.29a 0.23a 0.11a

vibextprop5 �0.03 0.27a �0.07b

vibcomb34 �0.29a 0.27a 0.05

vibcomb345 �0.04 0.21a �0.03

ASDF cor_med1 0.60a �0.16a �0.42a

cor_mva1 0.58a �0.09a �0.42a

cor_std1 0.69a �0.11a �0.46a

cor_med2 0.53a �0.17a �0.37a

cor_mva2 0.56a �0.15a �0.40a

cor_std2 0.65a �0.15a �0.45a

cor_diff 0.46a �0.18a �0.32a

cor_gaus �0.63a 0.13a 0.42a

ap< 0.001 significance level.
bp< 0.05 significance level.
cp< 0.01 significance level.

TABLE II. Correlations between phonation features and ground truth for

the three articulation categories.

Feature Phonation SMV Turbulence

hf0_maxsl_uqt 0.80a �0.09b �0.49a

hf0_maxsl_std 0.74a �0.05 �0.17a

hf0_maxsl_mva 0.08b 0.09b 0.44a

hf0_maxf0_uqt �0.74a �0.23a 0.37a

hf0_maxf0_std �0.73a �0.01 0.41a

hf0_maxf0_mva �0.76a �0.08b �0.55a

hf0_max2sl_uqt 0.77a �0.05 �0.51a

hf0_max2sl_std 0.66a 0.01 0.06c

hf0_max2sl_mva �0.36a 0.19a 0.27a

hf0_max2f0_uqt �0.68a �0.12a 0.24a

hf0_max2f0_std �0.56a 0.06c 0.44a

hf0_max2f0_mva �0.81a �0.04 �0.53a

hf0_meanrestsl_uqt 0.63a �0.05 �0.50a

hf0_meanrestsl_std 0.61a �0.03 �0.29a

hf0_meanrestsl_mva 0.48a 0.21a �0.47a

hf0_maxsldiff_uqt 0.78a �0.10a �0.48a

hf0_maxsldiff_std 0.75a �0.01 0.10a

hf0_maxsldiff_mva �0.25a 0.16a �0.51a

ap< 0.001 significance level.
bp< 0.01 significance level.
cp< 0.05 significance level.
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unique properties of the phonation category. Note also that

the upper quartiles (…_uqt) obtain the highest correlations

comparing the three statistical measures for each feature in

most cases, thus, corresponding to the intended function of

each feature.

In Table III we see that the different feature groups cor-

relate reasonably with the SMV ground truth, although the

maximum correlations in this case reach only about r¼ 0.39

(vibspecdb3). The filter bank features (vibspecdb1–6) and

the vibrato extraction methods on the SL (vib…3–5) corre-

late positively for lower bands with SMV, and negatively

with phonation, as expected. Here the discrimination of

SMV from the other categories is less clear, since in many

the cases the correlations are higher both for phonation and

for turbulence than for SMV. For the autocorrelation features

extracted from the time signal (cor_…), this could be

expected, since the autocorrelation method YIN was origi-

nally developed for pitch detection; and since the autocorre-

lation was computed for the original waveform and not for

the ISL.

For the turbulence features shown in Table IV, the cor-

relations to the turbulence ground truth (rightmost column)

vary considerably and reach r¼ 0.58 for the highest fre-

quency band (nosB7_7_uqt). As for the SMV features, the

turbulence features often correlate strongly but negatively

with phonation. In this case, the harmonics-to-noise metric

nosH2N_uqt correlates strongly with phonation, indicating

that it is capturing the intended information.

B. Classification of phonation

1. Overall results using all features

The results of the classification of the phonation cate-

gory for the different cross-validations and methods are sum-

marized in Table V. As shown in the table, all methods gave

an overall classification accuracy above 95% for both cross-

validations. The best PLS results were obtained with a mod-

est number of PLS components (5–6). The differences

between methods were quite small, indicating that the fea-

tures were well able to capture the relevant acoustic proper-

ties for phonation versus non-phonation.

Figure 8 shows the results from the PLS regression,

applied using six components and without cross-validation.

Thus, this is the prediction output before the classification is

performed. As seen in the figure, there are clearly two groups

divided by the classification boundary at 0.5. Interestingly,

the overall accuracy without cross-validation increased

rather modestly to 96.8% (from 96.4 for cross-validation)

indicating a small amount of over-fitting using this method.

2. Reduction of phonation features

The phonation features were extracted in order to catch

different information in the pitch-enhanced spectrogram Sh

in formula (12). Most of them obtained a significant correla-

tion with the ground truth, as shown in Table II. However,

some of these features were found to correlate strongly with

TABLE IV. Correlations between turbulence features and ground truth for

the three articulation categories. nosB2_1.�nosB2_2. indicate the two fre-

quency band division, nosB7_1.–nosB7_7. indicate the seven octave bands,

and nosH2N. is the harmonics-to-noise measure.

Feature Phonation SMV turbulence

nosB2_1_uqt �0.51a 0.28a 0.27a

nosB2_1_std �0.11a �0.08b 0.07c

nosB2_1_mva �0.23a 0.21a 0.22a

nosB2_2_uqt �0.75a �0.02 0.50a

nosB2_2_std �0.49a 0.03 0.23a

nosB2_2_mva �0.29a 0.30a 0.07c

nosB7_1_uqt �0.52a 0.24a 0.27a

nosB7_1_std �0.18a �0.04 0.15a

nosB7_1_mva �0.34a 0.28a 0.30a

nosB7_2_uqt �0.44a 0.29a 0.21a

nosB7_2_std �0.10a �0.08b 0.10a

nosB7_2_mva �0.26a 0.19a 0.22a

nosB7_3_uqt �0.49a 0.30a 0.26a

nosB7_3_std �0.10a �0.08b 0.07c

nosB7_3_mva �0.18a 0.14a 0.19a

nosB7_4_uqt �0.61a 0.21a 0.38a

nosB7_4_std �0.30a 0.03 0.15a

nosB7_4_mva �0.29a 0.26a 0.23a

nosB7_5_uqt �0.66a 0.11a 0.41a

nosB7_5_std �0.43a 0.05 0.20a

nosB7_5_mva �0.30a 0.26a 0.17a

nosB7_6_uqt �0.69a �0.05 0.42a

nosB7_6_std �0.44a 0.03 0.17a

nosB7_6_mva �0.30a 0.27a 0.07b

nosB7_7_uqt �0.76a �0.16a 0.58a

nosB7_7_std �0.64a �0.06c 0.41a

nosB7_7_mva �0.49a 0.16a 0.36a

nosH2N_uqt 0.81a �0.10a �0.48a

nosH2N_std 0.68a �0.10a �0.42a

nosH2N_mva �0.82a �0.11a 0.45a

ap< 0.001 significance level.
bp< 0.01 significance level.
cp< 0.05 significance level.

TABLE V. Final prediction results for the phonation category.

Cross-validation

PLS

components

PLS

accuracy (%)

SVM

accuracy (%)

EMLP

accuracy (%)

10-fold 6 96.4 96.6 96.9

Leave-one-out 5 96.1 95.9 95.9

FIG. 8. (Color online) The output of the PLS regression using five compo-

nents without cross-validation, for the phonation model. The upper histo-

gram shows the distribution of the prediction for ground truth¼ 1

(phonation) and the lower histogram for ground truth¼ 0 (no phonation).

The dashed line marks the classification boundary.
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each other within the current database. This was to a certain

extent expected since they all were chosen for detecting pho-

nation. The average pairwise correlation between all phonation

features was 0.53, disregarding the sign. The highest correla-

tions (r¼ 0.95 and 0.98) was found between the highest peak

value (hf0_maxsl_uqt) and the difference in sound level

between the highest and the second highest peaks (hf0_maxsl-

diff_uqt and hf0_maxsldiff_std). This situation can make a fea-

ture selection a bit arbitrarily and depend on the database.

Nevertheless, an automatic procedure was applied using SVM

and leave-one-participant-out. The independent contribution of

each phonation feature was estimated by running the model

without this feature. Then, all the features that contributed nega-

tively (made the R2 increase when the feature was omitted)

were removed. This resulted in a set of eight features (hf0_max-

f0_uqt, hf0_maxf0_std, hf0_max2sl_std, hf0_max2f0_mva,

hf0_meanrestsl_uqt, hf0_meanrestsl_std, hf0_meanrestsl_mva,

hf0_maxsldiff_std). For all the phonation features (18) the

resulting R2¼ 95.6, thus a small decrease (0.3) in comparison

with all features. For the selected features (8) the explained vari-

ation was even slightly higher with R2¼ 96.0. In conclusion we

see that a subset of eight phonation features were effective and

sufficient for predicting phonation.

C. Classification of SMV

1. Overall results using all features

The results of the classification of the SMV category for

different cross-validations and methods are summarized in

Table VI. Here the overall classification accuracy was

slightly lower than for the phonation class, ranging from

84% to 91%. The EMLP method gave the best results and

the differences between methods were larger. This indicates

that the features still had some problems capturing the acous-

tical properties of SMV, as was indicated also by the correla-

tions. This is not surprising, since these vibrations span

across widely different types, each with different characteris-

tic frequencies, as listed in Sec. II C.

Figure 9 shows the results from the PLS regression,

applied using five components and without cross-validation.

Here there is more overlap between the two groups. This

result for the regression is not surprising, since the design of

for example the modulation filter bank requires a machine

learning model that can handle feature interaction. Also, the

overall accuracy without cross-validation here increased

rather modestly to 86.5%, indicating a small amount of over-

fitting using this method.

2. Comparison of the different groups of SMV features

The correlation analysis presented in Table III indicated

a rather weak coupling to supraglottal myoelastic vibrations,

and did not clearly indicate the feature group that might be

the best candidate for prediction, although the modulation

filterbank had the relatively largest correlations. In order to

further investigate the differences between the SMV feature

groups, we predicted the ground truth separately for each

group, using both PLS and SVM classification. As seen in

Table VII, the filterbank method obtained a slightly better

accuracy for all methods. Note also that the filterbank group

had the lowest number of features, indicating that these fea-

tures were relatively more efficient. The difference in accu-

racy was 1.4 to 2.2 between the filter bank group and the ISL

group.

The modulation filterbank features with SVM and ten-

fold cross-validation obtained an accuracy of 85%.

Compared to the SVM method for the full features set

(Table VI), the decrease in accuracy was about 4%, indicat-

ing that the filter bank features indeed capture some of the

salient information within the whole feature set. For SVM

and leave-one-participant-out this difference was even

smaller and about 2%. This implies that a simplified model

for SMV using only those six features can be implemented

by a set of well-known straightforward signal-processing

methods, including sound level and FFT computations.

D. Classification of turbulence

1. Overall results using all features

The results of the classification of the turbulence cate-

gory for different cross-validations and methods are summa-

rized in Table VIII. Here the overall classification accuracy

was slightly lower than for the SMV category, ranging from

82% to 89%. The EMLP method gave the best result using

tenfold cross-validation, while SVM obtained the best results

for leave-one-out. The differences between methods were

larger than for the phonation category, thus, it seems to per-

form in a way similar to the SMV category. This indicates

that the features still had some problems capturing the acous-

tical properties of turbulence. Contrary to the SMV features,

the turbulence features were rather straightforward to

extract, and the intuitive impression was that they worked

well. The relatively lower performance could possibly be

attributed to the acoustic overlap between SMV and

TABLE VI. Final prediction results for the SMV category.

Cross-validation

PLS

components

PLS

accuracy (%)

SVM

accuracy (%)

EMLP

accuracy (%)

10-fold 8 86.0 88.9 90.9

Leave-one-out 5 83.8 85.9 87.2

FIG. 9. (Color online) The output of the PLS regression using five compo-

nents without cross-validation for the SMV model. The upper histogram

shows the distribution of the prediction for ground truth¼ 1 (SMV) and the

lower histogram for ground truth¼ 0 (not SMV). The dashed line marks the

classification boundary.
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turbulence features. Turbulence is simply the existence of

noise in the signal. However, all the different types of SMV

also generated noise although they were not annotated as tur-

bulence. Thus, the detection of the SMV category needs to

resolve these cases from the turbulence category by an inter-

action between all features. This could also explain why

there is a relatively large difference between the methods.

Note, that the PLS method uses a linear combination of fea-

tures, and thus does not include any interaction in the model.

Figure 10 shows the results from the PLS regression,

applied using six components and without cross-validation.

Although the overall accuracy is comparable to the SMV

case, the distribution indicates a better discrimination

between the positive and negative groups in the figure. As in

the previous cases the overall accuracy without cross-

validation increased rather modestly to 86.1% indicating a

small amount of over-fitting using this method.

2. Reduction of turbulence features

As for the phonation features we used SVM and leave-

on-participant-out cross-validation for evaluating the differ-

ent turbulence feature. The resulting explained variance

using all turbulence features (30) obtained then an

R2¼ 80.4%. We then compared the two-band versus the

seven-band features. Using only the two-band features (6),

R2¼ 72.8%. Using only the seven-band features (21),

R2¼ 81.1%. This indicated that the two-band features were

not sufficient for detecting turbulence and also contributed

negatively to the overall prediction and were therefore omit-

ted. The independent contribution of each of the seven-band

features (21) in combination with the harmonics-to-noise

features (3) was finally estimated and all positive contribu-

tions were retained. This resulted in eight features

(nosB7_2_uqt, nosB7_3_uqt, nosB7_4_uqt, nosB7_6_uqt,

nosB7_7_uqt, nosB7_7_std, nosB7_7_mva, nosH2N_uqt)

with an R2¼ 80.7%. This feature selection corresponded

well with the expectation. Most of the features averages

using upper quartile (_uqt) were selected and there was a

focus on the highest frequency band.

E. Final predictions for the reduced feature set

For the final prediction we included the reduced feature

set from each classification. It included the eight phonation

features (hf0_maxf0_uqt, hf0_maxf0_std, hf0_max2sl_std,

hf0_max2f0_mva, hf0_meanrestsl_uqt, hf0_meanrestsl_std,

hf0_meanrestsl_mva, hf0_maxsldiff_std), the six filterbank

features from SMV (vibspecdb1–6), and the eight turbulence

features (nosB7_2_uqt, nosB7_3_uqt, nosB7_4_uqt,

nosB7_6_uqt, nosB7_7_uqt, nosB7_7_std, nosB7_7_mva,

nosH2N_uqt), thus, totally 22 features. The final result for

all three methods and the two cross-validations are shown in

Table IX. As indicated by the numbers in parentheses, the

difference between this feature set and all 84 features were

in most cases rather small and both positive and negative.

The prediction of phonation did not change much for the

SVM and EMPL methods, while PLS decreased somewhat.

Note that the prediction of phonation using only the selected

eight features resulted in a similar accuracy (R2¼ 96.0 for

SVM and leave-on-out) These results indicate that the pre-

diction of phonation is quite stable, that a few features are

sufficient, and that the prediction method is less important.

The EMLP method obtained the best results in four out of

six cases but the difference in comparison with SVM was in

general rather small. The PLS method obtained mostly a

decrease in accuracy in comparison with the full feature set.

Also notable is that more PLS components were needed for

the reduced feature set.

VII. SUMMARY AND DISCUSSION

Using a set of features developed using extensions to

the ARF Toolbox, the three different articulation categories,

phonation, supraglottal myoelastic vibrations (SMV) and tur-

bulence, were predicted using PLS regression, SVM, and

EMLP. The model that performed best was in most cases the

EMLP method and the classification accuracy was for ten-

fold cross validation 96.9% for phonation, 90.9% for SMV,

and 88.5% for turbulence for the full feature set (84 fea-

tures). Note that this corresponds to the correlations 0.98,

0.95, and 0.94, respectively, between the ground truth and

the prediction. Thus, despite the sometime rather low corre-

lations for individual features, the models using machine

learning could extend these results considerably, by combin-

ing the features and including interaction effects.

A reduced feature set of 22 features could predict phona-

tion with a similar accuracy as the full feature set while the

prediction of SMV and turbulence decreased approximately

TABLE VIII. Final prediction results for the turbulence category.

Cross-validation

PLS

components

PLS

accuracy (%)

SVM

accuracy (%)

EMLP

accuracy (%)

10-fold 6 84.6 87.4 88.5

Leave-one-out 6 81.6 83.5 83.1

TABLE VII. Comparison of the different SMV feature groups using PLS and SVM classification. The best accuracy (indicated in bold) was obtained by the

filterbank features for both classification methods and cross-validations.

10-fold cross-validation Leave-one-out cross-validation

Feature group Variables

No. of

features

PLS

components

PLS

accuracy (%)

SVM

accuracy (%)

PLS

components

PLS

accuracy (%)

SVM

accuracy (%)

Modulation filter bank vibspecdb1-6 6 3 81.4 85.1 4 80.0 83.9

Vibrato extraction spectrogram vib…1-2 8 5 78.3 77.7 4 77.9 77.4

Vibrato extraction ISL vib…3-5 14 3 79.2 83.5 3 78.2 82.5

ASDF cor_… 8 2 75.9 77.0 2 75.8 75.3
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1%. Note that the feature reduction was using the results of the

prediction in order to select the most important features. For

phonation and turbulence feature selection we used SVM with

leave-one-out and for SMV we used both SVM and PLS with

both cross validation methods. This procedure is to a certain

extent violating the cross-validation since the testing of new

data is used for modifying the model. It could also possibly

favor the methods used for the feature selection in the final

prediction. Therefore, the full feature set could be considered

as more unbiased relative to the current dataset.

The features derived from a modulation filter bank were

able to predict SMV with an accuracy of 85% (tenfold cross-

validation) using only six features. Thus, they can be used as

a starting point for making a rather simple implementation

of the model using only standard signal processing

techniques.

One possible reason for the lower results for SMV cate-

gory could be the unbalanced groups—this category con-

tained proportionally more cases in the negative groups.

This could possibly also be improved by further optimization

of parameters both for the PLS and SVM method. However,

the lower results for the PLS method compared to SVM and

EMLP is likely due to the fact that it disregards any interac-

tions between the features.

The lowest results were obtained for the turbulence cate-

gory. We assumed a priori that turbulence should be

strongly related to the amount of noise in the signal.

Obviously, air turbulence will generate noise. However, the

definition of turbulence in the annotations is a bit different.

For example, supraglottal myoelastic vibrations without any

extra sound source are not classified as turbulent, although

there is usually a considerable amount of noise in the signal.

A further comparison of the criteria for the annotations, as

well as an analysis of the incorrectly classified examples in

each category, seems to be an important path for future

development.

The current approach using a multitude of extracted fea-

tures that are combined using machine learning seems to

have a great advantage in comparison with the approach of

developing one feature for describing, for example, phona-

tion. This approach could be further extended to voice qual-

ity estimation and assessment.

The developed features have much in common with pre-

viously described features for characterizing voice quality

used in several studies and analysis programs. In a future

study, it would be interesting to compare the specific fea-

tures developed in the current study with these established

voice measures within the context of voice quality

assessment.
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