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Transmit Beamforming for Single-user Large-Scale MISO Systems with
Sub-connected Architecture and Power Constraints

Phuong Le Cao, Tobias J. Oechtering and Mikael Skoglund

Abstract—This letter considers optimal transmit beamforming
for a sub-connected large-scale MISO system with RF chain
and per-antenna power constraints. The system is configured
such that each RF chain serves a group of antennas. For the
hybrid scheme, necessary and sufficient conditions to design
the optimal digital and analog precoders are provided. It is
shown that, in the optimum, the optimal phase shift at each
antenna has to match the channel coefficient and the phase of the
digital precoder. In addition, an iterative algorithm is provided
to find the optimal power allocation. We study the case where
the power constraint on each RF chain is smaller than the sum
of the corresponding per-antenna power constraints. Then, the
optimal power is allocated based on two properties: Each RF
chain uses full power and if the optimal power allocation of the
unconstraint problem violates a per-antenna power constraint
then it is optimal to allocate the maximal power for that antenna.

Index Terms—Large-scale, massive MIMO, sub-connected ar-
chitecture, hybrid beamforming, per-antenna power constraints.

I. INTRODUCTION

In recent years, large-scale multiple-input multiple-output
(massive MIMO) and millimeter-wave (mmWave) wireless
communication have received much attention due to their envi-
sioned applications in 5G wireless systems. Massive MIMO is
to use a very large number of antennas to enhance the spectral
efficiency significantly [1] and therewith also compensate for
the spectral efficiency loss due to the use of higher frequencies
(mmWave), which allows hardware systems to reduce the
antennas’ size and therewith the radiated energy [2], [3].
However, massive MIMO and mmWave configurations might
cause high hardware cost and large power consumption when
each antenna is equipped with a separate RF chain. This
problem can be mitigated by using the hybrid analog-digital
precoding strategy [2]. For the hybrid precoding, we distin-
guish between two configurations of hardware, namely fully-
connected and sub-connected large scale antenna systems [3]–
[7]. In the fully-connected architecture [3]–[5], each antenna is
connected to all RF chains through analog phase shifters and
adders, i.e., each analog precoder output is a combination of
all RF signals. In contrast, a sub-connected architecture has
a reduced complexity, where a subset of transmit antennas
is connected to one RF chain only. Since this sub-connected
architecture requires no adder and less phase shifters, it is
less expensive to implement than the fully-connected one but
results in less freedom for signalling. Previous studies of
transmit strategies for sub-connected architectures have been
done in [6], [7]. However, these works assume a sum power
constraint only. Since each RF chain has a physical limitation,
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Fig. 1: Transmitter architecture for large-scale antenna system
with sub-connected architecture and power constraints.

it is reasonable to impose a power constraint on each RF
chain. Furthermore, since each RF chain serves more than
one antenna, we additionally consider to use power dividers
to split the output powers between the antennas. Since it will
be optimal to use the maximal power per RF chain and since
the splitting ratio of the power divider has a physical limitation
as well, we also include a power constraint on each antenna
to limit the energy per antenna.

Previous works studied optimal transmit strategies for the
MISO channel with per-antenna power constraints [8], [9] and
joint sum and per-antenna power constraints [10]. However,
the problem has so far not been studied for sub-connected
architectures. In this letter, we focus on studying the optimal
transmit strategy for a single-user large-scale MISO system
with sub-connected architecture, per RF chain and per-antenna
power constraints. Necessary and sufficient conditions to de-
sign the optimal digital and analog precoders for the hybrid
beamforming are provided. The hybrid beamforming scheme
is considered when the number of RF chains is strictly smaller
than the number of antennas.

II. SYSTEM MODEL

We consider a sub-conneted architecture of a single-user
large-scale MISO system as depicted in Fig 1. The transmitter
is equipped with K RF chains and M antennas such that
each RF chain is connected to a group of L antennas, i.e.,
M = KL. RF chains are indexed by k ∈ K = {1, . . . ,K}
and antennas connecting to each RF chain are indexed by
l ∈ L = {1, . . . , L}. The transmit data s ∈ CN×1, where
N (optimality of N = 1 is later shown) is the number of
data streams and E[ssH ] = IN , is precoded by applying a
baseband processing (digital precoder) WD ∈ CK×N followed
by adjustable power dividers and analog phase shifters. In the
hardware setup in Fig 1, adjustable power dividers as in [11]
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are used to distribute the power from the RF chains to the
corresponding transmit antennas. To control the power alloca-
tion for each antenna, a block diagonal matrix Λ ∈ RM×K

+ is
introduced. It is defined as Λ = BlockDiag{Λ1, . . . ,ΛK}
with Λk = [λk1, . . . , λkL]T ∈ RL×1

+ and λkl ≥ 0, ∀k, l.
Since λ2

kl denotes the power fraction transmitted from the l-
th antenna,

∑L
l=1 λ

2
kl = 1. Additionally, a diagonal matrix

describing analog phase shifters (analog precoder) WA ∈
CM×M is used to adjust the phase for each individual
antenna. The analog precoder can be written as WA =
diag{wA(1), . . . ,wA(K)} with complex phase shift diagonal
matrix wA(k) = diag{wA(k, 1), . . . , wA(k, L)} ∈ CL×L and
|wA(k, l)|2 = 1, ∀k, l.

Since it is a limited number of scatters in the mmWave
prorogation environment, we adopt the geometric Saleh-
Valenzuela channel model as in [2] to work with. Further,
we assume that the channel coefficient vector denoted as
h = [hT

1 , . . . ,h
T
K ]T ∈ CM×1 with hk = [hk1, . . . , hkL]T ,

k ∈ K is known at both transmitter and receiver. Then, the
received signal can be written as

y = hHWAΛWDs + z, (1)

where z ∼ CN (0, 1) is additive white Gaussian noise.
We consider individual power constraints at each transmit

antenna P̃kl and power constraints at each RF chain P̂k,
∀k ∈ K, ∀l ∈ L. If P̂k >

∑L
l=1 P̃kl,∀k ∈ K, then

we face the per-antenna power constraints only problem. If
P̂k ≤

∑L
l=1 P̃kl for a certain k ∈ K, i.e., the transmit power

on the k-th RF chain is more restricted than the total transmit
power on antennas connecting to the k-th RF chain, we face
the optimization problem where both sum and per-antenna
power constraints can be active. In this work, we focus on the
latter case only. Solutions to the other problems follow straight
forwardly from this solution. We are interested in finding
the optimal precoding matrices WA, WD and the optimal
power allocation matrix Λ that achieve the capacity of the
point-to-point MISO channel (1). This is the standard problem
of finding the optimal covariance matrix of the zero mean
Gaussian distributed input, but here with a certain covariance
matrix structure WAΛWDWH

DΛWH
A reflecting the hardware

design. Thus, the optimization problem is given as follows

max
WA,WD,Λ

log(1 + hHWAΛWDWH
DΛWH

A h) (2)

s. t. ∀k, l : eTklWAΛWDWH
DΛWH

A ekl = Pkl ≤ P̃kl, (2a)

∀k :

L∑
l=1

eTklWAΛWDWH
DΛWH

A ekl = Pk ≤ P̂k, (2b)

∀k, l : |wA(k, l)|2 = 1, (2c)

where (2a), (2b), and (2c) are the per-antenna, RF chain,
and phase shifter constraints. ekl ∈ RKL×1 is a Cartesian
unit vector with a one at ((k − 1)L + l)-th position and
zeros elsewhere. Since log(1 + hHWAΛWDWH

DΛWH
A h) is

an increasing function in hHWAΛWDWH
DΛWH

A h, we can
equivalently focus on the optimization problem to find an
optimal WAΛWD for the objective function |hHWAΛWD|2
instead of (2). Note that (2) can be formed as a convex
optimization problem by merging WA and Λ together.

III. TRANSMIT BEAMFORMING DESIGN

If L = 1, then we have fully digital precoding where every
antenna has its own RF chain. In this case P̌i = min{P̂i, P̃i},
∀i ∈ {1, . . . ,K = M} gives the per-antenna power constraint.
Then, the optimization problem reduces to

max
Λ,WD

hHΛWDWH
DΛh, s. t. eTi Qei ≤ P̌i, ∀i. (3)

Following [8], the optimal solution of the optimization prob-
lem (3) is rank one for L = 1, i.e., WD = wD with elements
wi =

√
P̌i

h∗
i

|hi| ,∀i ∈ {1, . . . ,M} and Λ = IM .
In the following, we study the hybrid beamforming for

the case where the number of RF chains is strictly smaller
than the number of antennas, i.e., K < M and L > 1.
The digital precoder WD is designed under the assumption
that an analog precoder WA and a power allocation matrix
Λ are given. For a given analog precoding WA and a power
allocation matrix Λ, an equivalent channel g can be formulated
as g = ΛWH

A h. Then the convex optimization problem to find
the digital precoder can be written as

max
wD

gHWDWH
Dg s. t. (2a), (2b). (4)

Following Proposition 2 in [10], we can conclude that the
optimal digital precoder WD also has rank one, i.e., beam-
forming is optimal. Therefore, it is sufficient to consider a
digital precoder that can be denoted as WD = wD ∈ CK×1.
Moreover, it means that it is optimal to have only one data
stream, i.e., N = 1, which we will assume in the following.

In hybrid precoding, the analog precoder controls the phase
for each antenna. Since it is sufficient to consider a digital
precoder of rank one, the phase of the digital precoder can
be merged with the analog precoder or simply choosen to be
equal to zero. Because of this we assume, without loss of
generality, that wD ∈ RK×1

+ in the following. Next, we will
derive the optimal analog precoder, the characterization of the
amplitude of the optimal digital precoder and optimal power
allocation.
A. Analog precoder

By assuming that a digital precoder wD ∈ RK×1
+ and the

power allocation Λ are given, we can obtain a necessary
condition for the optimal analog precoder W?

A by solving the
following optimization problem

max
WA

hHWAΛwDwH
DΛWH

A h s. t. (2a), (2c). (5)

Proposition 1. Let ei∠hkl = hkl

|hkl| ∀k, l. Then the optimal
analog precoder has elements given as

w?
A(k, l) = e−i∠hkl , ∀k ∈ K,∀l ∈ L. (6)

Proof. Given a power allocation Λ and a digital precoder wD,
then for any power allocation Pk we have

max
|wA(k,l)|2=1∀k,l

|hHWAΛwD|2

= max
|wA(k,l)|2=1∀k,l

∣∣∣∣∣
K∑

k=1

L∑
l=1

|hkl|ei∠hklwA(k, l)λklwD(k)

∣∣∣∣∣
2

≤

(
K∑

k=1

L∑
l=1

|hkl|λkl
√
Pk

)2

. (7)
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The upper bound (7) is achieved if wA(k, l) = e−i∠hkl , ∀k ∈
K,∀l ∈ L. This proves Theorem 1.

Proposition 1 shows that it is optimal to match the phase
at each antenna to the channel coefficient. Therefore, it is
sufficient to design the optimal analog precoder by aligning
phases of phase shifters to the channel coefficient such that
the signal coherently adds up at the receiver.

In the next part, we derive the amplitude of the optimal
digital precoder coefficient and the optimal power allocation
matrix Λ under the assumption P̂k ≤

∑L
l=1 P̃kl, ∀k.

B. Power allocation

The following proposition shows that it is optimal for the
digital precoder to transmit with maximum power on all RF
chains.

Proposition 2. For the case where P̂k ≤
∑L

l=1 P̃kl for all
k, the optimal solution of (4) allocates full power on all RF
chains, i.e.,

∑L
l=1 P

?
kl = P̂k, ∀k.

Proof. Let q = WAΛwD, Q := {q : eTklqqHekl ≤
P̃kl,

∑L
l=1 eTklqqHekl ≤ P̂k∀k, l}. Suppose there exists an

optimal q? such that there exists a k̄ ∈ K for which
eT
k̄l

q?q?Hek̄l = P ?
k̄l

and
∑L

l=1 P
?
k̄l
< P̂k̄, then the maximum

value of (4) can be calculated as

f? = max
q∈Q
|hHq|2 = max

q∈Q
|

K∑
k=1,
k 6=k̄

L∑
l=1

hklqkl +

L∑
l=1

hk̄lqk̄l|2

= (

K∑
k=1,
k 6=k̄

L∑
l=1

|hkl|
√
P ?
kl +

L∑
l=1

|hk̄l|
√
P ?
k̄l

)2 = (

K∑
k=1,
k 6=k̄

f?k + f?k̄ )2.

(8)

Since
∑L

l=1 P
?
k̄l

= P ?
k̄
< P̂k̄ ≤

∑L
l=1 P̃k̄l, there exists a j

and a Pk̄j with P ?
k̄j
< Pk̄j ≤ P̃k̄j and P̂k̄ − Pk̄j ≥

∑L
l=1
l 6=j

P ?
k̄l

,

so that f ′
k̄

=
∑L

l=1
l 6=j
|hk̄l|

√
P ?
k̄l

+ |hk̄j |
√
Pk̄j > f?

k̄
. It follows

that f ′ = (
∑K

k=1,
k 6=k̄

f?k + f ′
k̄
)2 > (

∑K
k=1,
k 6=k̄

f?k + f?
k̄

)2 = f?.

This contradicts with the optimality of (8). This implies that
the optimal solution of (4) must meet all RF chain power
constraints with equality, i.e.,

∑L
l=1 P

?
kl = P ?

k = P̂k ∀k.

Proposition 2 implies that it is sufficient for the optimization
to consider only transmit strategies which allocate full power
on all RF chains, i.e., the RF chain power constraints are
always active. Accordingly, wD(k) =

√
P̂k is optimal.

Next, the optimal power allocation Λ? ∈ RM×K
+ is designed

under the assumption that the optimal digital and analog pre-
coders are given, i.e., w?

D(k) =
√
P̂k ∀k and |w?

A(k, l)|2 = 1.
Let Pkl = |λklw?

A(k, l)w?
D(k)|2 = P̂kλ

2
kl ∀k, l. Then we have

λkl =
√

Pkl

P̂k
∀k, l, or equivalently

Λk =
1√
P̂k

[√
Pk1, . . . ,

√
PkL

]T
∀k. (9)

From the proof of Proposition 2 we can easily see that the
power allocation for one RF chain is independent from the
allocation at all other RF chains. Thus, the problem reduces

to the problem to find the optimal power allocation for one
RF chain. For a given k ∈ K, the optimal allocated powers
P ?
kl, ∀l can be obtained by solving the following problem

max
Pkl,∀l

L∑
l=1

|hkl|
√
Pkl s. t.∀l : Pkl ≤ P̃kl,

L∑
l=1

Pkl ≤ P̂k. (10)

This problem is exactly the same as the optimization problem
to find the optimal transmit strategy for MISO channels with
joint sum and per-antenna power constraints [10]. Therefore,
the solution of (10) can be approach by utilizing the the
solutions of the sum power constraint only and per-antenna
power constraints only problems as done in [10]. In accordance
to that we need the optimal power allocation on a group of
antennas connecting to one RF chain k ∈ K without per-
antenna power constraints, which is given by a waterfilling
solution [12]:

PWF
kl =

(
1

ωk
− 1

|hkl|2

)+

,∀l (11)

where ωk satisfies
∑L

l=1

(
1
ωk
− 1
|hkl|2

)+

= P̂k, for any k.
The optimal powers PWF

kl , however, may violate the per-
antenna power constraints P̃kl for some k, l. In this case, it is
optimal to set those equal to the per-antenna power constraints
P̃kl. The remaining power allocations can then be obtained
by solving a reduced optimization problem with a smaller
total RF chain power, i.e., P̂k −

∑
l∈{l∈L:PWF

kl ≥P̃kl} P̃kl. The
justification of this approach is in [10] and reformulated for
the considered problem here in the following corollary.

Corollary 1 (Theorem 1 in [10]). For a given k ∈ K, let
Pk := {l ∈ L : PWF

kl ≥ P̃kl} and P =
⋃K

k=1 Pk. If P =
∅ then P ?

kl = PWF
kl ∀l, else P ?

kl = P̃kl ∀l ∈ Pk, and the
remaining optimal powers can be computed by solving the
reduced optimization problem

max
Pkl∀l∈Pc

k

∑
l∈Pc

k

|hkl|
√
Pkl (12)

s. t. ∀l ∈ Pc
k : Pkl ≤ P̃kl,

∑
l∈Pc

k

Pkl ≤ P̂k −
∑
l∈Pk

P̃kl,

where Pc
k = L \ Pk.

If the waterfilling solution of the reduced optimization
problem again violates a per-antenna power constraint, then
Corollary 1 has to be applied again until the waterfilling
solution of the reduced optimization problem does not violate
any per-antenna power constraints. We have summarized the
approach above to compute the optimal power allocation
matrix Λ? in Algorithm 1 on the next page.

IV. NUMERICAL RESULTS

We consider the ergodic channel capacity of large-scale
MISO systems with different antenna configurations. We gen-
erate the channel coefficient vector according to the geometric
Saleh-Valenzuela channel model described in [2, Section II]
with the following parameters: The number of effective chan-
nel paths is 3, the path amplitudes are Rayleigh distributed
with the average power gain equals one; the carrier frequency
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Algorithm 1: Optimal power allocation matrix

1 Compute optimal power allocation PWF
kl using (11)

2 Denote Pk := {l ∈ L : PWF
kl ≥ P̃kl} ∀k, P :=

⋃K
k=1 Pk

3 if P = ∅ then
4 P ?

kl ← PWF
kl ∀k, l

5 Go to 15
6 else
7 for k ∈ K do
8 for l ∈ Pk do
9 P ?

kl ← P̃kl

10 end for
11 L ← L \ Pk, P̂k ← P̂k −

∑
l∈Pk

P̃kl

12 end for
13 end if
14 Return to 1.
15 Form Λ?

k (as in (9)) and Λ? with optimal power P ?
kl.

is 28GHz; the transmit antenna array is a uniform linear array
with antenna spacing equals 1

2 -wavelength; the azimuth angles
of departure or arrival of the transmit and receive antenna
arrays follow a uniform distribution over [0, 2π].

We first assume that the number of RF chains and the
number of antennas are the same, i.e., fully digital beam-
forming is used. The systems are equipped with 16 and 128
pairs of RF chains and transmit antennas respectively. In
these settings, the per-antenna power constraints and the RF
chain power constraints are the same. Next, we investigate a
hybrid beamforming scheme that is configured with M = 128
transmit antennas and K = 16 RF chains. Each RF chain
is designed to serve a group of L = 8 antennas. The per-
antenna power constraint on each antenna is P̃kl = 3. Curves
in Fig. 2 are plotted by gradually increasing P̂k from P̂k = 1
to P̂k = 40.

We can see from the figure that for the hybrid beamforming,
if a RF chain power constraint is more restrictive than the sum
of all individual powers of the group of antennas connected
to that RF chain, i.e., P̂k ≤

∑8
l=1 P̃kl = 24 (operating point

A), then it is optimal to transmit with the maximal per RF
chain power P̂k. After this value the RF power constraint is
never active and it is optimal to transmit with the maximal
individual power P̃kl = 3 on all antennas.

Next, we compare operating point A of the hybrid beam-
forming scheme with operating points B and C of fully-
digital beamforming schemes that both allocate the same total
transmit power. We observe that: (i) By using the same number
of RF chains while increasing the number of antennas, we
can obtain a significantly higher transmission rate. (ii) With
a smaller number of RF chains and the same number of
antennas, we can achieve the same transmission rate as the
one with fully digital beamforming.

V. CONCLUSIONS

In this letter, we provide necessary and sufficient conditions
for optimality, which leads to a closed-form procedure for the
design of the optimal beamforming strategy for a single-user
large-scale MISO system with a sub-connected architecture,
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Fig. 2: Ergodic capacity of large-scale antenna systems with
different RF chains and antennas configurations.

RF chain and per-antenna power constraints. In more details,
we first show that beamforming is optimal. For the digital
precoder, the phase can be set equals zero since the optimal
channel matching phase shift can be included in the analog
precoder. Further, it turns out that it is optimal to allocate
the maximal power on each RF chain. The numerical results
illustrate that, compared to fully digital beamforming, a lower
cost hybrid setup with a lower number of RF chains and the
same number of antennas can achieve on average almost the
same transmission rate.
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