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Human in the Loop Least Violating Robot Control Synthesis under
Metric Interval Temporal Logic Specifications*

Sofie Andersson1 and Dimos V. Dimarogonas1

Abstract— Recently, multiple frameworks for control synthe-
sis under temporal logic have been suggested. The frameworks
allow a user to give one or a set of robots high level tasks of
different properties (e.g. temporal, time limited, individual and
cooperative). However, the issue of how to handle tasks, which
either seem to be or are infeasible, remains unsolved. In this
paper we introduce a human to the loop, using the human’s
feedback to determine preference towards different types of
violations of the tasks. We introduce a metric of violation called
hybrid distance. We also suggest a novel framework for synthe-
sizing a least violating controller with respect to the hybrid
distance and the human feedback. Simulation result indicate
that the suggested framework gives reasonable estimates of the
metric, and that the suggested plans correspond to the expected
ones.

I. INTRODUCTION

The introduction of humans in the control loop, especially
when the intended task is infeasible, is of great interest since
it allows the human to react immediately and approve plans
which would otherwise be discarded due to violations. Sev-
eral schemes based on human in the loop or mixed-initiative
have been considered. In [1], the human takes the role as a
supervisor assigning types of tasks to individual robots in a
multi-robot system. This gives the human direct impact on
the priority between different types of tasks. [2] considers
cooperative tasks, where human and robot produces separate
control inputs, and suggest an adaptive control scheme that
combine the inputs while avoiding oscillatory behaviour.
Allowing the human control of the input signal raises the
question of the impact on the inherited guarantees of task
satisfaction caused by the modifications to the plan. This was
investigated in [3], where a control scheme was suggested
that only lets the human modify the plan in such a way
that the guarantees remain. The control scheme is built on
navigation functions which drives the human input to zero if
a safety constraint is about to be violated. In this paper we
instead limit the human’s impact to indicate which guarantees
should be kept, rather than giving direct input to the plan.
To this end, we suggest an automata based control scheme
with tasks given as Metric Interval Temporal Logic (MITL).

An advantage with using temporal logic for specifications
is its similarities to structural English [4]. The literature on
temporal logic is rich and includes [5], [6] and [7]. Multiple
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control synthesis frameworks for temporal logic specifica-
tions has been suggested, considering different branches
of logic for both single- and multi-agent systems. In [8]
an automata-based method to synthesize a controller for a
single-agent system under Linear Temporal Logic (LTL) was
presented. This idea was applied to a multi-agent system
under Metric Interval Temporal Logic (MITL), in [9], adding
time-constraints to the specification. One suggestion of a
timed abstraction for this framework was given in [10], which
also suggested complexity improving modifications to the
products. However, none of these frameworks consider how
to handle an infeasible specification. This problem has been
approached by using formula revision in papers such as [11]
and [12], where the idea of closeness between formulas is
used to revise the formula into a satisfiable specification with
as small changes as possible. Another approach which have
been investigated is abstraction refinement [13], where the
partitioning of the environment is refined in an attempt to
find previously hidden paths. A third approach is to consider
how well a formula is satisfied. This is done in [14] and [15],
where metrics are introduced to find an approximate or robust
solution to the control synthesis. It allows the user to find a
solution that is within an error margin of the specification.

In this work, we suggest a cooperative framework for a
single-agent system and a human user considering MITL
specifications. The purpose is to find the plan which is closest
to satisfying the specification. A metric defining the distance
between a plan and the satisfaction of a specification with
respect to human feedback is provided in Section II-C. We
suggest a method which finds the plan with smallest distance
in Section IV. It follows that a solution is always given for all
specifications if the reachability parts of the task corresponds
to reachable areas in the environment. The human feedback
consists in prioritizing between the possible violations of the
specification and is further described in Section IV-D.

II. PRELIMINARIES AND NOTATION

A. Abstraction of Dynamics

In this paper, the abstraction of the dynamics and environ-
ment is assumed to be given as a weighted transition system.

Definition 1: A Weighted Transition System (WTS) is a
tuple T = (Π,Πinit,→, AP, L, d) where Π = {πi : i =
0, ...,M} is a finite set of states, Πinit ⊂ Π is a set of initial
states, →⊆ Π × Π is a transition relation; the expression
πi → πk is used to express transition from πi to πk, AP is a
finite set of atomic propositions, L : Π → 2AP is an labelling
function and d :→→ R+ is a positive weight assignment



map; the expression d(πi, πk) is used to express the weight
assigned to the transition πi → πk.

Definition 2: A timed run rt = (π0, τ0)(π1, τ1)... of a
WTS T is an infinite sequence where π0 ∈ Πinit, πj ∈ Π,
and πj → πj+1 ∀j ≥ 1 s.t.

• τ0 = 0,
• τj+1 = τj + d(πj , πj+1), ∀j ≥ 1.

B. MITL Specification

Definition 3: The syntax of MITL over a set of atomic
propositions AP is defined by the grammar

ϕ := ⊤ | ap | ¬ ϕ | ϕ ∧ ψ | ϕ U[a,b] ψ (1)

where ap ∈ AP , a, b ∈ [0,∞] and ϕ, ψ are formulas
over AP . The operators are Negation (¬), Conjunction
(∧) and Until (U) respectively. Given a timed run rt =
(π0, τ0)(π1, τ1), ... of a WTS, the semantics of the satisfac-
tion relation is then defined as [5], [6]:

(rt, i) |= ap⇔ L(πi) |= ap ( or ap ∈ L(πi)), (2a)
(rt, i) |= ¬ϕ⇔ (rt, i) 2 ϕ, (2b)
(rt, i) |= ϕ ∧ ψ ⇔ (rt, i) |= ϕ and (rt, i) |= ψ, (2c)
(rt, i) |= ϕ U[a,b] ψ ⇔ ∃j ∈ [a, b], s.t. (rt, j) |= ψ

and ∀i ≤ j, (rt, i) |= ϕ. (2d)

From this we can define the extended operators Eventually
(♢[a, b]ϕ = ⊤U[a, b]ϕ) and Always (�[a, b]ϕ = ¬♢[a, b]¬ϕ).
The operators UI , ♢I and �I , are bounded by the interval
I = [a, b], which indicates that the operator should be satis-
fied within [a, b]. If b ̸= ∞, this implies that the operator is
subject to some deadline. We will denote these as temporally
bounded operators. All operators that are not included in
the set of temporally bounded operators, are called non-
temporally bounded operators. The operator UI can be tem-
porally bounded (if a deadline is associated to the second part
of the formula) but contains a non-temporally bounded part.
When we use the term violating non-temporally bounded
operators, we refer to the non-temporally bounded part of an
operator being violated. An example of this is ϕ = AU≤TB,
indicating that A must hold until B holds, and that B must
hold within T time units. Here, the non-temporally bounded
operator is violated if ¬A becomes true before B has become
true, while the temporally bounded operator is violated if
time T is exceeded before B becomes true. A formula ϕ
which contains a temporally bounded operator will be called
a temporally bounded formula. The same holds for non-
temporally bounded formulas. An MITL specification ϕ can
be written as ϕ =

∧
i∈{1,2,...,n} ϕi = ϕ1 ∧ ϕ2 ∧ ... ∧ ϕn

for some n > 0 and some subformulas ϕi. In this paper, the
notation subformulas ϕi of ϕ, refers to the set of subformulas
which satisfies ϕ =

∧
i∈{1,2,...,n} ϕi for the largest possible

choice of n such that ϕi ̸= ϕj ∀i ̸= j. For each subformula
ϕi, there are 3 possible temporal outcomes if ϕi is temporally
bounded: satisfaction, violation, or uncertainty.

Example 1: ϕi = ♢IA is satisfied if A holds at some
t ∈ I , violated if ¬A holds ∀ t ∈ I , and uncertain if ¬A
holds for all t ≤ τ where τ ∈ I is the current clock valuation.

TABLE I: Operators categorized according to the temporally
bounded/non-temporally bounded notation and Definition 4.

Operator b = ∞ b ̸= ∞
�[a,b] Non-temporally bounded, type II Temporally bounded
♢[a,b] Non-temporally bounded, type I Temporally bounded
U[a,b] Non-temporally bounded, type I Temporally bounded

If ϕi is non-temporally bounded there are only two possible
temporal outcomes, depending on its properties:

Example 2: ϕi = ♢[0,∞]A is; satisfied if A holds at some
t ∈ [0,∞], and uncertain if ¬A holds for all t ≤ τ where τ
is the current clock valuation.

Example 3: ϕi = �[0,∞]A is: violated if ¬A holds for
some t ∈ [0,∞], and uncertain if A holds for all t ≤ τ
where τ is the current clock valuation.

To distinguish these non-temporally bounded formulas
from each other we introduce Type I and Type II notation:

Definition 4: A non-temporally bounded formula ϕ is
denoted as Type I if ϕ cannot be concluded to be violated at
any time (since it can be satisfied in the future), and as Type
II if ϕ cannot be concluded to be satisfied at any time (since
it can be violated in the future). The resulting categorization
of operators is given in Table I.

C. Hybrid Distance

In this section we introduce the novel metric hybrid
distance, which shows the degree of violation of a run
with respect to a given MITL formula. Later we will use
the metric to find a least violating run. A plan can violate
a MITL formula in two ways; i) by continuous violation
i.e. exceeding deadlines or ii) by discrete violation i.e. the
violation of non-temporally bounded operators. We quantify
these violations with a metric with respect to time:

Definition 5: The hybrid distance dh is a satisfaction
metric with respect to a MITL formula ϕ and a timed run
rt = (π0, τ0), (π1, τ1), ..., (πm, τm), defined as:

dh = hdc + (1− h)dd (3)

where dc and dd are the continuous and discrete distances
between the run and the satisfaction of ϕ:

dc =
∑
i∈X

T c
i dd =

∑
j=0,1,...,m

T d
j

X is the set of clocks, T c
i is the time which the run violates

the deadline expressed by clock i, T d
j is defined as:

T d
j =

{
τj+1 − τj if (rt, j) 2 ϕi

0 otherwise,

where ϕi is a non-temporally bounded subformula of ϕ and
h ∈ [0, 1] is a weight assigning constant which determines
the priority between continuous and discrete violations,
where h = 0.5 yields equal importance.
To be able to calculate dh we define its derivative:

Definition 6: ΦH = (ḋc, ḋd), is a tuple, where ḋc ∈
{0, ..., nc} and ḋd ∈ {0, 1}, and nc is the number of time
bounds associated with the MITL specification.

Clock constraints are used to express the time constraints
of ϕ in the timed automata representation:



Definition 7: [16] A clock constraint Φx is a conjunctive
formula of the form x ◃▹ a, where ◃▹∈ {<,>,≤,≥}, x is a
clock and a is some non-negative constant. Let ΦX denote
the set of clock constraints over the set of clocks X .

D. Timed Automaton with Hybrid Distance

In this section, we introduce an extension of the timed
Büchi automaton [16] with the hybrid distance included:

Definition 8: A Timed Automaton with hybrid distance
(TAhd) is a tuple AH = (S, S0, AP,X, F, IX , IH , E,H,L)
where S = {si : i = 0, 1, ...m} is a finite set of locations,
S0 ⊆ S is the set of initial locations, 2AP is the alphabet (i.e.
set of actions), where AP is the set of atomic propositions,
X = {xi : i = 1, 2, ..., nc} is a finite set of clocks (nc is the
number of clocks), F ⊆ S is a set of accepting locations,
IX : S → ΦX is a map from location to clock constraints,
H = (dc, dd) is the hybrid distance, IH : S → ΦH is a
map from location to hybrid distance derivative (labelling
each location with some derivatives, ḋd and ḋc), where IH
is such that IH(s) = (d1, d2) where d1 is the number of
temporally bounded operators violated in s, and d2 = 0 if
no non-temporally bounded operators are violated in s and
d2 = 1 otherwise, E ⊆ S × ΦX × 2AP × S is a set of
edges, and L : S → 2AP is a labelling function mapping
each location to a set of actions.
The notation (s, g, a, s′) ∈ E is used to state that there exists
an edge from s to s′ under the action a ∈ 2AP where the
valuation of the clocks satisfy the guard g = IX(s) ∈ ΦX .
The expressions dc(s) and dd(s) are used to denote the
hybrid distance derivatives ḋc and ḋd assigned to s by IH .

Definition 9: An automata timed run rtAH
=

(s0, τ0)(s1, τ1)...(sm, τm) of a TAhd, AH , corresponding
to a timed run rt = (π0, τ0), (π1, τ1), ..., (πm, τm) of a
WTS T , is a sequence where s0 ∈ S0, sj ∈ S, and
(sj , gj+1, aj+1, sj+1) ∈ E ∀j ≥ 1 (for some aj+1 and
gj+1) such that i)τj |= gj , j ≥ 1, and ii)L(πj) ∈ L(sj), ∀j.

It follows from Definitions 8 and 9, that the con-
tinuous violation for the automata timed run is dc =∑

i=0,...,m−1 d
c(si)(τi+1 − τi), and similarly, the dis-

crete violation for the automata timed run is dd =∑
i=0,...,m−1 d

d(si)(τi+1 − τi), and hence the hybrid dis-
tance, dh, as defined in Definition 5, is equivalently given
with respect to an automata timed run as

dh(r
t
AH

) =
m−1∑
i=0

(hdc(si) + (1− h)dd(si))(τi+1 − τi) (4)

E. Human Feedback

The human feedback Hf : (rt, dc, dd) → F is a mapping
from the tuple (rt, dc, dd), where rt is a suggested path, and
dc and dd are the corresponding distances, to the set F:

Definition 10: The human feedback takes values in the set
F = {d+c , d−c , d0c , abort}, where d+c , d−c and d0c correspond
to giving higher priority to dd, giving greater priority to dc
and approving the priority (and the plan) respectively; abort
indicates that both the values of dc and dd are too big to
satisfy the human’s preferences.

An evaluation function eval is defined for the purpose
of comparing two timed runs with each other. The function
is used in order to determine if a suggested path is an
improvement compared to a previous path, with respect to
the hybrid distance and a given human feedback element.

Definition 11: Given two timed runs rt1 and rt2, the corre-
sponding values of the continuous and discrete distances d1c ,
d2c , d1d, d2d, and human feedback f ∈ F given as response on
rt1, d1c and d1d, we define the evaluation of these two runs as

eval(rt1, r
t
2, f) =

 d1d − d2d if f = d+c
d1c − d2c if f = d−c

0 if f ∈ {d0c , abort}
III. PROBLEM FORMULATION

The problem considered in this paper is to find the plan
which violates a given MITL specification the least, for
some human preference. Hybrid distance is used as the
measurement of violation, where dh = 0 corresponds to
complete satisfaction and dh ≥ 0. The human preference is
indicated by the choice of h. The result is two sub problems:

Problem 1: Given a WTS T and an MITL specification ϕ,
find the timed run rt of T that corresponds to the automata
timed run rtAH

that satisfies:
rtAH

= argmin
rtAH

dh(r
t
AH

)

where AH is the TAhd that corresponds to ϕ.
Problem 2: Given a human feedback f ∈ F, update h

such that the new solution of Problem 1, rtnew, satisfies
eval(rtold, r

t
new, f) > 0, where rtold is the previously found

solution, if such a solution exists.

IV. CONTROL SYNTHESIS FRAMEWORK

The solution to Problems 1 and 2, is inspired by the
standard 3 steps procedure for single agent control synthesis;
i) expressing the temporal logic specification as an automa-
ton, ii) constructing the product of the automaton and the
transition system, and iii) implementing graph search to find
the shortest path. The suggested control synthesis framework
follows the steps:

1) Construct a Timed Automaton with Hybrid Distance
(TAhd) which represents the MITL specification.

2) Construct a Product Automaton as the product of the
TAhd and a WTS representing the system dynamics.

3) Find the least violating path by finding the shortest path
with respect to the hybrid distance, dh, and a given h.

4) Update h in accordance with human feedback and
repeat step 3-4 until a plan is approved/aborted.

The details of the proposed solution are further described in
Sections IV-A, IV-B, IV-C and IV-D below.

A. Constructing a Timed Automata with Hybrid Distance

In this section we consider the construction of a TAhd.
The construction is roughly based on the LTL to automata
translation in [7]. Considering the set of locations, it follows
from Section II-B that the formula ϕ can be partitioned into



subformulas ϕi such that ϕ =
∧

i∈{1,...,n} ϕi for some n > 0.
Each subformula ϕi can be evaluated as ϕstatei ∈ φi, where

φi =


{ϕvioi , ϕsati , ϕunci } if ϕi is temporally bounded

{ϕvioi , ϕunci } if ϕi is non-temporally
bounded of Type I

{ϕsati , ϕunci } if ϕi is non-temporally
bounded of Type II

Based on this we introduce Ψ =
∏

i∈{1,...,n} φi, and
construct the set of locations such that there exists a location
s for each possible ψ ∈ Ψ. The initial location is then defined
as the location where each subformula is uncertain, i.e. no
progress has been made. The accepting location is defined
as the location where each temporally-bounded subformula
and each non-temporally bounded subformula of Type I are
satisfied, while all non-temporally bounded subformulas of
Type II are uncertain, i.e. satisfaction of ϕ.
Algorithm 1: Construct set of locations S, initial location
S0 and accepting location F of a TAhd
Data: MITL specification: ϕ
Result: Corresponding set of locations: S, S0, F
Φ = {ϕi : ϕ =

∧
i ϕi};

for each ϕi ∈ Φ do
if ϕi is temporally bounded then

φi = {ϕsati , ϕvioi , ϕunci };
else

φi = {ϕsati , ϕunci } if ϕi is Type I;
φi = {ϕvioi , ϕunci } if ϕi is Type II;

end
end
Ψ =

∏
i φi;

S = {si : i = 0, ..., n}, where n is the number of
ψ ∈ Ψ, that is we create one location s for each ψ ∈ Ψ;
S0 = s0, where s0 corresponds to ψ0 =

∩
i ϕ

unc
i ;

F = sF , where sF corresponds to
ψF =

∧
i∈I ϕ

sat
i ∧

∧
j∈J ϕ

unc
j , where i ∈ I are the

indexes of subformulas that are either temporally
bounded or of Type I, and j ∈ J are the indexes of
subformulas that are of Type II;

The clock constraints are defined such that each temporally
bounded operator corresponds to one clock. A location s is
mapped to a clock constraint if it includes the corresponding
temporally bounded operator. The hybrid distance derivatives
mapping maps a location s to (ḋc, ḋd), where ḋc = k is
the number of temporally bounded operators violated in s,
ḋd = 0 if no non-temporally bounded operators are violated
and ḋd = 1 otherwise.

The edges are constructed in five sets; E1, E2, E3, E4, E5,
in Algorithm 2. E1 corresponds to progress of the MITL
formula and contains the edges of a standard timed Büchi
automaton. E2 contains edges from locations which corre-
sponds to discrete violations, and represents the progress
which occurs simultaneously as the current discrete violation.
E3 contains edges from locations which corresponds to con-
tinuous violations. These edges are equivalent to the edges
from the location’s predecessors with the exception of the

removal of clock constraint/s corresponding to the deadline/s
violated when entering the location. E4 corresponds to self-
loops, i.e. transitions from and to the same location. They
are defined such that all combinations of actions a ∈ 2AP

and guards g ∈ ΦX present in the ingoing edges are handled
by outgoing edges. This ensures that there are no deadlocks
in the automaton. E5 contains the edges which corresponds
to going back when discrete violations stop. This set is
constructed last in order to determine the actions and guards
of the edges based on the other sets. The motivation behind
the subsets is to use their properties in the construction.
Algorithm 2: Construct edges E
Data: MITL specification: ϕ, set of locations S, set of

actions 2AP , mapping of clock constraints IX ,
and mapping of hybrid distance derivative IH

Result: Corresponding set of edges: E
E1: (s, g, a, s′) ∈ E1 if ψ′ corresponding to s′ is
satisfied when a is performed under g in s;
E2: (s, g, a, s′) ∈ E2 if i) (s′′, g′, a′, s) ∈ E1, ii) a
non-temporally bounded operator is violated in s, iii)
(s′′, g, a, s′) ∈ E1, and iv) it holds ∀ temporally
bounded ϕj that the state of ϕj is identical in s′′ and s′

(e.g. if ϕj is satisfied in s′′ it is satisfied in s′);
E3: (s, g, a, s′) ∈ E3 if i) (s′′, g′, a′, s) ∈ E1, ii) a
temporally bounded operator ϕi is violated in s, and
iii)(s′′, g, a, s′) ∈ E1 where ϕi is satisfied in s′;
E4: (s, g, a, s) ∈ E4 if either a) (g, a) =

∪
i(gi, ai),

where (gi, ai) are the guard/action tuples of all ingoing
edges to s in E1 ∪ E2 ∪ E3, or b) i) s = s0, ii)
(g, a) = ΦX × 2AP \

∪
i(gi, ai), where (gi, ai) are the

guard/action tuples of all outgoing edges from s0 in
E1 ∪ E2 ∪ E3;
E5: (s, g, a, s′) ∈ E5 if i) ∃(s′, g′, a′, s) ∈ E1 ii) a
non-temporally bounded operator ϕi is violated in s, iii)
ϕi is uncertain in s′ iv) it holds for all temporally
bounded ϕj that the state of ϕj is identical in s and s′

(e.g. if ϕj is satisfied in s it is satisfied in s′) v)
(g, a) = ΦX × 2AP \

∪
i(gi, ai), where (gi, ai) are the

guard/action tuples of all outgoing edges from s′, i.e.
∃(s′, gi, ai, si) ∈ E1 ∪ E2 ∪ E3 ∪ E4 for some si;
E: E = E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5;

B. Constructing a Product Automata

The construction of a product of a WTS and a TAhd is
similar to the product of a WTS and a TBA (which definition
can be found in [10] and [9]). The only modification needed
is the consideration of the mapping of the hybrid distance
derivatives through simple projection:

Definition 12: Given a weighted transition system T =
(Π,Πinit,Σ,→, AP, L, d) and a timed automaton with hy-
brid distance AH = (S, S0, AP,X, F, IX , IH , E,H,L)
their Product Automaton (P) is defined as T p = T ⊗
AH = (Q,Qinit, , d,F , AP,Lp, IpX , I

p
H , X,H), where

Q ⊆ {(π, s) ∈ Π×S : L(r) ∈ L(s)}∪{(π, s) ∈ Πinit×S0}
is the set of states, Qinit = Πinit × S0 is the set of initial
states,  is the set of transitions defined such that q  q′



if and only if
• q = (π, s), q′ = (π′, s′) ∈ Q
• (π, π′) ∈→ and
• ∃ g, a, s.t. (s, g, a, s′) ∈ E,

d(q, q′) = d(π, π′) if (q, q′) ∈ , is a positive weight
assignment map, F = {(π, s) ∈ Q : s ∈ F}, is the set
of accepting states, Lp(q) = L(π) is an observation map,
IpX(q) = IX(s) is a map of clock constraints, and IpH(q) =
IH(s)is a map of hybrid distance derivative constraints.

C. Finding the Least Violating Path with Human Feedback

The path in P that corresponds to the smallest value of dh
can be found by using a Dijkstra algorithm, where the cost
function is defined as the hybrid distance. The idea of the
suggested algorithm is given in Algorithm 3. The distance
with respect to time is used when finding successors.
Algorithm 3: Dijkstra Algorithm with Hybrid Distance
as cost function
Data: Product Automata, weight assignment constant h
Result: Shortest path with respect to hybrid distance

rmin
hd , corresponding distances dh, dc, and dd

Q =set of states; q0 =initial state; SearchSet = q0;
d(q, q′) =weight of transition q  q′ in P ;
if q = q0 then dist(q) = dh(q) = dc(q) = dd(q) = 0;
else dist(q) = dh(q) = dc(q) = dd(q) = ∞ for q ∈ Q
do pred(q) = ∅;
while no path found do

Pick q ∈ SearchSet s.t. q = argmin(dh(q));
if q ∈ F then path found
else

find all q′ s.t. q  q′;
for every q′ do

%dsteph = dh for transition q  q′

dsteph = (hḋc(q) + (1− h)ḋd(q))d(q, q
′);

if dh(q′) > dh(q) + dsteph then
update dist(q′), dh(q′), dc(q′), dd(q′)
and pred(q′) and add q′ to SearchSet;
Remove q from SearchSet;

end
end

end
end
rmin
hd = q;

while q ̸= q0 do
q = pred(q);
rmin
hd = [q rmin

hd ];
end

Remark 1: In Algorithm 3, we assume that the agent
move from q to q′ at the end of the transition time. Hence,
dsteph considers the hybrid distance derivative of the previous
state q rather than the successor q′.

Theorem 1: If ∃ some π ∈ Π for every w ∈ 2AP

that are considered by a reachability operator in the MITL
specification ϕ, such that w ∈ L(π), and if π is reachable
from Πinit, then Algorithm 3 will always have a solution.
Here, w is a word (a combination of atomic propositions),

and the reachability operators are eventually and until, the
operators which requires a word to be reached at some point.

Proof: If ∃ some π ∈ Π for a reachability operator
such that w ∈ L(π), then it follows that ∃ q ∈ Q such that
q = (π, s), where s is a location in the TAhd corresponding
to the satisfaction of the reachability operator. Furthermore,
q is reachable from Qinit if π is reachable from Πinit. It
follows that ∃ a state q′ = (π′, s′) ∈ Q, which is reachable
from Qinit, where s′ corresponds to the satisfaction of all
reachability operators in ϕ. By definition q′ ∈ F , and hence
Algorithm 3 will have a solution.

D. Human Robot Feedback

To incorporate the human feedback in the system it must
be translated into a deterministic response. The response
should be such that d+c leads to a decrease in dd (if possible),
and d−c leads to a decrease in dc (if possible). The response
to the remaining feedback, d0c and abort, should be to end the
synthesis. In this paper, we suggest that the system responds
as described in Algorithm 4. The idea is simply to decrease
or increase h with an increment δ in order to adjust the value
of dh = hdc + (1 − h)dd. We only consider h ∈ [0, 1], to
avoid violation having positive impact. The increment δ > 0
should be chosen small enough to avoid that possible paths
are missed. However, decreasing δ will result in a greater
number of runs of Algorithm 3.
Algorithm 4: Algorithm for handling feedback from
human user
if feedback=d0c then Implement controller;
else if feedback=abort then Ask for a new task;
else if feedback=d+c then

while no new path is found and h ≥ 0 do
h = h− δ; find new path;

end
if h < 0 then @ path with smaller dd;
else suggest new path to human;

else if feedback=d−c then
while no new path is found and h ≤ 1 do

h = h+ δ; find new path;
end
if h > 1 then @ path with smaller dc;
else suggest new path to human;

end

V. CASE STUDY

To illustrate the suggested framework, simulations have
been performed in MATLAB. The simulations consider a
single agent with the dynamics given in (5), in the environ-
ment illustrated in Figure 1, the abstraction of the dynamics
was performed as in [10] and considers worst case transition
times.

ẋ =

[
2 1
0 2

]
x+

[
1 0
0 1

]
u x0 = (2.5, 3.5) (5)

x1 ∈ [1, 6], x2 ∈ [1, 4] |u| ∈ [−20, 20]

The MITL task ϕ = �[0,∞]¬a ∧ ♢[0,0.01]b (avoid a and
reach b within 0.01s) was given as input. The only word
considered by a reachability operator is hence w = {b}, and
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(a) Final path for feedback d0c , i.e.
h = 0.5. The algorithm weighs dc
and dd equally and chooses a path
that has both small discrete and small
continuous violations.
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(b) Final path for feedback d+c , i.e.
h < 0.5. The algorithm favours dd
and chooses a path that only has
continuous violations.
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(c) Final path for feedback d−c , i.e.
h > 0.5. The algorithm favour dc and
chooses a path that only has discrete
violations.

Fig. 1: Suggested paths satisfying ϕ as close as possible with respect to the hybrid distance and human feedback.

TABLE II: Hybrid distance as estimated by the control
synthesis and as calculated from the resulting trajectory, for
the paths suggested in the case study.

Path h dc dd Estimated dh Real dh
1 0.5 0.09 0.036 0.064 0.042
2 0.34 0.16 0 0.055 0.041
3 0.55 0.067 0.067 0.067 0.062

since there exists states in the environment where b holds, it
follows that the control synthesis will give at least one sug-
gested path. The construction of the product automaton was
performed in 3s, and the graph search in 47ms on a laptop
with a Core i7-6600U 2.80 GHz processor. The increment δ
was set to 0.01. Three different paths were suggested based
on the human feedback; one where dc and dd were weighed
equally, one where dd was prioritized and one where dc was
prioritized. The resulting paths are illustrated in Figure 1,
where the determined control sequences where implemented.
The switches between the controllers were performed based
on position, i.e. on the edge between states. Hence, the
transitions times are in reality shorter than as suggested by
the synthesis, resulting in less violation than predicted. The
resulting values of h, dd, dc and dh determined both by the
synthesis and from the final trajectory are given in Table
II. Neither increasing h above 0.55 nor decreasing it below
0.34, results in any new paths.

VI. CONCLUSIONS
In this paper a novel hybrid distance metric is introduced,

and is associated to deriving the least violating path with
respect to an MITL formula given by a human user. A
framework for finding the path with the lowest value for
this metric with respect to human feedback is suggested.
The presented case study illustrates that the framework gives
reasonable estimations of the metric, and that the resulting
path suggestion follows the expected behaviour. Current
efforts focus on experimental validation of the proposed
algorithm.
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