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Abstract

Speech is a fundamental means of human communication. In the last several
decades, much effort has been devoted to the efficient transmission and storage
of speech signals. With advances in technology making mobile communication
ubiquitous, communications anywhere has become a reality. The freedom and
flexibility offered by mobile technology brings with it new challenges, one of which
is robustness to acoustic background noise. Speech enhancement systems form a
vital front-end for mobile telephony in noisy environments such as in cars, cafe-
terias, subway stations, etc., in hearing aids, and to improve the performance of
speech recognition systems.

In this thesis, which consists of four research articles, we discuss both single
and multi-microphone approaches to speech enhancement. The main contribution
of this thesis is a framework to exploit available prior knowledge about both
speech and noise. The physiology of speech production places a constraint on the
possible shapes of the speech spectral envelope, and this information is captured
using codebooks of speech linear predictive (LP) coefficients obtained from a large
training database. Similarly, information about commonly occurring noise types
is captured using a set of noise codebooks, which can be combined with sound
environment classification to treat different environments differently.

In paper A, we introduce maximum-likelihood estimation of the speech and
noise LP parameters using the codebooks. The codebooks capture only the spec-
tral shape. The speech and noise gain factors are obtained through a frame-by-
frame optimization, providing good performance in practical nonstationary noise
environments. The estimated parameters are subsequently used in a Wiener filter.
Paper B describes Bayesian minimum mean squared error estimation of the speech
and noise LP parameters and functions there-of, while retaining the instantaneous
gain computation. Both memoryless and memory-based estimators are derived.

While papers A and B describe single-channel techniques, paper C describes
a multi-channel Bayesian speech enhancement approach, where, in addition to
temporal processing, the spatial diversity provided by multiple microphones
is also exploited. In paper D, we introduce a multi-channel noise reduction
technique motivated by blind source separation (BSS) concepts. In contrast to
standard BSS approaches, we use the knowledge that one of the signals is speech
and that the other is noise, and exploit their different characteristics.

Keywords: speech enhancement, noise reduction, linear predictive coefficients,
autoregressive, codebooks, maximum-likelihood, Bayesian, nonstationary noise,
blind source separation.
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Speech enhancement

1 Introduction

Speech is a fundamental means of human communication. Beginning with
limited distance fixed-line telephone networks, recent developments have
now given way to high quality mobile communication across the globe. Cel-
lular phones and professional mobile radio such as those used by emergency
services are an integral part of everyday life.

While the freedom and flexibility provided by mobile technology has
made it possible to communicate outside controlled environments, it has
also introduced new challenges. Mobile users communicate in different en-
vironments with varying levels and types of background noise such as traffic
noise, car engine noise, multi-talker babble noise as in cafeterias etc. Sup-
pression of the acoustic background noise is a relevant and challenging prob-
lem. Apart from reducing listener fatigue and improving the quality and
intelligibility of speech, noise reduction is also crucial to obtain good per-
formance of the speech coding algorithms that make mobile communication
feasible.

Robustness to environmental noise has remained a limiting factor in the
widespread deployment of speech enabled services such as speech recognition
and speaker identification systems. While these technologies show impres-
sive performance in controlled noise-free environments, performance rapidly
degrades under practical noisy conditions. Noise reduction is also becom-
ing an increasingly important feature in hearing aids. For these reasons,
much effort has been devoted over the last few decades towards developing
efficient speech enhancement algorithms. The term speech enhancement
has a broad connotation encompassing various topics such as acoustic back-
ground noise reduction, dereverberation, blind source separation of speech
signals, bandwidth extension of narrowband speech, etc. In this thesis, we
use speech enhancement to describe acoustic background noise reduction.

Noise reduction can be viewed as an estimation problem, where an un-
known signal (speech) is to be estimated in the presence of noise, where
only the noisy observation is available. The estimation-theoretic view is also



2 Speech enhancement

meaningful in the estimation of parameters derived from the clean speech
signal such as the linear predictive (LP) coefficients. The first step towards
obtaining a rigorous solution to any estimation problem is to define a math-
ematical model for the observed data. Often, to account for the random
nature of the data, this is done by ascribing a probability density func-
tion (pdf) to the observed data. The pdf is parameterized by the unknown
parameters to be estimated.

Prior knowledge about the desired signal and the background noise is
encapsulated by the respective pdfs. A simple model to exploit prior knowl-
edge is to ascribe a particular form to the pdf, which is arrived at based
on a large data set. For example, the speech pdf may be described using
a Laplacian density and the noise pdf using a Gaussian density. A more
accurate method, though computationally more demanding, is to use more
sophisticated statistical models using, e.g., hidden Markov models (HMMs),
Gaussian mixture models (GMMs), or codebooks that have been trained us-
ing a representative database. The pdfs of the speech and noise processes
are thus estimated from corresponding training sequences. This is the ap-
proach adopted in this thesis, where prior knowledge about the speech and
noise signals, in the form of trained codebooks of their LP coefficients, is
used in the estimation procedure.

Given a pdf for the observed data, it is possible to adopt one of two dif-
ferent schools of estimation depending on the assumptions on the unknown
parameter. If the parameter is assumed to be deterministic (but unknown),
the procedure is termed classical estimation, e.g., maximum-likelihood (ML)
estimation. If we assume that the unknown parameter is a random variable
with its own pdf, and we estimate a realization of that random variable, the
procedure is termed Bayesian estimation. In the work performed in this
thesis, both maximum-likelihood and Bayesian approaches are considered.
A brief description of the two estimation approaches is thus in order and is
provided in section 2.

The vast family of speech enhancement algorithms may be broadly clas-
sified into two categories: single and multi-channel enhancement. Single-
channel methods operate on the input obtained from only one microphone.
They have been attractive due to cost and size factors, especially in mobile
communications. In contrast, multi-channel methods employ an array of
two or more microphones to record the noisy signal and exploit the result-
ing spatial diversity. The two approaches are not necessarily independent,
and can be combined to improve performance. For example, in practical
diffuse noise environments, the multi-channel enhancement schemes rely on
a single-channel post-filter to provide additional noise reduction.

We discuss single-channel methods and introduce the contributions of
this thesis towards this area in section 3. This section is intended to be a sur-
vey on single-channel enhancement algorithms. Multi-channel approaches
and aspects of the thesis in this context are discussed in section 4.



2 Estimation-theoretic approach 3

2 Estimation-theoretic approach

In this section, we briefly outline the principles behind maximum-likelihood
and Bayesian MMSE estimation. Their use in the speech enhancement
application is discussed. Besides providing an overview of these techniques,
this section also establishes some of the notation used in the remainder of
this thesis.

2.1 Maximum-likelihood estimation

Consider the estimation of a parameter θ = [θ1 . . . θp]
T based on a sequence

of K observations y = [y(0) . . . y(K−1)]T . In ML estimation, θ is treated as
a deterministic variable. The ML estimate of θ is the value θML that max-
imizes the likelihood function p(y; θ) defined on the data. ML estimation
has several favorable properties, in particular, it is asymptotically unbiased
and efficient, i.e., as the number of observations K tends to infinity, the ML
estimate is unbiased and achieves the Cramer-Rao lower bound (CRLB).
It can be shown (assuming that the derivatives of the log-likelihood exist)
that [121, ch. 7]

θML ∼
K→∞

N (θ, I−1(θ)), (1)

where I(θ) is the p × p Fisher information matrix whose (i, j)th entry is
given by

[I(θ)]ij = −E
[
∂2 ln p(y; θ)

∂θi∂θj

]

. (2)

Thus we have (asymptotically)

Unbiased: E[θML] = θ,

CRLB: var(θML
i ) = [I−1(θ)]ii. (3)

The maximization of the likelihood function is performed over the domain of
θ. In many cases, θML cannot be computed in closed form and a numerical
solution is obtained instead. Such numerical solutions are typically obtained
through iterative maximization procedures such as the Newton-Raphson
method or the expectation-maximization (EM) approach. The initial value
of the parameter used to start the iterative procedure usually has a strong
impact on whether the final estimate results in a local or a global maximum
of the likelihood function.

In applications where the parameter θ is known to assume one of a finite
set of values, the problems due to the iterative procedures can be avoided
by performing the maximization over this finite set. An exhaustive search
over the finite parameter space guarantees a global maximum.

For speech enhancement, we assume that both speech and noise can be
described by independent auto-regressive (AR) processes. The problem is
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then one of estimating the speech and noise LP coefficients1 [6, 138] based
on the observed noisy speech in an ML framework. The clean speech AR
model can be mathematically expressed as

x(n) =

p
∑

l=1

alx(n− l) + e(n), (4)

where a1, . . . , ap are the LP coefficients of order p and e(n) is the prediction
error, also referred to as the excitation signal. It is common to model e(n) as
a Gaussian random process. The LP analysis is typically performed for each
frame of 20-30 ms, within which speech can be assumed to be stationary.
For each frame, the model parameters are the vector of LP coefficients
θ = [a1 . . . ap], and the variance of the excitation signal. A similar model
can be obtained for the noise signal.

The physiology of speech production imposes a constraint on the pos-
sible shapes of the speech spectral envelope. Since the spectral envelope
is specified by the LP coefficients [138], this knowledge can be modelled
using a sufficiently large codebook of speech LP coefficients obtained from
long sequences of training data. Such a-priori information about the LP
coefficients of speech has been exploited successfully in speech coding us-
ing trained codebooks [174]. Similarly, noise LP coefficients can also be
modelled based on training sequences for different noise types. Thus, it is
sufficient to perform the maximization over the speech and noise codebooks.
The search results in a global optimum in the constrained search space.

In paper A, we describe an ML approach for the estimation of the speech
and noise LP coefficients and the excitation variances. Together, they char-
acterize the speech and noise power spectra, which can be used to construct
a Wiener filter to obtain the enhanced speech signal. Given the noisy data,
the excitation variances maximizing the likelihood are determined for each
pair of speech and noise LP coefficients from the codebooks. This is done
for all combinations of codebook pairs, and the most likely codebook com-
bination, together with the optimal excitation variances, is obtained. Since
this optimization is performed on a frame-by-frame basis, good performance
is achieved in nonstationary noise environments.

Apart from restricting the search space, using a codebook in the ML
estimation has an additional benefit in applications where a codebook index
needs to be transmitted over a network, e.g., in speech coding. In this case,

1LP and AR modelling are closely related. In LP, the goal is to determine a FIR filter
that can predict a future sample as a linear combination of past samples in an optimal
(squared error sense) fashion. The difference between the original and predicted signals
is termed the prediction error, which for an AR signal is white noise. In AR modelling,
the goal is to obtain an all-pole IIR filter, which when excited with white noise results in
a signal whose statistics are the same as that of the signal being modelled. The variance
of the prediction error in LP equals the variance of the excitation signal in AR modelling.
In this thesis, we use the terms AR and LP parameters interchangeably.
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the likelihood function can be interpreted as a modified distortion criterion
to select the best codebook entry in the presence of noise. This approach is
adopted using a multi-stage codebook in [207].

2.2 Bayesian MMSE estimation

In ML estimation, the parameter θ is treated as a deterministic but unknown
constant. In the Bayesian approach, θ is treated as a random variable.
The Bayesian methodology allows us to incorporate prior (before observing
the data) knowledge about the parameter by assigning a prior pdf to θ.
A cost function is formulated and its expected value, referred to as the
Bayesian risk, is minimized. A commonly used cost function is the mean
squared error (MSE). In this case, the Bayesian minimum mean squared
error (MMSE) estimate θBY of θ given the observations y is obtained by
minimizing E[(θ − θBY)2], where E is the statistical expectation operator.
The expectation is with respect to the joint distribution p(y, θ). Thus, the
cost function to be minimized can be written as

η = E[(θ − θBY)2]

=

∫ ∫

(θ − θBY)2p(y, θ)dydθ

=

∫ (∫

(θ − θBY)2p(θ|y)dθ
)

p(y)dy, (5)

where the posterior pdf p(θ|y) is the pdf of θ after the observation of data.
Since p(y) ≥ 0, it is sufficient to minimize the inner integral for each y. An
estimate of θ can be found by determining a stationary point of the cost
function (setting the derivative of the inner integral to zero). We can write

∂

∂θBY

∫

(θ − θBY)2p(θ|y)dθ = 0 (6)

so that

θBY =

∫

θp(θ|y)dθ = E[θ|y]. (7)

For simplicity, in (7) and in the remainder of this thesis, we use the notation
E[θ|y] instead of the more rigorous notation E[θ|Y = y], where y is a
realization of the corresponding random variable Y. Using Bayes’ rule, the
posterior pdf can be written as

p(θ|y) = p(y|θ)p(θ)
p(y)

, (8)

where the denominator p(y) is a normalizing factor, independent of the
parameter θ.
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In paper B, we describe a method to obtain Bayesian MMSE estimates of
the speech and noise AR parameters. The respective prior pdfs are modelled
by codebooks. The integral in (7) is replaced by a summation over the
codebook entries. We also consider MMSE estimation of functions of the AR
parameters, and one such function is shown to result in the MMSE estimate
of the clean speech signal, given the noisy speech. As in the ML case, MMSE
estimates of the speech and noise AR parameters are obtained on a frame-
by-frame basis, ensuring good performance in nonstationary noise.

In the ML estimation framework, one pair of speech and noise codebook
vectors was selected as the ML estimate, whereas the Bayesian approach
results in a weighted sum of the speech (noise) codebook vectors. The
Bayesian method provides a framework to account for both the knowledge
provided by the observed data and the prior knowledge.

3 Single-channel speech enhancement

Single-channel speech enhancement systems obtain the input signal using
only one microphone. This is in contrast to multi-channel systems where
the presence of two or more microphones enables both spatial and tempo-
ral processing. Single-channel approaches are relevant due to cost and size
factors. They achieve noise reduction by exploiting the spectral diversity
between the speech and noise signals. Since the frequency spectra of speech
and noise often overlap, single-channel methods generally achieve noise re-
duction at the expense of speech distortion.

The reduction of background noise using single-channel methods requires
an estimate of the noise statistics. Early approaches were based on voice
activity detectors (VAD), e.g., [74], and noise estimates were updated during
periods of speech inactivity. Accuracy deteriorates with decreasing signal-
to-noise ratios (SNR) and in nonstationary noise. Soft-decision VADs [139,
183, 194, 195] update the noise statistics even during speech activity. A
number of other noise estimation methods have been proposed [39, 43, 44,
54,55,91,144,184,210,224,231] and are discussed in section 3.1.

Since single-channel methods exploit the spectral diversity between the
speech and noise signals, it is therefore natural to perform the processing in
the frequency domain. Processing is done on short segments of the speech
signal, typically of the order of 20 to 30 ms, to ensure that the speech
signal satisfies assumptions of wide-sense stationarity. The segmentation is
performed using a sliding window of finite support. The windowed signal
(assuming it is absolute summable) is transformed to the frequency domain
using the discrete short-time Fourier transform (STFT) [180, ch. 7]:

Xm(k) =
1√
K

∞∑

n=−∞
x(n)h(n−m) exp(−j 2π

K
kn), k = 0, 1, . . . ,K − 1, (9)
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where x(n) is the sampled speech signal, h(n) is the analysis window that
is non-zero only in the interval [0,K − 1], m is the index to the current
windowed segment, and k is the discrete frequency index2. While it is not
customary to include the normalization by

√
K in the definition, we do

so for convenience in notation introduced later in the thesis. To obtain
Xm+1(k), the window is shifted by one sample from its previous position.
In practice, the sequence of frames is subsampled by a factor L, resulting
in XmL(k), which is equivalent to a larger frame-shift. Typical values at
a sampling frequency of 8 kHz are K = 256 (32 ms) and a frame-shift
of L = 128 (50% overlap). For a given window length K over which the
analysis window is non-zero, to ensure invertibility of the discrete STFT, we
must have L ≤ K. In practice, (9) is implemented by buffering K samples
of the signal, applying a smooth window, followed by a K-point discrete
(fast) Fourier transform (DFT). For the next frame, the buffer is advanced
by L samples.

We now introduce some notation and terminology. In the remainder of
this chapter, we drop the frame index m, and the processing is described for
a single frame. We refer to X(k) as the (complex) spectrum of the signal
and to |X(k)| as the magnitude spectrum. The quantity |X(k)|2 denotes
the periodogram. For stationary signals, as K → ∞, the expected value
of the periodogram can be shown to be the power spectral density (PSD),
Px(k) = E{|X(k)|2}. The PSD and the autocorrelation function of the
signal form a Fourier transform pair.

We consider an additive noise model

y(n) = x(n) + w(n), (10)

where y(n) represents the sampled noisy speech. The speech and
noise signals are modelled as independent random processes. Let x =
[x(0) x(1) . . . x(K − 1)]T denote a segment of length K of the clean speech
signal. y and w are defined analogously. In the noise reduction problem, we
wish to obtain an estimate x̂ of the clean speech from the noisy observation.
The additive signal model defined above applies to all the single-channel al-
gorithms described in this thesis.

The additive model can be expressed in the frequency domain as

Y (k) = X(k) +W (k), (11)

where Y (k), X(k) andW (k) are obtained by applying the DFT to the time-
domain entities y,x and w respectively. Since the speech and noise signals

2The discrete STFT is obtained by sampling the STFT, which is continuous in
frequency, with a frequency sampling interval of 2π

N
, i.e., Xm(k) = Xm(ω)|ω=

2π
N
k
,

k = 0, 1, . . . , N − 1, where N is the frequency sampling factor. To ensure perfect re-
construction, we must have N ≥ K. For simplicity, in this thesis, we assume N = K.
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are independent, the following relation holds between the corresponding
PSDs:

Py(k) = Px(k) + Pw(k). (12)

A block diagram of a generic frequency domain single-channel speech
enhancement system is shown in Fig. 1. It is common to modify only
the spectral amplitude and use the noisy phase [218]. An estimate of the
noise PSD is obtained from the noisy speech. Any available prior knowl-
edge about the noise signal may be exploited. Using the noise estimate,
an estimate of the spectral coefficients of clean speech is obtained from the
noisy coefficients. Again, prior knowledge about the speech signal or about
the human auditory system can be exploited. In some systems (e.g., the
systems described in papers A and B), the speech and noise PSD are jointly
estimated, as indicated by the bidirectional arrow in the figure. Enhanced
speech is reconstructed in the time domain through the inverse discrete
Fourier transform (IDFT) and through an overlap-add technique. We note
that the overlap in the enhancement system results in an algorithmic delay.
This delay can be minimized through careful combination with the analy-
sis/synthesis schemes of the speech coders that the enhancement systems
may be part of [149].

PSfrag replacements

Noisy speech

Enhanced Speech

DFT

IDFT

Estimate

noise PSD

Estimate speech

coefficients

A-priori

noise information

A-priori

speech information

Figure 1: Block diagram of frequency domain single-channel speech enhance-
ment.

Several different single-channel techniques have been developed over the
last few decades, and we provide an overview in this chapter. Section 3.1
discusses methods to estimate the noise PSD. Wiener filtering, spectral sub-
traction, subspace based methods and Kalman filter methods, their similar-
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ities and differences, are discussed in section 3.2. Section 3.3 is devoted to
approaches that assume a statistical distribution on particular representa-
tions of the speech signal. Systems that exploit a-priori information about
speech and noise signals through the use of trained statistical models are
considered in section 3.4. While the above sectioning provides an implicit
categorization of speech enhancement techniques, we emphasize that this
categorization is by no means comprehensive and is solely for convenience.

3.1 Noise estimation

Estimation of the statistics of the background noise is an essential feature
of single-channel noise reduction algorithms. It is a challenging task as the
estimates have to be obtained from the noisy speech signal. A common
approach is to use a voice activity detector (VAD) to identify time seg-
ments in the signal where speech is absent and thus the signal consists of
only the background noise [19, 20, 37]. Estimates of the noise statistics are
updated during these speech pauses. While VAD based noise estimation
schemes have the advantage of low computational complexity, they suffer
from two problems. First, with decreasing signal-to-noise ratios, detecting
speech pauses is no longer a trivial task. Second, while the method works
reasonably well in stationary noise environments, performance degrades in
environments where the noise statistics continuously change, which is often
the case in practice.

To address the shortcomings of binary VADs (there are only two states,
speech presence and absence), soft-decision VADs [35, 36, 139, 183, 194, 195]
were proposed that assign a probability of speech presence to each segment.
Thus, it is possible to update the noise statistics continuously, based on the
probability that speech is present.

One of the noise estimation schemes that adapts also during speech
activity is the minimum statistics approach [142, 144]. This method relies
on the observation that the PSD of the noisy signal often decays to that of
the noise signal. By maintaining a finite buffer of the smoothed noisy signal
power spectra over time, noise estimates can be obtained by tracking the
minimum in the buffer for each frequency bin. The smoothing factor is time-
frequency dependent and optimally derived by minimizing an appropriate
error criterion. Furthermore, since the minimum of a set of noisy PSD
values is generally smaller than the mean, the method incorporates a bias
compensation scheme to improve the estimation.

To reduce complexity, the buffer is decomposed into smaller buffers over
which the minimum is tracked. To improve performance in nonstationary
noise, the method contains provisions to detect local minima in the sub-
windows in vicinity of the overall minimum. To ensure that the noisy PSD
indeed decays to that of the noise signal for each frequency bin, the buffer
has to be sufficiently large. However, large buffers make it difficult to adapt
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to quickly changing noise. Thus, there is a trade-off between accuracy of
the estimates and adaptation to nonstationary noise. While the method
provides good performance in stationary noise environments, performance
in highly nonstationary noise environments is limited by the buffer size.

A related scheme is the quantile method described in [210]. Similar to the
minimum statistics approach, this method is also based on order statistics,
and maintains a buffer of past power spectra (in [210], no smoothing is
performed, and the periodogram is stored in the buffer). However instead of
considering the minimum, the noise estimate is obtained as the qth quantile
of the values in the buffer for each frequency bin (q = 0 corresponds to the
minimum). This method suffers from the same limitations as the minimum
statistics approach.

The minima controlled recursive averaging approach introduced in
[39, 43, 44], also similar to the minimum statistics method [144], tracks the
minima of the recursively averaged noisy power spectrum. In [39], two itera-
tions of smoothing and minimum tracking are performed. The first iteration
serves as a rough VAD which helps to eliminate strong speech components
in the smoothing in the second iteration. Thus smaller buffers are suffi-
cient. However, while the method has an advantage in nonstationary noise
compared to [144], performance is still limited by the buffer size.

Recursive noise estimation algorithms for nonstationary noise environ-
ments have been proposed in the cepstral domain in the context of speech
recognition. Employing a GMM to describe speech, the time-varying noise
parameters (considered to be deterministic) are obtained using iterative
stochastic approximation in [52, 54]. The recursive estimation employs a
forgetting factor that introduces a tradeoff between the accuracy of the es-
timate and the speed with which changes are tracked. Following a similar
recursive estimation framework, maximum a-posteriori (MAP) estimates of
the noise parameters in the log-domain are obtained in [51] by employing
a Gaussian prior for the noise. The mean and the covariance of the prior
are fixed and obtained using initial noise-only segments. This approach was
improved in [53] by including adaptation of the noise prior by recursively
updating the prior statistics.

One way to overcome the limitations of noise estimation methods in
nonstationary environments is to use data-driven prior information about
noise, when available. Such an approach is suggested for example in [188],
where HMMs are used to model the noise power spectra, characterized
by the LP coefficients and the variance of the excitation (gain). Different
HMMs are trained for different noise types. Based on the observation, an
appropriate noise model is selected. Since the trained noise model includes
the gain, such a method requires a gain adaptation scheme that adjusts the
gain based on the observation, as conditions generally differ during training
and testing. In [188], this gain adaptation is performed using an estimate
of the noise gain obtained from silence segments. An obvious improvement
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is to use a more robust long-term gain estimate based on the minimum
statistics approach, which also updates during speech activity. Such HMM
based methods can handle changes to the noise spectral shape, which are
well modelled by the noise HMMs. However, they can adapt only as quickly
as the long-term estimate [144] to changes in the gain.

A method that computes the noise gain on a frame-by-frame basis can
respond quickly to changes. Such a method for noise reduction is discussed
in [125, 211]. In [125], the speech and noise power spectra are described by
two trained codebooks of the respective AR coefficients. Unlike the HMM
method where the excitation variance is part of the prior information, the
codebooks do not contain the excitation variance, which is then computed
for each input frame using the noisy observation at hand. This method
was extended and presented in an ML framework in [205] with an optimal
(in the ML sense) estimation of the excitation variances. In [205], multiple
noise codebooks are used, and for each frame, one noise codebook is selected
according to an appropriate criterion for subsequent use in the ML estima-
tion. A codebook based Bayesian MMSE approach with instantaneous gain
estimation is described in [209], where it is shown to result in better per-
formance than the ML approach and the HMM based MMSE approach.
The price to be paid for the improved performance in nonstationary envi-
ronments is an increase in computational complexity compared to methods
such as [144].

Methods that use prior knowledge, such as [125, 126, 135, 188, 205–209],
are discussed in greater detail in section 3.4 in conjunction with the speech
enhancement scheme that they are associated with.

3.2 The Wiener filter and its relatives

Wiener filtering, spectral subtraction, subspace methods and Kalman fil-
tering are popularly used approaches for noise reduction. In the following
subsections, we discuss these methods, and study their differences and sim-
ilarities.

Wiener filtering

Consider a K×K linear estimator H that results in an estimate x̂ = Hy of
the clean speech from the noisy speech. The estimation error can be written
as

ε = Hy − x = (H − I)x
︸ ︷︷ ︸

εx

+Hw
︸︷︷︸

εw

, (13)

where I is the K ×K identity matrix. The mean squared estimation error
is given by tr E{εεT}, where tr denotes the matrix trace. From the inde-
pendence assumption, the cross terms in the mean squared error vanish and
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we have

tr E{εεT} = tr E{εxεxT}+ tr E{εwεw
T}

= tr (H − I)Rx(H − I)T + trHRwH
T , (14)

where Rx = E{xxT} and Rw = E{wwT} are the covariance matrices of
speech and noise respectively.

In the Wiener filter approach, the optimal estimator is designed to min-
imize the mean squared error, i.e.,

HW = argmin
H

(
tr (H − I)Rx(H − I)T + trHRwH

T
)

= Rx(Rx +Rw)
−1. (15)

The above estimator can be efficiently implemented in the frequency do-
main. Under the assumption of large K, the covariance matrices Rx and
Rw can be approximated as circulant and are hence diagonalized by the
DFT, i.e, Rx = F ∗PxF , where Px = diag(Px(0) Px(1) . . . Px(K − 1)) is a
diagonal matrix containing the PSD of x, F is the DFT matrix, and the su-
perscript ∗ denotes complex conjugate transpose. Similarly, Rw = F ∗PwF ,
where Pw = diag(Pw(0)Pw(1) . . . Pw(K−1)) is a diagonal matrix containing
the PSD of w. With the above diagonalization, the Wiener filter can be
rewritten in the frequency domain as

H freq
W = Px(Px + Pw)

−1 = PxP
−1
y . (16)

However, Px is not known, and, in practice, an estimate P̂x of Px is used.
This estimate is commonly obtained in a subtractive fashion from (12) using
Py and an estimate P̂w of Pw, and negative values are set to zero since the

PSD cannot be negative (negative values may arise since P̂w is only an
estimate of the noise PSD):

P̂x(k) = max(Py(k)− P̂w(k), 0) k = 0, 1, . . . ,K − 1, (17)

so that the clean speech spectrum is then estimated according to

X̂(k) =
max(Py(k)− P̂w(k), 0)

Py(k)
Y (k) k = 0, 1, . . . ,K − 1. (18)

In practice, Py(k) is approximated using the periodogram or a smoothed
version there-of.

Spectral subtraction

Spectral subtraction is a speech enhancement scheme based on a direct
estimation of the short-time spectral magnitude of clean speech [17]. The
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estimated magnitude is combined with the noisy phase. This can be written
as

X̂(k) = max(|Y (k)| − |W (k)|, 0) Y (k)

|Y (k)| , (19)

where |X̂(k)| is estimated by subtracting |W (k)|, an average estimate of the
magnitude spectrum of the noise signal, from the noisy spectral magnitude.
Negative values resulting from the subtraction are set to zero since the
magnitude spectrum cannot be negative.

In one variant, called power spectral subtraction, an estimate of the
periodogram of the clean speech signal is obtained as

|X̂(k)|2 = max(|Y (k)|2 − Pw(k), 0), (20)

the square root of which is then combined with the noisy phase:

X̂(k) =
√

max(|Y (k)|2 − Pw(k), 0)
Y (k)

|Y (k)| . (21)

The name power spectral subtraction is a misnomer since the periodogram
of the noisy speech is used in the subtraction and not the PSD. The name
arose due to the close similarity between (17) and (20) [132].

Power spectral subtraction is derived from an ML perspective in [156],
where Y (k) is assumed to be a complex zero mean Gaussian random variable
with variance Py(k) = Px(k) + Pw(k). Thus, its real and imaginary parts
are both zero mean Gaussian with variance Py(k)/2. The resulting pdf can
be written as

p(Y (k)) =
1

π(Px(k) + Pw(k))
exp

(

− |Y (k)|2
Px(k) + Pw(k)

)

(22)

so that the ML estimate of Px(k) is obtained as

P̂x(k) = |Y (k)|2 − Pw(k). (23)

Negative values are set to zero. The clean speech spectrum is then obtained
according to [156]:

X̂(k) =

√

P̂x(k)
Y (k)

|Y (k)| =
√

max(|Y (k)|2 − Pw(k), 0)

|Y (k)|2 Y (k), (24)

which is identical to (21). If the noisy PSD Py(k) is approximated by the
periodogram |Y (k)|2, it can be seen that the Wiener filter (18) corresponds
to the square of the suppression rule for power spectral subtraction.

One of the main drawbacks of the spectral subtraction scheme is that
the enhanced signal suffers from musical noise, which is especially audible in
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speech pauses. Random fluctuations in the periodogram result in randomly
spaced peaks in the enhanced spectrum, after the spectral attenuation. In
between these peaks, the spectral values are strongly attenuated since they
are close to or below the estimated noise PSD. In the time domain, this
residual noise is perceived as a sum of pure tones corresponding to the peaks,
and is hence referred to as musical noise. The musical noise phenomenon is
common to many frequency domain speech enhancement algorithms, e.g.,
the Wiener filter also suffers from this problem since, in practice, P̂x(k) is
often obtained in a subtractive fashion using (17). Magnitude estimation
schemes that avoid musical noise [28,68,69] are discussed in section 3.3.

The error arising from the use of the noisy periodogram |Y (k)|2 instead
of the PSD Py(k) in (23) is analyzed in detail in [97]. While the periodogram
is an asymptotically unbiased estimate of the PSD, its variance does not
tend to zero even as the frame length K approaches infinity. For stationary
noise, the variance can be reduced by estimating the PSD as an average of
the periodograms from multiple frames. For speech, the variance can be
reduced by employing a parametric estimate, e.g., by using an AR model as
in (4) so that the variance is proportional to 2p

K , where p is the AR model
order (typically, p = 10 for narrowband speech) [97].

Several modifications have been made to the basic spectral subtraction
scheme. Often a generalized subtraction rule of the form [89, 132, 134, 191,
217]

X̂(k) =

(

1− βk
[Pw(k)]

α/2

|Y (k)|α
) 1

α

Y (k), (25)

is employed, with provisions to prevent the occurrence of negative amplitude
values due to the subtraction. The amount of subtraction (and hence the
musical noise) is controlled by βk. α = 1 corresponds to amplitude spectral
subtraction and α = 2 to power spectral subtraction. A non-linear choice
for βk (viewed as a function) is suggested in [134], with α = 1. In [217], the
parameter values are determined using the auditory masking threshold.

Subspace based methods

In equation (13), the estimation error ε is the sum of two components, εx,
which represents the distortion introduced into the speech signal, and εw,
which is the residual noise remaining after the enhancement. The Wiener
filter does not make a distinction between the two types of distortions.
An alternate approach motivated by perceptual considerations is to have a
trade-off between noise reduction and signal distortion, and was introduced
in connection with the so-called subspace methods. In [70] for instance,
the goal is to minimize the speech distortion tr E{εxεx

T} subject to a con-



3 Single-channel speech enhancement 15

straint3 on the residual noise level tr E{εwεw
T}. This leads to a constrained

optimization problem that can be solved by the Lagrange multiplier method.
The resulting estimate can be written as

HS = Rx(Rx + µRw)
−1, (26)

where µ > 0 is the Lagrange multiplier. As observed in [70], for µ = 1, HS

coincides with the Wiener filter HW .
The subspace methods differ from the Wiener filter in the use of the data-

dependent Karhunen Loeve transform (KLT) to diagonalize the covariance
matrix, which avoids the approximation when the data-independent DFT
is used. Let Ry = UΛyU

T be the eigendecomposition of Ry, where U is an
orthonormal matrix of the eigenvectors of Ry and Λy is a diagonal matrix
containing the corresponding eigenvalues. For white noise, Rw is diagonal,
and constant across the diagonal. Thus, UT , which is the KLT and therefore
diagonalizes Ry, also diagonalizes Rx. Thus, we have

HS = UΛx(Λx + µΛw)
−1UT , (27)

where Λx and Λw are diagonal matrices containing the eigenvalues of Rx and
Rw respectively. We assume that the eigenvalues are sorted in nonincreasing
order. The subspace approach also exploits the fact that the noisy signal
space can be decomposed into a signal-plus-noise subspace that contains
both the clean signal and noise, and a noise subspace that contains only noise
(this implies the assumption that rank(Rx) = M ≤ rank(Ry)). Components
of the noise subspace are nulled and components of the signal-plus-noise
subspace are modified by a gain function of the form (27). The resulting
estimator can be written as

HSub = U

[
Gµ 0
0 0

]

UT , (28)

where Gµ = Λ′x(Λ
′
x+µσ

2
wI)

−1, Λ′x is an M ×M diagonal matrix containing
only the first M eigenvalues of Rx, σ

2
w is the variance of the white noise,

and I denotes the M ×M identity matrix. Note that the components of
the noise subspace are nulled. Determination of the model subspace order
M is addressed in [70].

The colored noise problem has been handled in different ways by dif-
ferent researchers. A pre-whitening transformation is suggested in [70].
In [165], a distinction is made between speech dominated frames and noise
dominated frames. In speech dominated frames, the KLT matrix of Rx is
used, and in noise dominated frames, the KLT matrix of Rw is used. This
approach was shown to be better than the pre-whitening suggested in [70].

3The subspace methods discuss constraints both in the time domain and the spectral
domain. We restrict our discussion to the time domain.
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In [185], a diagonality assumption is imposed on the covariance matrix of
the noise vectors in the KLT domain. A joint diagonalization of Rx and
Rw is proposed in [107]. The matrix that achieves this joint diagonalization
is the eigenvector matrix of R−1w Rx. This approach avoids the subopti-
mality due to the diagonal approximation in [185]. In [130], the whitening
approach suggested in [70] is elaborated. The matrix HS is simplified as

HS = R
1/2
w U∗Λ(Λ + µI)UR

−1/2
w , where U and Λ are the matrices of eigen-

vectors and eigenvalues of the whitened matrix R
−1/2
w RxR

1/2
w . As noted

in [130], since R−1w Rx and R
−1/2
w RxR

1/2
w are similar matrices, they have the

same eigenvalues and the Wiener-type gain modification performed in [107]
(joint diagonalization of Rx and Rw) is identical to the whitening approach
suggested in [70,130].

Instead of applying the KLT to the noisy covariance matrix, a singular-
value decomposition (SVD) can be applied to a Hankel (or Toeplitz) matrix
formed from the noisy signal [50]. From a numerical point of view, this
approach has the advantage that it does not require the computation of the
covariance matrix. Singular values smaller than a threshold are set to zero
to obtain a matrix with reduced rank. The output signal is reconstructed
from the resulting matrix (after ensuring a Hankel structure through av-
eraging). Pre-whitening of the signal is used to handle colored noise. The
pre-whitening can also be included as an integral part of the algorithm using
the quotient SVD of the matrix pair corresponding to the noisy and noise
matrices. This approach is adopted for general broadband noise in [114].
The case of narrowband noise is addressed in [115].

Various modifications have been proposed to the basic subspace ap-
proach. Methods that incorporate psychoacoustic properties such as au-
ditory masking into subspace based speech enhancement systems are de-
scribed in [106, 112, 122, 123, 216]. The basic idea in these methods is to
solve a constrained optimization problem that minimizes signal distortion
while constraining the residual noise to lie below the masking threshold.
The subspace method has also been successfully used as a front-end for
speech recognition systems operating in noisy environments [103,108–110].

Kalman filtering

Wiener filtering, spectral subtraction and the subspace methods discussed
above can generally be categorized as non-parametric methods in the sense
that they do not employ any parametric model to describe the speech signal.
This is in contrast with parametric methods that use models such as the
AR or the sinusoidal model to describe the signal. We discuss here one
specific approach, the Kalman filter, which provides a framework that can
exploit information about the human speech production process by using
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the AR model4. Since the first use of the Kalman filter approach for speech
enhancement in [173], several researchers have proposed different techniques
[76–79,85,90,92,129,178,197,226]. We briefly outline the general idea behind
these approaches. We state the expression for the pth order AR model again
for convenience:

x(n) =

p
∑

k=1

akx(n− k) + v(n), (29)

where a1, . . . , ap are the LP coefficients and v(n) is a zero mean white Gaus-
sian process with variance σ2v . The additive noise model can then be ex-
pressed in a state-space form as

x(n) = Fx(n− 1) + gv(n)

y(n) = hTx(n) + w(n), (30)

where

x(n) = [x(n− p+ 1) x(n− p+ 2) . . . x(n)]T ,

g = h = [0 0 · · · 1]T ,

F =











0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 . . . 0 1
ap ap−1 ap−2 · · · a2 a1











, (31)

and v(n) is defined analogously to x(n). The linear state-space representa-
tion (30) provides a natural framework to incorporate the AR model. The
case of white background noise was considered in [173] and the extension to
colored noise in [85] where an AR-model is assumed for the noise as well.

Given the above state-space representation, the standard Kalman filter
update equations can be employed to obtain an estimate of the clean speech
[85]. It is shown in [92,173] that the fixed-lag Kalman smoother with a lag
well within the tolerable delay results in better performance than the causal
Kalman filter. The performance of the causal Kalman filter can also be
improved through pre- and post-processing to achieve a perceptual shaping
of the residual noise [92].

Discussion

The Wiener filter, spectral subtraction, subspace methods and the Kalman
filter exhibit strong similarities. One example is the concept of the trade-off

4We note that it is also possible to use the AR model representation of speech in
the Wiener filter by specifying the speech PSD Px in (16) with the AR parameters, see
e.g., [131].
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between the signal distortion and residual noise, which was introduced ex-
plicitly first for the subspace method [70]. This trade-off has been employed
in spectral subtraction schemes in various forms such as under-subtraction
[127] and over-subtraction [10], albeit in an ad-hoc manner. These ad-hoc
fixes to improve performance were given a rigorous mathematical back-
ground by the class of subspace methods discussed in [70,107,165,185].

The subspace methods decompose the noisy signal space into signal-plus-
noise subspace and a noise subspace. Components of the noise subspace
are nulled. A similar operation is performed in both Wiener filtering and
spectral subtraction as seen in (17), (19) and (20), where subtracting an
estimate of the noise PSD results in certain components being set to zero.
This can be seen as nulling the components of the noise subspace. While the
subspace methods use the KLT, the DFT is used in the other two methods.

Other transforms such as wavelets and wavelet packets have also been
used in noise reduction. In contrast to the discrete STFT that uses a fixed
analysis window, the wavelet transform uses short windows at high frequen-
cies and long windows at low frequencies [186]. This leads to a better time
resolution at high frequencies, which can be useful, e.g., in preserving tran-
sients [190], and is also closely related to human perception. The principle
under which the wavelet-based methods operate is also similar to the sub-
space concept. The wavelet based methods achieve noise reduction through
thresholding, which relies on the fact that only a few wavelet coefficients
correspond to the signal. There are two types of thresholding - hard and
soft. The hard thresholding operation on the noisy wavelet coefficient Wy

is defined as [60]

ηH(Wy, λ) =

{
Wy if |Wy| > λ,

0 otherwise.
(32)

This operation is similar to setting the components of the noise subspace to
zero. The optimal (MMSE sense) threshold for white Gaussian noise can
be derived as λ = σ

√
2 logK, where σ is the standard deviation of the noise

and K is the number of samples in the observation [60]. For colored noise,
a level dependent threshold was obtained in [117] as λj = sj

√
2 log TK

where sj is the standard deviation of the wavelet coefficients at level j of
the transform.

The soft thresholding operation is defined as [59]

ηS(Wy, λ) = sgn(Wy)max(|Wy| − λ, 0), (33)

which can be viewed as setting the components of the noise subspace to zero,
and performing a magnitude subtraction in the speech-plus-noise subspace.

Speech enhancement through thresholding in a wavelet packet domain is
addressed in [16,220]. While the basis (and hence the time-frequency tiling)
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is fixed in a wavelet transform, a wavelet packet transform selects the best
basis from a library of orthonormal bases, by optimizing a certain cost
function. The cost function is typically designed to concentrate the signal
energy in a small number of transform coefficients [45]. Such an approach
is applied to speech enhancement in [16] by subjecting the wavelet packet
coefficients of the noisy signal to a hard thresholding operation. A modified
hard thresholding based on the µ-law logarithm is proposed in [32]. A
combination of soft and µ-law thresholding is proposed in [128].

3.3 Statistical model based systems

In the previous section, we considered linear estimation techniques for the
signal. Linear estimation is optimal (in the MSE sense) for the case when
x and y are jointly Gaussian [118, ch. 3]. The Wiener filter represents the
optimal solution in this case. In this section, we look at methods that use
distributions other than Gaussian and derive optimal nonlinear solutions.

We first consider methods that retain the Gaussian assumption on the
speech and noise processes in the frequency domain, i.e., the respective
DFT coefficients are assumed to be normally distributed. They differ from
the Wiener solution in that they attempt to obtain MMSE estimates of
the spectral amplitude, which then follows a Rayleigh distribution. Next,
we discuss methods that assume super-Gaussian (Gamma, Laplace etc.)
models.

Gaussian models

In the Wiener filter approach to speech enhancement, an optimal (under the
Gaussian assumption and in the mean squared error sense) estimate of the
clean speech spectral component is obtained from the noisy speech. In [68],
it is argued that the spectral amplitude is perceptually more relevant than
the phase and thus performance could be improved by an optimal estimate
of the amplitude. The amplitude estimate provided by the Wiener filter
(obtained as the modulus of the optimally estimated spectral component)
is not optimal under the assumed model; only the estimate of the spectral
component is optimal. Using the same statistical model, an optimal esti-
mate of the spectral amplitude, given the noisy speech, is obtained in [68].
The Fourier expansion coefficients of the speech and noise processes are as-
sumed to be independent zero mean Gaussian variables with time-varying
variances. This results in a Rayleigh distribution for the amplitudes of the
Fourier coefficients.

The MMSE estimate of the complex exponential of the phase is also
derived in [68] so that it can be used together with the MMSE amplitude
estimate. It is shown that the modulus of the resulting estimate of the phase
is not unity. Thus combining the MMSE phase estimate with the MMSE
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amplitude estimate affects the optimality of the amplitude. To address this
problem, a constrained MMSE estimate of the phase is obtained, whose
modulus is constrained to be unity. The resulting constrained MMSE esti-
mate is the noisy phase itself. The MMSE amplitude estimate is obtained
by applying the following gain function to the noisy spectral magnitude:

HEM(k) =

√
πvk
2γk

exp

(−vk
2

)[

(1 + vk)I0(
vk
2
) + vkI1(

vk
2
)
]

, (34)

where I0(·) and I1(·) are the modified Bessel functions of order zero and one
respectively and

vk =
ξk

1 + ξk
γk,

ξk =
Px(k)

Pw(k)
,

γk =
|Y (k)|2
Pw(k)

. (35)

The terms ξk and γk are referred to as the a-priori and a-posteriori SNR
respectively [68, 156]. The MMSE spectral amplitude estimator [68] was
shown to perform better than an ML estimate [156] using the same statis-
tical model.

The concept of soft-decision noise suppression [156, 163] may be em-
ployed together with the MMSE amplitude estimate (34). In [68], a two-
state model of speech presence/absence is used. The speech signal is as-
sumed to be present in each spectral component with a probability p = 0.5.

In [196], using a statistical model similar to [68], and using the uncer-
tainty of speech presence, an MMSE amplitude estimator is developed in
the discrete cosine transform (DCT) domain. It has been shown through
experiments that the DCT provides better energy compaction than the
DFT [196, 225]. While the KLT provides optimal energy compaction5, the
DCT is computationally less demanding.

The noise suppression rule (34) proposed in [68] requires the computation
of Bessel functions. Using the same statistical model, three simpler noise
suppression rules that exhibit a behavior similar to (34) are derived in [223].
The three rules correspond to joint maximum a-posteriori (MAP) estimation
of the amplitude and phase, MAP estimation of the amplitude, and MMSE
estimation of the spectral power. The spectral power estimator was found
to provide the best approximation to (34) and the corresponding estimator
of the clean speech spectral component is computationally simpler:

HSP(k) =

√

ξk
1 + ξk

1 + vk
γk

. (36)

5Asymptotically, as the frame length K →∞, the energy compaction property of the
DFT and the DCT approaches that of the KLT.
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Motivated by the observation that the MSE of the log-spectral amplitude
is subjectively a more meaningful distortion measure than the MSE of the
spectral amplitude, attempts have been made to derive MMSE estimates
of the log-spectral amplitude of clean speech [69, 179]. In [69], using the
Gaussian statistical model as in [68], an MMSE log-spectral amplitude es-
timator is obtained by minimizing E{(logA(k)− log Â(k))2}, where A(k) is
the amplitude of the kth spectral component of clean speech and Â(k) is its
estimate. The amplitude is then obtained as Â(k) = expE{log(A(k))|Y (k)}
and the resulting estimator is

HLSA(k) =
ξk

1 + ξk
exp

(
1

2

∫ ∞

vk

e−t

t
dt

)

. (37)

This approach was found to result in lower residual noise than when the
MSE was minimized in the spectral domain [69], which can be explained
by the higher suppression provided by the LSA scheme (see Fig. 2). Sup-
pression curves for different values of ξk are plotted as a function of the

instantaneous SNR |Y (k)|2−Pw(k)
Pw(k)

(which equals γk − 1) in Fig. 2 for the

Wiener filter, the MMSE short-time spectral amplitude estimator (STSA)
in (34), the spectral power estimator (SP) in (36) and the log-spectral am-
plitude estimator (LSA) in (37).

It was noted in [69, 139] that incorporating the uncertainty of speech
presence into the LSA estimator did not result in noticeable improvement.
A multiplicatively modified LSA estimator was proposed in [139] to im-
prove performance. Observing that a multiplicative modification of the
LSA estimator to exploit the speech presence uncertainty is nonoptimal, an
optimally modified estimator is derived in [38] where it is shown to provide
better results. Used as a noise-reduction front-end, the LSA gain function
has been shown to improve performance in the adaptive multi-rate [153]
and mixed-excitation linear prediction coders [148,150].

Bayesian estimators of the magnitude spectrum based on perceptually
motivated distortion criteria are derived in [136]. Instead of the MSE in
the spectral domain as in [68] or the MSE in the log-spectral domain as
in [69], other measures such as the Itakura-Saito and weighted Euclidean
distance are considered. Similar to the perceptual weighting used in LP
based speech coders, the frequency spectrum of the error is shaped so as to
place less emphasis near spectral peaks than near the valleys. This approach
was found to result in better perceptual quality of the enhanced signals.
Minimizing the MSE between clean and estimated spectral amplitudes each
raised to the power β, is considered in [227]. For β = 1, the method reduces
to the Ephraim-Malah amplitude estimator [68]. By adapting the value of
β to the frame SNR, good performance is reported.
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Figure 2: Suppression curves for the Wiener filter, the MMSE short-time spec-
tral amplitude estimator (STSA) in (34), the spectral power estima-
tor (SP) in (36) and the log-spectral amplitude estimator (LSA) in
(37).

Estimating the a-priori SNR

The methods described in [68, 69, 196, 223] all need to estimate the
a-priori SNR ξk for each frequency component k. The decision directed
estimation approach discussed in [68] is one of the most commonly used
techniques for this purpose. The a-priori SNR for the kth frequency
component and the nth block is estimated as

ξk(n) = α
Â2

k(n− 1)

Pwk(n− 1)
+ (1− α)Q[γk(n)− 1], (38)

where 0 ≤ α < 1 is a smoothing parameter and Q[·] is an operator such
that Q[x] = x for x ≥ 0 and is zero otherwise.

A typical value of the smoothing parameter α is 0.98. Values of α that
are close to one result in a smooth evolution of the a-priori SNR. Since the
attenuation of the noisy spectral amplitude depends on the a-priori SNR, its
smooth behavior eliminates large variations across successive frames, result-
ing in reduced musical noise [28]. This effect however comes at the cost of
a slow response to an abrupt increase in the instantaneous SNR, which has
an adverse effect on low energy signal components at transients and speech



3 Single-channel speech enhancement 23

onsets. Taking into account the time-correlation between successive speech
spectral components, causal and non-causal estimators of the a-priori SNR
are derived in [41, 42]. By exploiting future data, the non-causal estimator
is able to handle onsets and transients better. This approach is suitable
for applications that can tolerate some amount of delay (a delay of around
100 ms is suggested in [41]). The resulting estimator is reported to pre-
serve onsets and provide improved performance in terms of segmental SNR
compared to the decision directed approach.

Super-Gaussian models

The methods discussed in the previous section assume that the speech DFT
coefficients follow a Gaussian distribution. In this section, we discuss meth-
ods that assume a super-Gaussian distribution. Super-Gaussian random
variables, also called leptokurtic, have a positive kurtosis. They have a
more peaky pdf than Gaussian random variables and possess heavier tails,
e.g., Laplace and Gamma distributions.

It is argued in [145] that the DFT coefficients of speech are better mod-
elled by a Gamma distribution. Under a Gaussian assumption for speech
and noise, the estimator is linear (the Wiener filter). Assuming a Gamma
distribution for speech and either a Gaussian or Laplacian distribution for
noise, two non-linear MMSE estimators of the complex DFT coefficients are
derived. Experimental results reported in [145] show a small but consistent
improvement in terms of SNR over the Wiener filter. For high a-priori SNR
(e.g., 15 dB) the estimator exhibits a behavior similar to the Wiener filter.
For the case when a Laplacian model is used for noise, for low a-priori SNR
(e.g., -10 dB), the attenuation is constant regardless of the magnitude of
the noisy DFT coefficient, resulting in reduced musical noise.

Assuming a Gamma distribution for speech and Laplace or Gaussian
for noise, MMSE estimates of the squared magnitude of the speech DFT
coefficients are obtained in [22]. Here too, it was observed that using a
Gaussian model for the noise signal resulted in musical noise, which was
avoided by the Laplace model.

Maximum a-posteriori (MAP) estimation of the spectral amplitude using
super-Gaussian speech priors is presented in [137]. A parametric function
is used to model the pdf of the amplitude of the kth spectral component:

p(Ak) =
µα+1Aα

k

Γ(α+ 1)σα+1k

exp

(

−µAk

σk

)

, (39)

where Γ(·) is the Gamma function and σ2k is the variance of the kth com-
ponent. Equation (39) approximates the Laplace distribution for α = 1
and µ = 2.5, and the Gamma distribution for α = 0.01 and µ = 1.5 [137].
The resulting estimator is computationally simpler than the super-Gaussian
spectral estimator of [145].
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MMSE estimation of the complex DFT coefficients under a Laplacian
model for speech is discussed in [147]. The resulting estimator has a simpler
analytic form compared to the case when a Gamma prior was used for
speech. As in [145], using a Laplace model for noise as well results in less
musical noise. MMSE and ML estimates are obtained in the DCT domain
using a Laplace model for speech and a Gaussian model for noise in [82,83],
where it shown to perform better than when using a Gaussian speech prior.

A detailed theoretical and experimental analysis of MMSE estimation
assuming different super-Gaussian (Laplace and Gamma) priors for speech
and noise is presented in [146]. A Gaussian noise model and a super-
Gaussian speech model was found to provide a higher segmental SNR than
the Wiener filter, which assumes a Gaussian model for both speech and
noise. Using a Laplacian noise model was found to achieve better segmental
SNR only for high input-SNR conditions, but resulted in more natural resid-
ual noise. The Laplacian speech model was favored over the Gamma model
as it resulted in lower musical noise. In comparison to the Ephraim-Malah
amplitude estimators [68, 69], the super-Gaussian schemes achieve a higher
segmental SNR but the residual noise was found to be less natural. Adap-
tive a-priori SNR smoothing and limiting [148] are suggested for improving
the quality [146].

3.4 Trained statistical model based systems

The methods discussed in the previous section are optimal only within the
framework of the statistical models they assume. Rather than describ-
ing complex signals such as speech with models with few parameters, a
more accurate method is to use more sophisticated statistical models such
as HMMs, GMMs and codebooks that have been trained using a repre-
sentative database. The improved accuracy is at the expense of a higher
computational complexity compared to methods such as [68,146].

In trained model based speech enhancement, the pdfs of the speech and
noise processes are estimated from corresponding training sequences. To
simplify the estimation, the processes are described by parametric models
(e.g., the AR model), whose parameters are then estimated from the data.
The theoretical analysis in the training and use of models such as GMMs or
codebooks requires that the signals are stationary. In practice, to deal with
the nonstationarity of the speech signal, processing is performed in blocks of
20 - 30 ms within which the signal can be assumed to be stationary, and by
allowing the pdf to have multiple modes (e.g., using GMMs or codebooks).
These models are then used to obtain either MMSE or MAP estimates of
the speech signal.

First we discuss existing HMM based enhancement schemes, e.g., [65,
66, 188]. Next we consider the codebook based approaches described in
papers A and B, and describe how they address the shortcomings of the



3 Single-channel speech enhancement 25

above mentioned HMM schemes in nonstationary noise. Finally, differences
between the two approaches are summarized in section 3.4.

HMM based methods

HMMs have been used extensively in speech recognition [181, 182]. In
[65–67], HMMs trained on clean speech and noise were used for speech
enhancement, and Bayesian MMSE and MAP estimates of the speech sig-
nal were obtained. The HMMs consist of several states with a mixture of
Gaussian pdfs at each state. A state transition matrix governs the transition
from one state to another6. The covariance matrix of each Gaussian pdf is
parameterized by the AR parameters of the signal. The AR parameters are
the linear predictive coefficients and the variance of the excitation signal.

In the MAP approach, an estimate of the speech signal is obtained by
maximizing the posterior pdf of the speech signal given the noisy obser-
vations. Since the corresponding gradient equations are nonlinear, a local
maximization is performed using the EM algorithm. In the MMSE ap-
proach, a weight is associated with the Wiener filter corresponding to each
combination of speech and noise components at each state. The MMSE
estimate of the clean speech signal is obtained by filtering the noisy signal
with the weighted sum of these Wiener filters over all combinations of states
and mixtures.

As mentioned earlier, the HMM models both the LP coefficients and the
excitation variance (gain) [66]. This generally leads to a mismatch in the
gain term between training and testing. Thus some form of gain adaptation
is essential. For the MAP estimation described in [66], gain-normalized
HMMs are trained for the clean speech signal. Let λ = (λx, λw), where λx
denotes the parameter set for the gain-normalized HMM for the clean signal
and λw denotes the parameter set for the noise HMM. First, the gain of the
noise model is adjusted based on an estimate of the noise statistics made
from the noisy observation. At time instant t, gain-adapted MAP signal
estimation is then performed according to

x̂t = max
xt

max
gt>0

pλ(xt,y
t
1|gt1), (40)

where gt is the gain corresponding to the current frame at time t, xt is the
vector of clean speech samples at time t (corresponding to a single frame),
yt
1 is the sequence of vectors of noisy samples up to time t, gt1 is the gain

contour of the speech model and pλ(xt,y
t
1|gt1) is the joint pdf of xt and y

t
1,

given the gain contour gt1 and the complete parameter set λ.
It is important to note that gt is optimized based on the noisy observa-

tion and the parameter set of the noise model. In [66,188], the noise model

6Alternatively, a GMM, which can be seen as a single-state HMM, can also be used.
GMM based speech enhancement methods are presented in [7, 8, 27,168,232,233].
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is obtained during speech pauses. In [135], the speech HMM (which includes
a model for silence) is used to detect pauses. For stationary noise, using
the entire speech utterance, ML estimation of the noise model parameters
through the EM approach is also proposed [135, 187]. One straightforward
modification is to use the more accurate noise estimates provided by the
minimum statistics approach [144], which we found resulted in better per-
formance than estimation based on speech pauses. However, since the gain
adaptation adapts to changing levels of background noise only during the
next speech pause or only as quickly as the buffer length in the long-term
noise estimation [144] allows, it still suffers from poor performance in highly
nonstationary noise.

Codebook based approach

The codebook based approaches [125,206, paperA, paperB] attempt to over-
come the disadvantage of the HMM methods discussed above in nonstation-
ary noise. An instantaneous frame-by-frame gain computation was intro-
duced in [125] and extended in [206, paper A]. Such an approach was also
considered in a speech decomposition context in [211]. In [125, paper A,
paper B], using trained codebooks of only the LP coefficients of speech and
noise, the gain terms are computed for each short-time frame based on the
LP coefficients and the noisy observation. The codebooks are trained using
representative databases of speech and noise.

In paper A, which describes a maximum likelihood approach, the speech
and noise codebook indices and the excitation variances corresponding to
the vectors that the indices represent are obtained according to:

{i∗, j∗, σ2x
∗
, σ2w

∗} = argmax
i,j,σ2

x,σ
2
w

p(y|θix, θjw, σ2x, σ2w), (41)

where σ2x and σ2w are the excitation variances of clean speech and noise
respectively, and θix = (aix0

, . . . , aixp) and θjw = (ajw0
, . . . , ajwq ) are the LP

coefficients of clean speech and noise with p and q being the respective
LP-model orders. A schematic diagram of this method is shown in Fig.
3. Using the equivalence between the log-likelihood and the Itakura-Saito
distortion [111], the estimation can be performed in the frequency domain
according to

{i∗, j∗} = argmin
i,j

{

min
σ2
x,σ

2
w

dIS

(

Py(ω),
σ2x

|Ai
x(ω)|2

+
σ2w

|Aj
w(ω)|2

)}

, (42)

where

dIS(Py, P̂y) =
1

2π

∫ 2π

0

(
Py(ω)

P̂y(ω)
− ln

(Py(ω)

P̂y(ω)

)
− 1

)

dω (43)
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and

Ai
x(ω) =

p
∑

k=0

aixke
−jωk, Aj

w(ω) =

q
∑

k=0

ajwke
−jωk. (44)

For given Ax(ω) and Aw(ω), the excitation variances that minimize the
Itakura-Saito distortion in (42) can be obtained under the assumption of
small modeling errors by using a series expansion for ln(x) up to second
order terms [206, eqn. 11].

The ML estimate of the codebook vectors and the variances can be used
in applications that require estimates of the clean speech AR parameters.
For example, a Wiener filter can be constructed according to

H(ω) =

σ2x
∗

|Ai∗

x (ω)|2
σ2x
∗

|Ai∗

x (ω)|2
+

σ2w
∗

|Aj∗

w (ω)|2
, (45)

which can then be used to estimate the clean signal from the noisy obser-
vation.

As another example, the ML estimation approach can be viewed as a
modified distortion measure used to select an entry from the speech LP
codebook under noisy conditions, a feature that can be easily integrated
into parametric coders that require accurate estimates of the spectrum [207].
A sufficiently large speech codebook is necessary to provide an acceptable
accuracy in the parameter description. Multi-stage speech codebooks can
be used for this purpose and the indices resulting from the ML search can
be transmitted to the decoder. At each stage, we choose the codebook
entry that results in the highest likelihood. A configuration with a two
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stage speech codebook is shown in Fig. 4. The ML search using the first
stage results in the selection of a single speech codebook entry as the ML
estimate. The second stage speech codebook forms an additive refinement
to this codebook entry, producing a refined codebook. The ML search is
repeated with the refined codebook. The two resulting indices (one for each
stage) can be transmitted to the decoder. The search can be generalized in
a straightforward manner to more than two stages.
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Figure 4: VQ search under noisy conditions using a two stage speech code-
book. The second codebook forms an additive refinement to the
speech LP vector resulting from the ML search of the first stage.

In a practical implementation, multiple noise codebooks are used, each
trained on a different noise type. For each segment of noisy speech, a classifi-
cation is made using this long-term estimate and a particular noise codebook
is selected. The selected noise codebook is then used in the subsequent ML
search. One way to perform the classification is using the spectral shape
obtained from the long-term noise estimates provided by [144]. We note
that though the classification is performed using long-term noise estimates,
the different entries in the codebook permit variations in the spectral shape.
Moreover, the optimal gain computation is still performed instantaneously.
What the classified scheme cannot handle instantaneously is when the pdf
(considering only the spectral shape) of the noise varies rapidly since the
long-term estimate cannot adapt immediately. However, in most practical
situations, the noise distribution does not change rapidly.

In paper B, a codebook based MMSE estimation of the speech and
noise AR parameters with frame-by-frame gain computation is proposed.
While in the ML approach of paper A, one pair of speech and noise LP
vectors was selected as the ML estimate, the MMSE estimate of the speech
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(noise) vector is a weighted sum7 of the speech (noise) codebook vectors.
Similarly, the MMSE estimate of the speech and noise excitation variances
is the weighted sum of the excitation variances corresponding to each pair
of speech and noise codebook vectors, and the current frame of the noisy
observation. Thus, the MMSE estimation can be seen as a soft-decision
procedure that allows for a proportionate contribution from vectors
according to their probability given the observation. Both memoryless
(using information from the current frame alone) and memory-based (using
information from the current and previous frames) estimators are derived.
Estimation of functions of the speech and noise AR parameters is also
addressed, in particular one that leads to the MMSE estimate of the clean
speech signal. The codebook based MMSE estimator takes into account
the a-priori probabilities of each of the speech and noise codebook vectors.

The speech pdf

Let θx and θw denote the random variables corresponding to the speech
and noise LP coefficients respectively. Let σ2x and σ2w denote the random
variables corresponding to the speech and noise excitation variances respec-
tively. In the codebook-based method8, the speech pdf can be written as

p(y) =

∫

Θ

p(y|θ)p(θ)dθ, (46)

where θ = [θx, θw, σ
2
x, σ

2
w]. The integral is over Θ = Θx ×Θw × Σx × Σw,

where Θx and Θw represent the support-space of the vectors of speech and
noise LP coefficients and Σx and Σw represent the support-space for the
speech and noise excitation variances. Note that θ specifies the covari-
ance matrix of y. We assume that the conditional pdf p(y|θ) is Gaussian.
However, the marginal pdf p(y) can be seen from (46) to be a mixture of
Gaussians. This, and the fact that a data-driven codebook is used, make
the resulting model more flexible than assuming a Laplacian or Gaussian
marginal.

Differences between the HMM and codebook approaches

The main difference between the HMM methods described in [66, 67, 188]
and the codebook approaches of papers A and B lies in the manner in
which they handle the nonstationarity of the noise signal, which in turn
is related to the modelling and computation of the excitation variances.
Since the HMM method models both the LP coefficients and the excitation
variance as prior information [67], a gain adaptation is required for the

7The weighted addition is performed in the LSF domain.
8A similar expression can be obtained for the HMM based methods as well. For

simplicity, we consider only the codebook method in this discussion.
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speech and noise models to compensate for differences in the level of the
excitation variance between training and operation. The gain adaptation
factor is computed using the observed noisy gain and an estimate of the
noise statistics obtained using, e.g., the minimum statistics approach [144].
Conventional noise estimation techniques are buffer-based techniques, where
an estimate is obtained based on a buffer of several past frames. Thus, such a
scheme cannot react quickly to nonstationary noise. In the codebook based
approach, the codebook models only the LP coefficients, and the speech
and noise excitation variances are optimally computed on a frame-by-frame
basis, using the noisy observation. This enables the method to react quickly
to nonstationary noise. We note that recently, motivated by the frame-by-
frame gain computation of the codebook based methods [125, paper A,
paper B], an HMM based enhancement scheme with explicit noise gain
modelling and on-line estimation has been proposed [230].

Another difference is that the HMM based methods of [66,67,188] obtain
MMSE estimates of the clean speech signal whereas the codebook approach
obtains MMSE estimates of the speech and noise STP parameters. Let the
vector X denote the random variable corresponding to a frame of the clean
speech signal. Given the noisy observations, the HMM method obtains the
expected value ofX and its functions such as the spectral magnitude and the
log-spectral magnitude. The codebook method obtains the expected value
of θ given the noisy observations for the current and previous frames, which
is useful in applications that require optimal estimates of the speech and
noise AR parameters. The framework developed in the codebook approach
also allows the MMSE estimation of functions of the speech and noise AR
parameters, where the MMSE estimate of one such function can be shown to
result in the expected value of X given the noisy observations [209], which is
useful in applications where an optimal estimate of the time domain speech
waveform is desired.

Computational complexity

As discussed earlier, the HMM based methods and the codebook based ap-
proaches employ a more accurate model for the speech pdf compared to the
methods of sections 3.2 and 3.3. The price to be paid for the improved accu-
racy is an increase in computational complexity. The complexity is directly
related to the model size, e.g., the number of codebook vectors, or the num-
ber of states and mixture components in the HMM. In paper A, an iterative
scheme to reduce computational complexity is proposed. It is also relevant
to mention that the HMM and codebook approaches lend themselves in a
straightforward fashion to parallel processing, which can result in a signif-
icant speedup. For example, in the ML approach of paper A, in principle,
one processor can be assigned to compute the likelihood p(y|θix, θjw, σ2x, σ2w)
corresponding to each combination of speech and noise codebook vectors.
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The amount of time required for the resulting computations is independent
of the model size9. An additional step of weighted summation is required
for the MMSE approaches, though the computation of the likelihood can
still be performed in parallel.

3.5 Complements

Given the vast and diverse literature on speech enhancement, a catego-
rization of methods as above cannot be comprehensive. In this section, for
completeness, we briefly mention and provide references to a subset of other
enhancement schemes.

In [132], the speech signal is modelled as the response of an all-pole
system using a Gaussian AR model, and the MAP estimate of the speech
signal and its AR parameters given the noisy speech is derived. The result-
ing equations for the joint MAP estimation are non-linear and a sub-optimal
iterative solution is proposed. The AR parameters at a particular iteration
are estimated from the estimate of the clean signal at that iteration. The
clean signal is then re-estimated using the new AR parameters and the it-
eration continues. This method was investigated in [98] and was found to
suffer from some drawbacks, e.g., no proper convergence criterion was de-
fined, and the formant bandwidths decreased with increasing number of it-
erations. Inter-frame and intra-frame constraints were introduced to ensure
the stability of the all-pole model, to ensure that the AR parameters were
speech-like and not to allow a high variation of the parameters in succes-
sive frames [98, 176]. The optimum number of iterations from a perceptual
sense were determined empirically for different classes of speech sounds.
The constrained iterative procedure was further improved in [201, 202] by
constraining the estimated AR parameters to belong to a trained codebook
of speech AR coefficients.

The sinusoidal model representation of speech signals [157,158] has also
been employed in enhancement. In [4], a Wiener filter is applied to the
multi-resolution sinusoidal transform parameters, which are reportedly well
matched to the human auditory system [3]. A constrained iterative sinu-
soidal model is employed in [113]. The sinusoidal amplitudes are estimated
in an iterative fashion, as a weighted average of the estimate from the previ-
ous iteration and its Wiener-filtered counterpart. At a given iteration, the
Wiener filter is constructed using the current estimate of the amplitude and
an estimated noise amplitude. Further, it is ensured that the amplitudes
evolve smoothly over time. The number of iterations was empirically de-
termined to be seven. In voiced regions, a smoothing procedure is applied

9This is an extreme case. In general, a speedup is guaranteed with the use of more
than one processor, and the resulting computational complexity is determined by the
model size and the number of processors.
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to the sinusoidal frequencies. The phase is not modified. The method was
observed to perform well in voiced regions.

Most speech signal processing algorithms require wide-sense stationarity
assumptions on the signal. However, it is well known that speech can at
best be described as a quasi-stationary signal. As a result, most speech pro-
cessing algorithms divide the speech signal into small, fixed-size segments
within which stationarity can be assumed to be preserved. The trade-off
between the resolution in time and in frequency is a natural by-product of
such a scheme. In [203], an adaptive segmentation scheme that divides the
signal into the longest segments within which stationarity is preserved [140]
is shown to result in reduced musical noise. It is also possible to obtain im-
proved estimates of the noisy power spectra (or the noisy covariance matrix)
for use in enhancement by employing an adaptive segmentation [100,101].

Following the successful exploitation of auditory masking in audio coding
[116], attempts have been made to apply psychoacoustic principles to speech
enhancement as well. Some of these methods have already been mentioned
in connection with spectral subtraction and the subspace methods in section
3.2. One of the early enhancement approaches to exploit auditory properties
used the concept of lateral inhibition [33, 34]. Noise components that lie
below the masking threshold can be left unchanged, resulting in lower speech
distortion. This is achieved in [212, 213] by defining and estimating an
audible noise component, which is then suppressed. In [95], instead of a
complete removal of the (audible) noise, a noise-floor is defined and the
masking threshold is used to design a weighting rule to ensure that the
perceived noise suppression equals a pre-defined level. This results in an
enhanced signal with a residual noise that sounds natural. This approach
was extended to joint acoustic echo cancellation and noise reduction for
hands-free systems in [96].

When using a state-space representation to formulate the speech en-
hancement problem in a sequential estimation framework, closed form ana-
lytical solutions are available only in certain special cases, e.g., using a linear
Gaussian state-space representation results in the Kalman filter [85]. For
more general (e.g., non-linear) state-space models, approximate methods are
used, e.g., the extended Kalman filter [2]. An alternate strategy, reported to
result in better performance, is to use Monte Carlo integration (also known
as particle methods) [5,62]. Particle filtering and smoothing have been ap-
plied to speech enhancement, for the white noise case [73,88,215]. The noise
variance is assumed known or estimated from speech pauses. These meth-
ods consider a time-varying AR model for the speech signal. An advantage
of the Monte Carlo approach is that the estimation accuracy is indepen-
dent of the dimension of the state-space and only depends on the number
of particles.
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4 Multi-channel speech enhancement

Multi-channel enhancement algorithms exploit the spatial diversity resulting
from the fact that the desired and interfering signal sources are in practice
located at different points in space. This diversity can be taken advantage
of, e.g., by steering a null towards the noise source and a beam towards the
signal source.

Microphone array based noise reduction is useful in a variety of ap-
plications such as hands-free communication inside a car [64, 72, 93, 143,
152, 171], in tele-conferencing, and as a front-end for speech recognition
[15, 87, 160, 161, 167, 169, 170, 189]. Another application is in hearing aids
[120, 133, 177, 198–200, 222], where some of the latest models feature up to
three microphones.

In this section, we provide a brief overview of some common multi-
channel noise reduction techniques. We begin with introducing the signal
model, followed by a description of beamforming techniques, multi-channel
Wiener filtering and a discussion on blind source separation.

4.1 Signal model

We assume a far-field model so that wave propagation can be assumed to be
planar. The signals arriving at the different sensors are attenuated equally
and differ only in their phase (they are delayed versions of one another).
The different sensor signals can be assumed to have identical power spectra,
since, in practice, for closely spaced sensors, the delay between the sensors
is very small compared to the short-time stationarity of the speech signal.

Consider a speech source located at an angle θ from the array. Let di
denote the distance of the ith sensor from the center of the array, x0. We
assume a fixed inter-element spacing, i.e., di− di−1 = d. The additive noise
model can then be written in the frequency domain as

Ỹ(k) = X(k)d+ W̃(k), (47)

where Ỹ(k) = [Ỹ1(k) . . . ỸM (k)]T , W̃(k) = [W̃1(k) . . . W̃M (k)]T , Ỹi(k) is the
noisy signal observed at the ith sensor, X(k) corresponds to the clean speech
component at the center of the array, d = [e−jωτ1 . . . e−jωτM ]T is referred
to as the steering vector, W̃i(k) corresponds to the background noise at the
ith sensor, and k is the discrete frequency index. The delay τi at the ith

sensor, relative to the center of the array, is given in samples according to

τi =
di cos θ

c
fs, (48)

where fs is the sampling frequency and c = 340 m/s is the speed of sound in
air. We assume that the array has been steered towards the speech source,
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which can be achieved by compensating for the relative delays [57, 124] as
shown in Fig. 5. This results in

Y(k) = X(k)1+W(k), (49)

where Y(k) = [Y1(k) . . . YM (k)]T , W(k) = [W1(k) . . .WM (k)]T , Yi(k) and
Wi(k) are the noisy and noise signal components corresponding to the ith

sensor after steering, and 1 is a M × 1 vector of ones.
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4.2 Beamforming

Beamforming is a means of performing spatial filtering [214]. In the fre-
quency domain, beamforming can be viewed as a linear combination of the
sensor outputs:

Z(k) =
M∑

i=1

bi(k)Yi(k), (50)
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bi(k) is the beamformer weight corresponding to the ith sensor, and M is
the total number of sensors. In vector notation, we have

Z(k) = bT (k)Y(k), (51)

where b(k) = [b1(k) . . . bM (k)]T . Beamforming can be classified into two
categories - fixed, where the weights are fixed across time, and adaptive,
where the weights vary in response to changes in the acoustic environment.

Fixed beamforming

In fixed beamforming, the weights bi(k) are fixed over time, and are deter-
mined by minimizing the power of the signal at the output of the beam-
former subject to a constraint that ensures that the desired signal is undis-
torted [12], i.e., the optimal weights are the solution to

min
b(k)

b∗(k)Φyy(k)b(k) subject to b∗(k)1 = 1, (52)

where ∗ refers to complex conjugate transpose and Φyy(k) is theM×M PSD
matrix of the noisy input signals whose (i, j)th entry is E[Yi(k)Y

∗
j (k)]. Note

that the constraint of zero distortion in the look direction is written using a
vector of ones since we assume that the array has been pre-steered towards
the desired signal direction. The solution to the constrained optimization
problem (52) is the well-known minimum variance distortionless response
(MVDR) beamformer [49]:

b(k) =
Φ−1ww(k)1

1TΦww(k)1
, (53)

where Φww(k) is the M × M noise PSD matrix whose (i, j)th entry is
E[Wi(k)W

∗
j (k)]. Assuming a homogeneous noise field, the solution can be

written in terms of the coherence matrix

b(k) =
Γ−1ww(k)1

1TΓww(k)1
, (54)

where the (i, j)th entry of the M ×M coherence matrix is given by

Γij(k) =
φwiwj (k)

√
φwiwi(k)φwjwj (k)

(55)

=
φwiwj (k)

φww(k)
, (56)

where φwiwj (k) is the cross spectral density between the noise signals at the
ith and jth sensors, and from the assumption of a homogeneous noise field,



36 Speech enhancement

φwiwi(k) = φww(k) for all i. A schematic diagram of the fixed beamformer
is shown in Fig. 5.

For incoherent (or spatially white) noise fields, Γww = I, b = 1
M 1 and

the MVDR beamformer reduces to a delay-and-sum beamformer (DSB),
where the sensor signals are delayed and then averaged. The pre-steering
corresponds to the delay and is such that the signal components at the dif-
ferent sensors sum up constructively while the noise components cancel each
other. Incoherent noise fields are not common. An example of incoherent
noise is electrical noise at the sensors, which is uncorrelated at the different
sensors.

In a DSB, the amplitude weights are fixed across frequency (often equal)
and the phase weights introduce the delay. A more general form is a filter-
and-sum beamformer (FSB), where both the amplitude and phase weights
vary across frequency. FSBs are useful in designing beamformers with a
specified directivity pattern for arbitrary microphone array configurations
[58,119].

Many of the noise fields encountered in practice fall into the category of
diffuse noise fields, whose coherence function has the form [12]:

Γij(k) = sinc

(
2πk

K

dij
c

)

, (57)

where sinc(x) = sin(x)/x, dij is the distance (in meters) between the ith

and jth sensors, c = 340 m/s is the speed of sound in air and K is the frame
length. If we use the corresponding expression for the coherence matrix
in (54), the resulting beamformer is called a superdirective beamformer
(SDB) [61, 151]. While the SDB is useful in diffuse noise fields, its main
disadvantage is an amplification of uncorrelated noise (e.g., sensor noise)
at low frequencies. This problem is handled by incorporating a white noise
gain constraint in the design [11,49,86].

Adaptive beamforming

In adaptive beamforming, the beamformer weights adapt to changes in the
acoustic environment over time. The optimal weights are obtained by min-
imizing the variance of the output signal. To ensure that the speech signal
is not cancelled out or distorted, a distortionless constraint is imposed on
the desired signal. This results in the linearly constrained minimum vari-
ance (LCMV) beamformer [75], where the adaptive beamformer weights are
obtained through a constrained minimization procedure.

The generalized sidelobe canceller (GSC) [14, 21, 25, 26, 81, 94, 172, 199],
is an efficient alternative implementation of Frost’s LCMV approach, that
converts the constrained optimization problem into an unconstrained one.
This leads to an efficient implementation for the update of the beamformer
weights.
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Figure 6: Frequency domain implementation of the Generalized Sidelobe
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The GSC consists of three parts - a fixed beamformer (FBF), a blocking
matrix (BM) and an adaptive noise canceller (ANC) as shown in Fig. 6. The
FBF includes a pre-steering module and its weights are designed to produce
a speech reference YBF with a specified gain and phase response. The FBF
could either be a simple delay-and-sum beamformer, or a more advanced
filter-and-sum or superdirective beamformer. The BM is generally orthog-
onal to the FBF and produces M − 1 outputs, called the noise references,
by steering zeros towards the desired signal direction. One way to create
the noise references is to take the difference between adjacent sensor sig-
nals [94]. The ANC (implemented by the adaptive filters w1, . . . ,wM−1 in
Fig. 6) removes any remaining correlation between the speech reference YBF
and the noise references. Thus, any residual noise in the speech reference
that is correlated to the noise references is removed.

In practice, the noise references are not completely free of speech. As
a consequence, the ANC results in some of the speech signal being can-
celled. To minimize the effect of the speech leakage on the ANC, the noise-
cancelling filters are adapted only during periods of speech absence. To
reduce the amount of speech leakage, some variants of the GSC employ an
adaptive blocking matrix [102,104,105]. Variations of the GSC designed to
improve performance in reverberant environments are presented in [80,81].

4.3 Multi-channel Wiener filtering

It can be shown that the MVDR beamformer is the optimal solution in an
ML sense (assuming the noise to be Gaussian) and also the SNR-optimal
solution for narrowband signals [166, 192]. In this case, since the MVDR
beamformer is data independent, it has an advantage over the multi-channel
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Wiener filter (MWF), which is data dependent. However, for broadband
signals such as speech, the MWF is the optimal solution in the MSE sense.
The MWF can be factored into an MVDR beamformer followed by a single-
channel Wiener post-filter [192]:

H(k) =
φxx(k)

φxx(k) + (1TΦ−1ww1)−1
︸ ︷︷ ︸

Post-filter

Φ−1ww1

1TΦww1
︸ ︷︷ ︸

MVDR

, (58)

where φxx(k) is the PSD of the clean speech signal. As before, we assume
that the array has been pre-steered towards the speech source. The PSD
of the noise after the MVDR beamforming can be shown to be equal to
(1TΦ−1ww1)

−1 so that the post-filter in (58) is in fact the Wiener filter. The
post-filter is particularly advantageous in diffuse noise environments where
the MVDR beamformer is not very effective.

To perform the post-filtering, estimation of the speech PSD φxx(k) is
crucial and several approaches exist [13,18,40,71,141,159,162,193,228,229].
The denominator of the post-filter expression in (58) is simply the PSD of
the MVDR beamformer output. The Zelinski post-filter [228, 229] assumes
that the background noise is uncorrelated at the different sensors. Under
the assumption that the signal and noise are uncorrelated, the cross-spectral
density of the microphone signals then provides an estimate of φxx(k):

E[YiY
∗
j ] = E[XX∗] + E[WiW

∗
j ] + E[XW ∗

j ] + E[WiX
∗]

= φxx. (59)

By averaging over all possible combinations of the sensors, the estimator
can be made robust. A block diagram of the MWF is shown in Fig. 7.
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For many of the practical noise environments encountered in noise re-
duction applications such as inside a car or an office, the noise field is diffuse.
A post-filter that accounts for diffuse noise is described in [159]. Under the
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assumption of a homogeneous diffuse noise field, we have

φyiyi = φxx + φww for all i

φyiyj = φxx + Γijφww, (60)

where the coherence function Γij is defined by (55) and is given by (57) for
diffuse noise. An estimate of the clean speech PSD can then be obtained
from the signals at sensors i and j according to

φ̂ijxx =
φyiyj − 1

2 (φyiyi + φyjyj )

1− Γij
, (61)

where the average over φyiyi and φyjyj is taken for robustness. As before, by

averaging φ̂ijxx over all combinations of sensors, robustness can be improved.
In paper C, a parametric model-based approach for multi-channel

Wiener filtering is presented. By employing an AR model for the speech
signal, and using a trained codebook of speech LP coefficients, an MMSE
estimate of the clean speech signal is obtained. By explicitly accounting for
steering errors in the signal model, robust estimates are obtained.

4.4 Blind source separation

The goal of blind source separation (BSS) is to recover a set of independent
sources given only a set of sensor observations that are generated from the
individual source signals through an unknown linear mixing process. The
task is blind since there is no knowledge available about either the sources
or the mixing process, except that the sources are independent and that
the mixing is linear. In the following, we restrict our discussion to the case
when the number of sensors equals the number of sources and consider the
2× 2 case for simplicity.

Let x(t) = [s1(t) s2(t)]
T denote the vector of source signals and y(t) =

[y1(t) y2(t)]
T denote the observed sensor signals sampled at time instant t.

In instantaneous BSS, the sensor signals are related to the sources according
to

y(t) = Ax(t), (62)

where A is the 2× 2 mixing matrix. To avoid problems associated with the
inversion of an estimate of A to achieve separation, a common approach is
to estimate a backward model in terms of the separating matrix W such
that the output

z(t) =Wy(t), (63)

is an estimate of the source vector x(t) up to an arbitrary permutation and
scaling. An estimate of W is generally obtained by optimizing a so-called
contrast function, which is a function of the distribution of z(t). For ex-
ample, W can be estimated by minimizing the Kullback-Leibler divergence
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between the pdf of z(t) (which is the distribution at the output of the sep-
aration) and the product of the pdfs of si(t) expressed using W and y(t)
(which is the source distribution according to the independence assump-
tion) [9, 30, 31, 63]. Other examples include contrast functions based on
higher-order (larger than two) cumulants [29, 31, 46], which require that at
most one of the sources is Gaussian. For nonstationary source signals, it
is possible to achieve separation by exploiting only second-order statistics.
For example, the methods described in [48, 84, 175, 219] achieve separation
through decorrelation of the signals at the output of the demixing system
at multiple time instants.

In practice, for acoustic signals, the mixing is better described by a
convolutive model as given by the following Q+ 1 tap mixing system:

y(t) =

Q
∑

q=0

Aqx(t− q), (64)

where Aq is a 2× 2 matrix for each q. Applying the DFT to a time domain
segment of length T , we have

Y(ω) = A(ω)X(ω), (65)

where Y(ω) = [Y1(ω) Y2(ω)]
T , X(ω) = [S1(ω) S2(ω)]

T and Yi(ω) =
∑T−1

t=0 yi(t)e
−jωt, i = 1, 2. S1(ω) and S2(ω) are obtained similarly from

s1(t) and s2(t) respectively. A(ω) corresponds to the frequency response of
the mixing filters Aq, obtained through a component-wise DFT. The BSS
task reduces to the estimation of an unmixing matrixW (ω) for each ω. This
corresponds to the so-called narrowband approach of BSS, since a separate
BSS problem is solved for each frequency bin, implying a narrowband signal
model. This approach is computationally simple but suffers from a permu-
tation and scaling problem in each frequency bin that need to be resolved
in a consistent manner. To avoid this problem, broadband approaches to
convolutive BSS have been proposed, where the frequency bins are no longer
treated independently [23,24].

For point noise sources, as shown in Fig. 8, the acoustic background
noise reduction problem can be cast in a BSS framework where s1(t) = s(t)
is the speech signal and s2(t) = n(t) is the noise signal. The decorrelation
methods of [84, 175] may be applied to solve this problem. Alternatively,
instead of estimating the speech signal in a blind fashion, we can exploit the
knowledge that one of the signals is speech and that the other is noise, and
exploit their different characteristics. In this case, with two microphones,
ANC [99,221] is a well known technique for noise reduction.

As seen in Fig. 9, using a noise reference, the filter w is adapted to min-
imize the output power. In practice, a signal-free noise reference is rarely
available, resulting in signal leakage in the noise reference path as noted
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earlier in the context of the GSC. This causes cancellation of the desired
signal at the output. Different approaches have been proposed to solve this
problem, e.g., in [164, 234], a second adaptive filter is added to remove the
crosstalk in the noise reference. Other methods adapt the filter during time
segments when only the noise is present (e.g., during speech pauses detected
using a VAD) [1,47]. One improvement is to perform the adaptation in the
frequency domain using bin-wise minimum tracking of any of the diagonal
entries of the cross-spectral density of the microphone signals, which we
adopt in paper D. A minimum corresponds to speech absence in that par-
ticular frequency bin. This approach relies on the observation that speech
energy is not present in all frequency bins at all times [144]. The bin-wise
minimum tracking is more flexible since it only requires speech to be ab-
sent in a particular bin as opposed to VAD based adaptation that requires
a noise-only time segment, i.e., speech needs to be absent in all frequency
bins simultaneously.

A problem with ANC based methods is that the output is a filtered
version of the original speech signal. Using (65) with S1(ω) = S(ω) and
S2(ω) = N(ω), the noisy speech input to the ANC can be written as Y1(ω) =
a11(ω)S(ω) + a12(ω)N(ω), and the noise reference is a22(ω)N(ω). In the
ideal case (no speech leakage), after some straightforward calculations, the
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output of the ANC can be shown to be [204]:

Z1(ω) =
a11(ω)a22(ω)− a12(ω)a21(ω)

a22(ω)− a12(ω)
S(ω), (66)

This corresponds to a filtered version of the original speech signal. Instead
of this arbitrary filtering, it is desirable to obtain an estimate a11(ω)S(ω)
which corresponds to the clean speech signal as observed at the microphone.

We note that in the ANC based approach, it is sufficient to estimate only
the first row of the unmixing matrix W (ω) since we are interested in recov-
ering only the speech signal. However, if we estimate the entire unmixing
matrix, then it is possible to apply the minimal distortion principle (MDP)
[154,155] to obtain a new unmixing matrixW opt(ω) = diag(W−1(ω))W (ω).
Applying W opt(ω) to Y(ω) results in a11(ω)S(ω) as the output at the first
channel. This approach is adopted in paper D, where the unmixing ma-
trix is estimated through bin-wise minimum and maximum tracking using
the cross-spectral density of the sensor signals. The resulting approach is
a combination of BSS and ANC principles. Through explicit estimation
of the speech signal at the first channel by optimizing an energy criterion,
the permutation and scaling problems of narrowband BSS are avoided. By
estimating the entire unmixing matrix and applying the MDP, the filtering
problem of ANC is avoided.

5 Summary of contributions

This thesis deals with the enhancement of speech signals that have been
subject to acoustic background noise. An estimation-theoretic approach
to exploit prior knowledge about the speech and noise signals is developed
using maximum-likelihood and Bayesian MMSE estimation. The use of
prior information is shown to result in good performance in practical en-
vironments with nonstationary background noise. Both single and multi-
microphone speech enhancement techniques are developed. An application
of blind source separation concepts to noise reduction is also presented.

Short summaries of the four papers that constitute the main body of
the thesis are presented below. All experiments and most of the derivations
described in the following papers were performed by the author of this thesis.

Paper A: Codebook driven short-term predictor parameter esti-

mation for speech enhancement

This paper presents an ML approach for the estimation of the speech and
noise short-term LP parameters from noisy data and their subsequent use
in waveform enhancement schemes. The method exploits a-priori informa-
tion about speech and noise spectral shapes stored in trained codebooks,
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parameterized as LP coefficients. The algorithm operates on a frame-by-
frame basis, and for each frame, the prior information modelled by the noise
codebook is augmented with a long-term estimate of the vector of noise LP
coefficients estimated from the noisy observation. This serves as a safety-net
for noise types not represented in the codebook. As in [125], prior infor-
mation is captured only for the spectral shape; the speech and excitation
variances are computed on-line. ML estimates of the speech and noise short-
term predictor parameters are obtained by searching for the combination of
codebook entries that optimizes the likelihood. The estimation involves the
computation of the excitation variances of the speech and noise AR models
on a frame-by-frame basis, using the a-priori information and the noisy ob-
servation. The high computational complexity resulting from a full search
of the joint speech and noise codebooks is avoided through an iterative opti-
mization procedure. We introduce a classified noise codebook scheme where
different noise codebooks are trained on different noise types, and an ap-
propriate codebook is selected for each frame. Experimental results show
that the use of a-priori information and the calculation of the instantaneous
speech and noise excitation variances on a frame-by-frame basis result in
good performance in both stationary and nonstationary noise conditions.

Paper B: Codebook-based Bayesian speech enhancement for non-

stationary environments

In this paper, we propose a Bayesian MMSE approach for the estimation
of the short-term predictor parameters of speech and noise, from the noisy
observation. We use trained codebooks of speech and noise LP parameters
to model the a-priori information required by the Bayesian scheme. In con-
trast to current Bayesian estimation approaches that consider the excitation
variances as part of the a-priori information, in the proposed method they
are computed on-line, based on the observation at hand. Consequently, the
method performs well in nonstationary noise conditions. The resulting esti-
mates of the speech and noise spectra can be used in a Wiener filter or any
state-of-the-art speech enhancement system. We develop both memoryless
(using information from the current frame alone) and memory-based (using
information from the current and previous frames) estimators. MMSE esti-
mation of functions of the short-term predictor parameters is also addressed,
in particular one that leads to the MMSE estimate of the clean speech sig-
nal. The classified noise codebook scheme introduced in the ML approach of
paper A is employed to select an appropriate noise codebook for each frame.
The memory-based estimator has a reduced variance compared to the mem-
oryless estimator. Experiments indicate that the resulting memory-based
scheme performs significantly better than competing methods.
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Paper C: Multi-channel parametric speech enhancement

A parametric model-based multi-channel approach for speech enhancement
is presented. This paper is a generalization of the Bayesian MMSE ap-
proach presented in paper B to the multi-channel case. Using multiple
microphones allows us to perform both spatial and temporal filtering. The
multi-channel Wiener filter can be factorized into an MVDR beamformer
followed by a single-channel post-filter. Thus, the estimation is performed
using the beamformer output. The MVDR beamformer assumes that the
microphone signals are time-aligned (steered) prior to the beamforming.
However in practice, ideal alignment is difficult to achieve, and there are
steering errors. Therefore we use a signal model that accounts for the effect
of steering errors. The model also accounts for a diffuse noise field. By em-
ploying an AR model for the speech signal, and using a trained codebook
of speech LP coefficients, an MMSE estimate of the clean speech signal is
obtained. Robust performance is observed even in the presence of steering
errors. Experiments show that the proposed method results in significant
performance gains compared to a state-of-the-art diffuse noise post-filter.

Paper D: Speech denoising through source separation and min-

max tracking

This paper presents a frequency domain multi-channel noise reduction al-
gorithm based on blind source separation. By tracking the minimum and
maximum of the spectral density of the microphone signals in each frequency
bin, noise dominated and speech dominated components are identified. The
coefficients of the unmixing matrix that are necessary to recover the speech
(or noise) are identified from the noise (or speech) dominated components
through the optimization of an appropriate energy criterion. The arbitrary
filtering of convolutive BSS is compensated using the minimal distortion
principle [155]. While it is sufficient to estimate only those unmixing pa-
rameters that are required to recover the speech signal, we also estimate the
unmixing parameters of the noise signal to be able to apply the minimal
distortion principle. Since the proposed method explicitly estimates the
speech signal from the noisy mixture, it does not suffer from the permuta-
tion problem that is typical to conventional BSS techniques. Experimental
results show superior performance compared to a general BSS algorithm.
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