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Sammanfattning

Mer än 1,2 miljoner människor dör varje år på grund av trafikskador och för att minska antal olyckor
som beror på mänskliga fel är autonoma fordon föremål för intensiv forskning [1]. För att förbättra
körupplevelsen har bilföretag utvecklat Advanced Driver Assistance Systems (ADAS) som Adaptive
Cruise Control (ACC) och Lane Keeping Aid (LKA) som syftar till att göra körningen säkrare samt
mer bekväm. En särskilt intressant manövrering är filbyten. Denna manövrering är en av de mest
riskfyllda manövrer som en förare måste utföra på en motorväg och kan uppfattas som utmanande
eftersom det innebär förändringar både i sidled samt i fordonets färdriktning i förhållande till andra
fordon.

Denna masteruppsats syftar till att utvärdera hur olika prognosmodeller för banplanerare kommer
att påverka kollisionsrisken, komfort och resultera i en ökande grad av framgångsrika omkörningar.
En ideal planeringsalgoritm är tillförlitlig och gör smarta beslut för att utföra en säker manövrering
och skapar ständigt en diskret banprofil i förhållande till parametrarna för omkringliggande fordon.
Framtida rörelser förutses med hjälp av prediktionsmodeller som kopplas till kontrollingångar, for-
donets egenskaper och externa förhållanden för utvecklingen av fordonets tillstånd. Fordonet ska
kunna undvika kollisioner vid tillfällen där en omkörning görs innan två filer övergår till en och
därför beaktas endast rörelse i fordonets färdriktning för utvärderingen. Prediktionsmodellen som
valts för denna avhandling är konstant acceleration (CA) och konstant hastighet (CV). Detta projekt
ingår i ett stort EU-projekt kallad SafeCOP (Safe Cooperating Cyberphysical Systems) med Wireless
Communication som syftar till att utveckla en komplett prototyp av ett intelligent transportsystem.

En stor mängd bana generationstekniker har undersökts och fjärdegradspolynomet är valt för ban-
generering eftersom den har många fördelar med att ha en låg beräkningskostnad. Kontinuerlig sam-
mankoppling av kurvor är möjlig och speciellt användbar vid utvärdering av komfort. Det är viktigt
att banplaneraren kan avbryta banor som skulle vara dynamiskt omöjliga och resultera i en ökad risk
för kollision med omkringliggande fordon. De två valda förutsägelsesmodellerna utvärderades för
tre olika scenarier som de testas på och deras resultat jämförs. För de scenarierna som behandlas i
denna avhandling gav prediktionsmodellen Constant Acceleration (CA) bättre resultat jämfört med
prediktionsmodellen Constant Velocity (CV) och hade en lägre risk för kollision vilket ökar antalet
framgångsrika omkörningar. Samtidigt är de dynamiska begränsningarna anpassade för att säkerställa
att banan som genereras ligger inom passagerarnas komfortzon.
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Abstract

More than 1.2 million people die each year due to road traffic injuries [1]. In order to reduce traffic
accidents and human errors, autonomous vehicles is been the subject of intense research. To improve
the driving experience, automotive companies have developed Advanced Driver Assistance Systems
(ADAS) such as Adaptive Cruise Control (ACC) and Lane Keeping Aid (LKA) which aim to make
driving safer and more comfortable. One particularly interesting maneuver is the lane change. Lane
change maneuver is one of the riskiest maneuvers that a driver has to perform on a highway, and can
be perceived as challenging since it involves changes in both the longitudinal and lateral velocities,
direction and as well as movement in the presence of other moving vehicles.

This thesis seeks to evaluate how different prediction model of the trajectory planner will affect col-
lision risk, comfort and result in an increasing rate of successful overtakes. An trajectory-planning
algorithm will be reliable in making smarter decisions for performing a safe overtaking maneuver’s
and constantly generate discrete trajectory profile with respect to the parameters of the vehicle in
front. Future motion is predicted using prediction models linking control inputs, vehicle properties
and external conditions to the evolution of the state of the vehicle. The vehicle should be able to
avoid collisions at the point of convergence where two lane road merges into a single lane road and
therefore, motion only in the longitudinal direction is considered for the evaluation. The prediction
model chosen for this thesis is constant acceleration (CA) and constant velocity (CV). The project is
part of a large EU-project called SafeCOP (Safe Cooperating CyberPhysical Systems) using Wireless
Communication which aims at developing a complete prototype of an intelligent transport system.

A great amount of trajectory generation techniques have been surveyed and quartic polynomial is
selected for trajectory generation as it has many benefits of having a low computational cost and the
continuous concatenation of curves is possible. It is important in the trajectory planner to cancel out
trajectories which would dynamically not be feasible and result in an increase risk of collision with the
surrounding vehicle. The two chosen prediction models were evaluated for three different scenarios
on which they are tested and their results is compared. For the different scenarios addressed in this
thesis Constant Acceleration (CA) prediction model gave better result when compared to Constant
Velocity (CV) prediction model and had an lower risk of collision which increases the number of
successful overtakes. While doing so the jerk dynamic constraints were always considered to ensure
that the trajectory generated are within the comfort zone of the passenger.
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Chapter 1

Introduction

This chapter will introduce the subject of trajectory planning and system architecture. The problem
that exists in the �eld and purpose of the degree project.

1.1 Background

The World Health Organization reports that more than 1.2 million people die each year due to road
traf�c injuries. This makes road traf�c accidents a leading cause of human death globally [1]. To
improve the driving experience, automotive companies have developed Advanced Driver Assistance
Systems (ADAS) such as Adaptive Cruise Control (ACC) and Lane Keeping Aid (LKA) which aim
to make driving safer and more comfortable [3]. To further increase the capability of ADAS and
eventually progress to fully automated highway driving, one particularly interesting maneuver is the
lane change. This maneuver is one of the riskiest maneuvers that a driver has to perform on a highway,
and can be perceived as challenging since it involves changes in both the longitudinal and lateral
direction as well as movement in the presence of other moving vehicles [4].

The increased demand for transportation lead to increased interest in automated vehicles in order to
reduce human errors. The driver-less vehicles, are vehicles which can sense their environment and
move along the prede�ned path without driver intervention. Sensor data fusion plays an important
role in current and future vehicular active safety systems as there are several vehicular applications
that fusion of data coming from many different sensors is necessary to increase safety and reliability
of the overall system.

Automated driving vehicles must be capable to perform many complex operations like changing lanes
on a highway, leaving the road, or overtaking another vehicle on a two-way road. This thesis, will
focus on the trajectory planning of this third maneuver. About 6 percent of accidents that occurred in
Germany were due to overtaking maneuvers caused because of human error, but they cause approxi-
mately 9 percent of death and seriously injured people [5] .This shows how dangerous accidents can
be caused by a risky execution of an overtaking maneuver.

The automated vehicle should be able to execute safe overtaking for different scenario such as, a
two lane highway converging into a single lane road. The vehicle should be able to make smart de-
cisions if it will be able to perform overtaking in time before reaching the point of convergence to
avoiding collisions.

The project is part of a larger project conducted by Alten which aims at developing a complete pro-
totype of an intelligent transport system. The vehicles will be fully autonomous and connected to the
infrastructure. The project is part of a large EU-project called SafeCOP (Safe Cooperating Cyber-
Physical Systems) using Wireless Communication [6].
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CHAPTER 1. INTRODUCTION

The Alten MCS (Alten Mixed Criticality System) is a Mixed Criticality System consisting of both
hardware and software components. The general idea is that it should be capable of running two
operating systems of different criticality on the same hardware, separated via a hypervisor, where
errors from the non-critical OS should not be able to propagate into the safety-critical OS. The Alten
MCS has currently been built on two different development boards, the EMC2 Development Platform
(EMC2DP) and the Zynq Evaluation and Development board (Zedboard). Both boards are equipped
with a Zynq-7000 System on Chip (SoC). The trajectory planner will be implemented on the real time
operating system of the demonstrator at Alten which is an 1/8 scale RC vehicle to demonstrate the
reduction of collision risk in autonomous vehicle.

1.2 Problem statement

An ideal trajectory-planning algorithm will be reliable in making smart decisions for performing safe
overtaking maneuver's and constantly generate a trajectory pro�le which are collection of discretized
points and cancels out the colliding trajectories with respect to the parameters of the observed vehicle.
Future motion is predicted using prediction models linking some control inputs, car properties and
external conditions to the evolution of the state of the vehicle. This leads us to the research question:

• How does the prediction model and/or cost functions of the trajectory planner affect collision
risk, comfort and successful overtakes ?

In the selected scenario's geometry of the path to be followed by the vehicle is already known and
based on that a reference path for the overtaking maneuver is set. So, when a fast moving vehi-
cle detects a vehicle in front with slower speed an overtaking command should be initiated and be
completed before the two lane highway converges into an one lane road. Several methods have been
developed to obtain trajectory between the initial state and �nal goal like RRT and Dijkstra algorithms
[7] but they are not so reliable in simultaneously computing alternative goal states. The capability to
set alternative goal states with high frequency is of importance when the vehicle in front have varying
speeds to make smart decisions about maneuvers and reduce the rates of collisions. Therefore, an al-
gorithm based on quartic polynomial as demonstrated by Werlings trajectory generation algorithm [8]
will be implemented which is sensitive to traf�c changes and calibrate �nal multiple states with high
frequencies and will vary the motion model to assist in predicting future states and trajectory pro�le
generation. The motion models which will be considered are Constant Velocity (CV) and Constant
Acceleration (CA) in order to achieve an increase in rates of successful overtakes [9] which would
result in decrease of collision rates.
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CHAPTER 1. INTRODUCTION

1.3 Purpose

The purpose of this work is to allow autonomous vehicles make smart decisions in order to reduce the
collision rates and in turn increase the ratio of completed versus cancelled overtakes. This thesis will
be conducted at Alten where they have an scaled model of inbuilt track replicating a road scenario
where the two lane highway merges into one lane. The vehicle will have to generate a trajectory at
every instant of time that it will follow in order to make a successful overtake maneuver and if its not
possible then it would apply brakes and slow down to follow the vehicle in front into an one lane road.

The demonstrator at Alten consists of an RC car which is equipped with a Zedboard. The Zedboard
is using a Xilinx Zynq-7000 All programmable system on the chip. The chip includes an FPGA [10]
and a dual ARM Cortex-A9 processor. One core of the ARM processor is used to run safety-critical
processes and the other core is used to run safety-critical processes and the other core is used to run
petalinux for entertainment applications. FPGA will be used for sensor data acquisition.

1.4 Goal

In this project there are six master thesis students working together on the same vehicle. This means
that there are both individual goals and team goal.

1.4.1 Individual Goal

Individual goal is to generate trajectory at every instant of time and investigate how varying the
prediction model can lead to a decrease in collision rate and increase in rate of successful overtakes.
The algorithm will then be implemented on the RC car which will detect and communicate with
the vehicle in front moving with varying speed and make decisions. It will execute an overtaking
maneuver if its possible before the two lane highway converges into one lane road or will just cancel
the overtaking operation and follow the vehicle in front into an one lane road if it would result in
collision of the vehicles.

1.4.2 Team Goal

The team goal is to develop a demonstrator consisting of vehicles that can safely handle a number
of commonly occurring traf�c situations. The demonstrator consists of two vehicles whereof one
follows the other using Cooperative Adaptive Cruise Control (CACC). The operations that will be
performed are:

• The vehicle detects pedestrian and traf�c signs and make decision for what maneuver to per-
form.

• The vehicle issues a warning for the above situations and conveys it to another vehicle.

• The vehicle performs an overtaking when it detects another slower vehicle in front.
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CHAPTER 1. INTRODUCTION

1.5 Method

This study is divided into two phases namely Literature review and Implementation phase. Literature
review will be performed to by gathering information of the subject from well-known and accepted
sources. The methodology used for this phase is a qualitative approach as it will be done to assist in
understanding and gaining a better insight into the problem.

The system is evaluated for the scenario when the ego car approaches a slow moving vehicle in
front and perform a safe overtaking maneuver before the two lane highway merges into a single lane
road and avoid any possible risk of collisions as depicted in �gure 1.1. The lane change maneuver
algorithm considers both the the aspect of longitudinal and the lateral motion planning but in this
thesis only longitudinal motion planning problem will be considered in order to reach the desired
�nal position preferably ending up ahead of the other vehicle with a pragmatic approach to reduce
the risk of collision at the critical merging zone. In addition to constraints on the state of the ego
vehicle during the motion planning, care should be taken in making sure the ego vehicle does not plan
a motion which cannot be executed during the evasive maneuver due to the physical limitation of the
vehicle like actuator saturation.

The ego car follows a longitudinal trajectory de�ned by a trajectory planner which will generate a set
of trajectories and by using the prediction model to predict the motion of the observed vehicle perform
collision check with the observed vehicle and this is carried out by constant communication between
the vehicles. The planner needs to make discrete decision to either go ahead or follow the observed
vehicle into the single lane road. Colliding reference trajectories are removed, and a cost function
determines the best of the remaining ones. The observed vehicle has varying speeds, therefore the
ego vehicle has to generate trajectory in every instant of time to make decision of either to follow the
observed vehicle to a single road or accelerate and be the �rst one to reach the depicted merge area so
the presented system should be able to handle the maneuver without experiencing any collisions.

Figure 1.1: Traf�c scenario with vehicles traveling on a two lane highway that merges to a single
lane road. The vehicle in green wants to perform the overtaking operation. The vehicle in red is the
leading slower vehicle.
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