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Abstract

Standard system identification methods often provide inconsistent estimates with closed-loop data. With the prediction error
method (PEM), this issue is solved by using a noise model that is flexible enough to capture the noise spectrum. However,
a too flexible noise model (i.e., too many parameters) increases the model complexity, which can cause additional numerical
problems for PEM. In this paper, we consider the weighted null-space fitting (WNSF) method. With this method, the system
is first modeled using a non-parametric ARX model, which is then reduced to a parametric model of interest using weighted
least squares. In the reduction step, a parametric noise model does not need to be estimated if it is not of interest. Because
the flexibility of the noise model is increased with the sample size, this will still provide consistent estimates in closed loop and
asymptotically efficient estimates in open loop. In this paper, we prove these results, and we derive the asymptotic covariance
for the estimation error obtained in closed loop, which is optimal for an infinite-order noise model. For this purpose, we also
derive a new technical result for geometric variance analysis, instrumental to our end. Finally, we perform a simulation study

to illustrate the benefits of the method when the noise model cannot be parametrized by a low-order model.
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1 Introduction

The prediction error method (PEM) is a benchmark
for estimation of linear parametric models. If the model
orders are correct and the noise is Gaussian, PEM
with a quadratic cost function is asymptotically effi-
cient (Ljung, 1999): the asymptotic covariance of the es-
timates coincides with the Cramér-Rao (CR) bound, the
lowest covariance attainable by a consistent estimator.

Two models can typically be distinguished in a paramet-
ric model structure: the dynamic model and the noise
model. Because the noise sequence is often the result
of different noise contributions aggregated in a complex
manner, the concept of a “correct order” for the noise
model is often intractable in practice. While PEM is still
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consistent in open loop when the noise model cannot
capture the actual noise spectrum, this is not the case
for data collected in closed loop.

This issue with closed-loop data is not exclusive of PEM.
Instrumental variable methods (Séderstrém and Sto-
ica, 1983) require the reference signal in order to con-
struct the instruments in closed loop (Gilson and van den
Hof, 2005; Gilson et al., 2009). Classical subspace meth-
ods (van Overschee and de Moor, 1994) also suffer from
inconsistency in closed loop, although this issue has been
overcome by more recent algorithms: for example, Ver-
haegen (1993) estimates the complete open-loop sys-
tem followed by a model reduction step; Qin and Ljung
(2003) estimate the innovations; Jansson (2003) uses a
non-parametric ARX model to construct the Hankel ma-
trices; Chiuso and Picci (2005) use a whitening filter.

With PEM, the inconsistency issue can in theory be
solved by letting the noise model structure be arbitrar-
ily flexible (i.e., letting the number of estimated param-
eters become arbitrarily large), guaranteeing that a cor-
rect noise spectrum can be captured by the model. If the
global minimum of the PEM cost function is found, in
open loop this will asymptotically not affect the statisti-
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cal properties of the dynamic-model estimate; in closed
loop, consistency is attained but not efficiency. The prob-
lem with this approach is that, because the noise model
might require many parameters, the optimization prob-
lem to solve becomes computationally heavier, and the
PEM cost function may have more local minima, thus ag-
gravating the numerical search for the global minimum.

Some methods use a semi-parametric approach, esti-
mating a non-parametric model in a first step, which
is then used in a second step to estimate the dynamic
model. In this case, an estimate of the noise model is
no longer needed for consistency of the dynamic model.
This type of approach is more user-friendly, because the
user is not required to choose an appropriate paramet-
ric noise model: this has been highlighted by Schoukens
et al. (2011), who propose a frequency-domain method
using non-parametric noise models, based on the the-
ory developed by Schoukens et al. (2009); Pintelon et al.
(2010a,b). In the time domain, methods based on the
same idea have also been proposed by Zhu (2001); Zhu
and Hjalmarsson (2016); Everitt et al. (2017). The two
latter ones have the advantage of not requiring numer-
ical search algorithms, but they have only been consid-
ered for open loop data.

The weighted null-space fitting (WNSF) method (Gal-
rinho et al., 2014) also first estimates a non-parametric
model, and then reduces it to a parametric model, which
may or may not include the noise model, and can be
used with closed-loop data. Moreover, similarly to the
methods by Zhu and Hjalmarsson (2016); Everitt et al.
(2017), WNSF does not apply non-linear optimization
techniques, but uses weighted least squares. In this sense,
the method can be seen as belonging to a family of iter-
ative least-squares methods with an intermediate non-
parametric model estimate.

Precursors of the method have used an impulse response
estimate to obtain a rational transfer function (Evans
and Fischl, 1973; Shaw, 1994; Shaw et al., 1994; Lem-
merling et al., 2001). The origin of this family of methods
can be traced back to the field of time-series analysis.
Durbin (1960) proposes two methods for auto-regressive
moving-average (ARMA) time series estimation, using
a high-order AR time series as intermediate step to
obtain the ARMA parameters by least squares. The
first method is non-iterative but does not attain the
CR bound, while the second method remedies this by
iterating between estimating the AR and MA polyno-
mials, initialized with the first method. An alternative
way to attain the CR bound from Durbin’s first method
as starting point, and which simplified the analysis,
was proposed by Mayne and Firoozan (1982), using an
additional filtering step.

An important theoretical challenge is how to establish
consistency and asymptotic efficiency for this type of
methods. The aforementioned papers for estimation of

time series consider the non-parametric model order as
tending to infinity, but “small” compared to the sam-
ple size. In practice, however, it is intuitive that the
non-parametric model order is chosen depending on the
available sample size. In this sense, the theoretical anal-
ysis should consider this relation formally, with the non-
parametric model order tending to infinity as function
of the sample size, according to some specified rate. This
dependency is introduced by Hannan and Kavalieris
(1983) to prove consistency of the method by Mayne
and Firoozan (1982). Later applications include vector
ARMA time-series (Hannan and Kavalieris, 1984; Rein-
sel et al., 1992; Dufour and Jouini, 2014), for which also
asymptotic efficiency has been treated formally.

Galrinho et al. (2018) have derived the asymptotic
properties of WNSF for a fully parametric model (i.e.,
dynamic and noise models), making use of the results
by Ljung and Wahlberg (1992) on the statistical prop-
erties of non-parametric least-squares estimates when
the model order tends to infinity as function of the
sample size at particular rates. In particular, the fully
parametric WNSF is shown to be consistent and asymp-
totically efficient with open- and closed-loop data when
the correct model structure is chosen. In this paper, in-
stead of estimating both the dynamic and noise models,
we disregard the parametric noise model, reducing the
non-parametric model estimate to obtain a parametric
dynamic model only. The dynamic model estimate will
then be asymptotically efficient in open loop, and con-
sistent in closed loop, with optimal asymptotic covari-
ance for an infinite-order noise model. The asymptotic
properties of the proposed method correspond to the
asymptotic properties of PEM with an infinite-order
noise model (Forssell and Ljung, 1999) in both open and
closed loop, but performed with a robust numerical pro-
cedure, and without using a numerical search algorithm.

The case addressed in this paper, where WNSF is used
with no parametric noise-model estimate, will be de-
noted semi-parametric WNSF. Despite having been
mentioned by Galrinho et al. (2018), a formal analysis
of the semi-parametric case has not been considered.
Technically, the theoretical analysis of this setting is
significantly more challenging than the fully paramet-
ric case. The reason is that expressions with structure
(TR™'T")~!, where T and R are matrices, appear in
both variants of the method; however, T and R are
both square and invertible in the fully parametric case,
and the analysis can be done using T—'RT~!, while
this is not the case for the semi-parametric case. This
type of structure arises in the analysis by Hjalmarsson
and Martensson (2011), whose geometric approach to
variance analysis can be helpful here. There, however,
the sizes of the matrices are constant, whereas here the
dimensions grow unlimited, causing important techni-
cal issues that need to be resolved. This motivates that,
in Section 4.2, we derive a new result based on the
approach by Hjalmarsson and Martensson (2011) such



that it can be applied in the setting of our problem.

The paper is organized in the following way. In Section 2,
we introduce definitions, assumptions, and background.
In Section 3, we present the semi-parametric algorithm
of WNSF. In Section 4, we provide the asymptotic anal-
ysis, which includes: 1) a new result for variance analy-
sis that is instrumental for our problem; 2) consistency
with open- and closed-loop data; 3) asymptotic efficiency
with open-loop data and the corresponding asymptotic
covariance matrix with closed-loop data. In Section 5,
we perform an experimental analysis illustrating the po-
tential of the method.

2 Preliminaries

Most of the notation, definitions, and assumptions used
by Galrinho et al. (2018) apply to this paper. For com-
pleteness, we present them here.

2.1 Notation

e A’ is the transpose of matrix A.
e A* is the complex conjugate transpose of matrix A.

o |zl = \/Sr_, |xx]?, with 2 an n x 1 vector.
e [[A|l = sup, g [|Az[| /[|z||, with A a matrix and z

a vector of appropriate dimensions.

o ||A||p = /Trace(AA*) (i.e., the Frobenius norm),
with A a matrix.
° HG(q)HH2 \/i f:r TraceG(e™)G* (i) dw,

with G(q) a transfer matrix.

o |G(a)|,, = sup, lIG(e)]]-

e (' denotes any constant, which need not be the same
in different expressions.

e I'(q) =[¢7t -+ ¢ "), where ¢! is the back-
ward time-shift operator.

o Tnm(X(q)) is the Toeplitz matrix of size n x m
(m < n) with first column [zg -+ 2,-1]’, where
X(q) = Yp—yzrq", and zeros above the main di-
agonal.

e [Ex denotes expectation of the random vector x.

e Ez, := lim NZt 1 Ez,.

N—o00
e xn = O(fn) means that the function xy tends to
zero at a rate not slower than fy,as N — oo, w.p.1.
o (X(q),Y(q))=05 [T, X ()Y (e")dw, with X(q)
and Y'(¢) transfer matrices of appropriate sizes.

2.2 Assumptions

Assumption 1 (True system and parametric model)

The system has scalar input {us}, scalar output {y;},
and is subject to scalar noise {e;}. These signals are
related by

yr = Go(Q)ur + Ho(q)er, (1)

where G,(q) and H,(q) are rational functions given by

Golq) = L@ _ R L B

’ Folg) 1+ fPat+-+ fo,am @)
" (q) CO(Q) _ 1+Ci)q71_~_...+cz%quc

’ Doq)  1+dfq~'+--+dg, g™

The transfer functions G,, H,, and H; ! are assumed to
be stable. The polynomials L, and F,—as well as C, and
D,—do not share common factors.

We parametrize G(q) as

L(q,0) g™+ A+ g™
G(q,0) = = L , (3
(@.9) F(q,0) 14+ fig7t + -+ frn,q™ )
where ,
0 = [f1 o fong 1 lmL:|

is the parameter vector, with known orders my and m;.
We assume that there is 0, such that G(q,0,) = Go(q)-
The orders m. and mg of the noise model numerator and
denominator polynomials are not known.

Because we allow for data to be collected in closed
loop, the input {u;} is allowed to have a stochastic
part. Then, let F;_; be the o-algebra generated by
{es,us, s <t — 1}. For the noise, the following assump-
tion applies.

Assumption 2 (Noise) The noise sequence {e;} is a
stochastic process that satisfies

Eles| Fi-1] =0, E[e?|Fi_1] =02, Elles|'] < C,Vt.

Before stating the assumption on the input, we introduce
some definitions from Ljung and Wahlberg (1992).

Definition 1 (fy-quasi-stationarity) Let fyx be a
decreasing sequence of positive scalars, with fxy — 0 as
N — o0, and

1 N /
ﬁZt 7+1 VtV—7s 0ST<N7
N _ 1 N+
RUU(T) - N Zt 1T vtvt [ -N <7< 0,
0, otherwise.

The vector sequence {v;} is fn-quasi-stationary if

(1) There exists Ry, (T) such that
SUPjrj<n HRIJJ\;(T) - R’U’U(T)H < leN;
(2) 3 i el < G

for all N large enough, where Cy and Cs are finite con-
stants.



Definition 2 (fy-stability) A filter G(q)= pe( 9rq”"

is fn-stable if >0 |grl/ fr < c0.

Definition 3 (Power spectral density) The power
spectral density of an fn-quasi-stationary sequence {vy}
is given by @, (2) =Y °2 __ Ry, (T)27", if the sum exists
for|z| = 1.

Assumption 3 (Input) The input sequence {uy} is de-
fined by uy = —K(q)y: + ¢ under the following condi-
tions.

(1) The sequence {ry} is independent of {e;}, fn-quasi-
stationary with fn = \/log N/N, and uniformly
bounded.

(2) With ®,.(z) = F.(2)F.(z7!) the spectral factoriza-
tion of {r:} and F,.(z) causal, F.(q) is BIBO stable.

(3) The closed loop system is fn-stable with fn =
1/VN.

(4) The transfer function K(z) is bounded on the unit
circle.

(5) The spectral density of {[r: e:]'} is bounded from
below by the matriz §1, for some § > 0.

Operation in open loop is obtained by taking K(g) = 0.
Alternatively to (1), the true system can be written as

Ao(@)ye = Bo(q)us + e,

where
1 oo
Ao(@) = g =14 > _aRd,
o(q Pt @
Go =,
Bofq) = 2ol > "

k=1
are stable (Assumption 1). In a first step, WNSF esti-

mates truncated versions of A,(q) and B,(q), using the
ARX model

Alg,n™)ye = B(q, 0" )us + ey, (5)

where
i
nnz[a1-~-anb1-~-bn}a (6)
B(g,n") = bra™".
k=1

Algn™) =1+ arg™,
k=1

Because the order needs to be infinite for the system
to be in the ARX model set, we make the model order
n depend on the sample size N—denoted n = n(N)—
according to the following assumption.

Assumption 4 (ARX-model order) The ARX

model order is selected according to:

D1. n(N) — o0, as N — oo;
D2. n**9(N)/N — 0, for some § > 0, as N — oo.

Compared with Galrinho et al. (2018), the only differ-
ence in the assumptions is on the model: therein also
the noise model uses a parametric structure analogous
to (3), whereas here it is not estimated.

2.3 Prediction Error Method

The prediction error method minimizes a cost function
of the prediction errors

e(0,¢) = H *(g,¢) <yt - La,9) t) :

Fq.0)" ™)

where H (g, () is a noise model, parametrized by

Clg, Lteg '+ +epg ™
H(q,¢) (0.0) _ -

T D@0 1+4dig A dm,g i

with

C’m,c dl

¢ = [61 dmd:|/

With a quadratic cost function, the PEM estimate of the
parameters is obtained by minimizing

1ea1,
J(H,C) = N Z §€t (97(:), (8)
t=1

where N is the sample size. Using the quadratic cost
function (8) can provide asymptotically optimal esti-
mates when the noise is Gaussian.

Let H(q,() be such that there exists ¢ = (, for which
H(q,¢) = Ho(q). Denoting by 05FM the parameter vec-
tor 0 that (together with some ¢) minimizes (8), the

estimate HAEEM is asymptotically distributed as (Ljung,
1999)

VN@ORM = 00) ~ AsN (0,02 Mpphy),  (9)

where N stands for the Gaussian distribution. Let &7
be the spectrum of

ui = So(q)re, (10)

with S,(q) = [1+ K (q)Go(q)]~* the sensitivity function,
and I';,, and I';;,, be according to the definition of I,
in Section 2.1 with n = my and n = my, respectively.
Then, the asymptotic covariance matrix in (9) satisfies

1 T _ S .
Mpgm > o Q(e*) P (e (e)dw =: M, (11)

T™J-xn



where

G
= i _7011771
Qe) = [ HoF ] .
HyFy, le

Inside the matrix, arguments were omitted for notational
simplicity; however, for clarity, we point out that func-
tions of ¢ are evaluated at ¢ = €™ when inside of inte-
grals that have the frequency w as variable of integration.

In open loop (in which case ®! is simply the input
spectrum), Mpgy = M, and it corresponds to the CR
bound under a Gaussian noise assumption. In closed
loop, Mpeym = M when the number of parameters in ¢
tends to infinity. In this case, M does not correspond to
the CR bound, but to the optimal covariance (from a
prediction error perspective) with an infinite-order noise
model (Forssell and Ljung, 1999). For additional discus-
sion on open- and closed-loop accuracy, we refer to Bom-
bois et al. (2011); Aguero and Goodwin (2007)

The interest of estimating a non-parametric noise model
in closed loop is that even if the noise spectrum needs
to be captured by a high-order model, it will still be
possible to obtain a consistent estimate of the dynamic
model G(q,0). However, estimating a non-parametric
noise model simultaneously with a parametric dynamic
model with PEM is not realistic. The reason is that, as
the number of parameters in H(q, {) increases, the pre-
diction error (7) becomes a more complicated function
of ¢, which makes the problem computationally heav-
ier, and more difficult to find the global minimum of the
non-convex cost function (8). Consequently, the theoret-
ically attractive result that PEM with a non-parametric
noise model provides estimates with covariance corre-
sponding to M may not always be useful in practice. It
turns out that this setting can be handled with WNSF
without increasing the difficulty of the problem.

3 Semi-Parametric Weighted Null-Space Fit-
ting Algorithm

The WNSF method consists of three steps (Galrinho
et al., 2018). First, we estimate a non-parametric ARX
model, with least squares. Second, we reduce this es-
timate to a parametric model, with least squares, pro-
viding a consistent estimate. Third, we re-estimate the
parametric model, with weighted least squares, where
an estimate of the optimal weighting is used to attain
an asymptotically efficient estimate. We now consider
the procedure for each step, without estimating a para-
metric noise model. Because WNSF has been already
presented by Galrinho et al. (2014, 2018), we will not
go into detail here on the motivation and derivation of
each equation, but instead focus on the idea of the semi-
parametric algorithm.

For the first step, consider (5) in the regression form

ye = (01)'n" + ex,
!
OF = |=Yr-1 0 ~Yron U1 o Upp

Then, the least-squares estimate of 7" is obtained by

iy = [RR) ', (12)
where
1 1
Ry =+ D oilel)s = D el (13)
t=n+1 t=n-+1

for which we have that (Ljung and Wahlberg, 1992)

Ry — R" :==E[p}(¢})], as N — 00, w.p.1,
= =E[oly], as N — oo, w.p.l,
iy — g = [_"]_1 7', as N — oo, w.p.l.

For the second step, we obtain an estimate of G(q,#8),
from the non-parametric ARX-model estimate. For this
purpose, we may use (2) and (4) to write

Co(q)Ao(q) — Do(q)
Fo(q)Bo(q) — Lo(q)As(q)

0,
0. (14)

Because we are not interested in estimating a parametric
noise model, the first equation in (14) is not relevant for
our purposes. Then, we require only

Fo(q)Bo(q) — Lo(q)As(q) = 0. (15)

By convolution, (15) can be written in matrix form as
by — Qn(ng)bo =0, (16)

where 77} is given by (6) evaluated at the true coefficients
of (4), b consists of b™ = [by ... b,]" also evaluated at
the true coefficients, and

Quln™) = [~@L0) QL)

QL") = T, (Ala,n™), QL™ = Tam, (Bla,n™)),
(17)

where T, xm ;s according to the definition in Section 2.1
with m = my. Motivated by (16), we replace ] by its
estimate 7% (and the same for b7, which is a part of n?)
and obtain an estimate of 6 with least squares:

1

0% = (QL(M3)Qn(iR)) ™ Qu(ip)bY.  (18)

This estimate, as will be shown in Theorem 1, is consis-
tent.



For the third step, we re-estimate 6 to obtain an asymp-
totically efficient estimate. This is done by taking into
account the statistical properties of the errors in 7};. As
Ny is replaced by 7% in (16), the residuals can be written

as
N — Qn(iN)06 = Tn(6o) (% — n0), (19)
where

T,(0) = | =T,(0) TL(0)] »
T3,(0) = Tan(L(a,0)), T1(8) = Tan(F(g,6)). (20)
For the term 77} — 2 in (19), if we neglect the bias error
originating from the truncation taking place in the ARX

model (which should be close to zero for sufficiently large
n) we have that, approximately,

VN (i —17") ~ AsN'(0,02[R"] ).

This allows us to express the covariance of the residu-
als (19) as being proportional to

WJI(HO) = Tn(eo)[R"TlTéwo), (21)
Using the inverse of (21) as weighting, when solving (19)
in a least-squares sense, minimizes the variance of the
parameter estimate. Although this covariance is depen-

dent on the true parameters, a consistent estimate is
available from Step 2. Hence, we may use as weighting

. . . -1
Wa(05F) = (Tu(OK) R TH0R)) . (22)
and the estimate obtained in this step is thus given by
A A -1 A
OV = (QLIRIWa (O5)Qu () ) Q) W (055 )b
(23)
The algorithm may be summarized as follows.

Algorithm 1 The semi-parametric WNSF method con-
sists of the following steps:

(1) compute a non-parametric ARX-model estimate

with (12);

(2) compute a parametric dynamic-model estimate
with (18);

(8) re-compute a parametric dynamic-model estimate
with (23).

Optionally, we may continue to iterate, potentially im-
proving the estimation quality for finite sample size.
However, we show in the next section that Algorithm 1
has the same asymptotic properties as PEM with an
infinite-order noise model. Nevertheless, the algorithm
has advantages with respect to PEM with an arbitrar-
ily flexible noise model. First, WNSF estimates the non-
parametric noise model in a separate step, as part of

an ARX model, which is linear in the model parame-
ters; thus, it does not make the problem computationally
more difficult, unlike if (8) is minimized with an arbi-
trary large number of noise model parameters. Second,
it overall does not use numerical search algorithms that
can converge to non-global optima. The price to pay is
that, even if the noise spectrum can be modeled para-
metrically, WNSF still requires a noise model whose or-
der tends to infinity in order to satisfy the statistical
properties that we proceed to show.

4 Theoretical Analysis

In this section, we perform a theoretical analysis of the
semi-parametric WNSF method. In particular, we will
show that Step 3 in Algorithm 1 provides a consistent
estimate and derive its covariance matrix. For that, we
will need some auxiliary results.

4.1 Results from Galrinho et al. (2018)

To show the aforementioned results, we will need that
the estimate obtained in Step 2 of Algorithm 1 is con-
sistent. For that, we have the following result.

Thgorem 1 Let Assumptions 1, 2, 3, and 4 hold, and
let 0%° be given by (18). Then,

ékfs —0,, as N — oo, w.p.1.

PROOF. For the fully parametric case, where 6 addi-
tionally contains the noise model parameters, the anal-
ogous result is shown by Galrinho et al. (2018) in The-
orem 1. Therein, the idea of the proof is to consider
separately the part of the expression in (18) provid-
ing the noise model estimates and the dynamic model
estimates, as the two problems are separable when no
weighting is used. The part corresponding to the dy-
namic model, which in turn corresponds to Q(n™) given
by (17), are identical for both fully- and semi-parametric
cases. Hence, the result follows from Theorem 1 in Gal-
rinho et al. (2018). O

Although consistency of Step 2 with semi-parametric
WNSF is a specific case of the results for the fully-
parametric method, consistency and asymptotic covari-
ance of Step 3 are technically more challenging to derive.
In the following subsection, we provide further insight
into why, and derive a result that will be instrumental
for the remainder of our analysis.



4.2  Result for wvariance analysis with geometric ap-
proach

We begin by writing, for the estimate from Step 3,

éyLS _ 00

= M (0, 057) Q1 ()W (0K ) T (86) (e = (N)()é4)

where we define M (n™,0) := Q) (n™")W,,(0)Q.(n™) and

NN = ﬁZ(N), recalling that n is a function of N according

to Assumption 4 (for notational simplicity, we use only
n in matrix subscripts even when it is a function of N).
To analyze the asymptotic properties of semi-parametric
WNSF, the limit value of (24) and the asymptotic distri-
bution of VN (Y8 — 6,) will be considered. The tech-
nical challenge in this analysis, compared to Galrinho
et al. (2018), comes from the matrix W, (%%), and con-
sequently also the matrix M (7, éJ](,S), which contains

W, (0%8). Considering (20), we observe that the outer
inverse in (22) cannot be computed by taking the in-

dividual inverses contained in Wn(éﬂs), as consequence
of T,,(6%%) not being square. On the other hand, in the

fully parametric case, the matrix Tn(ék,s) is square and
converges to an invertible matrix (Galrinho et al., 2018).
Hence, we may write W, (0%%) = 7.7/ (0%3) Ry, T 1 (0%9)
for the fully parametric case, which is used throughout
the analysis by Galrinho et al. (2018), but not for the
semi-parametric case considered in this paper.

To deal with this issue, we use the approach by Hjal-
marsson and Martensson (2011), writing the aforemen-
tioned matrices as projections of the rows of some matrix
onto the subspace spanned by the rows of another ma-
trix. This will be applied to the limit value of the matrix

M (7, 0%8), defined by

M(nm 00)::1111_{20@;1(772) (T (90)(1?”)71117/1(90)]71@71 (15)-

_ (25)
Writing Q. (%), Tn(6,), and R™ (defined in (17), (20),
and (13), respectively) in the frequency domain, we have

1 [ | 0| |-B
/ n my o *
= — *d
Qn(no) o1 /;w [ 0 le AO n AW,
1 [ —L* 0| |T* 0
Tn(go) — 7/ |:].—‘n Fn:| ° " dw,
2 J x 0 FEx| |0 I
a1 T IT, 0| |-GoSoF, —H,S.0,
2r ) 10 T, SoF, —KH,S,0,
—G.S.F, —H,Sy0, ] [T% 0
. dw.
S,F, —KH.,S,00 0 I

Arguments are omitted for notational simplicity, but
functions of ¢ in the time domain should be evaluated at
q = ™. Using these expressions, we may write M (7, 0,)
as

Mo, 0,) =
Jim (o, W) (W, Q) (@ ) ™, )] ™ (),
(26)
where
o _ [Ge@So(@Tu(a)  ~0uHo(g)Sa(a)Tnla) ]
"L S@F@)Tn(a) 06K (0)Ho(q)Se()Tn(q)]
_
Y= e @ 0
_ So(@)Fr(q) [~Bo(@)Tm, () 0
Fola) | Ao(@)Tim,(q) 0]

(27)
Following the approach by Hjalmarsson and Martensson
(2011), we recognize that the term

(Vs Q) ( Qs Q) ™D, U
in (26) can be written as

<\Ilna Qn><Q’rL7 Q’n>_1 <Qn; \IJ’I’L> = <Pr0j897§[l’n) PrOjSQ:IJn>7

where Projg, W, denotes the projection of the rows of
W, onto the subspace spanned by the rows of €2,,. As
n — oo, the dimensions of the matrix {2,, increase, and
the subspace spanned by its rows approaches Hs. Then,
the limit value of the projection will be the causal part
of the projected matrix.

For a simplified case, suppose that ¥,, were causal and
that its dimension did not depend on n (i.e., ¥,, = ¥).In
this case, we would have lim,, ;oo (Projs, ¥,Projs, V) =

(U, ¥). In turn, we would then have that M (1,,0,) =
<7a \I/><\Ija\1’><‘l/77> = <Pr0j5\p’)/,PI‘OjS‘I/’Y>- If we now
reintroduce that the dimension of ¥ depends on n
(¢ = ¥,), and we assume that the rows of ¥,
span Hs as n — oo, we have that M(n,,0,) =
limn_mo(ProjS% 7, Projs, vy = {(v,7). These ar-
guments follow from results in Hjalmarsson and
Martensson (2011). However, handling the dimensional
increase of ¥,, with n requires additional technical de-
velopments. One of the key results for the asymptotic
analysis in this paper is that the aforementioned result
(i.e., that M(no,0,) = (v,7)) still holds when the di-
mensions of ¥,, increase with n. This is considered in
the following theorem.



Theorem 2 Let

where Fj(q) = Yy f,gj)q*’C (G =A{1,...,6}) are expo-
nentially stable (i.e., |f,§j)| <CXVj, A< 1), fé4) #0,
and [F3(q) — F1(q)Fi(q)] " and F5 '(q) are exponentially
stable. Then, if there is i such that omin({Qn, An)) < C
(omin denotes the smallest singular value) for alln > 7,

i, W) [T, ) (s )™, T)] ™ (W)
= (1) (28)

PROOF. See Appendix B. O

4.8 Consistency and Asymptotic Covariance

Using the results derived above, we can show the asymp-
totic properties of semi-parametric WNSF. Regarding
consistency of Step 3 in Algorithm 1, we have the fol-
lowing result.

Theorem 3 Let Assumptions 1, 2, 3, and 4 hold. Then,

HA}\/,VLS —0,, as N — 0o, w.p.1.

PROOF. See Appendix C. O

Theorem 3 implies that semi-parametric WNSF provides
consistent estimates of 6.

Regarding the asymptotic distribution and covariance of
Step 3 in Algorithm 1, we have the following result.

Theorem 4 Let Assumptions 1, 2, 3, and 4 hold. Then,
VNOFES —0,) ~ ASN(0,02M 1),

where M is given by (11).
PROOF. See Appendix D.

As consequence of Theorem 4, the semi-parametric
WNSF method summarized in Algorithm 1 has the

same asymptotic distribution and covariance as PEM
with an infinite-order noise model (Ljung, 1999; Forssell
and Ljung, 1999). In open loop and for Gaussian noise,
this corresponds to an asymptotically efficient estimate.

5 Simulations

In this section, we perform three simulation examples. In
the first, we illustrate the asymptotic properties of the
method. In the second, we use a scenario where a low-
order parametrization for the noise model does not cap-
ture the noise spectrum accurately, which is specially ad-
vantageous for semi-parametric WNSF compared with
PEM with different choices of noise model. In the third,
we motivate the advantage of semi-parametric WNSF
compared to the fully parametric version when using the
previous scenario.

5.1  Illustration of asymptotic properties

As consequence of the results in Section 4, semi-
parametric WNSF is asymptotically efficient in open
loop for Gaussian noise, with the asymptotic covariance
of the dynamic-model estimates given by o2M~!. In
closed loop, the asymptotic covariance is still given by
o2M~1, but in this case it does not correspond to the
CR bound, but to the optimal asymptotic covariance
when the noise-model order tends to infinity.

To illustrate this, we perform open- and closed-loop sim-
ulations such that the closed-loop data are generated by

w 1 v (@) Ho(q)
T I+E(QG(e) ' 1+ K(q9)Golg)
e Gold o Holg)
- 1+ K(9)Golg) 1+ K(q)Golq)

and the open-loop data by

1
=7y,
1+ K(q)Gol(q) '
Yt = GO(Q)ut + HO(Q)etv

Ut

where {r:} and {e;} are independent Gaussian white
sequences with unit variance, K(¢) = 1, and

g ' 4+0.1¢72

B _1+07¢7!
1 -0.5g714+0.75¢72’

1-0.9¢7 1

Golq) Ho(q)

We perform 1000 Monte Carlo runs, with sample sizes
N € {300,600,1000,3000,6000,10000}. We apply
WNSF with an ARX model of order 50 to both the
open- and closed-loop data. Performance is evaluated
by the mean-squared error of the estimated parameter



Fig. 1. Illustration of asymptotic properties: theoretical
asymptotic MSE (dotted) and average MSE for the pa-
rameter estimates as function of sample size obtained with
semi-parametric WNSF in closed loop (solid) and open loop
(dashed).

vector of the dynamic model,
MSE = ||g\™ — 8,2,

As this simulation has the purpose of illustrating asymp-
totic properties, initial conditions are assumed known—
that is, the sums in (13) start at ¢ = 1 instead of t = n+1.

The results are presented in Fig. 1, with the average
MSE plotted as function of the sample size (closed loop
in solid line, open loop in dashed line). We plot also
o2Trace[M ~1]/N (dotted line), which the average MSE
attains both in open and closed loop: because the data
were generated such that ®7 ;| the spectrum of (10), is the
same for both data sets, both scenarios have the same
asymptotic covariance, in accordance to our theoretical
results.

5.2  Random noise model

When a low-order parametrization of the noise model
is not enough to capture the noise spectrum, the noise
model may require many parameters. With PEM, a si-
multaneous estimate of the dynamic model and a long
noise model is not numerically robust due to the non-
convexity of the cost function. The semi-parametric
WNSF is appropriate to deal with this scenario, be-
cause the noise spectrum is captured beforehand with a
non-parametric ARX model.

Modeling the correct noise spectrum is particularly im-
portant in closed loop, as the estimates of the dynamic
model will be inconsistent if the noise model is not flex-
ible enough to capture the noise spectrum. For this rea-
son, we consider a closed-loop setting, where data are
generated by

" 1 . Kl@H()
"T14K(9)Go(q) ' 1+ K(q)Golg) "
" Go(q) + HO(Q) e

TIT KG9t T 1 K(@)Ga(q)

The signals {r;} and {e;} are Gaussian white noise se-
quences with variances 1 and 4, respectively. The system
is given by

1.0~ — 0.80¢2

G =
old) = 7 0.95¢~ % + 0.90g2’

the controller by K(gq) = 0.2, and the true noise model
by

N—-1

Ho(g) =1+ Y Meg™"

k=1
with A\, = wre~%2* where wy, is drawn from a Gaussian
distribution with zero mean and unit variance. Here, dif-
ferently than Assumption 1, stability of H,(q) is not en-
sured. However, this is not an issue if the noise is Gaus-

sian, as there always exists an inversely stable H,(q) for
which the noise sequence has the same spectrum.

To model the noise, one possibility is to try to find an
appropriate low-order parametrization in the form

_ Clqil +-+ thquh
dig l+ -+ dp, g ’

H(q,¢) (29)

where ¢ = [ Cm, d1 dm,)’. In this case,
a Box-Jenkins model is estimated. The most appropri-
ate noise model order may be chosen by using some
information criterion, such as the Akaike Information
Criterion (AIC) or the Bayesian Information Criterion
(BIC) (Ljung, 1999).

The alternative is to use a high-order model for the noise
model. For example,

H(q, (") =1+ G ", (30)

k=1

or 1
H(q,(") = —=n——7 (31)

N 14+ ZZ:l qu_k’
where (" = [¢; ... (). In particular, the choice (31)
has the same structure as the noise model estimated by
semi-parametric WNSF.

Motivated by these alternatives, we compare the follow-
ing methods:

e semi-parametric WNSF, with non-parametric ARX
model order n = 200 (denoted WNSF,);

e PEM, with default MATLAB initialization, and
noise model (29) with my, € {1,2,...30}, where the
order my, is chosen using the AIC or BIC criterion
(denoted PEM,;. and PEMy,, respectively);

e PEM, with noise model (31) with n = 200, and
MATLAB default initialization (denoted PEMjp, );



e PEM, with noise model (31) with n = 200, and
initialized by WNSFg,, (denoted PEMg,wNsF);

PEM uses the implementation in MATLAB2016b Sys-
tem Identification Toolbox. All the methods use a maxi-
mum of 100 iterations, but stop early upon convergence
(default settings for PEM, 10~* as tolerance for the nor-
malized relative change in the parameter estimates for
WNSF). The search algorithm used by PEM is chosen
automatically. The noise model (30) was not used with
PEM for computational reasons: the optimization be-
comes extremely slow as stability of the inverse of the
noise model when computing the prediction errors (7)
is difficult to fulfill with so many parameters, while the
inverse of any estimate of (31) is always stable.

We use sample sizes N € {1000, 5000, 10000} and per-
form 100 Monte Carlo runs. Performance is evaluated by
the FIT of the impulse response of the dynamic model,
given by

~_ llgo =4l )
|90 — mean(go)|| /) °

in percent, where g, is a vector with the impulse response
parameters of G, (q) (mean(g,) is its average), and sim-
ilarly for g but for the estimated model. In (32), suffi-
ciently long impulse responses are taken to make sure
that the truncation of their tails does not affect the FIT.

FIT = 100 <1 (32)

The FITs for the different sample sizes are shown in
Fig. 2. For N = 1000, semi-parametric WNSF has bet-
ter performance than PEM with default MATLAB ini-
tialization, both with low-order noise model chosen with
AIC/BIC and with non-parametric noise model. Among
the PEM alternatives initialized by default with MAT-
LAB, an AIC/BIC criterion with a Box-Jenkins model
with orders up to 30 performed better than using a
non-parametric noise model. However, if initialized with
semi-parametric WNSF, PEM with non-parametric
noise model performs considerably better than with
default MATLAB initialization. Nevertheless the ini-
tializing estimate WNSF, may in sometimes be better
than the resulting estimate PEM,wnsr, which can be
due to problems with over-fitting. For N = 5000, WNSF
and PEM with non-parametric noise and default MAT-
LAB initialization have similar median performance,
but the algorithm for PEM failed more often. This can
be remedied by initializing PEM with WNSF,. Here,
PEM with AIC/BIC had no low-performance outliers,
but the median performance was poorer than for the
semi-parametric approaches. Similar conclusions can
be drawn for N = 10000, where PEM does not neces-
sarily provide better results with more data samples,
potentially due to numerical problems.

Overall, WNSF showed more robust performance among
the sample sizes used than the different variants of PEM

10

N = 1000 N = 5000 N = 10000
100 T 100 } 100 1
%
50 4 80 | 80 |
b3
= “TT %
=3 x X% " X x
0 ; 60 | o B0
131418 " 11 14 141514
= WNSF,, [3 PEM. = PEMbic
PEMsp 1 PEMspWNSF

Fig. 2. FITs for given methods and sample sizes from 100
Monte Carlo runs.

Table 1

Average computational times in seconds for WNSF, the
search among all orders required for PEM,ic and PEMy;c,
and PEM,,,.

N WNSFsp PEMaic,bio PEan PEMspWNSF
1000 1.0 30 641 83
5000 0.91 27 133 42

10000 1.3 38 236 82

with MATLAB initialization. However, a more evident
advantage is the computational time. Table 1 shows the
average times, in seconds, required for the identification
using semi-parametric WNSF, PEM with all the orders
computed for AIC and BIC, PEMg;,, and PEM,wnsr,
for the different sample sizes (all the computations were
performed in the same computer). Here, we observe how
WNSF requires much lower computational time than
the alternatives. This is a consequence of PEM estimat-
ing the noise model in the non-linear optimization pro-
cedure, whereas in WNSF the high-order model is esti-
mated in a previous least-squares step, which is numer-
ically robust. Moreover, the time required for WNSF
and PEM with AIC/BIC does not change significantly
with IV, unlike with PEM,,. In this case, the time does
not necessarily decrease for smaller N. The problem
arising when using smaller N is that the cost function
more likely becomes ill-conditioned at some parameter
values during the optimization. The time required for
PEM with non-parametric noise model decreases when
semi-parametric WNSF is used for initialization. How-
ever, the times are still significantly larger than for semi-
parametric WNSF, while the improvement in perfor-
mance in not considerable (Fig. 2).

5.8 Comparison with fully-parametric WNSF

In the following, we motivate the advantage of us-
ing semi-parametric WNSF compared to the fully-
parametric version when the noise cannot be modeled



N = 5000
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Fig. 3. FITs for semi-parametric and fully-parametric WNSF
from 100 Monte Carlo runs.

with a low-order parametrization. In closed loop, and
unlike PEM, fully-parametric WNSF should provide
consistent estimates of the dynamic model even with
an under-parametrized noise model (although this case
is not covered in the analysis by Galrinho et al. (2018),
it should follow from a similar approach). In this sense,
to obtain consistent estimates, fully-parametric WNSF
can be used with any choice of noise model. Never-
theless, this does not render semi-parametric WNSF
useless, as we will see with the following illustration.

Consider, besides the WNSFy,, result from the previous
simulation, the following methods:

o fully-parametric WNSF with noise model (29) and
order mp, =1 (denoted WNSF});

o fully-parametric WNSF with noise model (29) and
order my, = 30 (denoted WNSF3y).

The number of iterations and stopping criterion is as in
the previous simulation, and we use N = 5000.

The FIT results are presented in Fig. 3. The fully-
parametric WNSF, both with noise-model order mj = 1
and mj = 30, performs worse than the semi-parametric
version. In the case that m, = 1, this may be due to
wrong noise model coefficients being included in the
weighting, which, despite not affecting consistency of the
dynamic-model estimates, may affect the results for fi-
nite sample sizes. For my = 30, the same reasoning may
still apply; in addition, because 30 estimated coefficients
of the noise model are included in the weighting, which
may have high variance, this may also deteriorate the
dynamic-model estimates for finite sample sizes. These
results suggest that when a high-order noise model is re-
quired, it may be better to use semi-parametric WNSF
than the fully-parametric version.

6 Conclusion

Many standard system identification methods provide
inconsistent estimates with closed-loop data. In the par-
ticular case of PEM, this issue is avoided by choosing
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a noise-model order that is large enough to capture the
noise spectrum. An appropriate order is often difficult to
choose, and making it arbitrarily large increases the nu-
merical problems of PEM. The WNSF method, analyzed
by Galrinho et al. (2018) in the fully parametric setting,
can also be used without a parametric noise-model esti-
mate, which we named semi-parametric WNSF. In this
paper, we deepened this discussion.

A simulation study illustrates the importance of sepa-
rating the dynamic- and noise-model identification when
a high-order noise model is required, both in terms of
performance and computational time. With WNSF', this
separation always occurs, as the method first estimates
a non-parametric ARX model. Then, a parametric noise
model does not need to be obtained, as the noise spec-
trum has been captured in the first step.

We also provide a theoretical analysis of the asymptotic
properties. To this end, we extend the geometric ap-
proach by Hjalmarsson and Martensson (2011), deriving
a more general result with the matrix dimensions in the
inner projection tending to infinity. We show that semi-
parametric WNSF provides consistent estimates of the
dynamic model. With open-loop data, the estimates are
also asymptotically efficient; with closed-loop data, the
asymptotic covariance of the estimates corresponds to
the best possible covariance with a non-parametric noise
model. This gives WNSF attractive features in terms
of flexibility of noise-model structure and asymptotic
properties: if a correct parametric noise model is esti-
mated, the dynamic-model estimates are asymptotically
efficient; if not, they are consistent and optimal for a non-
parametric noise model. We used a simulation study to
illustrate how semi-parametric WNSF is an appropriate
method for scenarios where the noise model cannot be
accurately modeled with a low-order parametrization.

A Auxiliary Results for the Proof of Theorem 2

The following results will be used to prove Theorem 2.

Cauchy-Schwarz inequality for transfer-matriz inner
products

Let X (q) and Y (¢) be transfer matrices and x and y be
vectors of appropriate dimensions. Then, we have

1 " i * ([ tw
IEVIE = s o [ Xy (e
[le]|=1,]ly||=1 [ =T J—m
< swp V(X X)zy(Y,Y)y
[lz]|=1,]lyl|=1
= 11X, X Y V)



Bound for spectral norm of transfer-matriz inner prod-
ucts

Let X (q) be a transfer matrix. Then, we have

(X, XD < [[(X, X[ = v/ Trace((X, X)?)

) (A.2)
< Trace(X, X) = || X5,

where the second inequality follows from Trace(A?) <
[Trace(A)]? for a positive semi-definite matrix A.

Bound for Toeplitz operators of stable filters
Let X(q) == Y po_ zkqg ", with | X(¢)|ln. < C.
From Theorem 3.1 by Partington (1989), it follows that

1 i )
sz/ Ll X () ’ <||X(q)|}. VR EN. (A.3)

B Proof of Theorem 2
In this appendix, we prove Theorem 2.

Inner Projection: (¥, 0, (Qn, Q) 1D, )

Let
U, = U° + U7, (B.1)
where
i fé5)e—iw 0
- fé5)672iw _’_f1(5)efiw 0
67 e+ 00 e 0
[0 filhe " 0
oo Yreo flgi)zeim 0
_Z;O:O f/gi)neiWk O
Alternatively, ¢ can be written as VS = {Pnl“n 0],

where P, = Tnxn(F5(q)). Using (B.1), we can write

(U, Q) (Q, Q) "1, )
= (07, 20)(Qn, Qn>71 (Qn, ¥7)
+ (U5, Q) (s Q) ™ H D, )
+ (5, Q) (s Q) ™ H D, U7
+ (0, Q) (s Q) ™ H D, U7
= <\I/1cw Qn><Qm Qn>71 <Qm q’f)

(B.2)
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because (P2, 0,) = 0 = (Q,, V%) Vn, as Q, is causal
and ¢ is anti-causal.

Now, we will construct an approximation of ¥¢ whose
rows can be written using a linear combination of the
rows of Q,,. To facilitate this, we define (arguments are
omitted for notational simplicity)

o .| TaBiEi  TuBsFy
Y -FRFE) 0 |

which has been obtained by multiplying the first n rows
of ,, by Fy, and subtracting the newly obtained first n
rows from the last n rows. Then, if it is possible to find
a linear combination of the rows of 2,, to write ¥, the
same is possible for (,,.

Let F3 := F3 — FyFy, whose inverse is exponentially
stable by assumption. In addition, let row ¢ of F?fl\Il%
be given by

Fhwe ) = [0, a0 o]
where |87 < CA* with A < 1, and
W (i) = [y B Fag ™ 0]

be the row i of a matrix W€ (7). We re-write the right side
of (B.2) as

<\I/fm Qn><Qn7 Qn>71<9na \II%> =An+ A'E’Ll)’ (B~3)
where
An :<‘il%’ Qn><Qn; Qn>_1<Qn7 \ilfl>
AS) :<\IJ$L - \i/f” Qn><an Qn>71<Qna \IJSL>

+ <\I’$w Qn><Qna Qn>_1<Qm \Ilfz - ﬁ’%)

+ (T = U5, Q) (Qn, Q) TH(Q, U5 — T
By construction, We (i) is a linear combination of the
rows of Q,, (and hence, of ,,); therefore, ¥¢ € Sq, and

Ay = (5, 07).

(B.4)
Using (B.2), (B.3), and (B.4), we write

(T, L) (D, Q) ™1, W) = (IS, )+ AL (B.5)
Moreover, we can re-write (B.5) as

<\Ilnv Qn><Qna Qn>71<Qn7 \I/n> = <\ijﬂ \IlfL> + Ap, (BG)



where A,, = AS) + ASE) and
AR = (5 =5, W) (W, Wy, =5 )+ (05, -, 0 -0,
Replacing (B.6) in (28), we obtain

lim <’Ya \I/n>[<\11m Qn><Qm Qn>71<Qn7 \Ijn>rl<\11na 'Y>

= Tim {7, ) (95, 05) + Al H(T9), (BT)

n—oo

and using the Sherman-Morrison-Woodbury formula, we
re-write (B.7) as

lim (v, W) (05, O5) + An] ™ (¥, )

n—oo

= Tim (y, O )(V5,, 07) " (W, )

n—o00
+ nh*{%o«% \Iln><\Ilf“ \I/5L>71A7L
[+ (W, w5) 7AW, ) TH (W, ).
(B.8)

We want to show that the second term on the right-hand
side of (B.8), for which we can write

147, o) (W5, U3) ™ AR [T+ (W5, U AL]
W5, ) (T, )|
< [y, @l 1105, w5) 712
A+ (5, TR T AL T A,

(B.9)

tends to zero as n tends to infinity. We start by consid-
ering the term A,,, for which we will need that

c (& 1 T
<\I/n7\1’n> = %[

T

P,I, T P.dw = P,P,. (B.10)

Using also (A.1) and (A.2), we can write

18I < 201 Q)| 11(205 ) 7 TPl 1195, =5
+ 1, Q) Il (20, ) M 127, — 3,
+ 2| P (|5, — W5 [0, + 197, — WL, (B.11)

For row i of W& — W, we have that

WG — B = ||Fs 352, B gk — S B Fag ||
B ]05 BY a7 F] < O

Then,
W8 — 0|, < CvVRA" = 0asn — oco.  (B.12)
Moreover, using (A.1), we have
1 T * % *
1Pl = || [ rars R <|IB . <.
(B.13)
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and, using (A.3) and

_ i/ﬂ

o),

l Ui (|Fi |+ |Fo?)  Tulh(FLF5 + | FaPFy) dw
U, Uy (FsFY + |[FaPFy) ToT5 (| Fs)? + |[FaFyl?)

(Qn, )

we have

1(Qn, Q)| <I[[F1? + [F2? [0,
+ 2||F1F5 + |FalF .,
+ || 1F3? + [ FoFal? ||,
<C.

(B.14)

By assumption, it follows from omin({(Qn,Qs)) < C
that [|(Qn, Qn)7t|| < C. Together with (B.11), (B.12),
and (B.14), we have

[|AL]| = 0asn — oo. (B.15)

Then, if the remaining matrix norms in the right-hand
side of (B.9) are bounded, this term will tend to zero as
n — oo. For (v, ¥, ), we have

1 /” .I*FsFg
— dw
2w ) = |, 7% FsFy

< FsFslle + [ F5F7l[3.. < C.

163, W) = (B.16)

Also, we have that

1w, wi) 7 = P et
1 ™

T o -
< |IFsll5. < C.

1 ™
.0 Fs tdw 2—/ [, Fy *dw
™ —Tr

(B.17)
Together with (B.8), (B.9), (B.15), and (B.16), we have

7}1_{1(}0(% \IJn>[<\Ijm Q) (O, Qn>_1<Qn> \I’n”_l(\ym 'V>

Outer projection: {~, U, ) (WS, W)=, ~)
Recalling that ¥,, can be written as (B.1), we use that

« is causal and U¢ anti-causal to conclude that, analo-
gously to (B.2),

lim (y, ¥, ) (W5, W)~ (W, 7)
n—oo
= lim (7, WEN (WG, We ) (s y). (B.19)



Now, row ¢ of 7y can be written as
V(@) = |30 Si(cl)q_k 0,

where |s,(j)| < CAF,; X < 1 due to exponential stability.
Let also y™(i) == [ > 1, s,(;)q*k 0 ] be row i of a
matrix 4. We re-write the right side of (B.19) as

i (y, W) (W7, U7) (07 )
= lim (3", W) (W W) ~H(WE 4™

n—oo

+ lim AS?),
n—oo
(B.20)

where

A = (y =", W8NS, We) TG, )
+ (7, UG, We) TGy — ™)
+ <’7 - ’Vna \IJ;:L><\I}7017 ‘I’Z>_1<‘I’%ﬁ - ’7n>

Using a similar approach for ASLS) as we did for A,,, it
can be shown that

AP < CAly ="l + 11y =7"II3,) = 0 as n — oc.
(B.21)
Thus, (B.20) reduces to

lim (y, U5 ) (W6, We) (WS )
n—roo
= lim (", W) (WG, Uo) (W5 4™).  (B.22)
n—oo

Finally, we have that

(" WG, WE) T (W5, ") = (Projs, . 7", Projs, . ")
= ("),

(B.23)

where the last equality follows from 7" € Syc, as con-

sequence of P,, being invertible. Thus, replacfﬁg (B.23)
in (B.22), we have

lim (y, 7) (W5, U3) = H(P5,9) = lim (3",9") = (7,7),

n—oo

which, together with (B.18), (B.19), (B.20), and (B.21)
implies (28), as we wanted to show. O

C Proof of Theorem 3

We will show that

103"

— 0] = 0, as N — oo, w.p.1. (C.1)
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To do this, we use (24) to write

oS o,

< |27 e, 058) | 2 i)

| 08 | 100 e = 2| (0:2)

From Galrinho et al. (2018), we have that

lAn = ng™|| = 0as N = o0, w.p.1, (C.3)
HTn(eo)H S C Vn, (04)

and that, w.p.1, there exists N such that
|Qn(in)[| <C VN > N. (C.5)

Then, we have left to show that W, (6%°) is bounded and
M (i, 0%) is invertible for sufficiently large N.

We begin by considering the inverse of W, (6%5), for
which we have

TG RE]TL (05| < /T (0a)[R"] T3 (00)]

+ [T (O [RY] T (0K°) — T (00) [R") T, (60) -
(C.6)
In turn, it can be shown that

TH(QO)[Rn]ilT/z(QO) = <\I/m Qn><Qm Qn>71 <Qn7 \Iln>v

where U,, and Q,, are given by (27), which satisfy the
conditions of Theorem 2 with

Fi(q) = =Go(9)So(q)Fr(q),  Falq) = —Ho(q)So(q)00,
Fs3(q) = So(q)F(q), Fy(q) = K(q)-

In particular, there is 7 such that (Q,,Q,) = R" is
invertible for all n > 7 (Ljung and Wahlberg, 1992),
and F3(q) — F1(q)F41(q) = F;-(q) can be chosen to have a
stable inverse under the constraint @,.(e™) = |F,.(e™)|2.
From (B.6), (B.10), (B.13), and (B.15), we have that
there is nn such that

1T (B0) [R™) ™ T3, (06)]] = [[{95, U7)+An]] < C'Vn > 0.

(C.7)
Then, and using also (B.17), we have
W (8o)| == [T (00) [R"] T, (00)) |
(8, B8) + A < C Vnsa (C)

Concerning the second term on the right-hand side



of (C.6), we can write

T (05 [RA) T (OR) — T (0)[R™] 156, |
< T (OFF) — T (00)1] [1[R] 1 11T (052
+ | Tn(057) = T (00)|| [[RA] 1] 11T (60)]
+ | ()17 [I[RR] ™ = [R"] ]
(C.9)

Now, the results by Galrinho et al. (2018) apply to (C.9).
In particular, there is N such that

IR <C YN>N, [[Ry][[<C VN >N,

IT.(05%)]| < C VN >N
(C.10)
w.p.1, and that

||Tn(é1LVS) —T,(6,)]| = 0as N — oo, w.p.1,
I[BA] ™ = [RM7H] < [IRRI IR — Ry || IR
— 0 as N — oo, w.p.1.

Together with (C.4), we conclude that

1T, (0%%) [RK] T, (6%°)
— 0as N — oo, w.p.1.

- Tn(ao)[én]ilTrlL(eO)H
(C.11)

Using (C.11), (C.7), and (C.6), there is N such that
1T, (0%%)[RE] ' Th(0K7)| < C VN >N wp.l.

Because of (C.11) and invertibility of T;, (6, ) [R"] 7 T, (6,),
by continuity of eigenvalues there is N such that
W) = [T,(0%5)[Ry]) T, (655)]) ! exists for all
N > N, and

[[W(05%) — W (0,)]| = 0, as N — oo, w.p.l. (C.12)
Moreover, (C.12) and (C.8) imply that, w.p.1,

W@ <C VN >N. (C.13)

Having shown (C.13), we have left to show that
M (i, 0%8) is invertible for sufficiently large N, in order
to show (C.1). Recall the definition (25), which can al-
ternatively be written as (26), where « is given by (27).
Then, from Theorem 2 with

Folq) = _Bo(q)liz((ggﬂ(q)’ Fi(g) Ao(Q)ﬁzéggFr(Q)’
we have that
M (no,60,) = M. (C.14)

where M is given by (11). Because the inverse of M
corresponds to the CR bound for an open-loop problem

with input u; = S,(¢)r¢, and the CR bound exists for an
informative experiment (Ljung, 1999), we conclude that
M (1o, 0,) is invertible. Then, we analyze the difference

1M (1, 05°) — Q1 (1 )W (66)Qn (0|
< 11Qu(in) = Qu(R)IHIW (O] 1|Qn ()]
+11Qn () = Qu(f)I W BRI 11Qn (n)]]
+11Qu ()| 11W (057) — W (60)]]
From Galrinho et al. (2018), we have that

1@n (1v) = Qn(ny)l] = 0, as N = o0, w.p.1,
Qum)Il <€ V. (C.15)

Together with (C.12) and (C.5), we conclude that

1M (7, 087) = Q1 (1 )W (06)Qn (0|

— 0, as N — o0, w.p.l. (C.16)
Using (C.16), invertibility of M (no,6,), and continu-
ity of eigenvalues, we have that there is N such that
M (i, 0%) is invertible for all N > N,

IM~ (in, 0%5)|| <€ YN > N, (C.17)

and, using also (C.14) and (25),
M~ (i, 08%) = M~ as N = oo, w.p.l. (C.18)
Finally, using (C.17), (C.13) (C4), (C.3),

, (C.5),
and (C.2), we conclude that (C.1) is satisfied, as we
wanted to show. O

D Proof of Theorem 4

In this appendix, we prove Theorem 4. We begin by
reformulating (24) as

VNN — 06) = M~ (i, 05)2(00 it 05°),
where

M (iin, 0%7) = QL (iin)Wa (057 Qn (v ),
$(90; ﬁN’ éINS) = NQ;z(ﬁN)Wn(éIZ\JfS)Tn(HO)(ﬁN - Ug(N)).

If we assume that

2(00: 7, O%°) ~ AsN(0, X), (D.1)

we have that, using (C.18) and Lemma B.4 by Soderstrom
and Stoica (1989),

VN@OW™S —0,) ~ AsN (0, M~ XM~).  (D.2)



We will proceed to show that (D.1) is verified with

X = ‘73 lim Q;, (75) Wi (00)Qn (n5) = Ung

n—oo
where the second equality follows directly from (25)
and (C.14). We now proceed to show the first equality.

The idea is, as in Galrinho et al. (2018), to use Theorem
7.3 by Ljung and Wahlberg (1992). With this purpose,
we first show that x(HO,ﬁN,é ) has the same asymp-
totic distribution and covariance as vV NY" (fiy —7"*(™)),
where T" is a deterministic matrix. From Galrinho et al.
(2018), it follows that z(,; i, 0%°) has the same asymp-
totic covariance and distribution as

VNQ, (s ™YW (0) T (00) (e — 7" ™). (D.3)
The next step is to show that W, (0%) can be replaced
by W, (6,) in (D.3) without affecting the asymptotic dis-
tribution and covariance. However, this step does not
follow directly from Galrinho et al. (2018), as inverses of
the matrices that compose W,, cannot be taken individ-
ually here, because T;, is not square. In the following, we
do this for a non-square 7, matrix.

First, re-write (D.3) as

_ fn(N))

w(00) (A —1" ).
(D.4)

n(0o) (i

VNQ, (s )W (6,)T,
W (B57)~Wa (6

+VNQL ™) o)IT,

Then, it follows from Lemma B.4 by Soderstrém and
Stoica (1989) that (D.3) and the first term in (D.4) have
the same asymptotic distribution and covariance if the
second term in (D.4) tends to 0 as N — oo w.p.1. We
proceed to show this. Consider

VN QL (M) Wi (055) = Wi (06)] T (60) (i — 7))
< VN(|Q, (2N W (05°) — Wi (6, )|
N T (B)] [ — 7™
< CVN|[Wo (05%) = Wo (00)1] [l — 7M1,
(D.5)

where the last inequality follows from (C.4) and (C.15).
Writing

W7L(éINS)_W7L (90) = Wn(eo) [Wil (90)_

n

Wt (057)]

and because (C.13) and (C.8) guarantee that W, (6,)

and W, (0%°) are bounded (in the latter, for sufficiently
large N), it follows from (D.5) that

VNG, (5 ") W (037) ~ W
< CVN|WH(0R) -

2 (0] (00) (A — 7))
W, L (00)]] |Jin — 7" @).

Wn(é%\fs)a
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Now, the term ||W,;1(6%%) — W, 1(6,)|| corresponds

o0 (C.9); so, using (Galrinho et al., 2018)

log N
N

(1+d(N))

(D.6)
(C.4) and (C.10), the first two terms on the right-hand
side of (C.9) decay with (D.6). For the third term, we
first write

1T (65°) — T(60)ll = © < n?(N)

I[RY]) ™ = [R] M| < [[RRIIR™ = Ry || I[RN] Y-
(D.7)

Ljung and Wahlberg (1992) show that

log N
N

n?(N) .
N )
(D.8)
then, using also (D.7), (C.10), and (C.4), we have that

the third term on the right-hand side of (C.9) decays
according to (D.8). Thus, we have that

||R" — }i,||:(’)<2 n2(N) +C

W (85) — W8] = O (2 n(N) e ) - (DY)

considering only the slowest-decaying term. Then,
from (D.5), (D.9), and (Ljung and Wahlberg, 1992)

iy — 7| = <

it follows that

n(N)log N

el +d<N>]> 7

CVN||Wo(055) — W (80)]] |liin — 7™ = 0

as N — oo, w.p.1l.

Finally, using (D.5) and (D.4), it follows from Lemma
B.4 by Soéderstrom and Stoica (1989) that

VNQ, (YW, (80) T (65) (i — 7)) (D.10)

and (D.3)—and, in turn, 2(6,; fx, 0% )—have the same
asymptotic distribution and covariance. Thus, we will
analyze (D.10) instead of (6,; Ay, 0%°).

Applying Theorem 7.3 by Ljung and Wahlberg (1992)
o (D.10) with T = Q. (nt™\W,,(6,)T,(65)—and
recalling that it has the same asymptotic distribu-
tion and covariance as z(,;7N, 0% )—we have that



2(00; i, 0%3) is distributed according to (D.1) with

w(0o)os

)T,
Wi (00)Qn (™))
(00)Qn (N ™)) =

X = lim Q) (nr™)W,
n—oo
R T, (6
=02 lim Q' ("W,
n—oo

(0o
)
A o2 M,
(D.11)
where the last equality follows from (25). Then, replac-
ing (D.11) in (D.2), we obtain

VN@OW™S —0,) ~ AsN (0,M7Y). O
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