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Abstract

Study of physical phenomena by means of mathematical masletsnmon in vari-
ous branches of engineering and science. In biomechanadgliimg often involves
studying human motion by treating the body as a mechanicdésy made of inter-
connected rigid links. Robotics deals with similar casesasts are often designed
to imitate human behaviour. Modelling human movements ismapticated task and,
therefore, requires several simplifications and assumgptidvailable computational
resources often dictate the nature and the complexity ofrtbdels. In spite of all
these factors, several meaningful results are still obthfrom the simulations.

One common problem form encountered in real life is the mamrbetween known
initial and final states in a prespecified time. This presenpsoblem of dynamic
redundancy as several different trajectories are postiblechieve the target state.
Movements are mathematically described by differentiala¢igns. So modelling a
movement involves solving these differential equatiodsng with optimization to
find a cost effective trajectory and forces or moments regifior this purpose.

In this study, an algorithm developed in Matlab is used talgtiynamics of several
common human movements. The main underlying idea is basmutemporal finite

element discretization, together with optimization. Thgoathm can deal with me-
chanical formulations of varying degrees of complexity atidws precise definitions
of initial and target states and constraints. Optimizatsocarried out using different
cost functions related to both kinematic and kinetic vddab

Simulations show that generally different optimizatioiteria give different results.

To arrive on a definite conclusion on which criterion is sigeover others it is nec-

essary to include more detailed features in the models adporate more advanced
anatomical and physiological knowledge. Nevertheless allyorithm and the sim-

plified models present a platform that can be built upon tdystmore complex and

reliable models.

Key Words: Forward dynamics, Biomechanics, Temporal discetization, Opti-
mization
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CHAPTER 1

Introduction

1.1. Background

Study of physical phenomena by means of mathematical medadenmon in various
branches of engineering and science. Biomechanics is aecbffields that has seen
an increase in mathematical modelling studies, espeaidtly the recent advances
in computing resources. Biomechanics can be defined as igrecseahat applies the
principle of mechanics to biological systems, (Goldsm#@®4a). It is a growing and
important field and finds its applications in several areasléling human movements
is an important part of biomechanics. Results from modg#inhance the understand-
ing behind the movements and improve the knowledge abouféferts related to
movements. Thus, biomechanical studies facilitate aikasliagnosis, surgery and
prostheses, (Fung 1993). Another area of application afibihanics is the field of
sport mechanics. Studies on sporting activities can beaegdeo provide means of
enhancing performance of athletes and understandingyinjgichanisms in athletic
activities.

Two approaches are commonly used for the study of human meavismThe inverse
dynamics approach involves measuring body segment kiriesnakternal forces and
segment inertial characteristics and using them to conjpitemoments and forces
(Hamill and Selbie 2004). Position, velocity and acceieratiata needed are usually
obtained by optoelectronic methods which use special maigwd sensors, (Lehman
et al. 1996). The forward dynamics approach takes the ofgpamite, where known
forces and torques are used to find the movement of the sysfethematically, dy-
namic movements are described by differential equatiohigware usually nonlinear
in nature. In forward dynamics these differential equatiare integrated forward in
time (Nuzzo 2006). Inverse dynamics calculations are legsresive computationally
than forward dynamics calculations, but the main drawbddhwerse analysis is that
it requires accurate measurements of external forces ahdrhotions (Pandy 2001).
Moreover, availability of improved computational poweshaade forward dynamics
calculations reasonably efficient.

The human body is a complex structure and modelling its @etvpresents several
challenges. For simplicity, the body parts are commonly efled as rigid segments
and the joints are treated as perfect hinges. Often it isssace to restrict the move-
ments in a certain plane, thus making them two dimensionahtore. Muscles are
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2 1. INTRODUCTION

ultimate actuators of movements and when included in mdabelsbehaviour is sim-
plified. In spite of these simplifications several meanihgésults can be obtained
from modelling studies.

One common form of movement is where target control is désiresuch movement,
along with the initial conditions, some or all of the final arget conditions are known.
For such movement several different trajectories may bsiples thus giving rise to
dynamic redundancy in trajectory selection. Optimizatiased on the parameters of
the movement is a common way to determine how a trajectorglécted. Problems
of this nature are frequently encountered in robotics ijettary planning, which
involves finding a trajectory that connects the initial anthficonfigurations while
satisfying other specified constraints at endpoints, sgchebocity and acceleration
constraints (Spong et al. 2006).

There is a vast range of literature dealing with human motiglovements such as
reaching, jumping and walking have been subjected to e@etaihalyses. Studies
modelling dynamics of motion have usually incorporatect¢hparts: 1) treatment
of body parts as multi-link rigid segments, 2) treatment afsgies and tendons as
actuators and 3) muscle activation dynamics to model dalagtivation or relaxation
of muscles, (Pandy et al. 1990; Pandy 2001; Stelzer and wgk 3003; Menegaldo
et al. 2003). Walking/gait has been the subject of analylsgeweeral different stud-
ies, (Onyshko and Winter 1980; Pandy and Berme 1988; Jobarsssl Magnusson
1991; Anderson and Pandy 2001; Kaplan and Heegaard 2001tRén2007). Sim-
ilarly, Pandy et al. (1990); Selbie and Caldwell (1996)aggle et al. (1999) have
investigated several features of high jump. Lots of stutilage been carried out on
trajectory planning in robotics with different settingsdambjectives, (Hargraves and
Paris 1987; Enright and Conway 1991, Betts and Huffman 18@2farlane and Croft
2003).

1.2. Aims and scope

In this study, forward dynamic models of several common humavements will be
analyzed, using a method based on the temporal finite elediseretization along
with standard optimization tools, (Eriksson 2005, 2007}tiities are modelled as
targeted movements and the actuating moments or forceedeedchieve the de-
sired target state are identified as the ‘controls’. Thigp@ims to investigate how a
trajectory is selected by testing different optimizatioibesia based on the parameters
of the movement. Optimization criteria tested are both kiatc and kinetic in na-
ture. Kinematic criteria deal with parameters like dispiaent, velocity, acceleration
and jerk (which measures smoothness of a movement) whiikiones deal with
the controls.

Results of different optimization criteria are comparechafi¢ possible, results from
the simulations are compared to the results from otheresuoli natural movements.
In addition to dynamic redundancy, biomechanical modeds dleal with static re-
dundancy in the form of force distribution among musclesjl(& al. 1984, Stelzer
and von Stryk 2003; Heintz and Gutierrez-Farewik 2007). udgiomost models in
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this study are actuated by joint torques, attempts have besle to use muscles as
actuators in some models. Muscle activation dynamics lothie force production in
muscles is ignored, thereby assuming that the forces atgated infinitely quickly.
To summarize, the main objective of this study can be statéelsting the efficiency of
the proposed numerical method and its suitability in stagysf dynamics of biome-
chanical systems.

1.3. Outline of thesis

Chapter 2 discusses the numerical theory behind the worlaamikf introduction
to optimization methods. Chapter 3 deals with the biomeidahexamples studied
and the results obtained. Chapter 4 presents results frersittulations and these
are subsequently discussed in Chapter 5. Conclusions fuaies and the scope for
future work are dealt with in Chapter 6.
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CHAPTER 2

Numerical Methods

An algorithm is developed in Matlab (The MathWorks, Inc. tidie, MA, USA) to
analyze forward dynamic models of human movements. It deiffistwo main areas
of analysis: the treatment of structural dynamics by medmsnoporal discretization
and optimization. Brief descriptions of the two areas and ltweir combination is
used are presented in this chapter.

2.1. Temporal finite element

This section describes the temporal discretization metiwbith forms the basis for
solving the models presented in the study. The method halssiias with work done
by Kaplan and Heegaard (2001, 2002). It essentially inwbanverting differential
equations into algebraic ones by dividing the total durattb a movement into a
number of intervals. The values of state variables (diggteants and velocities) and
controls (for example, joint moments or muscle forces) atdfscretized points are
the unknowns which are solved for to determine the behawibtire system.

For movements with prespecified target, several differessibilities exist for achiev-
ing that state from the initial one. Therefore, some meastithe control forces or
of state variables is used as the cost function which is mag@thto obtain the op-
timal trajectory. Several aspects of optimization are uised in the next section.
Alternates like shooting methods exist for solving bougdalue differential equa-
tions but are deemed computationally expensive and ubtelfar complex and large
problems (Eriksson 2007).

The main formulation underlying the algorithm has beenestah Eriksson (2005,
2007). A general description of the formulation is presdrtere.

2.1.1. Description of movement

For a system withV, degrees of freedom, the configuration at titrie described by
a set of NV, displacement coordinates(t), collected in:

a1 (1)
q2(1)
q(t) = : (2.1)
dNg (t)
foratime intervab <¢ < T.
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Displacements

Angles
©C g B N W

Time interval

Figure 2.1: Example of interpolation of displacement camaites from their values
and time differentials at chosen time stations. At each stagon, both value and its
time differential are known, leading to a locally cubic cerv

In order to capture a dynamic movement, the velocities irutedl coordinate direc-
tions are included, and the configuration is thereby desdrlty a vector of double
size:

Qw=| @ (2.2)
N, (t)
with the superposed dots representing the time differentia

The studied time interval is divided int§; + 1 equally spaced time stations:

, T
J—5. =
= N, (2.3)
for (0 < j < N;). At each discrete time station, the configuration is thescgjed by
the degrees of freedom:

Q= QW)= (a1(t), 1 (), a(t), .. i, (1)) (2.9)

The initial state is specified by the configurati@{0). A target configuration can

be specified byQ(8), wheref is often equal tdl', although the algorithm allows

specification of intermediate target states. A target condition need not necessarily
specify all displacement and velocity components.

The whole movement is described by the collection of valtedl ime stations:

T
Q=[@). @), (@) ..... @) (2.5)
which is a vector of lengtB Ny (V; + 1).

A Hermitian interpolation is used in the algorithm for thesdeption of a coordinate
value at any point within the interval, Fig. 2.1.
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The basic interpolation of one coordinate can be written as:

¢i(t) = Ni(t)g] + No(t)g) + Ns(t)g/ ™" + Nu(t)g/ ™ for 7 <t <!

(2.6)
whereN7, Ny, N3 and N, are the local shape functions, (Cook et al. 2002).
The coordinates at timg g(¢), can thereby be collected as:
q(t) = [N()] Q (2.7)

where the matrixN(¢) is of size(Ny) x 2N4(N; + 1), but is sparse as only a few
functions are non-zero at timg (Zienkiewicz and Taylor 2000). The description
givesC'! time continuity over time element borders.

The velocity and acceleration components are consistdatgribed as:
o(t) = at) = [N0)| @ (2.8)
a(t) = 4(t) = [(1)] @ (29)

2.1.2. Controls

In addition to internal forces related to the current configion, two groups of ex-
ternal forces were considered. The first group consistsafitgrand applied forces,
with known time variations. Displacement independent mekforces are a priori
defined agp(t). The algorithm also allows a set &f. a priori unknown controls,
¢i(t) (1 <14 < N.). Attimet, the acting controls are collected as:

C1 (ﬁ)
ca(t)
e(t) = . (2.10)
en,(t)
The controls are discretized Ay, time stationg7,
C’ =c(t?) = (c1(m), ea(7), . ..., CNC(Tj))T (2.11)

with 0 < 77 < T, and1 < j < N, preferrably coinciding with a subset of the
displacement time stations. The whole set of unknown cbotmponentsiis collected
as:

c=[Een @ (cNk)T}T 2.12)

A linear interpolation is used in the algorithm for the cagr Fig. 2.2. For a specific
time instance:

e(t) = [Ne(t)] C (2.13)
where the matriN.(¢) is N. x (N.Ny), but very sparse: at most two values in each
row are non-zero.
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Control forces

Moments
Ng Do O

- -
h 4 4 \ 4

Time interval

Figure 2.2: Example of interpolation of control forces fraheir values at chosen
time stations. At each time station only the value is knowaging to a locally linear
representation.

Controls can be of different nature. For example, in casetational movement joint

torques can be used as controls. Similarly, in a biomechamodel muscle forces or
muscle tensions may be used as controls. In the latter desejuscle actuators are
often a redundant set for creating the joint torques.

2.1.3. Mechanical equilibrium equations

The dynamical system is governed by = N4 equilibrium equations, which can be
stated for a specific time instantas, (Eriksson 2005):

Ma(t) + f(q(t), v(t)) - p(t) — Bee(t) = 0 (2.14)

whereM is the mass matrix angl(t), v(¢) anda(t) are the displacements, velocities
and accelerations, respectively. The vecfodescribes all internal forces and dis-
placement affected loads. In linear cagéq(t), v(t)) = [K|q(t) + [D]v(t), where
[K] and[D] represent the stiffness and damping matrices respectiwély denotes
the external forces acting in the system. The effects ofrotst(¢) are described by
an action description matrik,., of size Ny x N,.

With these values, a time instance residual form is written:

e(t) = e(q(t), v(t), a(t), p(t), c(t);t) = O (2.15)

where the equations must be formally derived for a specificairal system, by any
method, general enough for the problem context, (Calkir618®&udsen and Hjorth
1996).

The N, equilibrium equations given by Eq. (2.15) are demanded tdubiled at
2 - N, collocation points over the total interval resulting in a 882N, N, equations,
cf. (Kaplan and Heegaard 2002). The resulting equationbea®en as

E(Q,C,P)=0 (2.16)

with P representing the external forcpg&) for all time stations.
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The choice of collocation points within each interval isitaty; in this study, two
Gauss quadrature points are used as the collocation pathis wach of theV, time
intervals (Eriksson 2005, 2007).

2.1.3.1.Boundary values and restrictions

A set of NV, linear equality conditions on the discrete coordinatesrdreduced by:
B(Q)=BgQ —-by=0 (2.17)

At least2N; conditions are needed to define an initial stat¢ at 0. Excessive
boundary conditions define a target state, and imply the faedt leastN. N, =
N, — 2Ny free control force components.

The movement of a system can be mechanically or physiolthgiesstricted. Simple
kinematic restrictions can often be seen as linear inetiggln the coordinates as:

BrQ —-bz <0 (2.18)
As the restrictions are valid at all time stations, the nuniddeestrictions becomes
high.

The unknown controls might also be kinetically restrict&this demands, when all
control force time stations are collected:

B.C—-b,<0 (2.19)
For further treatment, Egs. (2.18) and (2.19) can be ce&ltkas:

Bg< g >bG§0 (2.20)

2.2. Optimality of movement

When excessive control force components are present, amaolution can be
sought. This involves defining a ‘cost’ or ‘performance’ &tion which is then mini-

mized to obtain the best possible solution. The cost funstéan be kinetic, kinematic
or combined in nature. Kinetic cost functions measure ttstsoon the control forces
needed to produce the desired motion. For instance, anratéesum of squared
control forces over the considered time interval gives a ftogtion:

_ 1T 2 j T
I, = 5/0 (Z (ci(t)) ) dt = Z;H =C'C..C (2.21)
with simple form for the matrixC.., (Eriksson 2005). This form is easily algorith-
mically handled, although a more natural measure for theegkérce is a weighted
average control force norm:

2
leflr =4/ e (2.22)
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Another cost function proposed by Uno et al. (1989) meastirescost of rate of
change of control forces and can be stated as:

1 /7 de; 2
L == il =C'c, 2.2
., 5 /0 (Z( dt) ) dt = C'C.C (2.23)

Kinematic cost functions measure the cost on the stateblasarather than the con-
trol forces. Seeking an optimally smooth movement, a jerdt can be formulated,
based on the idea by Flash and Hogan (1985). Jerk comporentiseathird time
differentials of the displacements (constants in eachiiateand can be written as:

i) =4 =[N Q (2.24)

A cost expression for the integrated sum of squared jerk corapts can thus be stated
as:

17 . 2 T
I, = 5/0 > Gi1)? ) dt = QTC,Q (2.25)
Similarly, a cost for accelerations and velocities can Hadd as:
1 T
I, = 5/0 (Z (ai(t))Q) dt = Q"CuQ (2.26)
17 2 T
g = 5 /0 > (wit)? ] dt =Q'Cp@ (2.27)

Based on the formulations above, the studied constrainghization problem can
be stated as:

mimimize II, =1I(z)
under equality constraintsb; (z) = 0 (2.28)
and inequalities by(z) <0

In the developed form, the unknowsrcontains both the state variables and the control

forces:
z= ( g ) (2.29)

and the cost function is based on these variables. Allowinygod the cost functions
discussed above, it can be written as:

l(z) = 1(Q,C) = a.C"C.C + 0,Q"C4Q (2.30)

where
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ac(cc = accccc + act(cct (231)

aq(Cq = O‘qj(cqj + Oéqa(cqa + Oéqv(cqv (232)

and thex coefficients choose the criterion for the minimization.

The equality constraints; (z) = 0 include a non-linear part corresponding to the
set of equilibrium equations, Eqg. (2.16) and a linear pastesenting the boundary
conditions, Eq. (2.17). The inequality constraibi$z) < 0 represent the restrictions
according to Eq. (2.20).

2.3. Algorithmic implementation

An algorithm is developed in Matlab that encompasses bagtleas of numerical
methods discussed above. The function ‘fmincon’ includketthé ‘Optimization tool-

box’ of Matlab offers a suitable format for solving the sthproblem. Fmincon solves
nonlinear optimization problems by using sequential gaacprogramming (SQP).
SQP is a popular technique for solving a nonlinearly coirstihproblem. A brief

discussion of SQP is provided in Appendix A.

Several other computational packages are available fostrained nonlinear opti-
mization. An important aspect for any algorithm is the sife¢he problem, which
often involves hundreds of variables and large numbersudiég and inequality con-
straints. The formulation is, however, extremely sparséddi@e problems. This fact
has only been exploited to a limited degree, but could alligwiBcant improvements
in efficiency, (Beauwens 2004).

The algorithm takes as its basis a sufficiently complete @eiclal formulation of
dynamics of a system. A convenient way to derive the dynapi@#ons is through
the Euler-Lagrange method, considering kinetic enerdits|osegments and potential
energies of all the loads, (Calkin 1996; Knudsen and Hjo#@®6l Winter 2005).

The developed algorithm consists of interaction of two maaints: a central com-
ponent ‘Optcon’ and a definition file specifying problem dfieadetails. Optcon is
a common platform for all problems, while seperate definitites are needed for
different models. The working of the algorithm is summadize Fig. 2.3.
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Optimization function

Problem Specific function T l
-Parameters If convergence
-Equilibrium equations OPTCON
-Boundary conditions -Central part OUTPUT
-Constraints -Common for all -State variables
-Optimality criteria -Uses fmincon -Controls
-Tolerance
-Initial guess
-Max. no. of iterations If no convergence

start with new

initial guess

Figure 2.3: Summary of the developed algorithm

Optcon uses the Matlab function fmincon for optimizatiotcaations. Parameters of
the model, equilibrium equations, boundary conditionssti@ints, optimality criteria
and the maximum number of allowable iterations are all sedgh a definition file.
To speed up the calculations gradients of the equilibriunraéigns and constraints
are required. These are obtained by differentiation of theagons by the variables.
Symbolic differentiation is easily carried out by packalijesMathematica, (Wolfram
Research, Inc., Champaign, IL., USA) and Maple (Mapledttiferloo Maple Inc,
Canada).

An initial guess of the solution is needed to start the iteret and is supplied in
the problem definition file. Fmincon can even start calcatafrom an unfeasible
solution. But, as the complexity of the system rises, thei§ipation of a suitable
initial guess can be troublesome. One method used was tmatdalution with larger
value of tolerance and use this solution to obtain a solutiitih lower tolerance, and
repeat this process till a solution with desired amount t€rtoce is obtained. It is
also possible for the solution to be attracted to a localnopin instead of a global
optimum and it is hard to ascertain whether a solution is gllgtor locally optimal.
One possible remedy is to start with different initial gessand to see if they all
converge to the same solution; and if they do not, then pieksihiution with the
smallest cost.

Optcon also interacts with another component that supgiiesiesired optimization

function and its gradients, depending on the optimalitjecia specified in the defi-

nition file. It is noted that the quadratic nature of the castctions, cf. Eqgs. 2.21,

2.23, 2.25 — 2.27 , enables easier differentiation. A fagryall value of tolerance

is supplied and the iterations run till this tolerance is imethe function value and

constraints. On succesful completion of optimizationtestariables (displacements
and velocities) and controls are provided as the output® Honvergence is obtained
within the provided number of iterations, an error messagksplayed.
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Thus, specification of the modelling process is manual aakle options for further
development for more automatic implementation. User ffgiinterface by means
of interaction with other softwares like the musculoskaletodelling package SIMM
(Musculographics Inc., Santa Rosa, CA) and Sophia (Le€@5)lis possible. Effi-
cient plotting and visualizing of the results can be anoimgrortant improvement in
the algorithm.
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CHAPTER 3

Examples

Some common day to day activities are analysed next. Thalistudies deal with
simple upper limb movement in vertical and horizontal plnéore complex activ-
ities like jumping, stepping and weightlifting are also @stigated. The movements
studied are of targeted control types, commonly associaiidrobotics. Initial con-
ditions (positions and velocities) and all or some of thelfgwnditions are assumed
to be known. Intermediate states, if known, can be easitgdhtced too. The duration
of movement is always known.

As discussed earlier, redundancy exists in choosing pathiagia certain motion.
How a certain trajectory is selected as the chosen humanmmevds not completely
understood. Several approaches have been assumed toltiteice, for example,
minimization of smoothness of the trajectory, minimizatiof the joint torques or
minimization of the joint torque changes.

3.1. Movement of upper limb in the sagittal plane

The first example studied was the movement of upper limb ingétaplane. The
model consisted of two interconnected rigid links repréisgrthe upper and the lower
arm segments, as seen in Fig. 3.1. The arm configuration veasilded by two joint
angles, the elbow flexion angle and the shoulder flexion angje, Fig. 3.1b.

Anatomical data for the model were chosen/as= 0.32 m, Ly = 0.25 m, with
gravity forcesg; = 11 N, g2 = 20 N, g3 = 5 N, based on anthropometrical data of
a 50" percentile male, Winter (2005); the weightsand g» were assumed to act in
the centers of the segments, the hand wejglatt the wrist joint. The external carried
load was assumed as = 10 N at the wrist.

The first problem analysed was the movement of the arm fromricakhanging
position(q:,¢2) = (0,0) to a horizontal straight positiofy, ¢2) = (0, %) in atime
period of 7" = 0.5s. The velocities and the accelerations at the initial aral fime
instances were all zero. In order to carry out this moventemt,control torques;

andc, were required at the elbow and shoulder joints respectitelyas divided into
N; = 32 equal parts for discretization of the state coordinateg. ddntrolsc; andcs

were discretized aWV;, = 33 time stations, including the initial and final times.

Moment arm data for the major upper limb muscles were obthirem a model de-
veloped by Holzbaur et al. (2005) for use in the commercialiilable musculoskele-
tal modeling software SIMM, (Musculographics Inc., Sants& CA), cf. Delp and

15
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p1+93

(@) (b)

Figure 3.1: Problem definition: a) musculoskeletal systemeasures, coordinates,
loads, and resultant moment at joints.

Loan (1995). Moment arm is the shortest distance betwedm#hef action of muscle

force and the joint’s centre of rotation, where it is assurtied the force is constant
along the whole muscle length. Muscle physiological crasgisnal area (PCSA)
data were obtained from Holzbaur et al. (2005).

Relevant data for the eight muscles were derived by Hein&.2006). The mo-
ment arms (MA1, MA2) and the PCSA values were used to evalmatdmum and

minimum joint control moment contributions, based on amassd maximum muscle
tension 0f330 kPa, (Garner and Pandy 2001). Used data are given in TahlevBhl

muscle notation from Holzbaur et al. (2005)

Summing the negative and positive components of the reguttament contributions
at the joints, see Table 3.1, restrictions were placed,@ndc, as follows:

—3.98 < ¢1(t) < 13.0 (3.1)
—7.65 < co(t) < 5.69 (3.2)

where the values are given in Nm.

1The abbreviated muscle names refer Riceps long head, Brachialis, Brachioradialis, Tricepagohead,
Deltoid (Ant., Post.), Pectoralis major clavicular, andtissimus dorsi thoraic.
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Table 3.1: Used muscle data. Moment arm MAL1 is at elbow and M#g&houlder,
positive for flexion, negative for extension. Muscular dP€&5A is physiological cross
sectional area. Max-M1 and Max-M2 are limits for contrilouis to resultant moments
at the joints. Notation and PCSA data from a SIMM model basetiolzbaur et al.
(2005).

Muscle| MA1 MA2 PCSA | Max-M1 | Max-M2
[1073m] | [1073m] | [10~*m?] | [Nm] [Nm]
BICL 35.6 7.06 4.50 5.28 1.05
BRA 17.6 0 7.10 4.12 0
BRD 57.3 0 1.90 3.60 0
TRIL —21.2 —20.3 5.70 —-3.98 —3.82
DELT1 0 17.2 8.20 0 4.64
DELT3 0 —8.21 1.90 0 —0.52
PMAJ1 0 —5.83 2.60 0 —0.50
LAT1 0 —-30.4 2.80 0 —2.81

To prevent excessive elbow flexion, restrictions were puttenelbow angle;; as
follows:

37
4
No restrictions were put on the shoulder angle

0<qt) < (3.3)

Simulations were performed with respect to the five critdiszussed in Section 2.2.
For scaling reasons, the cost functions were evaluatedeitttier ofa.. = 1, ay =
11074 agy = 1-1072, e = 1-107* 0rary; = 1- 1075, the others being zero; the
obtained results are denoted by the non-zero coefficient.

For obtained solutions, the five cost functions in Eqs. (2223, 2.25 - 2.27 ) were
evaluated. The similarities among the results obtained firee different cost criteria
were evaluated by calculating colinearity between disggtaent stateg); andQ); as:

TR @ 54

Further simulations were performed varying the total darabf the movement. For
thesepn.. = 1 was used and variation in force cost was studied.

The basic case in this example used value®'ptind N, such thatN, — 1 = Ny,
implying that state variables and the controls were digzdtinto the same numbers
of intervals. To study the effects of the valuesiof and N, next set of simulations
was performed withV; kept constant at6 while using three values values (17,21,33)
for Nj.
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3.2. Tensions in muscles

In vivo measurement of muscle forces can be done only by ivwaschniques like
the use of tendon transducers (Lehman et al. 1996). Suchimgrgs are not easy to
carry out due to ethical and practical reasons. Calculatiege forces by computer
simulations is an interesting alternative. The next setimiufations was aimed at
determining tensions in muscles during the upper limb mam@m

Control torques at each joint can be calculated first as donlee previous section,
followed by force distribution among the involved musclesg static optimization at
each time instance, (Heintz et al. 2006; Heintz and Gutzeaewik 2007). Another
option is to carry out these two issues simultaneously. Ifisr €ight muscle tensions
instead of two joint torques were chosen as controls in dpétion. A maximum
muscle tension o£00 kPa for each muscle was used as restriction, as no convergenc
was obtained with the lower values. Though moment arms oftltesshange with
orientation, averaged values were used.

Two cost criteria (minimum control forces and minimum cohforce changes) were
used. Jerk criterion was omitted as it did not involve cdrticces directly in calcu-

lations, and thereby produced random distribution amotly fiynergistic muscles,

unless a small value of other criterion, suclhaswas used together wii,; # 0.

3.3. Movement of upper arm in the horizontal plane

Several studies in the past have studied the upper limb menem the horizon-

tal plane, (Morasso 1981; Abend et al. 1982; Flash and Ho@&%;1Uno et al.

1989). These experiments on point to point targeted arm mewé have demon-
strated straight or slightly curved arm trajectories wigl Bhaped tangential velocity
profile, (Flash and Hogan 1985; Uno et al. 1989).

The dynamic equations and settings were similar to thosbdrsagittal plane, but
without gravitational effects and external forces. Noniesbns were introduced for
moments, while a restriction was introduced in the elbowletg prevent hyperex-
tension,0 < ¢;. Simulations were performed for two different movementshia
horizontal plane. The first case involved a movement betweerstates located ap-
proximately in front of the body, while the second one inéddarger movements.
Similar movements were analysed in Uno et al. (1989) and étah (2004).

Results from the simulations were compared with those fribenatture to observe
which optimality cost function gave the best matching ressul

3.4. High jump
High jump has been a subject of investigation of severalisgjdPandy et al. 1990;

Selbie and Caldwell 1996; Spagele et al. 1999). A four lirddel was used to simu-
late high jumping, see Figure 3.2. The links representet] &ank, thigh and upper
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Figure 3.2: High jump model, reproduced from Pandy et al9(}9

Table 3.2: Parameters related to high jump model

Segments Length (m)| Mass (kg)| I (kgm?)
Foot 0.175 2.2 0.008
Shank 0.435 7.5 0.065
Thigh 0.400 15.15 | 0.126
HAT 0.343 51.22 6.814

body. All the motions were restricted in the sagittal plambe four degrees of free-
domg, ¢2, g3 andq, represented the angles the segments made with the hotizonta
Equations and relevant data were obtained from Pandy et380)

Table 3.2 shows the parameters of the model. Mass momemigii (1) are given
about the centres of the mass of the segments.

The initial part of jumping is the phase between the heeldliftand the body lift-
off and this phase was analysed. The jump started from a kiogiposition and all
the segments except the foot were vertical when the liftadk place. Boundary
conditions specified are shown in Table 3.3. Jump was siedldr two different
durations ofl" = 0.2 s and7T’ = 0.4 s. Simulations were run using.; = 1. With
the values of velocities of the segments at the lift-off, tieéghts of the jump were
calculated.
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Table 3.3: Specified initial and final values for high jump rebd

Initial (t = 0) | Final ¢t =T)
a [ 34 60
¢1 [rad/3 0
e [ 120 90
Go [rad/3 0
g [ 30 90
gs [rad/s 0
@ [ 120 90
Gs [rad/s 0

Table 3.4: Lower leg muscles

Muscle Function Average MA (m)| PCSA (cn?)

1) | llipsoas Hip flexion 0.0276 16.0

2) | Rectus femoris Hip flexion 0.4040 12.5
Knee extension —0.4026

3) | Glutei Hip extension —0.0167 60.7

4) | Hamstring Hip extension —0.0473 30.0

Knee flexion 0.0390

5) | Vasti Knee extension —0.0392 27.0

6) | Gastrocnemius Knee flexion 0.0156 30.0
Ankle plantarflexion —0.0402

7) | Tibialis Anterior| Ankle dorsiflexion 0.0397 9.1

8) | Soleus Ankle plantarflexion —0.0396 58.0

In order to model the foot-ground interaction in Pandy ef(#990), a damped tor-
sional spring is used at the toes that applies moment, théwdping the foot seg-
ment above the ground. Here this was done by preventing titeafgyle from being
less than than the initial value 8#°, that is, by introducing a restraint of the form

q1(t) > 34° during the whole duration of movement.

Eight major muscle groups are responsible for human lowdy lhovements, (Acker-
mann and Schiehlen 2006). The muscles along with some offilegierties (average

moment arms (MA) and PCSA) are listed in Table 3.4.

Average moment arm data were obtained from SIMM, and othesctaiproperties
like PCSA from Winter (2005). Positive values denote flexidrile negative denote

extension.
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3.5. Walking/Stepping

Walking is one of the common human movements and has beefjegsotanalysis of
several different studies, (Onyshko and Winter 1980; PamdlyBerme 1988; Johans-
son and Magnusson 1991; Piazza and Delp 1996; Anderson awdg P@01; Kaplan
and Heegaard 2001; Ren et al. 2007). Walking/gait disordesscommon. Mod-
elling provides information about joint torques and mudolees and the knowledge
of these is useful in further understanding of the mechawikgait and in treatment
of disorders. Movements similar to walking occur duringestactivities like stepping
and stair climbing. Stepping is analyzed in several stugitshner et al. 1987; Chou
and Draganich 1997; Armand et al. 1998; Chen and Lu 2006).

Figure 3.3 shows various stages of the gait cycle. The cyansists of two primary
stages: Stance phase comprising of about 60 % and swing pbaeising of the 40
% of the total cycle, (Sutherland et al. 1994). Before thengwihase there is double
support phase which lasts about 10 % of the whole gait cyaldoluble support phase
both feet are on the ground simultaneously, and the swingitetgrgoes toe-off at
the end. In order to reduce computational cost, the gaiecyah be assumed to be
bilaterally symmetrical and only 50 % of the cycle need to balgred, (Anderson
and Pandy 2001). A full gait cycle forms one stride and eadtlests made of two
steps, thus a step forming 50 % of the gait cycle.

PHASES b ————————— STANCE PHASE t ING PHASE -

|—— INITIALDOUBLE SINGLE LIMB STANCE- SECOND DOUBLE _{ INITIAL | MID TERMINAL
SUPPORT s NG

PERIODS UPPORT swil SWING SWING

EVENTS FOOT STRIKE FOOT STRIKE CLEARANCE VERTICAL

TOE OFF | FORE-AFT SHEA

OPPOSITE [ REVERSAL OF 1 OPPOSITE TOE OFF Foor TIBIA FOOT STRIKE
R

% OFCYCLE t 100%
0% 12% 60% 62%

Figure 3.3: Various stages of gait cycle, reproduced froth&land et al. (1994)

A simple dynamic model is created to run gait simulationsyilsir to the one used
by Armand et al. (1998) to analyze stepping. Complicated ef®dre avoided be-
cause of higher computational cost involved. The modelistssf four segments.
Stance leg is kept straight and is represented by only onaesglg while swing leg
has three segments representing the stance leg and thefewing shank and foot.
The four degrees of freedomp,, ¢2, g3 andgy, represent the angle made by the stance
leg with the ground and the angles at the hip, knee and ankiésjof the swing
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Table 3.5: Parameters related to gait model

Segments | Length (m)] Mass (kg)| | (kgm?)
Stance leg 0.6191 5.796 1.1141
Swing thigh 0.2698 3.60 0.0273
Swing shank  0.3493 1.674 0.0186
Swing foot 0.0554 0.522 0.0003

leg respectively, Figure 3.4. Anatomical data and othexveeit data were obtained
from Winter (2005). The model takes into account movemantsé sagittal plane
only.

Figure 3.4: Walking model, reproduced from Armand et al98)9

Parameters related to the model are shown in Table 3.5, wkatenote the moment
of inertias of the segments at the centre of mass, exceptéostance leg where it is
the moment of inertia around the ankle. Initial and final ealfor state variables were
obtained from Gutierrez (2003). These are shown in Table 3.6

The duration of movement was 0.47 s, which was equal to hatliehveraged total
duration for one gait cycle in the experiments. For tempdisdretization N, = 32
and N, = 33 were used. Restrictions were put on the state variableseept
physiologically impossible states. One such case of knperaxtension was avoided
with restriction:
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Table 3.6: Initial and final values for gait model

Initial (t = 0) | Final ¢t =T)
¢ [rad 1.83 1.03
¢ [rad/g -2.00 -3.00
g2 [rad 4.52 5.32
Go [rad/3 0 0.65
gs [rad 4.32 5.20
gs [rad/g -3.53 0.52
qs [rad 6.07 6.80
g, [rad/g -6.53 0.55
a3(t) — q2(t) <0 (3.5)

Amounts of ankle dorsi- and plantarflexion more tha® = 7/12 were also pre-
vented as:

qa(t) — qa(t) > 57/12 (3.6)
qa(t) — qa(t) < 7w /12 (3.7)

To handle the double support phase at the start of the cyddi#j@nal nonlinear con-
straints were introduced to constrain the toe position efsWwing leg for the first 4
out of 32 total time stations. Equality constraints createche numerical problems,
so instead two nonlinear inequality constraints were gitlems allowing toe position
to vary by a very small amount(—°m).

3.6. Weightlifting

Lifting of a weight is a common activity and has been analyiredeveral stud-
ies, (Chaffin and Andersson 1991; Hsiang et al. 1999; Chaalg2®01). Weighlifting
is also a popular sport and a common action involves liftifthhe barbell from ground
to about neck height in a single movement. Similar moven®atdo frequently en-
countered in robotics, where robots are designed to perfasks such as lifting and
moving goods from one position to another. Chang et al. (206&d minimization of
joint torques as criterion to analyse the lifting movemertt aompare the results with
experimental studies.

A five segment model was used to simulate weightlifting, Fég8.5. The five links
represent the shank, thigh, body, upper arm and lower arngled&rmade by these
segments with horizontal are denotedyqgs, g3, ¢4 andgs.

The total duratio” = 1s was discretized a¥; = 32 and N, = 33.
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q4

q3

g2

[+

q5

Figure 3.5: Weightlifting model

Table 3.7: Parameters related to weightlifting model

Segments | Length (m)| Mass (kg)| | (kgm?)
Shank 0.431 4.27 0.1369
Thigh 0.428 7.00 0.1342
Body 0.504 47.50 9.8302
Upper arm| 0.326 1.96 0.0215
Lower arm| 0.256 1.54 0.0220

Table 3.8: Specified initial and final values for weightfiffimodel

Initial (t = 0) | Final ¢t =T
¢ [rad 0.8727 1.3090
¢1 [rad/d 0
¢ [rad 2.6180 1.5708
g2 [rad/g 0
gs [rad 0.3491 1.7453
gs [rad/sd 0
qs [rad 4.8869 5.2360
Gq [rad/d 0
g5 [rad 5.0615 7.0686
gs [rad/g 0




CHAPTER 4

Results

4.1. Movement of upper limb in sagittal plane

Some of the results from performed simulations can be sedéfiginn 4.1, 4.2 and
4.3. Variation of angular orientations, angular velositind control moments at the
two joints are shown for three different cost functions deditoy non-zerav.., a.
andog;. Results fora,, closely match those for,;. A sample movement pattern
(ace = 1 solution) can be seen in Fig. 4.4, which shows the arm positior every
second time station during the movement.

Angle (rad)

0 0.1 0.2 0.3 0.4 0.5
Time (s)

Figure 4.1: Variation of angles with time for three diffeteost functions

Five cost terms evaluated for the obtained solutions aengivTable 4.1; the different
minimization functions are indicated by their non-zerooefficients.

The colinearities between the full displacement vect@rsf the obtained solutions
calculated according to Eq. (3.4) are shown in Table 4.2.

It was noted that other locally optimal solutions could barfd for the caser.. =
1, if the initial guess to a solution was modified, ErikssonQ20 Further, a test
with a.. = 0.5 anda,; = 0.5 - 10~° gave a solution witHI.. = 17.6 N*m?s,
I, = 1241.5 N*’m?/s1l,; = 8.56 - 10° rad®/s’, I1,, = 4.78 - 10° racf/s*, and
I, = 31.3rad’/s.

25
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Angular velocity (rad/s)

0.1 0.2 0.3 0.4 0.5
Time (s)

Figure 4.2: Variation of angular velocities with time forée different cost functions

151

=
o

4]

Control moment (Nm)
(=]

0.1 0.2 0.3 0.4 0.5
Time (s)

Figure 4.3: Variation of control moments with time for thidiferent cost functions

The same movement was analyzed next but with differenttod@kement durations.
Fig. 4.5 shows the variation of control force cost with irasi|g time. The solutions
essentially showed waiting states before starting the samement if7" > 0.65
seconds. Similar conclusions were reached for other citetier

Increasing the number ¥}, resulted in oscillating behavior of control forces, as seen
in Fig. 4.6 where three values of; (17,21,33) were used. Decreasing the number of
Nj, number did not have major effect.
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Initial
vertical
position

Final horizontal position

Figure 4.4: A sample movement pattern

27

Table 4.1: Evaluation of the different cost terms for salns from different minimiza-

tion criteria

Min. Costterm

crit. | I, Eq. (2.21) M., Eq. (2.23) 11,5, Eq. (2.25) I, Eq. (2.26) I1,,, Eq. (2.27)
Qe 13.2 3553 2.57-107 17.5-103 45.9

Qe 14.3 1753 1.10- 107 11.0- 10? 40.2

Qgj 18.9 10106 2.89-10° 8.4-10° 40.5

Qqa 18.6 8305 3.64 - 10° 8.2-103 38.4

Qo 19.4 10887 4.50 - 107 13.7-103 31.9

[N*m?g] [N*m?/g| [rad®/s’] [racf /s%] [racf/s|

Table 4.2: Evaluation of colinearites fap vectors for five different minimization

criteria

aCC

Qct

Qgj

Qgq

Qgy

aCC
Qct
Qgj
Oéqa
Qgy

1.0000
0.9675
0.9471
0.9462
0.9226

0.9675
1.0000
0.9709
0.9790
0.9650

0.9471
0.9709
1.0000
0.9982
0.9420

0.9462
0.9790
0.9982
1.0000
0.9555

0.92
0.96
0.94
0.95
1.00

26
50
20
55
00
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Figure 4.5: Effects of change in total time
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Figure 4.6: Effects of changing number®t,, IV, is kept constant at 16
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4.2. Tensions in muscles

Using muscle tensions as controls, the contribution of tivelved muscles can be
seen in Figs. 4.7 and 4.8. Fig. 4.7 corresponds to the miaimiz of squared muscle
tensionsq.. = 1, whereas Fig. 4.8 corresponds to the minimization of squeates
of change of muscle tensions,; = 1.

—BIClong
---BRA
- BRD
- = TRllong
—e—DELT1
- +-DELT3
° PMAJ1
——LAT1

Tension (MPa)

0.4 0.5

Time (s)

Figure 4.7: Contribution from individual muscles evaluhter o.. = 1

0.4

—BIClong
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== TRllong
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-+ -DELT3

o PMAJ1
——LAT1

I
w

02

Tension (MPa)

e,

s "
0 0.1 0.2 0.3 0.4 0.5
Time (s)

Figure 4.8: Contribution from individual muscles evaluhter o.; = 1

Biceps long head and deltoid anterior muscles were seeratotpé major roles in
both cases, although the action of biceps was more prontifieminimization with
a.¢ compared to that with.. criterion.
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4.3. Movement of upper limb in horizontal plane

Trajectories of the lower arm end point for solutions basedhwee different mini-
mization criteria {.., o: andayg;) can be seen in Figs. 4.9 and 4.10.

The velocity of the end point for the three different crigecan be seen in Fig. 4.11.

0.4r

0.3r

0.2F i,

Final
Position

0.1f ~
Initial
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-0.2 -0.1 0 0.1 0.2

0.5r

0.4r
0.3r
0.2r

Final
0.1+ Position

oF

Initial Position

P 0 01 02 03 04 05 06

Figure 4.10: Trajectory of the wrist (Large movement)
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0 0.1 0.2 0.3 0.4 0.5

Time (s) ’

Figure 4.11: Velocity of the wrist (Large movement)

4.4. Vertical jumping

The results from high jump simulations performed for dua$il” = 0.2 and7" = 0.4
seconds can be seen in Figs. 4.12 and 4.13. A sample moveattarhcan be seen

in Fig. 4.14.

displacement (deg)

velocity (rad/s)

2R

— Foot

r| = - -Shank
“« Thigh
[|'='=Upper body

Figure 4.12: High Jump 0.2 s

From the angular velocities of the segments at the final stiageupward velocity of
the centre of mass of the body was calculated ta.4& m/s for0.2 s jump, while it

was3.1 m/s for0.4 s duration jump. The heights reached were, thereby, aboamnd1
50 cms respectively.
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Figure 4.13: High Jump 0.4 s
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Figure 4.14: High Jump pattern
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4.5. Walking/Stepping

The results from gait simulations are shown in Figs. 4.15 4ié. Experimental
results from Gutierrez (2003) are included for comparision
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Figure 4.15: Gait simulation - a single step, sim - simulatiexp - experimental

Figure 4.16: Gait pattern - a single step

For analysis of swing phase alone, variation in hip, kneearide angles are shown
in Fig. 4.17 and the pattern of movementin Fig. 4.18.
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Figure 4.17: Gait simulation - swing phase, sim - simulatexp - experimental

Figure 4.18: Gait pattern - swing phase
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4.6. Weightlifting

Some of the results from weightlifting simulations can bersi Figs. 4.19 and 4.20.
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Figure 4.19: Weightlifting - segmental angles
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Figure 4.20: Weightlifting pattern
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CHAPTER 5

Discussion

The main objective of this study was to compare the effectliftdrent optimization
criteria in modelling the dynamics of several common humarements. Performed
simulations and obtained results indicate that the deeelmewpoint and algorithm
are efficient in the study of complex but primarily moderaged forward dynamics
problems. Different criteria for optimal movements can bsily introduced. Also,
restrictions in form of linear and nonlinear constraints ¢ specified to give an
improved description of human movements.

The results can be analyzed from both numerical and bionmécdigpoint of views,
though the accuracy of the results should be considereckitight of both assump-
tions and simplifications made. The proposed method andetielabed algorithm
can be used for more advanced biomechanical studies witiigocation of muscle
mechanics and additional pysiological/anatomical priger Possibility also exists
for applications in other fields of engineering, (Erikssad dibert 2006).

It is obvious from the results that the optimization criberused significantly affects
the obtained solution. There is much discussion in litegatin whether kinematic or
kinetic optimization criteria are more suitable in pregigthuman movements.

For movementsin vertical plane, Table 4.1 shows sevelasting results, one being
that for creating the smoothest solution (using = 1), the magnitudes of the control
forces are higher (around 15 to 20%) than those needed.in= 1 anda. = 1
criteria solutions, cf. Eq. (2.22). Table 4.2 shows that and oy; solutions are
similar. This is expected, as force is proportional to a&@lon, so rate of change
in force can be expected to have close relation to jerk whécthé rate of change
of acceleration. Carrying out a desired movement in lesser tan be expected to
demand more effort. This is precisely what is observed fragn 45, but it is noted
that the algorithm will show a waiting state before the moeanif the time is longer
than the optimal. Minimum time has been used as optimizatiiterion in studies of
human movements, (Pandy et al. 1995). The result showsrtltlisi example, there
exists an optimal duration of movement.

Force distribution among muscles deals with the issue afirddncy as more muscles
than strictly needed are available. Physiological crexsisnal areas of muscles and
moment arms are the contributing factors for force distidsuamong muscles. Cri-
teria based on the control components are able to decidette distribution among
the muscles, but those based on the state variables, suich sk criterion, are not

37
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able to do so. A criterion essentially minimizing jefk,; # 0) can, however, be
accompanied by a small value @f,. to resolve this computational ill-posedness.

The movements observed are upper arm flexion/extensioreahthulder joint and

lower arm flexion/extension at the elbow joint. Biceps biadachialis and brachio-

radialis are the major muscles flexing the elbow joint whiieetps brachii acts as the
extensor at the elbow joint, (Palastanga et al. 2002). Thie mascles flexing the

arm at the shoulder joint are anterior deltoid and bicepshiravhile those extending

the arm are triceps, posterior deltoid, pectoralis majat latissimus dorsi, (Palas-
tanga et al. 2002). The high levels of activity seen in bidepg and deltoid anterior

(Figs. 4.7 and 4.8) match the expected behaviour.

It should be noted that in the physiological situation thenmeat arms of muscles
change with the orientation of the segments and hence wiith. tBut for simplicity,
constant averaged values were used for the simulationsmbBog accurate results,
change in moment arms with arm configuration must be accddateand this is left
as future work. Future work should also focus on the activatiynamics of muscles,
as the present examples allow immediate regulation of one@hin stated limiting
values.

For movements in the horizontal plane, slightly curvedeittgries were obtained for
smaller movements for the three simulation criteria uségl,49. On the other hand,
for larger movements, the control force criterion givesistyly curved paths while jerk
cost gives a circular path with elbow angle remaining ungleanFig. 4.10. Regarding
velocity profile, results from moment rate and jerk critematch single peak bell
shaped velocity profile (Fig. 4.11) described in previousl&s, (Flash and Hogan
1985; Uno et al. 1989).

The analysis of high jump has been simplified to a large ext@iie optimization
criterion used in this setting was minimization of rate ofmemts, as this fitted the
setting of the developed algorithm. Moments at the joinésaeated by muscles, so
it seems reasonable to assume minimal moment change aszastim criterion, as a
simple consideration of the delays in muscular force prtidos.

A simulated jump height of 33 cm has been reported in Pandy. €1290), who
used maximum height reached by the centre of mass of the tsodptamal control
performance criterion. But the results obtained here staygel variation in jump
height and this can be attributed to simplifications madéérodel. It is also noted
that the present optimization method sees this problem anadifferent manner than
other criteria such as maximization of the jump height andaity. Therefore, the
two views should be seen as complementary rather than espkads of each other.

For gait simulation, handling of the double support phass@nts some difficulties
as constraining the toe position for a certain duratioroithiices additional nonlinear
equality equations that have to be fulfilled. Using two noeér inequality constraints
instead of one equality constraint is numerically stables&lso shows the possibility
for specifying complex boundary conditions in the algariti_onger step length can
be attributed to the simplification made by representingstihace leg with a single
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straight segment. This also gives too high lift of the heethia initial phase and
excessive knee flexion, Fig. 4.16.

Gait simulation for a single step shows excessive knee fiextiot that the for swing
phase alone gives good results. Results from weighlifting match with those from
Chang et al. (2001). Different cost criteria were attempoetboth gait and weightlift-
ing models, but the criterion related to minimization oferatf change of control
forces/torques (nonzera.;) seemed to produce more reliable results in both cases.

The values ofV;, and N, affect the speed of calculation as these directly conteibmt
the number of unknown variables. Choosing too small valeasad properly describe
the dynamics of the system, whereas too high values demahe&mhcomputational
cost. Trial and error approach was taken to ensure propebication. In addition,
study of variations ofV;, with chosenV,, Fig. 4.6, shows that the discretization points
for controls must be less than or preferably coincident tséfor state variables.

The calculation time is an important parameter. With mosbfams, it was of the

order of few minutes. In some cases the iterations divenget@ad of converging to
an optimal point. The remedy used was changing the initialsguand running the
simulations again. Often, after slight modifications, thgooathm could be used for

evolution problem, which is represented by the initial eadlifferential equations in-

stead of the boundary value differential equations maimdguksed here, (Eriksson
2005, 2007). Using the evolution solution as the initial §g1Es an attractive alterna-
tive.

As discussed previously, trajectory planning is a key ane@botics. The proposed
method is a viable option to study such problems. With appatgmodifications in
the algorithm, other optimization criteria can be introeldc It should be stated that
the quadratic forms of the used criteria enable easierrdifitéation to obtain the gra-
dients. Other optimization criteria (for example, Caregerk instead of angular jerk
criterion) may introduce nonlinearities, but can still lsed with proper modifications
in the algorithm.

Comparision of different optimization criteria (in casetloé larger models) was done
visually. Though not shown, results obtained from optirtia with 7. criterion
were markedly different from those from.; criterion for the weightlifting model,
unless extensive constraints were used. With large nunfbvariables and equations,
the solution space is big and several possible solutiongxiah Constraints are often
required to initially reduce the solution space and arrive feasible solution.

Extensive simplifications and assumptions used and laclepfesentation of real
physiological behaviour imply that it is hard to draw de#énitiomechanical conclu-
sions from the results. In most models the final conditiorg specify displacements,
as final velocities can be obtained only with experimentadists. Using more bound-
ary conditions can be expected to give more reliable resiisvertheless, results
obtained indicate the possiblity of using the present nmetbcsolve wide classes of
dynamic problems.
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CHAPTER 6

Conclusions and Future work

Study of the forward dynamic models of several common hurgtvitees has yielded
interesting results, in addition to verifying the usefida®f the developed algorithm.
Results show that the method, based on temporal disciietifatlowed by optimiza-
tion, can successfully solve small to medium scale problefiwarying complexities.
The number of unknowns in the models typically vary betwe@®-1000 and similar
numbers of equality and non-equality constraints exise dligorithm is deemed suit-
able for analysis of similar applications in other fields;ls@as structural engineering
and robotics.

Smoothness of resulting movement and economy in force usage primary opti-
mization criteria tested. From a physiological viewpoactriterion based on the rate
of change of forces/torques seems better than other eriesied, as it is close to the
smoothness or jerk criterion, but is more well defined fouregant systems. Muscles
can not act instantaneously, as there is a history and tmtivdependence in force
recruitment. To certain extent this problem is addressetiéy,, criterion as it tends
to make control forces change slowly.

Forward dynamics calculations are generally computalipeapensive, but the algo-
rithm converges reasonably efficiently with a good initiakgs to a solution. Regard-
ing convergence, it is believed impossible to strictly fsethat an obtained solution
is a global minimum for the formulated problem, (Nocedal &ddght 1999), but
intelligent interpretation of results can probably alwagsify this.

One of the drawbacks of the stated formulation is the largebrars of equations and
variables involved. Better ways to solve optimization penb may be needed for
larger and more complex system. Several available optiinizalgorithms are being
investigated, such as the method of moving asymptotes (M§B\Vanberg 2002) and
the ‘SNOPT’ optimization algorithm in its Comsol Script ifementation (COMSOL

AB, Stockholm).

Future work can be related to two different aspects of theetsodnathematical and
biomechanical. From the mathematical point of view, focas lse put on the follow-
ing points:

e Animportantaspectis how to handle the very sparse matmces effectively.
This can considerably speed up the calculations.
e More advanced optimization algorithms may be necessatsifger problems.
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Handling of constraints such as complex nonlinear cormgsaind specifying
a guess to initiate the solution process can be a subjecttbifuanalysis.
Although not being of particular concern in present modgiktjnguishing be-
tween global and local optimal solutions is a problem thatlmaencountered
when dealing with more complex models.

Alternative ways of formulation to point collocation incle Galerkin method
for the weak formulation of the equations, (Zienkiewicz araylor 2000;
Cook et al. 2002).

To make the models more realiable from the biomechanical diview, the follow-
ing factors can be considered:

More anatomical and physiological aspects should be irwatpd, such as
limits on maximum and minimum joint moments or muscles ferard accu-
rate information about moment arms and cross-sectionasaremuscles as
functions of configuration.

Muscle activation dynamics deals with mechanisms behiaddice produc-
tion in muscles (Pandy 2001; Ackermann and Schiehlen 2006l can be
incorporated in the models by using muscle activation ksaslcontrols. This
will present further computational challenge as contiodsitenter in nonlinear
forms.

The primary aim of this study was to compare results for d#ffe optimization
criteria, rather than with experimental results. Stillkrgang out experimental
studies to compare the results from the simulations is awitapt future step.
It is not entirely known which cost fuction is appropriateshich movement
situation; a combination of various cost criteria may havied tested to ensure
accurate description of a movement.

Studies on human movements seem to agree that a movemeratdiscpd
through a planning process and a real-time feedback aitefihis study has
only considered the planning phase, but the performancesdhavell worthy
of further analysis.

In conclusion, it can be said that human movements are corapl@&ities and in or-
der to model them, great simplifications are often necessarthis study, the body

parts

have been modelled as rigid segments and the moveofethisse segments

have been studied from a purely mechanical point of viewh wéural control com-
pletely ignored. In spite of these shortcomings, the prieseathod provides a simple
way to increase the understanding of human movement sieated provides several
meaningful conclusions.
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APPENDIX A

Sequential Quadratic Programming

The basic idea of SQP is to model the nonlinear problem by dratia subproblem at
each iterate and to define the search direction as the solotithis subproblem. An
estimate of the Hessian of the Lagrangian is updated in eéacition using a BFGS
method (Nash and Sofer 1996; Nocedal and Wright 1999).

The nonlinear problem to be solved is:

mimimize TII(z) subjectto

bi(z)=0 (A.1)
bg(z) S 0
LagrangianL is formed as:
L(z,\) =TI(z) + ATb (A.2)

where\ are the Lagrange multipliers aridincludes bothb; andb,. In SQP, the
problem is then stated as:

. 1 .
mimimize ipTHkp + VII(zx)Tp subjectto
Vb1 () p+ bi(z1) = 0 (A-3)
Vba(zk) p 4 ba(z1) <0

whereH;, denotes the Hessian of the Lagrangian amglthe search direction.
p at the current iteratg is used to find next solution as:

Zk+1 = 2k + Pk (A4)

a7
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