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Identification of linear models from quantized
data: a midpoint-projection approach

Riccardo S. Risuleo, Giulio Bottegal, and Håkan Hjalmarsson Fellow, IEEE

Abstract— We consider the identification of linear mod-
els from quantized output data. We develop a variational
approximation of the likelihood function which allows us to
find variationally-optimal approximations of the maximum
likelihood and maximum-a-posteriori estimates. We show
that these estimates are obtained by projecting the mid-
point in the quantization interval of each output measure-
ment onto the column space of the input regression matrix.
Interpreting the quantized output as a random variable, we
derive its moments for generic noise distributions. For the
case of Gaussian noise and Gaussian i.i.d. input, we give
an analytical characterization of the bias which we use to
build a bias-compensation scheme that leads to consistent
estimates.

Index Terms—

I. INTRODUCTION

Quantization is the mapping of an analog—or continuous—
variable into a discrete set of values. In the process, information
contained in the original variable is lost: at any point in time,
we do not know the value of the variable but only that it
belongs to some quantization interval.

Quantization is necessary in all forms of computation and
communication as computers, controllers, and network devices
all operate with digital logic. While effective encoding can
account for the loss of information due to noise on the digital
signals, the loss of information due to quantization can only be
mitigated with more refined (and expensive) analog-to-digital
converters [1]. While the high-bit quantizers used in industry
reduce the effect of quantization below the noise floor, there are
applications where the quantization plays a significant role. For
instance, in distributed sensor networks and control, designers
are forced to use coarse quantizations to reduce bit rates and
communication costs [2], [3]. This can have a strong impact
on the accuracy of the identified models [4].

Quantization has been treated in depth in the area of digital
signal processing where it has been analyzed in relation to
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Fig. 1. The indicated areas represent the probability distribution of the
outcomes of standard-normal random variable quantized with uniform
quantization with unitary quantization interval (e.g., rounding to the
nearest integer)

roundoff errors in finite precision arithmetic [5]. More recently,
the quantization of random variables has been interpreted
as area sampling [6], [7] and the probability distribution
of the quantized random variable can be related to the
probability density function of the underlying continuous
random variable. In particular, the probability of observing any
one of the quantization levels is given by the probability that
the continuous random variable falls within that quantization
interval (see Figure 1). The relationship between the quantized
and continuous densities can be analyzed using tools that
remind of Nyquist’s sampling theorem [7, Ch. 4] and the effect
of quantization can be interpreted as an additive uniform noise
plus an alias term.

Identification of systems having quantized data is a challeng-
ing problem. The loss of information given by the presence
of a quantization mechanism may cause standard prediction
error-based algorithms to give unsatisfactory results. For this
reason, the problem of quantization in system identification
has been object of research for the last three decades; see [8]
for an overview. The case of binary quantization has attracted
particular attention. In the seminal work [9], the assumptions
of periodic input and knowledge of the distribution of the
disturbance are used to invert the output dynamics and
estimate a finite impulse response (FIR) model consistently.
The assumptions of having a known noise model and an
FIR model are relaxed in the follow-up work [10]. In [11],
the requirement of having a periodic input is replaced by
the presence of a known dithering signal, which allows
for consistent weighted least-squares estimation of an FIR
model. Identification methods for FIR systems with binary
quantizers have also been developed in an on-line setting,
see [12], [13]. The main idea in these works is to update
the parameter estimate when there is a mismatch between the
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true and the predicted outputs. Experiment design techniques
for binary quantizers are developed in [14], [15], where the
problem is cast under a set membership system identification
framework, and in [16], which describes a discrete-valued
input design technique based on graph theory. More recently,
the interest for system identification from quantized data has
shifted toward multiple-level quantizers. A recursive algorithm
for maximum likelihood identification of ARMA models is
developed and studied in [17]; authors of [18] propose a
two-step asymptotically efficient algorithm for systems with
quantization blocks both on the input and the output side.
In [19], the problem of FIR identification of a system with
quantized data is formulated as a quadratic program where
both the model parameters and the non-quantized output are
estimated simultaneously. For the general case of uniform
quantizers, estimators based on instrumental variables and quan-
tiles are proposed in [20] and [21], respectively. Identification
techniques for block-oriented nonlinear models with quantized
output data are also discussed in the literature. In [22], an
algorithm for Hammerstein systems is proposed by extending
the methodology proposed in [9]. In [23], identification of
Wiener systems with binary observations is tackled using
Support Vector Machines (SVM); an analogous technique is
also discussed in [24] for the standard linear case.

The focus of this paper is on maximum likelihood and
Bayesian point estimators. Within the framework of quantized
output data, methods relying on these estimators have been
developed in recent years [25]–[29], using the Expectation-
Maximization (EM) algorithm [30] as a pivotal technique to
build iterative estimation schemes. Typically, the “expectation”
step of the EM algorithm requires computing an integral which,
in the framework under study, is difficult to evaluate—unless
binary quantizers are considered, see [28]. To circumvent this
issue, various strategies for numerical integration have been
proposed, such as the scenario approach [26] or Markov Chain
Monte Carlo methods [27], [29]. While these identification
techniques generally provide accurate system estimates, numeri-
cal integration suffers from the curse of dimensionality, making
the computational burden grow fast with the data sample size.

The computational complexity issue motivates the devel-
opment of this work, where we also tackle the problem of
identifying a linear model from quantized data. In particular,
we consider a linear-in-the-parameters model with additive
Gaussian white noise and we estimate the parameters using
maximum-likelihood and maximum-a-posteriori approaches.
Because the likelihood function is not available in closed form,
we propose a variational approximation that allows us to obtain
simple expressions for the approximate maximum likelihood
and maximum-a-posteriori estimators. In particular, the analysis
we propose shows that the variationally-optimal approximation
of the maximum likelihood estimate of the system consists
in a least-squares projection of the middle point of the active
quantization intervals onto the subspace spanned by the column
of the system regression matrix. Similarly, the variationally-
optimal approximation of the maximum-a-posteriori estimate
of the system consists in a penalized least-squares projection
of the middle point of the active quantization intervals onto
the same subspace. By relying on linear transformations of the

data, the proposed approximate estimates are extremely simple
to compute and can be used to initialize iterative methods for
maximum likelihood/a-posteriori identification.

To derive the results, we develop a new variational lower
bound on the normalization constant of the truncated Gaussian
density. While many approaches for Gaussian integration exist
in the literature [31]–[34], these usually aim at providing
a good approximation for the Gaussian cumulative density
function over the whole real line. In contrast, we are only
interested in approximating the cumulative density function
over the quantization intervals. In addition, the closed-form
approximations available in the literature are intended for
numerically accurate and stable evaluation and will not result
in simple formulas for estimation.

As part of the contributions of this paper, we develop
an analysis of the effect of the quantization on the output
measurements in the special case of uniform quantizers.
Interpreting quantization as a noise perturbation around the
midpoint of the quantization interval, we provide expressions
for its first and second moments. Using this analysis, we
show that in general the approximate estimates proposed
are asymptotically biased. However, for the case where the
input is an i.i.d. Gaussian sequence we provide an analytic
characterization of the bias, which we then use to construct a
bias-compensation scheme that leads to consistent estimates
of the impulse response.

A preliminary version of this work was presented in the
conference contribution [35], where the variationally-optimal
approximate identification was developed. In this paper, we
extend the result by analyzing the asymptotic performance of
the estimator and formulating a bias-compensation scheme that
provides consistent estimates.

The rest of the paper is organized as follows. In Section II,
we present the problem of system identification from quantized
measurements. In Section III, we present some properties of
the maximum-likelihood and maximum-a-posteriori estimators.
In Section IV, we present a variational approximation of the
truncated Gaussian distribution. In Section V, we present the
variationally-optimal approximate estimators. In Section VI,
we analyze the bias of the approximate maximum likelihood
estimator for general noise distributions and we propose a
consistent bias-compensated estimator for the case of Gaussian
measurement noise and Gaussian input signal. In Section VIII,
we present various simulation experiments to validate the
results. In Section IX we draw some conclusions and present
future research directions. In the Appendix, we present the
proofs of the main results.

II. PROBLEM FORMULATION

We consider the problem of estimating linear systems from
quantized output data. We consider a known discrete-time
input signal uk, with time index k, fed into a linear system
G0. The noise-corrupted output wk of the linear system is then
quantized by a quantizer Q (see Figure 2).

We suppose that the linear system is time-invariant and
stable, so that the latent signal wk can be represented by the
noise-corrupted discrete convolution

wk = UTkg0 + εk, (1)
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Fig. 2. The setup considered in this paper.

where g0 is the n × 1 vector of nonzero impulse response
samples of G0, Uk is the n×1 vector of input samples [Uk]i =
u[k − i], and εk is a Gaussian white-noise sequence with
variance σ2.

Note that (1) may represent a finite impulse response model
of order n or an output-error model (where the order n is
chosen so that gk ≈ 0 for k > n).

We suppose that Q is an infinite quantizer with quantization
levels Ln, so that

Q(x) =

∞∑
n=−∞

n1[Ln,Ln+1)(x),

where 1a(·) is the indicator function of the interval a. In other
words, the output of the quantizer is an integer n that tells us
that the value x is in the nth quantization interval—that is,
Q(x) = n if x ∈ [Ln, Ln+1) (see Figure 3).

The problem we consider is thus as follows.
Problem 1: Given N samples of the quantized output yk =

Q(wk) of the linear system (1) subject to the input uk, estimate
the impulse response g0.

In the next section, we propose a solution to the problem
based on the likelihood principle.

III. MAXIMUM-LIKELIHOOD ESTIMATION FROM QUANTIZED
MEASUREMENTS

In this section, we analyze Problem 1 from a maximum-
likelihood perspective. In particular we derive the likelihood
function and we propose two identification approaches: the first
based on maximum-likelihood, the second based on maximum-
a-posteriori probability.

A. Maximum-likelihood estimation
To derive the likelihood function, note that the sequence

of outputs yk tells us the active quantization intervals at each
time step; in particular we know that wk ∈

[
Lyk , Lyk+1

)
.

From the Gaussian assumption on the noise, we have that
the latent variable wk is a Gaussian random variable with mean
UTk g0 and variance σ2. Hence, we can find the distribution of
the (discrete) random variable yk as follows

P
{
yk = n

∣∣ g0} = P
{
wk ∈ [Ln, Ln+1)

}
=

∫ Ln+1

Ln

N(z|UTk g0, σ2) dz, (2)

where N(x|m, s2) denotes the probability density function of
a normal random variable with mean m and variance s2:

N(x|m, s2) =
1√

2πs2
exp

{
− 1

2s2
(x−m)

2

}
. (3)

So, the probability of the event {yk = n} is equal to the
normalization constant of a Gaussian density truncated between

L−1 L0 L1 L2 L3
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Fig. 3. Example of an infinite quantizer: the output is n when the input
is between Ln and Ln+1.

Ln and Ln+1. From the white-noise assumption on εk, we can
write the likelihood function as

p({yk}Nk=1 | g) =

N∏
k=1

∫ Lyk+1

Lyk

N(z|UTk g, σ2) dz. (4)

Once we have the likelihood function, we can find the
maximum-likelihood estimate of the impulse response solving

gML = arg max
g

N∏
k=1

Φ
(
Lyk+1−UTkg

σ

)
− Φ

(
Lyk−U

T
kg

σ

)
(5)

where Φ(·) is the standard-normal cumulative distribution
function. Note that the cost function is nonconvex and possibly
high-dimensional; so, to find the maximum likelihood estimate
we have to resort to search methods, which may be difficult
to initialize and converge to local solutions.

One key result is that we can interpret the maximum
likelihood estimate as the least-squares projection of a point
in the interior of the active quantization intervals. To this end,
define the N × n Toeplitz matrix U such that the kth row is
the vector UTk ; then, we have the following result:

Lemma 2: Let {yk}Nk=1 be the sequence of the quantized
output of the system (1) to the input {uk}Nk=1. Then, there
exists a vector z?, with z?k ∈ (Lyk , Lyk+1), such that the
maximum-likelihood solution (5) can be written as gML =(
UTU

)−1
UTz?.

Proof: Consider the integral in (2). By the mean-value
theorem, there exists an z?k ∈ (Lyk , Lyk+1) such that∫ Lyk+1

Lyk

N(z|UTk g, σ2) dz=(Lyk+1 − Lyk)N(z?k|UTk g, σ2).

Then, the logarithm of (4) can be written as

log p({yk}Nk=1 |g) = − 1

2σ2

N∑
k=1

(
z?k − UTk g

)2
+ C,

where C is a constant independent of the impulse response g.
The first-order optimality condition gives the result. �

While this result is not constructive—in the sense that it
does not give us any way to find the point z?—it tells us that
for sure there is a point inside the active quantization intervals
that gives the maximum-likelihood estimate when projected
onto the span of U . Hence, we may follow a best worst-case
approach and take the midpoints of the active quantization
intervals,

[z̄]k = z̄k =
Lyk+1 + Lyk

2
, (6)
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to perform the estimation. For specific problems, this may return
the maximum likelihood estimate, as shown in the following
result.

Proposition 3: Under the assumptions of Lemma 2, suppose
that there exists a ĝ such that z̄ = Uĝ. Then, ĝ is a local solution
of (5).

Proof: See Appendix A

B. Bayesian estimation
In situations where data are scarce or noisy, the maximum

likelihood estimate (5) may suffer from overfitting or high
variance. In these situations, it may be beneficial to use
regularization and kernel-based methods to obtain a favorable
shift of the bias–variance tradeoff [36], [37]. From the Bayesian
interpretation of kernel-based methods, we consider a Gaussian-
process model for the impulse response with a kernel function
K(·, ·). In other words, we suppose that the vector g of impulse
response samples has a multivariate Gaussian distribution given
by

p(g) = N(g|0,K), (7)

where the covariance matrix K is determined by the kernel as
[K]i,j = K(i, j). Then, we can find the maximum a posteriori
estimate of the impulse response as

gMAP = arg max
g

p(g)

N∏
k=1

Φ
(
Lyk+1−UTkg

σ

)
− Φ

(
Lyk−U

T
kg

σ

)
.

(8)
Also in this case, the solution can be characterized as an

appropriate penalized least-squares projection of an interior
point of the active quantization interval:

Lemma 4: Under the assumptions of Lemma 2, there ex-
ists a vector z?, with z?k ∈ (Lyk , Lyk+1), such that the
maximum-a-posteriori solution (8) can be written as gMAP =(
UTU + σ2K−1

)−1
UTz?.

Proof: Follows from the same arguments as Lemma 2.
As mentioned in the previous section, neither Lemma 2 nor

Lemma 4 are constructive. There is, in other words, no way
to find the point z? except for numerical optimization—which
is equivalent to solving (5) or (8) directly. However, we may
intuitively consider the midpoint of the active quantization
intervals z̄ as a good approximation of z?. In the next section,
we show that this choice is optimal in the sense that it minimizes
a variational approximation of the likelihood function.

IV. VARIATIONAL APPROXIMATION OF TRUNCATED
GAUSSIAN DISTRIBUTIONS

To simplify the notation, in this section we let N(x) denote
the Gaussian probability density function N(x|m, s2) defined
in (3). Note that N(x) is convex in (x−m)

2; hence, it admits
a convex dual function which approximates it pointwise from
below [38, Section 3.3], according to the following lemma.

Lemma 5: Let N(x) be the probability density function of
a Gaussian random variable with mean m and variance s2. For
any x, ξ ∈ R,

N(x) ≥ −N(ξ)

2s2

[
(x−m)

2−(ξ−m)
2−2s2

]
, (9)

and, for any x ∈ R, there exists a ξ?(x) such that (9) holds
with equality.

Proof: N(x) is convex in (x−m)
2; hence, by convex

duality, there exists a dual function N∗(λ), given by

N∗(λ) = max
(x−m)2

[
λ (x−m)

2 −N(x)
]
, (10)

such that N(x) = maxλ [λ (x−m)
2 −N∗(λ)]. From the first-

order condition, we find that the maximum with respect to x
in (10) is attained when

λ+
N(x)

2s2
= 0.

Let x = ξ be the point where this maximum is attained, then
the dual function is given by

N∗
(
λ(ξ)

)
= λ(ξ) (ξ−m)

2
+ 2s2λ(ξ).

Plugging this expression into the convex duality, we have

N(x) = max
ξ

[
λ(ξ)(x−m)

2−λ(ξ)(ξ−m)
2 − 2s2λ(ξ)

]
.

from which, the result follows. �

Now, we can use the result in Lemma 5 to find a lower bound
on the normalization constant of the truncated Gaussian (2).
To this end, we first approximate the Gaussian density over
the integration interval, then we integrate the approximation.
By maximizing with respect to the variational parameter, we
find the best lower bound on the normalization constant. The
result is summarized in the following lemma.

Lemma 6: Let N(x) be the probability density function of
a Gaussian random variable with mean m and variance s2;
then, for any a, b ∈ R, a < b, we have that∫ b

a

N(x) dx ≥ I(a, b); (11)

where

I(a, b) =
b− a√
2πs2

exp

{
− (b−m)

3 − (a−m)
3

6s2 (b− a)

}
. (12)

Proof: See Appendix B.
As stated in Lemma 5, (9) holds with equality for some ξ(x)

for any x ∈ R. This is not the case for (11): having integrated
the dual function before maximizing with respect to ξ, we
have invalidated the convex duality result. Hence, when we
use I(a, b) instead of the normalization constant of a truncated
Gaussian density, we are making an approximation error. In
the following result, we give a bound on this error.

Lemma 7: Let N(x) be the probability density function of
a Gaussian random variable with mean m and variance s2 then∣∣∣∣∫ b

a

N(x) dx− I(a, b)

∣∣∣∣ ≤ √
2√
πs2

(b− a) .

where I(a, b) is given by (12).
Proof: We have that N(x) ≤ 1/

√
2πs2; hence∫ b

a

N(x) dx ≤ 1√
2πs2

(b− a) .
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In addition,

exp

{
− (b−m)

3 − (a−m)
3

6s2 (b− a)

}
≤ 1.

From the triangle inequality, the result follows. �

While the upper bound in Lemma 7 is very conservative,
it highlights two important (and intuitive) features of our
approximation: the error is small if the interval b− a is small
or if the variance s2 is large.

V. VARIATIONALLY-OPTIMAL APPROXIMATE
IDENTIFICATION

Using the variational lower bound I(a, b), we can approx-
imate (2) to find a closed-form expression for the approx-
imations of the maximum likelihood estimate (5) and the
maximum-a-posteriori estimate (8). To this end we note that,
using Lemma 6, we can define an approximation (lower bound)
on the likelihood function (4) according to

p({yk}Nk=1 |g) ≥
N∏
k=1

Ik(g) (13)

where

Ik(g)=
Lyk+1−Lyk√

2πσ2
exp

{
−
(
Lyk+1−UTk g

)3 − (Lyk−UTk g)3
6σ2(Lyk+1−Lyk )

}
;

that is, Ik(g) = I(Lyk , Lyk+1) where I is given by (12) when
m = Ukg and s2 = σ2.

Using (13), we can define the approximate maximum
likelihood estimator

ĝLS = arg max
g

N∏
k=1

Ik(g), (14)

This results in the intuitive approach of using the midpoints
of the active quantization intervals to replace the data in a
least-squares projection. We have the following result.

Theorem 8: The approximate maximum-likelihood estima-
tor (14) is given by

ĝLS =
(
UTU

)−1
UTz̄, (15)

where z̄ is given by (6).
Proof: See Appendix C.

We can also use (13) to define an approximation of the
posterior distribution in (8):

ĝMAP = arg max p(g)

N∏
k=1

Ik(g). (16)

Interestingly, also this variational approximation admits a closed
form expression given by an appropriate penalized least-squares
projection of the midpoints of the active quantization intervals:

Corollary 9: The approximate maximum-a-posteriori esti-
mator (16) is given by

ĝMAP =
(
UTU + σ2K−1

)−1
UTz̄, (17)

where K is the prior covariance matrix in (7) and z̄ is given
by (6).

Proof: Follows from the same reasoning as Theorem 8.
Remark 10: While the approximate estimator (14) is in-

dependent of the noise variance, the maximum-a-posteriori
estimator (16) depends on the noise variance σ2. An estimate
of σ2 may be found by first estimating the impulse response
using (14) and then using the sample variance formula

(
σ̂LS
)2

=
1

N

N∑
k=1

(
z̄k−UkĝLS

)2 − 1

12

(
Lyk+1−Lyk

)2
, (18)

where the second term is a first-order approximation of the
quantization noise. Note that, while it is possible to obtain an
estimate of the noise variance maximizing (13), this estimate
is very biased and performs worse than (18).

Remark 11: When the covariance matrix of the prior distri-
bution (7) depends on some unknown hyperparameters ρ—that
is p(g) = N

(
g|0,K(ρ)

)
—these are usually estimated using

either cross validation or maximizing the marginal likelihood
function

p ({yk}Nk=1) =

∫
p ({yk}Nk=1 |g) p(g) dg, (19)

(see [36], [37]). In the case at hand, integrating out g in (19)
requires numeric integration or sampling. One alternative is to
disregard the quantizer and consider the marginal distribution
of the latent variable wk; then, we can use the midpoint of the
active quantization interval to approximate the latent variable
in the marginal-likelihood inspired criterion

ρ̂ = arg min
ρ
z̄TΣ−1ρ z̄ + log det Σρ, (20)

where Σρ = UKρU
T + σ2I is the marginal covariance matrix

of wk. Note that, while (16) is variationally optimal in the
sense of Lemma 6, the criterion (20) is not motivated by
variational arguments (in Section VIII-F, we compare the
proposed approximate approach with the approach based on
maximization of the marginal likelihood function).

VI. BIAS COMPENSATED ESTIMATE

In this section, we propose an analysis of the error that results
from using the approximate maximum-likelihood estimator (14)
when the output is quantized with a uniform quantizer—that
is, when Ln+1 −Ln = L for all n. In particular, we derive an
expression for the bias of the midpoint z̄ as an approximation of
the output of the system Ug. Using this expression, we propose
a bias-compensation scheme that gives consistent estimates.

First, note that z̄k in (6) is a random variable (which depends
on the latent random variable wk) that can be written as

z̄k = LQ(wk) + L/2. (21)

Hence, we can define the quantization error

δk = z̄k − wk. (22)

Then, we have the following result.
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Lemma 12: Let wk be a random variable with characteristic
function ϕk(ω), and let δk be the quantization error (22); then

E[δk] =

∞∑
n=1

2

ωn
Im
{
ϕk(ωn)

}
,

E
[
δ2k

]
=
L2

12
+

∞∑
n=1

4

ω2
n

Re
{
ϕk(ωn)

}
,

E[wkδk] =
(
m+ iϕ′ (0)

) L
2
−
∑
n 6=0

ϕ′ (ωn)

ωn
.

where ωn = 2πn/L and where ϕ′k(ω) is the first derivative of
ϕk(ω), assuming that the series converge.

Proof: See Appendix D.
Using the result of Lemma 12, we can find the expression

of the bias in the Gaussian-noise case as follows.
Corollary 13: Let wk be a Gaussian random variable with

mean m and covariance σ2, and let δk be the quantization
error (22); then

E[δk]=

∞∑
n=1

2

ωn
exp
{
−ω

2
nσ

2

2

}
sin
(
ωnm

)
,

E
[
δ2k
]
=
L2

12
+

∞∑
n=1

4

ω2
n

exp
{
−ω

2
nσ

2

2

}
cos
(
ωnm

)
,

E
[
wkδk

]
=2

∞∑
n=1

exp
{
−ω

2
nσ

2

2

}[ m
ωn

sin(ωnm)+σ2 cos(ωnm)

]
.

Corollary 13 highlights the same properties as Lemma 7
in that the error we commit in considering the midpoint as a
proxy for the latent signal becomes smaller when either the
quantization interval L becomes small or the noise variance
becomes large.

Thanks to Corollary 13, we can characterize the bias in the
variationally-optimal estimate in the case of Gaussian noise. If
the input signal uk is Gaussian, Bussgang’s theorem guarantees
that a linear regression performed on the data after the nonlinear
transformation (21) will give a scaling of the true system [39]. If
the input is white, we have an explicit expression of the scaling.
To this end, assume that uk is Gaussian white noise with known
variance λ2. Then, we use the quantization error (22) to say
that

z̄k = UTk g0 + εk + δk; (23)

and we find the asymptotic bias of the variationally-optimal
approximate maximum-likelihood estimator.

Theorem 14: Let z̄k be the vector of the midpoints of the
active quantization intervals of the output of a linear system
with uniform quantization, with step L, in response to a
white Gaussian input with variance λ2; then, as N → ∞,
the variationally-optimal estimator (15) converges to

ĝLS → g0 + g0B(g0)

where

B(g0) = 2

∞∑
n=1

exp

{
−ω

2
n

2

(
λ2‖g0‖2 + σ2

)}
.

Proof: See Appendix E.

If we consider the variationally-optimal maximum-a-posteri-
ori estimator with a fixed kernel matrix K, then, we have a
similar asymptotic result:

Corollary 15: Under the conditions of Theorem 14, the
variationally-optimal estimator (17) converges to ĝMAP →
g0 + g0B(g0).

Proof: See Appendix E.
Remark 16: The function B(g0) is related to the Jacobi

theta function

ϑ(z, τ) =

+∞∑
n=−∞

exp{−iπτn2} exp{2πizn} . (24)

which arises in problems in number theory, elliptic functions,
and quantum field theory. For more details, see [40, Ch. 21]
and [41].

Thanks to Theorem 14, we can define a bias-compensated
estimate ĝBC as the solution to

ĝBC = ĝLS − ĝBCB(ĝBC). (25)

Note that—because B(·) is a scalar function—any ĝBC that
solves this equation is proportional to the least squares estimate
ĝLS and can be found by setting ĝBC = αĝLS and solving with
respect to α the following scalar equation

α+ αB(αĝLS)− 1 = 0. (26)

From Theorem 14, as N → ∞, the solution of (25)
converges to the solution g? of the estimation equation

g? + g?B(g?) = g0 + g0B(g0).

Note that any g? that solves this equation is proportional to
the true impulse response g0; in addition, g? = g0 is a trivial
solution. The following results shows that g? = g0 is the only
solution and, hence, that the estimator ĝBC is consistent.

Theorem 17: Under the assumptions of Theorem 14, the
bias compensated estimator defined in (25) is consistent—that
is, ĝBC → g0 as N →∞. In addition

NE
[(
ĝBC−g0

)(
ĝBC−g0

)T ]→ Σ (27)

where Σ = σ2

λ2 I + L2

12λ2 I + V −B(g0)
2
g0g

T
0 and

V=4

∞∑
n=1

(
1
ω2
n

+σ2
)(

1
λ2 I−g0gT0 ω2

n

)
exp
{
−ω

2
n

2

(
λ2‖g0‖2+σ2

)}
.

Proof: See Appendix F.
The asymptotic variance (27) can be interpreted as composed

of a term due to the noise, a term that is equivalent to a
uniform white noise, and an aliasing term that comes from the
correlation between the quantization error δ and the system
output w (a similar result is presented in [4]).

For the problem of linear regression from quantized mea-
surements, Gustafsson and Karlsson provide an expression for
the Cramér-Rao lower bound [4, Theorem 6] for finite number
of data which, using our notation, has the following asymptotic
expression:

Σ ≥ J(g0)
−1 (28)
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where J(g) is the asymptotic Fisher information matrix,

J(g) :=

+∞∑
n=−∞

E


(
N
(
L(n+1)−UT g

σ

)
−N

(
Ln−UT g

σ

))2

Φ
(
L(n+1)−UT g

σ

)
− Φ

(
Ln−UT g

σ

) UUT

,
where U is an zero-mean Gaussian vector with covariance

matrix λI , and where N(·) is the density function and Φ(·)
is the distribution function of an standard normal random
variable. A direct comparison of J(g)

−1 and the covariance
Σ is intractable; hence, we show in some simulations (see
Section VIII-B) that the asymptotic covariance matrix coincides
with the Cramér-Rao lower bound. While this could indicate
efficiency of the proposed bias-compensated method, a formal
proof of this result is still beyond our reach.

In this section, we have derived explicit expressions for the
case when both the input signal and the measurement noise
are white and Gaussian. However, the result of Lemma 12
can be applied for general noise distributions. In particular, it
can be used to derive the asymptotic bias of the approximate
estimator for any distribution of the noise and the input signal.
In the general case, we have the following result.

Theorem 18: Consider a linear system such as (1) with a
wide-sense stationary ergodic input signal and white measure-
ment noise with characteristic function ϕ(ω). Suppose that the
output is quantized with uniform quantization of step L and
let z̄ be the vector of the midpoints of the active quantization
intervals. Then, as N →∞, the estimator (15) converges to

ĝLS→ g0 +R−1
∞∑
n=1

2

ωn

(
ζn(g0)Reϕ(ωn) + ηn(g0)Imϕ(ωn)

)
,

where R = E
[
UUT

]
, ζn(g0) = E

[
U sin(ωnU

T g0)
]
, and

ηn(g0) = E
[
U cos(ωnU

T g0)
]
, where [U ]i = uk−i for any

k is an n× 1 vector of samples of the input signal.
Proof: See Appendix H.

Theorem 18 can be used to define a bias-compensated
estimate for general input and noise distributions. However,
the statistical properties of this estimator depend strongly on
distribution of the noise and of the input, and asymptotic
unbiasedness or consistency may be difficult to verify.

VII. ITERATIVE ALGORITHM

While it is possible to solve (25) directly using numerical
methods, we can alternatively see (25) as an estimation equation
with the following iterative version

ĝ(k+1) = ĝLS − ĝ(k)B(ĝ(k)). (29)

Under an appropriate signal to quantization-noise variance
condition, the estimator ĝ(k) converges to ĝBC and is, hence,
consistent:

Proposition 19: Consider the assumptions of Theorem 14
and suppose, furthermore, that

κ =
L2 + 4π2σ2

2π2σ2
exp

{
−2

π2σ2

L2

}
≤ 1. (30)

Let ĝ(k) be defined by (29), then ĝ(k) → ĝBC as k →∞, where
ĝBC solves (25). In addition,∥∥ĝBC − ĝ(k+1)

∥∥
2
≤ κ

∥∥ĝBC − ĝ(k)
∥∥
2
. (31)

Proof: See Appendix G.
Note that, the condition (30) is sufficient to ensure that (29)

converges to ĝ. However, the iterative method (29) may
converge even if κ > 1 and, in any case, the estimate (25) is
consistent irrespective of the value of κ.

Remark 20: The condition (30) is very conservative; it al-
lows for exponential convergence of the iteration (29) from any
initial condition to the unique solution of (25) independently
of the magnitude of the input signal and of the gain of the
system. In the cases when (30) is not verified, the iteration (29)
is guaranteed to converge to g0 as k →∞ if

exp

{
−2

π2
(
λ2 ‖g0‖2 + σ2

)
L2

}
≤ 2π2

(
λ2 ‖g0‖2 + σ2

)
L2 + 4π2

(
λ2 ‖g0‖2 + σ2

) .
Note that, while the condition (30) can be tested without the
knowledge of the true system, this less conservative condition
cannot be verified in practice. (See Section VIII-D for examples
of the iterative solution and its convergence guarantees.)

VIII. SIMULATIONS

In this section, we present simulation experiments to validate
the results presented in this paper. In the simulations, we
consider FIR systems like (1) with infinite uniform quantizers
and we compare the following estimators:
ĝML The maximum-likelihood estimate found by solv-

ing (5). The optimization is done with local gradient-
free optimization (Rowan’s Subplex algorithm, [42])
stopped with a relative tolerance of 10−9 and initial-
ized at the true parameters.

ĝLS The variationally-optimal approximation presented in
Theorem 8. It estimates the system from a least-
squares projection of the midpoint of the active
quantization intervals.

ĝBC The bias-compensated estimate defined in (25). The
solution is ĝBC = αĝLS where α is computed solv-
ing (26) with a trust-region method with absolute
tolerance of 10−9 started at α = 1.

ĝOR The oracle estimator that uses the latent signal w to es-
timate the impulse response: ĝOR =

(
UTU

)−1
UTw.

In the simulations, we compare the estimators with respect to
the standard mean square error metric

MSE(g, g0) =‖g − g0‖2 .

A. Asymptotic performance

In the first simulation, we verify the asymptotic bias of the
variationally-optimal estimate ĝLS and the consistency of the
bias compensated estimate ĝBC.

We consider the linear system

G1(q) = 1 + 0.7q−1,

subject to a Gaussian noise input with variance λ2 = 1. The
output is subject to Gaussian white measurement noise with
variance σ2 = 0.5 and then collected with a quantizer with
quantization step L = 2.3. Note that, the sufficient condition
in Theorem 17 is verified with κ ≈ 0.3925.
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Fig. 4. Mean squared error of the estimates over 500 realizations of input
signal and noise for different data sizes N . The approximate estimator
(dotted line) converges to the theoretically predicted bias (horizontal line).
The bias compensated estimate (gray line) follows the oracle estimate
(black line) asymptotically. Note that the simulated error of ĝBC agrees
with the error predicted by Theorem 17 (dashed line).

In Figure 4, we report the mean squared error of the
estimates computed by the different methods for 500 different
realizations of the input signal and the noise. As predicted
by Theorem 14, the average error of the estimate ĝLS (dotted)
converges to the value B(g1)

2‖g1‖2 ≈ 2.116 · 10−6 while
the bias compensated estimate ĝBC (gray) follows the oracle
estimator (black) which converges to g1 asymptotically. In
addition, we plot the asymptotic mean square error predicted
by Theorem 17 (dashed) and we see that the empirical error of
ĝBC agrees with the asymptotic expression of the mean square
error—that is, NE‖ĝBC−g1‖2 → trace {Σ} ≈ 1.868.

B. Comparison with Maximum-likelihood
In the second simulation, we compare the performance of

the bias compensated estimate ĝBC with the performance of the
maximum likelihood criterion ĝML. We consider the system,

G2(q) = 1 + 0.3q−1 + 0.7q−2,

subject to a Gaussian white noise input with variance λ2 = 2.1.
The output is subject to a Gaussian white measurement noise
with variance σ2 = 0.7 and is collected after quantization with
a step L = 3.3.

In Figure 5, we report the mean squared error of the estimates
computed by the different methods for 500 different realizations
of the input signal and the noise. From the simulation, It appears
that the performance of the proposed bias-compensated estimate
ĝBC (gray) compares very well with the maximum-likelihood
estimator ĝML (dashdotted). Also, it appears that, asymptotically,
the variance of the bias-compensated estimator coincides with
the variance of the maximum-likelihood estimator and reaches
the Cramér-Rao lower bound as computed by (28)—that is,
NE‖ĝBC−g2‖2 → trace {Σ} ≈ trace {J(g2)

−1} ≈ 2.4717.
This suggests that the proposed bias-compensated estimate

is efficient (however, a formal analysis is still in preparation).

C. Asymptotic performance for uniform noise
In this section, we present a simulation experiment to validate

the results of Theorem 18. In particular, we consider the

105 106 107

10−6

10−5

N

M
S
E
(ĝ
,g

2
)

ĝLS

ĝBC

ĝML

Fig. 5. Mean square error of the estimates over 500 realizations of input
signal and noise for different data sizes N . The approximate estimator
(dotted) converges to its asymptotic performance of B(g2)

2 ‖g2‖2 ≈
3·10−6 while the bias compensated estimate (gray) follows the maximum
likelihood estimate (dashdotted).

0 0.5 1 1.5

10−7

10−6

10−5

10−4

`/L

B
ia

s2

true
estimated

Fig. 6. Comparison of the asymptotic bias theoretically predicted by
Theorem 18 and estimated by simulating g1 for N = 109 samples and
computing the bias of ĝML. Note that we have not simulated the system
for multiples of 1/2 because the estimated bias would be dominated by
the variance error.

asymptotic bias of the approximate estimator ĝLS when the
measurement noise is white and uniformly distributed in [−`, `].
To this end, we consider the linear system G1(q), presented in
Section VIII-A, subjected to a white and Gaussian input signal
with variance λ2 = 1.1 and we consider a uniform quantizer
with step L = 3.3.

From Theorem 18, we have that ĝLS converges asymptotically
to

ĝLS → g1 + 2g1

∞∑
n=1

exp

{
−ω

2
nλ

2‖g1‖2
2

}
sin(`ωn)

`ω2
n

.

Note, in particular, that if ` = mL/2, for some positive integer
m, then the method is asymptotically unbiased.

We compare the theoretically predicted bias with an empirical
estimate of the bias obtained by estimating g1 with ĝLS using
N = 109 data points. In Figure 6, we present the average
bias over 20 realizations of the input signal and the noise and
we compare it with the bias predicted by Theorem 18. From
the figure, we see that the theorem accurately predicts the
asymptotic performance of the approximate method.
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Fig. 7. Normalized distance between the iterative solution ĝ(k)j and the
bias compensated estimate ĝBC

j . The first system (j = 3, solid) satisfies
the hypothesis of Proposition 19, so the convergence is exponential with
a rate guaranteed by (31) (shaded area). The second system (j = 4,
dashed) satisfies the condition Remark 20 and converges even though
κ2 > 1. The third system (j = 5, dotted) does not have convergent
iterations.

D. Iterative solution

In this section, we present a simulation example where we
validate the results of Proposition 19 and Remark 20. We
consider the three systems,

g3 = [0.4, 0.3, −0.7]
T

λ23 = 1.1 σ2
3 = 0.6 L3 = 2.3,

g4 = [0.4, 0.3, −0.4]
T

λ24 = 1.0 σ2
4 = 0.2 L4 = 3.3,

g5 = [0.4, 0.01]
T

λ25 = 1.0 σ2
5 = 0.2 L5 = 6.3.

Only the first system satisfies the sufficient condition in
Proposition 19 (with κ3 ≈ 0.261); the second system satisfies
the extended condition in Remark 20; the third system does
not satisfy any condition for convergence of the iterative
estimator (29).

In Figure 7, we present the normalized distance of the
iterative estimator to the fixed point ĝBC

j for j = 3, 4, 5, together
with the theoretical bound given by (31). We see that the
conditions in Proposition 19 and Remark 20 guarantee the
convergence of the iteration to ĝBC; in addition, we see that
when the conditions are not fulfilled the iterative algorithm
may diverge from the fixed point (all iterations start at ĝLS).

E. Bias compensation and Bayesian estimation

In this section, we present a simulation where we com-
pare the approximate maximum-likelihood and maximum-a-
posteriori estimates to the bias-compensated estimates. We
consider the system g3 presented in the previous section and,
in addition to the previously introduced ĝBC, we cosider the
following Bayesian estimators:
ĝMAP the approximate maximum-a-posteriori estimator pre-

sented in Corollary 9. The parameters are modeled
using a diagonal kernel, K(ρ) = ρI . The hyperpa-
rameter ρ was estimated from the marginal-likelihood
inspired criterion (20); and the noise variance is
assumed to be known.

ĝBCMAP A bias-compensated estimate based on Corollary 15.
We define a bias-compensated maximum-a-posteriori

101 102 103 104 105 106

10−5

10−3

10−1

N

M
S
E
(ĝ
,g

3
)

ĝBC

ĝMAP

ĝBCMAP

Fig. 8. Mean squared error of the estimates over 500 realizations
of input signal and noise for different data sizes N . The approximate
Bayesian estimator (solid) converges to its asymptotic performance of
B(g3)

2 ‖g3‖2 ≈ 7.3 · 10−5 while the bias compensated estimates
are asymptotically equivalent (dashed and gray). Note that, for short data
lengths, the Bayesian estimates have lower mean-squared-error than the
approximate maximum likelihood estimator.

estimate as ĝBCMAP = αĝMAP where α is found solving
α+αB(αĝMAP)−1 = 0, using a trust-region method
with absolute tolerance of 10−9 started at α = 1.

In Figure 8, we report the mean squared error of the
estimates computed by the different methods for 500 different
realizations of the input signal and the noise. As predicted
by Corollary 15, the average error of the estimate ĝMAP

(solid black) converges to the same limit as ĝML—that is, the
value B(g3)

2‖g3‖2 ≈ 7.319 · 10−5. The bias compensated
maximum-a-posteriori estimate ĝBCMAP (dashed black) follows
asymptotically the bias compensated estimate ĝBC (solid gray)
whose asymptotic covariance converges to the one predicted
by the Cramér-Rao lower bound (28):

N‖ĝBC − g3‖2 ≈→ trace {Σ} ≈ J(g3)
−1 ≈ 2.8402.

Note that, for shorter data records, the bias introduced by the
kernel improves the performance of the approximate Bayesian
estimators compared to the approximate maximum-likelihood
estimator.

F. Bayesian estimation of high-order FIR models

In this section, we present some simulations regarding
the variationally-optimal Bayesian estimator (8). We consider
the impulse responses of the first 500 systems in the S1D1
dataset in [36]; for simplicity, we truncate all the impulse
responses after the first 70 samples. We subject the systems
to a Gaussian white-noise input with unitary variance and we
collect the output with Gaussian additive white noise with
variance 1/10th of the variance of the corresponding noiseless
output. In the simulations, we consider 4 different uniform
quantizers with steps L2 = 12σ2, 48σ2, 120σ2 —which, in
a first-order approximation of (23), correspond to a relative
importance of the quantization over the measurement noise
of 1, 4, and 10. In addition, we consider the case with no
quantization (that is L → 0) and the ceiling-type quantizer
(that is L = 1), considered in [29].

In the simulation, we compare the estimators
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ĝMMSE

Fig. 9. Boxplots of the normalized mean square errors of the 500
estimated impulse responses, for different levels of quantization.

ĝMAP The approximate maximum-a-posteriori estimator
presented in Corollary 9. The impulse responses are
modeled with the stable-spline kernel [37],[

K(ρ)
]
i,j

= ρ1 ρ
max(i,j)
2 . (32)

The hyperparameters and the noise variance are
estimated from the marginal-likelihood inspired cri-
terion (20) using expectation maximization. The
hyperparameters were initialized arbitrarily as ρ1 = 1,
ρ2 = 0.6; the noise variance σ2 was initialized
according to (18).

ĝMMSE The Bayesian minimum mean-square-error estimator
presented in [29]. The impulse response is modeled
with the stable-spline kernel (32). The hyperparam-
eters are estimated from the marginal-likelihood
function using Monte-Carlo expectation-maximization
with Gibbs sampling. The iterations were initialized at
the hyperparameter and noise variance values found
by ĝMAP. At each iteration 400 samples were used;
during the first iteration, 100 samples were discarded
for burnin. The posterior means were computed with
Monte-Carlo using 1000 samples after 100 samples
of burnin.

Remark 21: Note that, as L → 0, the compared methods
coincide with the standard Bayesian kernel-based approach [36],
[37] of estimating the hyperparameters from the marginal-
likelihood function of the data and estimating the impulse
response from the mean of the posterior density (which is,
when L→ 0, Gaussian).

The results of the simulation are presented in Figure 9.
In the figure, we show the boxplots of the normalized mean
square error, NMSE(g, g0) = MSE(g, g0)/‖g0‖2, where g is
an estimate of the true impulse response g0.

From the simulation, we see that the approximate method
ĝMAP has a fit that is comparable to the performance of ĝMMSE

for a wide range of quantization levels with a decrease in
performance for coarser quantizations.

IX. CONCLUSIONS

In this paper, we have considered the identification of finite
impulse-response models from quantized data. First, we have
proposed a variational approximation of the likelihood function

which leads to closed-form approximations for the maximum
likelihood and maximum-a-posteriori estimates. Then, we have
analyzed the quantization error for different noise distributions
and we have derived an expression of the asymptotic bias of
the approximate maximum likelihood estimator for the case
of Gaussian measurement noise and Gaussian input signal.
Compensating for the bias, we have found a consistent estimator.
We have validated the results in different simulation examples.

In the analysis, we have derived the asymptotic covariance
of the consistent estimator. While numeric simulations seem
to indicate that the asymptotic covariance is matches the
covariance of the maximum-likelihood estimator (which would
indicate that the proposed method is efficient), a formal proof
of this result is complicated by the lack of a closed-form
expression for the Cramér-Rao lower bound in the case of white
Gaussian inputs. Research in this direction is ongoing and we
hope to be able to present our results in future publications.
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APPENDIX

A. Proof of Proposition 3

The first-order condition for the maximum-likelihood crite-
rion (5), is given by

N∑
k=1

1√
2πσ2

(
e−

b2k
2σ2 − e−

a2
k

2σ2

)∏
j 6=k

{
Φ(bk)− Φ(ak)

}UTk
σ

=0,

where bk = Lyk+1 − UTk g and ak = Lyk − UTk g.
Let now ∆k = (Lyk+1 − Lyk)/2. If g = ĝ, then bk =

Lyk+1 − z̄k = ∆k and ak = Lyk − z̄k = −∆k and the first-
order condition is verified.

Consider now the second-order condition in g = ĝ, we get
that the Hessian is given by

H = −
N∑
k=1

∆k√
2πσ2

e−
∆2
k

2σ2

∏
j 6=k

{
Φ(∆k)− Φ(−∆k)

}UkUTk
σ2

;

because the terms in the sum are all positive, the Hessian is
negative definite, and g = ĝ is a local solution of (5). �

B. Proof of Lemma 6

From Lemma 5, we have that∫ b

a

N(x) dx ≥ −N(ξ)

2s2

∫ b

a

[
(x−m)

2 − (ξ −m)
2 − 2s2

]
dx

=−N(ξ)

2s2

{
(b−m)

3−(a−m)
3

3
−(ξ−m)

2
(b−a)−2s2 (b−a)

}
.
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This expressions holds for all ξ ∈ R. Let ξ? be the maximizer
of the right-hand site of the inequality. From the first order-
optimality condition, we find that

N ′(ξ?)
2s2

{
(b−m)

3−(a−m)
3

3
−(ξ∗−m)

2
(b−a)−2s2 (b−a)

}
− 2

N(ξ?)

2s2
(ξ −m) (b− a) = 0.

where N ′(ξ) is the first derivative of N(ξ). Note that N ′(ξ) =
−N(ξ) (ξ −m) /s2; hence, the optimality condition becomes

(ξ∗ −m)
2

=
(b−m)

3 − (a−m)
3

3 (b− a)
.

Plugging this back into the inequality, we find∫ b

a

N(x) dx ≥ N(ξ∗) (b− a) ,

from which, we have the result. �

C. Proof of Theorem 8

Consider the logarithm of the cost function in (14); from
the first-order condition

N∑
k=1

(
L2
yk+1 − L2

yk

)
− 2

(
Lyk+1 − Lyk

)
UTk ĝ

LS

2σ2
(
Lyk+1 − Lyk

) UTk = 0,

N∑
k=1

Lyk+1 + Lyk
2

UTk =

N∑
k=1

(
UTk ĝ

LS
)
UTk ,

from which, z̄TU = gLS TUTU . �

D. Proof of Lemma 12

Assuming that all series converge, we use the Poisson
summation formula (see [43], Appendix 10A), to find that

E{δ} − L/2=

∫ +∞

−∞

(
LQ(w)− w

)
p(w) dw

=−
∞∑

n=−∞

∫ L

0

xp(x+nL) dx= −
∞∑

n=−∞
ϕ (ωn)

∫ L

0

x

L
eiωnx dx,

where ωn = 2πn/L. Now for n 6= 0, we have that∫ L
0
xeiωnx/Ldx = i/ωn. So

E{δ} =
∑
n 6=0

− i

ωn
ϕ (ωn) =

∞∑
m=1

2

ωm
Imϕ (ωm) ;

from which, we have the result.
Regarding the second moment, using the same arguments

we used in the first step,

E
{
δ2
}

=

∫ +∞

−∞

(
w−LQ(w)−L/2

)2
p(w) dw

=

∞∑
n=−∞

∫ L

0

(
x−L/2

)2
L

ϕ (ωn) eiωnx dx=
L2

12
+
∑
n 6=0

2

ω2
n

ϕ (ωn),

For the covariance, with similar arguments, we have

E{wδ}=

∫ +∞

−∞
w
(
LQ(w)+L/2−w

)
p(w) dw

= −
∫ L

0

∞∑
n=−∞

(x+ nL)xp(x+ nL) dx+
L

2
m

Then, from the Poisson summation formula applied
to nLp(x + nL), we have that

∑+∞
n=−∞ nLp(x +

nL) =
∑+∞
n=−∞− i

Lϕ(ωn) − x
Lϕ
′(ωn) So E{wδ} =∑∞

n=−∞
i
Lϕ
′(ωn)

∫ L
0
xeiωnx dx+ L

2m from which the result
follows. �

E. Proof of Theorem 14 and Corollary 15
We consider the approximate estimator ĝLS. Then, by (23),

ĝLS − g0 =

[
1

N

N∑
k=1

UkU
T
k

]−1 N∑
k=1

Uk (εk + δk)

N
.

Because uk is a Gaussian white noise sequence with variance
λ2, independent (by assumption) of εk, when N →∞,

1

N

N∑
k=1

UkU
T
k → λ2I,

1

N

N∑
k=1

Ukεk → 0.

Similarly,[
1

N

N∑
k=1

UTk δ

]
i

→ E[uk−iδk] = E

[
uk−iE

[
δk| {ut}Nt=1

]]

=

∞∑
n=1

L

πn
exp

{
−2σ2π2n2

L2

}
E

[
uk−i sin

(2πn

L
UTk g0

)]
from which, we have the result.

Consider now the approximate estimator ĝMAP. Because uk
is Gaussian white noise we have that

(
UTU + σ2K−1

)
/N →

λI , and, asymptotically, ĝMAP ≈ ĝML. �

F. Proof of Theorem 17
First, consider the case 2πλ2‖ĝLS‖2 = L2 and σ = 0. Then,

any solution to (25) is given by ĝ = αĝLS where α solves

αf(α) = α

(
1 + 2

∞∑
n=1

exp
{
−πα2n2

})
= 1 (33)

Note that f(α) > 0; hence, from (33), we have that α > 0 and
that f(α) is a monotone decreasing function of α. Note that
f(α) = ϑ(0; iα2) where ϑ is the Jacobi theta function (24). By
Jacobi’s identities (also known as Jacobi’s formulae, see [40],
Section 21.51),

ϑ

(
z

τ
;−1

τ

)
=
√
−iτ exp

{
π

τ
iz2
}
ϑ(z; τ).

Hence, in our case, αf(α) = f(1/α). Because f(α) is
monotone decreasing, f(1/α) is monotone increasing in α.
Hence, αf(α) is monotone increasing and thus (33) has only
one solution and (25) has only one solution.

Let now N →∞, then ĝLS → g0 +g0B(g0) by Theorem 14
and, by continuity, ĝ → α?g0 where α is solution to
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α?f(α?) = f(1.). By the same argument as before, this
equation has a unique solution given by α? = 1; hence ĝ → g0
as N →∞ and we have the proof.

In the general case, note that ĝ = αĝLS because B(·) is a
scalar function; note also that

B(αĝLS) = f

(
π

√
α2λ2‖ĝLS‖2 + σ2

)
;

Applying the same reasoning to B(·) gives the result.
Regarding the asymptotic covariance matrix of the estimates,

using the results of Theorem 14, we have that asymptotically

(ĝ−g0) (ĝ−g0)
T →

(
ĝLS−g0

) (
ĝLS−g0

)T −B(g0)
2
g0g

T
0

→ 1

Nλ4

[
E
[
UkU

T
k ε

2
k

]
+ E

[
UkU

T
k δ

2
k

]
+ 2E

[
UkU

T
k εkδk

]]
Using the results of Corollary 13, we have that[
E
[
UkU

T
k δ

2
k

]]
i,j

= E
[
uk−iuk−jE

[
δ2k| {ut}Nt=1

]]
=
L2λ2

12
+

+∞∑
n=1

4

ω2
n

exp

{
−ω

2
nσ

2

2

}
E
[
uk−iuk−j cos

(
ωnU

T
k g0

)]
,

and that[
E
[
uk−iuk−jεkδk

]
i,j

]
= E

[
uk−iuk−j

(
w − UTk g0

)
δk

]
i,j

= 2σ2
+∞∑
n=1

exp

{
−ω

2
nσ

2

2

}
E
[
uk−iuk−j cos

(
ωnU

T
k g0
)]

;

from which, we have the result. �

G. Proof of Proposition 19

Let F (g) = ĝLS − gB(g); then ĝ is a fixed point of the
mapping F (·). Note that, for any g1, g2,∥∥F (g1)− F (g2)

∥∥
2

=
∥∥g2B(g2)− g1B(g1)

∥∥
2

Then, note that

∞∑
n=1

exp

{
−2

π2n2

L2
(λ2‖gi‖2 + σ2)

}
≤ exp

{
−2

π2

L2
(λ2‖gi‖2+σ2)

}
+

∫ ∞

1
exp

{
−2

π2

L2
(λ2‖gi‖2+σ2)x2

}
dx

≤ exp

{
−2

π2

L2
(λ2‖gi‖2 + σ2)

}(
1 +

L2

4π2 (λ2‖gi‖2 + σ2)

)
≤ exp

{
−2

π2σ2

L2

}(
1 +

L2

4π2σ2

)
= κ,

where κ is a constant independent of g. Then,∥∥F (g1)− F (g2)
∥∥
2
≤ 2κ‖g2 − g1‖2 .

Under condition (25), 2κ < 1 so F (·) is a contractive mapping
and thus has a unique fixed point ĝ and the iteration ĝ(k+1) =
F (ĝ(k)) is such that ĝ(k) → ĝ if k → ∞ with the indicated
rate of convergence. �

H. Proof of Theorem 18
We consider the approximate estimator ĝLS. Then, by (23),

ĝLS − g0 =

[
1

N

N∑
k=1

UkU
T
k

]−1 N∑
k=1

Uk (εk + δk)

N
.

Because uk is wide-sense stationary, ergodic, and (by assump-
tion) independent of εk, when N →∞,

1

N

N∑
k=1

UkU
T
k → R,

1

N

N∑
k=1

Ukεk → 0.

where [R]i,j = E
[
uiuj

]
. Similarly,[

1

N

N∑
k=1

UTk δ

]
i

→ E[uk−iδk] = E

[
uk−iE

[
δk| {ut}Nt=1

]]

=

∞∑
n=1

2

ωn
E

[
uk−iIm

{
ϕ(ωn) exp

{
iωnU

T g0

}}]
.

from which, we have the result. �
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University, Sweden. He has held vis-
iting research positions at California
Institute of Technology, Louvain Uni-
versity and at the University of New-
castle, Australia. He has served as an

Associate Editor for Automatica (1996–2001), and IEEE Trans-
actions on Automatic Control (2005–2007) and been Guest
Editor for European Journal of Control and Control Engineering
Practice. He is Professor at the School of Electrical Engineering,
KTH, Stockholm, Sweden. He is an IEEE Fellow and past
Chair of the IFAC Coordinating Committee CC1 Systems and
Signals. In 2001 he received the KTH award for outstanding
contribution to undergraduate education. His research interests
include system identification, signal processing, control and
estimation in communication networks and automated tuning
of controllers.


