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Optimal Speed Control of a Heavy-Duty Vehicle
in Urban Driving

Manne Held, Oscar Fl¤ardh, and Jonas M	artensson, Member, IEEE

Abstract�Fuel ef�cient driving patterns are well investigated
for highway driving, but less so for applications with varying
speed requirements, such as urban driving. In this article, the
driving mission of a heavy-duty vehicle in urban driving is
formulated as an optimal control problem. The velocity of the
vehicle is restricted to be within upper and lower constraints
referred to as the driving corridor. The driving corridor is
constructed from a test cycle with large variations in the speed
pro�le, together with statistics from vehicles in real operation.
The optimal control problem is �rst solved of�ine using Pon-
tryagin’s maximum principle. A sensitivity analysis is performed
in order to investigate how variations in the driving corridor
in�uence the energy consumption of the optimal solution. The
same problem is also solved using a model predictive controller
with a receding horizon approach. Simulations are performed
in order to investigate how the length of the control horizon
in�uences the potential energy savings. Simulations on a test
cycle with varying speed pro�le show that 7 % energy can be
saved without increasing the trip time nor deviating from a
normal driving pattern. A horizon length of 1000 m is suf�cient
to realize these savings by the model predictive controller. The
vehicle model used in these simulations is extended to include
regenerative braking in order to investigate its in�uence on the
optimal control policy and the results.

Index Terms�Fuel optimal control, model predictive control,
optimal control, intelligent vehicles.

I. INTRODUCTION

A major concern among scientists and the industry is
how to reduce the emissions of greenhouse gases. Since

the transport sector accounts for as much as 22 % [1] of
the CO2 emissions in European Union, a lot of attention is
given to companies and institutions in this �eld. Important
actors among these are the manufacturers of heavy-duty vehi-
cles (HDVs). One way such companies have reduced the fuel
consumption in recent years is by the development of smarter
cruise controllers. With more sensors and computational power
available in the vehicle, such solutions have become more
common. This development is intensi�ed by the trends toward
more autonomous vehicles. Intelligent speed controllers are
today a well-developed technique for highway driving, where
the variations in required speed are very small. Commercial
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solutions exist with fuel savings of 3 % [2]. For driving
conditions with large variations, such as urban driving, these
techniques are not as developed. This article treats the problem
of minimizing the fuel consumption of an HDV in urban
driving and the results can be a basis for the development
of software for intelligent speed controllers.

Reducing the fuel consumption can be done by formulating
the driving mission, i.e., the transportation the vehicle should
perform, as an optimal control problem (OCP) [3]. One way
of categorizing such solutions in two groups is to view the
target as either (a) solve the OCP of�ine and use the derived
trajectory as a reference or (b) solve the OCP online while
driving. Several solution methods exist for both approaches;
however, they are usually implemented differently. When
solving the problem as in (a), the computation time is not
crucial, so the calculations may take a considerable amount
of time. On the other hand, if the vehicle cannot exactly
follow the trajectory found by the optimization, e.g. due to
disturbances, an external controller must be designed. Such a
controller is typically of a simpler type that does not result in
an optimal realization. When solving the problem as in (b), the
computational time must be considered. The problem must be
solved at least within the update frequency of the controller. A
common way to solve this problem is to use the framework of
a model predictive controller (MPC)[4]. The solver considers
the predicted states within some horizon and adds a cost at the
end of this horizon. The problem is solved for this horizon,
the �rst part of the derived control is applied to the vehicle,
the position is updated, and the problem is solved again.

One method for solving OCPs is to use Pontryagin’s maxi-
mum principle (PMP) [5]. This method has successfully been
applied to the optimization of rail bounded trains [6][7][8]
and to hybrid electric vehicles (HEVs) [9]. It can be used
for �nding the trajectory of�ine by formulating the problem
as a two-point boundary value problem [10]. It can also
be used when solving the problem in an MPC fashion by
using a penalty function at the end of the horizon [11].
For more complicated problems, one common approach is
to discretize the search space and �nd the optimal solution
by exhaustively searching through all possible solutions. By
applying a Dynamic programming (DP) algorithm, the search
space and thus the complexity of the problem is reduced [12].
DP is applied to a truck with combustion engine in [13] and
a hybrid electric vehicle in [14]. The execution time can be
reduced further by applying some heuristic in the search for
the optimal trajectory [15][16]. DP was used by the authors
of this article in [17], where a complex vehicle model of an
HDV was used and the problem was solved of�ine.

One way of solving the problem using an MPC approach
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very quickly is to formulate the problem as a quadratic
program (QP) [18], this is done in [19]. In [20], a nonlinear
MPC problem is solved in real-time by a convexi�cation and
relaxation approach. In [21], an MPC is developed for personal
cars in urban environment and solved using a continuation
and generalized minimum residual (C/GMRES). A similar
problem is solved in [22] where sequential quadratic pro-
gramming (SQP) is used and the update is sped up by taking
advantage of structures in the problem.

Formulating and solving a driving mission as an optimiza-
tion problem might yield solutions that are not suitable to
use in real driving. For instance, long distances of coasting
is generally energy ef�cient, but can be frustrating both to
the driver and to trailing vehicles. One way of solving this
problem is to set restrictions on the velocity of the solution
based on data from real traf�c. This is done in [23], where
such boundaries are referred to as the driving corridor. In [24],
the deceleration of cars is studied in order to approximate
the average velocity as a polynomial function of distance
to stopping position. This function is used to model the
deceleration of a preceding vehicle, and it thereby in�uences
how the ego-vehicle can drive. A predictive cruise controller
for a varying speed pro�le is developed in [25], in order
to analytically �nd switching points between acceleration,
constant speed, and deceleration.

This article is an extension of [26] and [27]. These papers
treat a driving mission in which an HDV drives in an envi-
ronment where the desired and required velocity is varying.
The driving mission is formulated as an OCP in which the
energy consumption and trip time is minimized. This problem
is solved of�ine using PMP and simulations are performed
on a driving cycle commonly used for testing urban driving.
Based on statistics from real operation, the constraints on the
velocity are set and referred to as the driving corridor. A
sensitivity analysis on the in�uence of variations in the driving
corridor on the energy consumption is performed.

The main contribution of this article is to address energy-
ef�cient driving strategies of HDVs in urban driving, which is
a less studied topic compared to highway driving. There are
two contributions in extent to those in [26] and [27]:

� Including the possibility to regenerate part of the en-
ergy during braking. In addition to the analysis on how
variations in the driving corridor in�uences the energy
consumption as in [27], the in�uence of the possibility to
use regenerative braking is investigated in this article.

� Using a receding horizon formulation of the problem and
solving it using an MPC. Speci�cally, the in�uence of the
prediction horizon in the MPC on the energy consumption
is studied. The introduction of regenerative braking to this
solver is also performed in order to analyze its in�uence
on the energy consumption.

The outline of this article is the following: In section II,
the driving mission is formulated as an OCP. In section III,
the constraints on the allowed speed is discussed. The two
following chapters treat how the problem is solved using PMP
in section IV and MPC in section V. Simulation results are
shown and discussed in section VI and some conclusions are
drawn in section VII together with an outline for future work.

II. PROBLEM FORMULATION

The objective of this paper is to solve an OCP on the form

minimize
traction, braking

energy consumption, trip time

subject to vehicle dynamics,
speed restrictions,
traf�c �ow,
road elevation.

(1)

The energy consumption, trip time and vehicle dynamics
are modelled in this section. The road elevation and speed
restrictions are given by data from a real test cycle. The traf�c
�ow is taken into consideration by constructing the driving
corridor based on the driving cycle together with statistics from
real truck operation.

A. Vehicle model
A simpli�ed model of an HDV is used with the kinetic

energy K(s) , mv(s)2

2 as the state variable where s and
v(s) are the position and velocity respectively. The position
is used as the independent variable rather than time, because
the driving corridor and altitude data are given as functions of
position. The derivative of the kinetic energy with respect to
position is given by

dK(s)
ds

= Ft(s) + Fb(s) + Fw(K(s)) + Fg(s) (2)

where Ft(s) is the controllable tractive force, Fb(s) is the con-
trollable braking force, Fw(K(s)) is the sum of the resistive
environmental forces and Fg(s) is the gravitational force. The
resistive environmental forces are given by

Fw(K(s)) = Fa(K(s)) + Fr(s) (3)

where the contribution from the air resistance Fa(K(s)) is
given by

Fa(K(s)) = ��AfCd
K(s)
m

(4)

and the contribution from rolling resistance is given by

Fr(s) = �mgcr cos(�(s)) (5)

where � is the air density, Af is the vehicle frontal area,
Cd is the air drag coef�cient, m is the vehicle mass, cr is
the coef�cient for the rolling resistance, g is the gravitational
constant and � is the road slope. The gravitational force Fg(s)
is given by

Fg(s) = �mg sin(�(s)): (6)

The parameters used for calculating the values of the envi-
ronmental forces are set by following [28] and can be seen
together with the vehicle parameters in Table I. The tractive
and braking forces are restricted by

0 �Ft(s) � Ftmax(K(s)); (7a)
�Fbmax �Fb(s) � 0: (7b)

The vehicle is modelled to have constant maximum tractive
power Ptmax . This yields a velocity-dependent, or here, a
kinetic-energy-dependent, limitation on the maximum tractive
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TABLE I: Natural constants and vehicle parameters.
Parameter Value
Vehicle mass (m) 26 000 kg
Maximum tractive power (Pmax) 250 kW
Maximum tractive force (Ftmax ) 25 kN
Maximum braking force (Fbmax ) 100 kN
Drag coef�cient (Cd) 0.5
Air density (�) 1.292 kg/m3

Vehicle cross-sectional area (Af ) 10 m2

Rolling resistance coef�cient(cr) 0.006
Ratio of regeneration (r) 0.7
Maximum power regeneration (Prbmax ) 100 kW

force Ftmax(K(s)). The relation between force, power and
kinetic energy is given by F = P

q
m

2K(s) . Since this yields
in�nite maximum force as K(s) approaches zero, the maxi-
mum force is also limited by a constant value Ftmax . The total
limitation on the maximum tractive force is then given by

Ftmax(K(s)) = min
�
Ftmax ; Pmax

r
m

2K(s)

�
: (8)

B. Regenerative braking

An extension to the vehicle model in the previous subsection
is to let some of the energy from braking be stored in the
vehicle for reuse. This is known as regenerative braking and
is typically used in HEVs. One problem when regenerating
energy for an HDV is that the energy conversion during
braking requires very high power. The battery has a limitation
on the maximum power that can be regenerated Pbrmax . Also,
by converting kinetic energy to electric potential in the battery
and back to kinetic energy, there are losses such that not all
of the braking energy can be reused. The ratio between the
energy that is stored and the energy converted from kinetic
energy during braking is denoted r. The regenerative braking
is modelled by splitting the braking force Fb(s) into two parts
such that

Fb(s) = Fbr(s) + Fbl(s) (9)

where Fbr is the part of the braking force that can be
regenerated and Fbl is a pure loss in terms of energy. The
restriction for the regenerated part is

�Fbrmax(K(s)) � Fbr(s) � 0 (10)

where Fbrmax(K(s)) is given by Pbrmax

q
m

2K(s) . The restric-
tion for the total braking force (7b) still holds. The regenerated
energy is given by rFbrds for the in�nitesimal distance ds.
The storage of the regenerated energy is commonly taken into
account by adding the state of charge (SoC) as a state variable
[29]. The model in this article does however not take limited
storage into account.

C. Cost function

The main objective in this article is the minimization of
the energy consumption. However, if this would be the only
entity to minimize, the solution would be to drive as slowly as

allowed since the energy losses increase with higher velocity
due to (3). Therefore the trip time, de�ned as

T =
Z S

0

r
m

2K(s)
ds; (11)

is added to the cost function. Penalized by a factor �, it can
be seen as an energy-equivalent loss. Adding this loss, the
objective is to minimize the total sum of input energy:

min
Ft;Fbr;Fbl

Z S

0
Ft(s) + rFbr(s) + �

r
m

2K(s)
ds: (12)

For the case of no regenerative braking, r is set to zero
in (12).

The value of � decides how the solver performs the trade-off
between consumed energy and trip time. Given a speci�c �,
there is a value of K that minimizes the cost function in (12) in
steady-state. Assuming zero acceleration and zero road grade,
Ft given by (2) is inserted to the integrand of (12). Taking the
derivative with respect to K and setting it equal to zero gives

�AfCd
m

� �
r
m
8
K�3=2 = 0; (13)

which gives
� = �AfCdv3: (14)

This relationship can be used in order to set � such that a
desired speed is optimal at steady-state.

III. THE DRIVING CORRIDOR

The driving corridor consists of varying upper and lower
constraints on the allowed kinetic energy, Ku(s) and Kl(s)
respectively. The existence of an upper constraint Ku(s)
can be motivated by legal maximum speed restrictions. The
motivation of the lower constraint is to restrict the vehicle to
drive in a way that resembles how an HDV normally drives.
The lower constraint makes an important difference to the
speed pro�le, especially during decelerations and in downhills.
From optimization without a lower constraint on the velocity,
it was found that when the vehicle approached a downhill or
an area where the maximum allowed velocity was decreasing,
the optimal solution was to coast as far as possible. This is
optimal from an energy perspective, but would probably not
be accepted by a driver nor the surrounding traf�c. The use
of the driving corridor prohibits this kind of behavior.

In order to create the driving corridor, a reference speed
trajectory vr(s) is necessary. This trajectory represents a
desired set speed, typically derived from a test cycle. On
sections where the reference velocity vr(s) is constant, the
driving corridor is centred around it. On such sections, the
constraint for the driving corridor becomes

vr(s) � v� � v(s) � vr(s) + v� (15)

for the allowed deviation v�. However, on sections where the
speed reference is lowered, i.e., where the vehicle needs to
decelerate, it is not as clear how to set the driving corridor.
In these cases, the driving corridor is constructed based on
historical data from decelerations in live operation. By creating
the driving corridor in this way, the vehicle is restricted
to decelerate in a way that resembles how similar vehicles
normally do.
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Fig. 1: A few deceleration trajectories together with the
corresponding mean deceleration when decelerating from 50-
55�km/h to 20-25 km/h.

A. Analysis of deceleration data

The data used to derive the statistics come from a heavy-
duty distribution truck in the UK. It was selected from a
database of several vehicles because its velocity varied be-
tween many different values during operation, which resem-
bles the intended driving pro�le in this article. The velocity
signal was collected from a driving distance of 39 000 km
sampled at 20 Hz. The collected data are used for different
purposes and the sampling frequency was chosen as a trade-
off between being high enough to properly describe the vehicle
dynamics and small enough not to generate too large data sets.

The features selected for analysis was the mean and standard
deviation of the decelerations. A deceleration was de�ned as
the distance between a local maximum and a local minimum
of the velocity. The velocity signal contained some high
frequency noise and was therefore �ltered with a low pass
�lter with cut-off frequency 1 Hz. The speed range, 0-90 km/h,
was divided into bins of 5 km/h. By doing so, decelerations
from e.g. 50-55 km/h to 20-25 km/h were analyzed as one type
of deceleration. A deceleration might start or end with a very
long transient not really belonging to the intended lowering
of the speed. Because of this, the top and bottom 10 % of
the change in speed was not considered to be part of the
deceleration. An example of a few deceleration trajectories and
the corresponding mean deceleration can be seen in Fig. 1.

From a total number of 20 160 decelerations, the resulting
mean deceleration rate can be seen in Fig. 2 and their corre-
sponding standard deviations in Fig. 3. The most common
deceleration was from 85-90 km/h to 75-80 km/h which
occurred 596 times and the least frequent was from 80-85 km/h
to 10-15 km/h which occurred 16 times. The outcome of the
statistical analysis is the functions d� = d�(v1; v2), which
gives the mean deceleration from a start speed v1 to an
end speed v2, and � = �(v1; v2), which gives the standard
deviation for such deceleration.
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Fig. 2: Mean of rate of deceleration as a function of start and
end speed.
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Fig. 3: Standard deviation of deceleration as a function of start
and end speed.

B. Creation of the driving corridor

The driving corridor was created from a total distance of
63 km of an internal test cycle used at Scania CV AB for
testing driving applications with varying speed. The cycle data
consist of an altitude pro�le and a desired reference speed
trajectory vr(s). The reference speed trajectory is a piecewise
constant function with a total number of 57 stops, between
which the reference speed is constant. When the reference
speed trajectory is being changed, for instance from 90 km/h
to 0 km/h, this is done from one sample to the next. When the
driving corridor is constructed, statistics collected from real
operation are used in order to set the driving corridor during
decreasing speed limits.

The creation of the driving corridor from a reference speed
trajectory can be seen in Fig. 4, where the solid line is
the reference speed trajectory and the dashed lines form the
driving corridor. Two inputs are required in order to create it.
The �rst one is the allowed deviation from the reference speed
trajectory v� given in km/h. The second input is the number
of standard deviations n� that the vehicle should be allowed
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Fig. 4: Reference speed trajectory and the driving corridor.

to deviate from the average deceleration when the reference
speed is decreased. For a position se where the reference speed
is decreased from v1 to v2, the driving corridor is created by
calculating backward from the position where the change in
reference speed occurs. The connection of the lower parts of
the driving corridor before and after the change is done using
the minimum allowed deceleration d�(v1; v2)�n��(v1; v2)).
The connection of the upper parts of the driving corridor
before and after the change is done using the maximum
allowed deceleration d�(v1; v2)+n��(v1; v2)). The variables
v� and n� are chosen as part of the simulation and the
variables d�(v1; v2) and �(v1; v2) are functions of the start
and end speed of the decelerations and are given by the data
as discussed in section III-A.

In the test cycle on which the simulations in this article
are performed, all decelerations are performed to a complete
stop. For this special case, both the upper and lower limits
of the driving corridor are set to 0 km/h. The mean rate of
decelerations with the corresponding standard deviation for
such deceleration can be seen in Fig. 5.

When the value of the speed reference is increased from
v0 to v1, as is the case at position s0 in Fig. 4, the driving
corridor does not consider statistics from accelerations of
the vehicle. Instead, a restriction that the vehicle must use
full power until the new lower limit v1 � v� is reached is
imposed. This distance is denoted smin. Since an HDV most
often accelerates more slowly than other traf�c, this is not
a disturbing restriction from the perspective of other traf�c
participants. By letting the driving corridor start at the position
where the vehicle reaches the lower limit v1 � v� by using
full power, this way of accelerating is the only feasible one.

IV. PONTRYAGIN’S MAXIMUM PRINCIPLE

A. Introduction

This section describes how (12) is minimized using PMP.
The minimization procedure leads, as in [6], to a Hamiltonian
equation to maximize and a couple of differential equations to
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Fig. 5: Deceleration statistics from the special case of complete
stop showing mean rate of deceleration as a function of starting
speed, together with the corresponding standard deviation.

be solved for over the interval. More speci�cally, PMP states
[5] that given a minimization problem

min
u(s)

Z S

0
f0(s; x(s); u(s))ds (16)

subject to
dx(s)

ds
= f(s; x(s); u(s)); (17)

the optimal solution is given by pointwise maximization of the
Hamiltonian H given by

H(s; x; u;  ) , �f0(s; x; u) +  T f(s; x; u): (18)

The variable  is the adjoint-state variable with derivative

d 
ds

= �
@H
@x

(19)

having  (0) and  (S) free given that the values on x(0) and
x(S) are �xed.

B. Analysis of the Hamiltonian

In order to apply the maximum principle to the problem
formulated in section II, let  (s) be the adjoint-state variable
corresponding to the state variable K(s). The Hamiltonian is
then given by (2) and (12) as:

H =Ft � ( � 1) + Fbr � ( � r) + Fbl 

� �
r

m
2K

+ Fw(K) + Fg 
(20)

where the dependence on s is omitted for improved readability.
When solving the maximization problem with state constraints,
one method [30] is to form the Lagrangian L given by:

L = H + �u(s)hu(K; s) + �l(s)hl(K; s); (21)
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where �u(s) and �l(s) are non-negative Lagrange multipliers
for the upper and lower constraint on the kinetic energy de�ned
by the functions

hu(K; s) , Ku(s) �K(s) � 0 (22)

hl(K; s) , K(s) �Kl(s) � 0: (23)

For the Lagrange multipliers, the conditions

�u(s)hu(K; s) = 0 (24)

�l(s)hl(K; s) = 0 (25)

must be satis�ed everywhere. From (24) it can be seen that
�u = 0 when K < Ku and �u � 0 when K = Ku. Similarly,
from (25) it can be seen that �l = 0 when K > Kl and
�u � 0 when K = Kl. These conditions are known as the
complementary slackness conditions.

The differential equation for the adjoint-state variable is
given by taking the negative derivative of the Lagrangian with
respect to the state variable, in this case the kinetic energy.
Doing so gives:

d 
ds

= (1 �  )
@Ft
@K

+ (r �  )
@Fbr
@K

�  
@Fbl
@K

� �
r

m
(2K)3 �  

@Fw
@K

+ �u � �l:
(26)

PMP states that the optimal control is received by maximiz-
ing the Hamiltonian (20). In some cases the optimal control
can be found directly by studying the Hamiltonian (20), and
in other cases the boundary value problem (BVP) (2) and (26)
must be solved. Since the only variables that can be controlled
are Ft, Fbr, and Fbl, the following regimes can be identi�ed
Full power: If  (s) > 1 then Ft(s) = Ftmax(s) and Fb(s) =

0, called the full power regime, since maximum tractive
force will maximize the Hamiltonian.

Partial power: If  (s) = 1 then 0 � Ft(s) � Ftmax and
Fb(s) = 0, called the partial power regime. The optimal
control is not given directly by the Hamiltonian here.

Coasting: If r <  (s) < 1 then Ft(s) = 0 and Fb(s) = 0,
called the coasting regime, since both the tractive and
the braking force should be equal to zero in order to
maximize the Hamiltonian.

Partial regenerative braking: If  (s) = r then Ft(s) = 0,
�Fbrmax(K(s)) � Fbr(s) � 0, and Fbl(s) = 0, called
the partial regenerative braking regime. The optimal con-
trol is not given directly by the Hamiltonian here.

Full regenerative braking: If 0 <  (s) < r then Ft(s) =
0, Fbr(s) = �Fbrmax , and Fbl(s) = 0, called the full
regenerative braking regime, since maximum regenerative
braking force will maximize the Hamiltonian.

Partial braking: If  (s) = 0 then Ft(s) = 0 and �Fbmax �
Fb(s) � �Fbrmax(K(s)), called the partial braking
regime. The optimal control is not given directly by the
Hamiltonian here.

Full braking: If  (s) < 0 then Ft(s) = 0 and Fb(s) =
�Fbmax , called the full braking regime, since maximum
braking force will maximize the Hamiltonian.

In the partial power regimes where  (s) � 1, in the partial
regenerative braking regimes where  (s) � r, and in the

partial braking regimes where  (s) � 0, the optimal control
cannot be found directly from the Hamiltonian but must be
found by solving the BVP.

C. Partial power
In the partial power regimes where  (s) � 1, (26) and

(3)-(4) gives:

�
r

m
(2K)3 �

�AfCd
m

� �u(s) + �l(s) = 0: (27)

There are possibly three different scenarios in which this can
occur, depending on if the vehicle is driving at any of the two
speed limits or not. Considering the case when the vehicle has
a kinetic energy between the upper and lower constraints, then
(27) becomes:

�
r

m
(2K)3 �

�AfCd
m

= 0 (28)

which is equivalent to (14). There is a unique solution to
(28) denoted K = Ks, where the constant Ks is called
the stabilization energy that will depend on how � and the
parameters in the resistive force Fw are chosen.

Considering the case when the vehicle is keeping a kinetic
energy equal to the upper constraint, then hu(K; s) = 0 and
�u(s) > 0 by (24). Equation (27) becomes:

�
r

m
(2K)3 �

�AfCd
m

� �u(s) = 0 (29)

which has a solution K � Ks. Using the same argumentation
when driving at the lower constraint, equation (27) has a
solution K � Ks.

Since the vehicle is limited by a maximum tractive force,
it might not be able to keep the constant kinetic energy Ks
or follow the upper or lower constraint for the kinetic energy.
Whether or not partial power can occur at a speci�c position
depends on how steep the uphills are and how rapid the
changes in the speed limits are. The conditions for the different
types of partial power are:

� K(s) = Ks can occur when Kl(s) � K(s) � Ku(s)
and 0 � �Fg(s) � Fw(K(s)) � Ftmax(K(s)).

� K(s) = Kl(s) can occur when Ks � Kl(s) and 0 �
�Fg(s) � Fw(K(s)) + dKl

ds � Ftmax(K(s)).
� K(s) = Ku(s) can occur when Ku(s) � Ks and 0 �

�Fg(s) � Fw(K(s)) + dKu
ds � Ftmax(K(s)).

D. Partial regenerative braking
In partial regenerative braking regimes where  (s) � r,

(26) becomes:

�
r

m
(2K)3 � r

�AfCd
m

� �u(s) + �l(s) = 0: (30)

There are possibly three different scenarios in which this can
happen. In the �rst one, the vehicle is driving between the
upper and lower constraints. Then �l = 0 and �u = 0 and
(30) has a unique solution denoted Ksr. In the second one,
the vehicle is driving at the upper speed limit. Then �l = 0
and �u > 0 and (30) has a solution for K < Ksr. In the
third one, the vehicle is driving at the lower speed limit. Then
�l > 0 and �u = 0 and (30) has a solution for K > Ksr.
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E. Partial braking
In partial braking regimes where  (s) � 0, (26) becomes:

�
r

m
(2K)3 � �u(s) + �l(s) = 0: (31)

Since both �u(s) and �l(s) are non-negative, there only exists
a solution when �u(s) > 0. Partial braking can thus only occur
in situations when the vehicle is driving at the upper speed
limit K(s) = Ku(s) and, because of the limited braking force,
when �Fbmax � �Fw(K(s)) � Fg(s) + dKu

ds � 0.

F. Linking of intervals
As discussed in section IV-B, the optimal control can in

situations when  (s) = 1,  (s) = r or  (s) = 0 not be
found directly from the Hamiltonian. In some special cases,
typically for shorter distances,  (0) can be chosen such that
(2) and (26) can be integrated over the full interval without
 (s) ever being constantly equal to any of these values on any
subinterval and satisfying the boundary conditions for K. In
these cases the optimal solution is found by a shooting method
in order to �nd a value on  (0) that will solve (2) and (26) over
the full interval. For most problem formulations consisting
of longer driving distances however, there are sections where
the optimal solution contains sections of partial power, partial
regenerative braking or partial braking. Finding the optimal
solution consists of linking all or some of these sections by
�nding the point of entry and exit by integrating (2) and (26)
given the boundary conditions for  (s) and K(s).

The Lagrange multipliers �u(s) and �l(s) are not continu-
ous function but can jump from 0 to some positive value when
the velocity reaches the corresponding limit. From this fact,
it follows that (26) can make a positive jump when reaching
or leaving the upper speed limit and a negative jump when
reaching or leaving the lower speed limit. These facts are used
during linking of the intervals.

G. Benchmark trajectory
In order to be able to quantitatively analyze the energy

savings, the derived trajectories are compared to a benchmark
solution. The simplest way of doing so would be to compare
the trajectories with a trajectory only consisting of full power,
constant speed and braking according to the mean decelera-
tion rate from the available statistics. Such trajectory would
however not be very realistic. It would for instance suddenly
change from traction to braking when entering a downhill and
thereby not use any look-ahead at all, not even for what is in a
visible view. Since the bene�ts of look-ahead control are well
established, the chosen benchmark solution is allowed to use
this technique to a small extent by allowing small deviations
from the reference. This is done by forcing it to be within a
driving corridor with �v = 1 km/h, n� = 0:5.

V. MODEL PREDICTIVE CONTROLLER

The previous section found the optimal speed trajectory
of�ine for the full driving mission using PMP. Implementing
this method directly as an optimal control algorithm is not

realistic. Any disturbance would have the effect that the
vehicle would deviate from the optimal trajectory, resulting
in the derived control no longer being optimal. In this section
an MPC, which can handle this problem, is developed. The
MPC solves the optimization online, implements only the �rst
part of the optimal control and then resolves the optimization
problem based on the most recent information. The results
from using PMP are used as references for the optimal solution
and it is investigated how the energy consumption by using
different horizon lengths in the MPC relates to these results.

In order to use MPC, the problem formulated in section II is
discretized using zero-order hold with step length �s = 20 m.
De�ning the control vector

Fk =
�
Ft;k Fb;k

�T ; (32)

and with Fw;k and Fg;k de�ned as in (3) and (6), then (2)
becomes

Kk+1 = AkKk +BFk + vk (33)

where

A = eAc�s; (34a)

B =
�
eAc�s

Ac
�

1
Ac

��
1 1

�
; (34b)

vk = �
�
eAc�s

Ac
�

1
Ac

�
mg (sin�k + cr cos�k) (34c)

where Ac = ��AfCd
m . The total energy consumption when

driving from a position denoted by k to a position denoted by
N is given by

PN�1
k=1 Ft;k�s, where �s � (N � 1) gives the

horizon length of the MPC. The evolved time from position
k to k + 1 is approximated by

tk = �s
r
m
2
K�1=2
k : (35)

Since the MPC should solve the optimization problem online,
it is important that it can be solved quickly. One way of
achieving this is to formulate the problem as a QP. In order
to do this, the cost function needs to be quadratic in the state
and control variables and the equality constraints need to be
linear. Both the cost function (12) and the constraints involving
limitations on the maximum power (8) contain the expression
K�1=2. They therefore need to be approximated by the second
and �rst order Taylor approximation respectively. The second
order Taylor approximation of the kinetic energy around a
reference trajectory Kr is given by

K�1=2 � K�1=2
r �

1
2
K�3=2
r (K �Kr)

+
3
8
K�5=2
r (K �Kr)2:

(36)

Using (36) in (35) gives the approximated time at step k as

tk =
r
m
2

�s
8

�
15K�1=2

r;k �10K�3=2
r;k Kk+3K�5=2

r;k K2
k

�
: (37)

Relations of the type F = P=v are used in the constraints (8)
and (10) and these therefore need to be approximated by the
�rst order Taylor approximation such that

F =
r
m
2
P
2

(3K�1=2
r �K�3=2

r K): (38)
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The reference trajectory Kr is the kinetic energy given by
the state prediction from the previous iteration. At the very
�rst iteration, it is given by the trajectory received by full
acceleration until vr is reached. The total trip time becomes
T =

PN�1
k=1 tk: The tractive and braking forces are restricted

by:

0 �Ft;k � Ftmax ; (39a)
Ft;k � a1 + a2Kk; (39b)

�Fbmax �Fb;k � 0: (39c)

with a1 =
pm

2
Pmax

2 3K�1=2
r;k and a2 = �

pm
2
Pmax

2 K�3=2
r;k by

(38). At the end of the horizon, residual kinetic energy KN is
subtracted from the cost function. This follows naturally, since
at all iterations leading up to this point, the amount of energy
used to accelerate the vehicle is penalized. The optimization
problem to be solved at each iteration becomes

min
F

N�1X

k=1

�
QkK2

k + q1Kk + qT2 Fk + pk
�

�KN (40)

subject to

Kk+1 �AKk �Buk � vk = 0 (41a)

Kl;k �Kk � Ku;k (41b)
0 �Ft;k � Ftmax (41c)

Ft;k � a1 + a2Kk (41d)
�Fbmax �Fb;k � 0 (41e)

where A;B and vk are given by (34) and

Qk = ��s
r
m
2

3
8
K�5=2
r;k (42a)

q1;k = ���s
r
m
2

5
4
K�3=2
r;k (42b)

qT2 = �s
�
1 0

�
(42c)

pk = ��s
r
m
2

15
8
K�1=2
r;k : (42d)

In the case of regenerative braking, the cost function is modi-
�ed to include the regenerated energy such that (42c) becomes
qT2 = �s

�
1 -r 0

�
. The control vector (32) is modi�ed to

Fk =
�
Ft;k Fbr;k Fbl;k

�T (43)

and the constraint (41e) is modi�ed to

�Fbmax � Fbr;k + Fbl;k � 0 (44a)

�Pbrmax

r
m
8

(3K�1=2
r �K�3=2

r K) � Fbr;k � 0 : (44b)

Using the tool Yalmip [31], this problem was formulated as a
QP, for which many ef�cient solvers exist.

VI. SIMULATION RESULTS

Simulations were performed using Matlab with a self-
written solver when using PMP and the Matlab solver quad-
prog when using MPC. The driving corridor was constructed
from a 60 km test cycle commonly used at Scania CV AB
for testing driving applications with variations in the speed
pro�le. The reference speed of this driving cycle varies mostly
between 30-70 km/h but also includes one section of 90 km/h.

The simulations were performed in order to investigate the
two main topics of interest, i.e., the in�uence of variations
in the driving corridor on the resulting energy consumption
for the of�ine solver, presented in VI-A and the in�uence of
variations in the horizon length for the MPC, presented in
VI-B. In both these cases, the potential of saving energy when
enabling regenerative braking was also investigated.

In order to be able to fairly compare simulations originating
from different driving corridors, the tuning parameter � was
varied in between simulations in order to obtain trip times
similar to those of the benchmark solution. If the trip times
still deviated, linear interpolation of the results was performed
between simulations with the most similar trip times.

A. Variations in the driving corridor
The resulting energy consumption for different settings on

the driving corridor can be seen in Fig. 6a. The selection of the
settings on the driving corridor are made such that the allowed
deviations are large enough to allow for energy saving driving,
but small enough not to deviate too much from a normal
way of driving. Each stack shows the percentage of energy
loss that originates from air resistance, rolling resistance, and
braking. They are normalized by the energy consumption of
the benchmark solution. The benchmark solution is obtained
by letting �v = 1 km/h and n� = 0:5. In Fig. 6b, the same
analysis is performed with the vehicle having the possibility
to regenerate part of the energy used for braking.

One typical section of the simulations is shown in Fig. 6c
in order to visualize the differences in trajectories depending
on the driving corridor. In the downhill at around 1500 m, the
vehicle following the widest driving corridor in terms of �v
avoids braking by coasting ahead of the downhill. Towards
the end, the vehicle following the widest driving corridor in
terms of n� saves more energy than the other by starting
coasting ahead of them. The same section is shown in Fig. 6d
for the case of regenerative braking. Here it can be seen that
the vehicle restricted by the wider driving corridor in terms
of n� starts both coasting and braking earlier. In both cases
with and without regenerative braking, the reduction in energy
consumption by widening the driving corridor is achieved by
decreasing the losses due to braking. It can be seen in Fig. 6b
that the losses due to air resistance increase with wider driving
corridor. This is due to the fact that in order to compensate for
the time lost during longer coasting and braking, it must drive
faster on other sections, which increases the air resistance.

B. Variations in the horizon length
The previous subsection found the upper limit for the

possible energy savings given different settings on the driv-
ing corridors. The simulations performed in this subsection
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investigate how the length of the control horizon in the MPC-
solver in�uences the possibility to realize these savings. The
driving corridor is here �xed at �v = 4 km/h, n� = 1 std. The
simulations were run with a laptop equipped with an Intel(R)
Core(TM) i7-6820HQ CPU at 2.70 GHz and 16GB of RAM.
The average computational time for solving one iteration of
(40)-(41) was 46 ms for a horizon length of 1000 m.

In Fig. 7a, simulation results are presented for different
lengths of the control horizon. The results are normalized with
the optimal solution found by PMP for this driving corridor,
shown as the rightmost stack. The corresponding result is
shown in Fig. 7b for the case of regenerative braking. The
same section as in the previous subsection is shown in Fig. 7c.
As can be seen in the �gure, the vehicle with the longest
control horizon can predict both the upcoming downhill at
around 1500 m and the deceleration toward the end. By doing
so, it avoids braking and saves energy by coasting a longer
distance. For the case of regenerative braking in Fig. 7d,
the vehicle with longer horizon starts both the coasting and
braking phase earlier than the vehicle with the shorter horizon.

C. Discussion

It was found during simulations that the optimal trajectories
were very similar when using PMP as when using MPC with
the longest horizon lengths. This indicates that the chosen
discretization of the MPC is a good trade-off between com-
putational complexity and correctness of vehicle dynamics.

It can be noted that for a given driving corridor or horizon
length, enabling regenerative braking decreases the consumed
energy, but increases the total amount of converted energy.
For instance in Fig. 6a, for �v = 6 km/h and n� = 2, the
input energy is 85.0 % of the benchmark while in Fig. 6b,
the corresponding energy is 93.8 %(including the regenerated
energy). The explanation lies in the fact that the trip times
of the two simulations are the same. Allowing regenerative
braking makes the vehicle brake in downhills and ahead of
stopping to a greater extent. In order to compensate for the
time lost because of this, the vehicle must drive faster at
other parts of the trip. For this example, the values of �
necessary to achieve the same trip correspond to velocities of
around 70 km/h and 90 km/h in (14) for regenerative braking
disabled and enabled respectively. Given a driving corridor or
horizon, the total amount of converted energy is greater when
enabling regenerative braking. But since a big portion of the
converted energy is regenerated, the actual energy consump-
tion is smaller. The capacity of storing the regenerated energy
is not considered speci�cally in this thesis. It is assumed that
the energy is used for traction such that the storages is never
full or empty. This is motivated by the fact that the highest
amount of regenerated energy, for the widest driving corridor
during deceleration from 90 km/h, is less than 1.1 kWh. The
usable capacity of a small battery used in a Scania hybrid
truck for city use was for instance 1.2 kWh in 2015 [32].

The in�uence of the horizon length of the MPC was
investigated for the driving corridor �v = 4 km/h, n� = 1 std.
For this speci�c driving corridor, it can be seen in Fig. 7a
and Fig. 7b that the maximum possible energy savings are

achieved for a horizon length of 1000 m. Most of the energy
savings are achieved already with a horizon length of 500 m.
These observations seem to be valid regardless of whether
regenerative braking is enabled or not.

It can be seen in Fig. 6 and Fig. 7 that the vehicle keeps
constant speed in the uphills. It is common that HDVs cannot
always do so, typically in uphills in highway driving where the
required power is greater than that of the engine. However, due
to the vehicles relatively high power compared to its weight
combined with relatively low velocities, the vehicle in these
simulations can keep constant speed in the uphills.

VII. CONCLUSION AND FUTURE WORK

The simulations performed in this article indicate that large
amounts of energy can be saved by controlling the vehicle
optimally and allowing for variations around the reference
trajectory. Allowing deviations of 4 km/h and 1 standard de-
viation during decelerations saves 6.7 % of energy without
increasing the trip time. This can be compared to 3.5 % savings
for highway driving found in [33]. The possible savings are
greater in urban driving than in highway driving, since the
potential of reducing losses due to braking is greater.

When implementing the controller as an MPC, a horizon
length of 500 m achieves most of the possible energy savings.
This can be compared to studies on different highways [34],
where horizon lengths 1000-3000 m are necessary to achieve
the same proximity to optimality. The work presented in this
article shows the importance of developing intelligent speed
controllers for driving in environments with varying speed
requirements, such as urban driving.

Even though one motivation for implementing the MPC in
this article is the ability to handle disturbances online, no
such are applied in the simulations. In urban driving, such
disturbances will typically originate from other vehicles that
reduce the possibility to drive in an energy ef�cient manner.
The in�uence of other vehicles is in this article only made
indirectly through the limitations that the driving corridor
imposes. Directly considering other vehicles is ongoing work
and will be presented in future publications.
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