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Abstract

This dissertation is concerned with three problems within the field of opti-
mization for agent–based systems. Firstly, the inverse optimal control prob-
lem is investigated for the single-agent system. Given a dynamic process, the
goal is to recover the quadratic cost function from the observation of opti-
mal control sequences. Such estimation could then help us develop a better
understanding of the physical system and reproduce a similar optimal con-
troller in other applications. Next, problems of optimization over networked
systems are considered. A novel differential game approach is proposed for
the optimal intrinsic formation control of multi-agent systems. As for the
credit scoring problem, an optimal filtering framework is utilized to recur-
sively improve the scoring accuracy based on dynamic network information.

In paper A, the problem of finite horizon inverse optimal control prob-
lem is investigated, where the linear quadratic (LQ) cost function is required
to be estimated from the optimal feedback controller. Although the infinite-
horizon inverse LQ problem is well-studied with numerous results, the finite-
horizon case is still an open problem. To the best of our knowledge, we pro-
pose the first complete result of the necessary and sufficient condition for the
existence of corresponding LQ cost functions. Under feasible cases, the ana-
lytic expression of the whole solution space is derived and the equivalence of
weighting matrices is discussed. For infeasible problems, an infinite dimen-
sional convex problem is formulated to obtain a best-fit approximate solution
with minimal control residual, where the optimality condition is solved under
a static quadratic programming framework to facilitate the computation.

In paper B, the optimal formation control problem of a multi-agent sys-
tem is studied. The foraging behavior of N agents is modeled as a finite-
horizon non-cooperative differential game under local information, and its
Nash equilibrium is studied. The collaborative swarming behaviour derived
from non-cooperative individual actions also sheds new light on understand-
ing such phenomenon in the nature. The proposed framework has a tuto-
rial meaning since a systematic approach for formation control is proposed,
where the desired formation can be obtained by only intrinsically adjusting
individual costs and network topology. In contrast to most of the existing
methodologies based on regulating formation errors to the pre-defined pat-
tern, the proposed method does not need to involve any information of the
desired pattern beforehand. We refer to this type of formation control as in-
trinsic formation control. Patterns of regular polygons, antipodal formations
and Platonic solids can be achieved as Nash equilibria of the game while
inter-agent collisions are naturally avoided.

Paper C considers the credit scoring problem by incorporating dynamic
network information, where the advantages of such incorporation are inves-
tigated in two scenarios. Firstly, when the scoring publishment is merely
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individual–dependent, an optimal Bayesian filter is designed for risk predic-
tion, where network observations are utilized to provide a reference for the
bank on future financial decisions. Furthermore, a recursive Bayes estimator
is proposed to improve the accuracy of score publishment by incorporating
the dynamic network topology as well. It is shown that under the proposed
evolution framework, the designed estimator has a higher precision than all
the efficient estimators, and the mean square errors are strictly smaller than
the Cramér–Rao lower bound for clients within a certain range of scores.

Keywords: Inverse optimal control; formation control; differential game;
credit scoring.
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Sammanfattning

I denna avhandling behandlas tre problem inom optimering för agentbaserade
system. Inledningsvis undersöks problemet rörande invers optimal styrning
för ett system med en agent. Målet är att, givet en dynamisk process, åter-
skapa den kvadratiska kostnadsfunktionen från observationer av sekvenser
av optimal styrning. En sådan uppskattning kan ge ökad förståelse av det
underliggande fysikaliska systemet, samt vara behjälplig vid konstruktion
av en liknande optimal regulator för andra tillämpningar. Vidare betrak-
tas problem rörande optimering över nätverkssystem. Ett nytt angreppssätt,
baserat på differentialspel, föreslås för optimal intrinsisk formationsstyrning
av system med fler agenter. För kreditutvärderingsproblemet utnyttjas ett
filtreringsramverk för att rekursivt förbättra kreditvärderingens noggrannhet
baserat på dynamisk nätverksinformation

I artikel A undersöks problemet med invers optimal styrning med ändlig
tidshorisont, där den linjärkvadratiska (LQ) kostnadsfunktionen måste upp-
skattas från den optimala återkopplingsregulatorn. Trots att det inversa LQ-
problemet med oändlig tidshorisont är välstuderat och med flertalet resultat,
är fallet med ändlig tidshorisont fortfarande ett öppet problem. Så vitt vi vet
presenterar vi det första kompletta resultatet med både tillräckliga och nöd-
vändiga villkor för existens av en motsvarande LQ-kostnadsfunktion. I fallet
med lösbara problem härleds ett analytiskt uttryck för hela lösningsrummet
och frågan om ekvivalens med viktmatriser behandlas. För de olösbara prob-
lemen formuleras ett oändligtdimensionellt konvext optimeringsproblem för
att hitta den bästa approximativa lösningen med den minsta styrresidualen.
För att underlätta beräkningarna löses optimalitetsvillkoren i ett ramverk för
statisk kvadratisk programmering.

I artikel B studeras problemet rörande optimal formationsstyrning av
ett multiagentsystem. Agenternas svärmbeteende modelleras som ett icke-
kooperativt differentialspel med ändlig tidshorisont och enbart lokal informa-
tion. Vi studerar detta spels Nashjämvikt. Att, ur icke-kooperativa individu-
ella handlingar, härleda ett kollaborativt svärmbeteende kastar nytt ljus på
vår förståelse av sådana, i naturen förekommande, fenomen. Det föreslagna
ramverket är vägledande i den meningen att det är ett systematiskt tillvä-
gagångssätt för formationsstyrning, där den önskade formeringen kan erhål-
las genom att endast inbördes justera individuella kostnader samt nätverk-
stopologin. I motstat till de flesta befintliga metoder, vilka baseras på att
reglera felet i formeringen relativt det fördefinierade mönstret, så behöver
den föreslagna metoden inte på förhand ta hänsyn till det önskade mönstret.
Vi kallar denna typ av formationsstyrning för intrinsisk formationsstyrning.
Mönster så som regelbundna polygoner, antipodala formeringar och Platon-
ska kroppar kan uppnås som Nashjämvikter i spelet, samtidigt som kolli-
sioner mellan agenter undviks på ett naturligt sätt.
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Artikel C behandlar kreditutvärderingsproblemet genom att lägga till dy-
namisk nätverksinformation. Fördelarna med en sådan integrering under-
söks i två scenarier. Då kreditvärdigheten enbart är individberoende utfor-
mas ett optimalt Bayesiskt filter för riskvärdering, där observationer från
nätverket används för att tillhandahålla en referens för banken på framtida fi-
nansiella beslut. Vidare föreslås en rekursiv Bayesisk estimator (stickprovs-
variabel) för att förbättra noggrannheten på den skattade kreditvärdigheten
genom att integrera även den dynamiska nätverkstopologin. Inom den föres-
lagna ramverket för tidsutveckling kan vi visa att, för kunder inom ett visst
intervall av värderingar, har den utformade estimatorn högre precision än
alla effektiva estimatorer och medelkvadrafelet är strikt mindre än den nedre
gränsen från Cramér–Raos olikhet.
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Chapter: 1

Introduction

In this thesis, the problems of inverse optimal control and dynamic optimization for
agent-based systems are investigated. In particular, three subproblems are studies:

1. Inverse linear quadratic optimal control problem:
Given the optimal controller of a dynamic system, recover the quadratic cost
function based on which the optimal controller is generated.

2. Optimal intrinsic formation control problem:
Design a systematic method for multi-agent systems to realize different for-
mations optimally and intrinsically, where only local information from neigh-
bors are available.

3. Credit scoring problem incorporated by network information:
In addition to individual financial attributes, is it possible to use network-
based measurements to further improve the credit score accuracy?

This chapter contains a brief introduction of the background and motivation of
the problems studied in the thesis. A preview of all the appended papers is also
included. Preliminary knowledge and mathematical tools used in this thesis can be
found in the next chapter.
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1. INTRODUCTION

1.1 Background and Motivations

Inverse Optimal Control

Throughout the evolution of nature, the optimality principle has been investigated
as an important tool to analyze natural phenomena, such as Fermat’s law in optics
and principle of least action in mechanics. In the field of biology, it is also a general
hypothesis that the behavior of living systems are generated based on some optimal
criteria, which leads to a promising topic of inverse optimization.

In recent years, the problem of inverse optimization has regained increasing
popularity in the fields of robotics, economics, and bionics [22, 9, 5, 6]. The basic
question is that given a dynamic system, when we observe the optimal policy of
a specific task, how can we recover the optimization criterion based on which the
optimal policy is generated? Such estimation could then help us develop a better
understanding of the physical system and reproduce a similar optimal controller
in other applications. For example, inverse optimal control is a promising tool to
investigate the mechanisms underlying the human locomotion and to implement
them in the design of humanoid robots [21].

As for the general case, the problem of reconstructing cost functions has been
investigated intensively. Among the existing literatures, one well-studied direction
is to treat it as a parameter identification problem, where numerous numerical re-
sults have been developed [22, 5, 12, 20, 15, 30, 29]. Under this situation the cost
function is usually assumed to be a linear combination of certain basic functions,
with the weights remaining to be identified. Then the unknown coefficients can be
obtained whether by machine learning methods or residual optimization based on
optimality conditions.

Among the various forms of the cost function, one important direction falls
under the field of deterministic linear quadratic problems, which are not only well-
defined but also popular for practical purposes. Some analytic results can also
be obtained due to its special form. The inverse LQ problem is first proposed by
Kalman in 1964 [17]. Compared to general cost estimation problems, the difficulty
of the inverse LQ problem lies in the fact that the weighting matrix has to be es-
timated in the positive semi-definite cone. Although for infnite-horizon case there
exist a number of results [1, 10, 8, 31], the finite-horizon problem is still an open
problem, which is investigated in this thesis by the following steps:

1. Existence: determine the necessary and sufficient conditions on system ma-
trices and the observed feedback control u∗(t), such that u∗(t) is an optimal
control law for some linear quadratic cost function.
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1.1. Background and Motivations

2. Solution: determine all pairs of weighting matrices in the cost function cor-
responding to the same optimal controller.

• If the existence problem is feasible, give the analytic expression of the
whole solution space.

• For infeasible case, derive a best approximate cost function with mini-
mal control residual.

Multi-Agent Systems and Formation Control

Multi-agent coordination is a fast-emerging field in control community, which has
gained increasing attention in the past decades. Many research topics within this
field are inspired by biological modeling of the collective phenomena in the nature,
such as flocking of birds and fishes [11]. Multi-agent system is popular due to its
advantages of better robustness as well as lower communication and computation
burden. The theory has been widely applied to motion planning of multi-robots
system, where the agents control their own dynamics to achieve a cooperative task
by exchanging information with neighbors. Following significant results on con-
sensus problem, realization of various formation patterns has attracted more atten-
tion in the past several years [27].

In this thesis, the formation control problem is investigated in a differential
game framework, where the novelty are motivated from the following aspects.

Intrinsic control: As for the non-consensus formation control problem, most ex-
isting methodologies are based on the pre-defined formation pattern, where the
formation error is regulated to zero [18, 19]. Inspired by [38, 34], in this thesis
the formation is achieved in an “intrinsic" way in the sense that it is only attributed
to the inter-agent interaction and geometric properties of the network, where the
desired formations are not designated beforehand. The reduced attitude on the
compact manifold S2 is considered in [38, 34], and symmetric formations can be
obtained by designing inter-agent repulsion. However, those results cannot be ap-
plied to the Euclidean space directly since it is unbounded.

Distributed framework: Implementing the system in a distributed framework is
mainly motivated by two aspects. Firstly, the distributed manner facilitates more
robustness than centralized structures, where the collapse of a single node might
lead to the breakdown of the whole system. Secondly, Modeling and computation
tasks are becoming much more complex as the size of the system continues to in-
crease. It is communicationally heavy or sometimes impossible for each agent to

5



1. INTRODUCTION

know the absolute positions of all other agents. Relying merely on local informa-
tion of neighbors can significantly decrease the burden and facilitate the controller
design.

Non-cooperative differential game framework: In recent years, the game theo-
retic approach has shed new light on the formation control problems. Game the-
ory, in particular evolutional game theory, has been applied to multi-agent sys-
tems such as [23, 26]. Although there are numerous results on situations in which
agents cooperative to achieve a common task, there are more practical scenar-
ios where agents have individual and partial conflicting goals, thus leading to a
non-cooperative setting. Differential games focus on multi-player decision making
problems over a given time interval, where each agent aims to optimize its own,
individual cost subject to the common state dynamics [2]. Furthermore, game the-
oretical approach has the advantage of realizing desired formations from an op-
timization perspective. The derived controller is then not only optimal, but also
possesses better performance like robustness. However, among the existing results
of formation control problem based on differential game theory, most papers focus
on the synchronization problem [32, 3, 33]. To the best of our knowledge, only a
few papers in this field have considered the case outside the consensus framework,
such as [28, 37].

Network-Based Credit Scoring

When it comes to the purchase of financial assets such as deposits, loans and secu-
rities, one major issue with granting loans is whether the clients could fulfill their
obligation or not, which is characterized in the form of credit scores. The credit
scoring problem has been one of the key topics in financial risk management anal-
ysis for individual customers, giant commercial loans, and even governments [4].
The purpose of credit scoring is to assess the ability and willingness of individu-
als to meet their financial obligations on time. The scorings by the credit bureau
(e.g., financial institutions or governments) play an important role in the investors’
decisions.

The overall objective of credit scoring prediction is to build models that can
extract knowledge of credit risk evaluation from past observations [13]. There ex-
ist numerous promising results on credit prediction based on different choices of
statistical models, such as the Credit Risk+ model by Credit Suisse Financial Prod-
ucts (CSFP) [35] and the KMV model developed by KMV company [7]. In some
methods, credit rating is also formulated as a classification problem and various
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1.2. Summary of the Appended Papers

tools of machine learning can be utilized [24, 16].
Up until recently, assessing consumers’ creditworthiness relies merely on their

own financial attributes. In the above existing methods, individual data like salary,
debt value and length of credit history has been considered as main attributes in
credit rating models. However, in recent years the credit scoring industry has wit-
nessed a dramatic change in data sources [36]. Network information such as users’
social networking profiles or the trading network information provided by the bank
has attracted increasing attention.

Motivated by the growing use of network information, in this thesis the network-
based credit scoring problem is investigated. In particular, the following two ques-
tions are addressed:

1. How to model the relationship between network information and individual
credit scores?

2. Is there any advantage of network-based credit scoring over methods only
based on individual data? If the answer is affirmative, how to use network
information to derive a more accurate scoring?

1.2 Summary of the Appended Papers

Paper A Continuous-Time Inverse Quadratic Optimal Control
Problem

This paper is co-authored with Yu Yao and Xiaoming Hu, and is submitted to
Automatica, 2018.

Summary: In paper A, the problem of finite horizon inverse optimal control is in-
vestigated. The goal is to recover the quadratic cost function of a dynamic process
based on the observation of optimal control sequences. As for the inverse Linear
Quadratic (LQ) problem, although the infinite-horizon case is well-studied with
numerous results, the finite-horizon problem is still an open problem. In contrast
to existing works like [25] and [14], here we focus on the standard form without
cross terms, which is more advantageous in its practical meaning. To the best of our
knowledge, we propose the first complete result of the necessary and sufficient con-
dition for the existence of corresponding LQ cost functions. Under feasible cases,
the analytic expression of the whole solution space is derived and the equivalence
of weighting matrices in LQ problems is discussed. For infeasible problems, an
infinite dimensional convex problem is formulated to obtain a best-fit approximate
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1. INTRODUCTION

solution with minimal control residual. And the optimality condition is solved un-
der a static quadratic programming framework to facilitate the computation. The
performance of the proposed methods are also illustrated by numerical examples
and simulations.

Contribution: The main idea is initiated by the co-author Xiaoming Hu. The
contribution by the author of the thesis is the main part of theoretical results and
other authors primarily provide suggestions to improve the quality of the paper.

Paper B A Differential Game Approach to Optimal Intrinsic
Formation Control

This paper is co-authored with Xiaoming Hu, and is submitted to IEEE Annual
Conference on Decision and Control (CDC), 2019.

Summary: Paper B concerns the optimal formation control problem of a multi-
agent system. The foraging behavior of N agents is modeled as a finite-horizon
non-cooperative differential game under local information, and its Nash equilib-
rium is studied. In contrast to most of the existing methodologies based on reg-
ulating formation errors to the pre-defined pattern, in this paper formations are
achieved in an intrinsic manner that does not need to involve any information of
the desired pattern beforehand. The proposed framework has a tutorial meaning
since a novel systematic approach for formation control is proposed, where the de-
sired formation can be obtained by only intrinsically adjusting individual costs and
network topology. Patterns of regular polygons, antipodal formations and Platonic
solids can be achieved as Nash equilibria of the game while inter-agent collisions
are naturally avoided. Furthermore, the results not only lead to a better under-
standing of the natural phenomenon where a collaborative swarming behaviour
can result from non-cooperative individual actions, but also bring new inspiration
in the construction of other formations. Numerical simulations are also provided
in both two-dimensional and three-dimensional Euclidean space to demonstrate the
effectiveness and feasibility of the proposed methods.

Contribution: The main idea is initiated by the co-author Xiaoming Hu. The
theoretical results are developed by the author of this thesis under the supervision
of Xiaoming Hu.
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1.2. Summary of the Appended Papers

Paper C Credit Scoring by Incorporating Dynamic Network
Information

This paper is co-authored with Ximei Wang, Boualem Djehiche and Xiaoming Hu,
and is submitted to Journal of Economic Dynamics and Control, 2019.

Summary: Paper C considers the credit scoring problem for a group of clients.
In contrast to most of the existing methodologies where only individual financial
attributes are utilized, this paper also investigates the advantages of incorporating
network information. The client network is modeled according to homogeneous
preference based on others’ credit assessments reported by the bank. It is shown
that such correlation can be developed to further improve the scoring precision in
two scenarios. Firstly, a Bayesian optimal filter is proposed to provide a risk pre-
diction for banks assuming that published credit scores are estimated merely from
structured individual data. Such prediction can then serve as a reference for the
bank on future financial decisions. We further propose a recursive Bayes estimator
to improve the accuracy of score publishment by incorporating the dynamic inter-
action topology of clients as well. It is shown that under the proposed evolution
framework, the estimation variance can be significantly reduced, which is strictly
smaller than the Cramér–Rao lower bound. In addition, as for the uniformly dis-
tributed scores, the mean square error of the proposed estimator is strictly smaller
than that of all efficient estimators for clients in the middle class.

Contribution: The main ideas emerged from the discussion among all the authors.
The theoretical results are mainly developed by the author of this thesis, and the
numerical simulations are conducted in cooperation with Ximei Wang.
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Chapter: 2

Preliminaries

This chapter provides an overview of some well-known concepts and theories that
will be used in this thesis. Mathematical tools of control theory, optimal control,
differential games, convex optimization and estimation theory are covered. Since
all the theory in this chapter has been well-established, the proof of the theorems
in this chapter will be omitted. Further details can be found in the books listed on
the reference list at the end of this chapter.

2.1 Control Systems

In this part, some fundamental concepts in control theory are introduced. In gen-
eral, a continuous-time dynamic system can be modeled in its state-space form by
a set of ordinary differential equations (ODE)

ẋ(t) = f(t, x(t), u(t)),
y(t) = h(t, x(t), u(t)),

(2.1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rm is the control input and y(t) ∈
Rp is the output.

In order for (2.1) to be a well-posed model, some fundamental properties of the
ODE has to be investigated.
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Theorem 2.1.1 (Local Existence and Uniqueness). Consider the initial value prob-
lem

ẋ(t) = f(t, x(t)), x(t0) = x0. (2.2)

Let f(t, x) be piecewise continuous in t and satisfy the Lipschitz condition on
a neighborhood x ∈ B(x0) and t ∈ [t0, t1]. Then there exists some δ > 0 such
that (2.2) has a unique solution over [t0, t0 + δ].

Roughly speaking, the Linear time-invariant (LTI) system serves as the funda-
mental model of control theory, which also provides the theoretic basis for many
advanced nonlinear systems. In general, a LTI system is modeled by

ẋ(t) = Ax(t) +Bu(t),
y(t) = Cx(t) +Du(t),

(2.3)

where A, B, C and D are constant matrices with proper dimensions.
The solution of state trajectory x(t) to (2.3) and be determined by its state

transition matrix
Φ(t, s) = eA(t−s), (2.4)

and thus

x(t) = eA(t−t0)x0 +

∫ t

t0

eA(t−s)B(s)u(s)ds. (2.5)

Controllability and observability are two fundamental properties of the control
system. For LTI systems, they can be determined by the following theorem.

Theorem 2.1.2. The LTI system (2.3) is controllable if and only if the controllabil-
ity matrix

Γ =
[
B AB · · · An−1B

]
,

has full row rank; the system is observable if and only if the observability matrix

Ω =


C
CA

...
CAn−1

 ,
has full column rank.
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2.2 Optimal Control

Optimal control theory is an important component of modern control theory, which
provides a systematic tool for a large variety of control design problems. Optimal
control theory is closely related in its origins to the theory of calculus of varia-
tions, and is further developed by giants as Bernoulli, Euler, Lagrange, and so on.
In particular, Pontryagin minimum principle (PMP) and Bellman’s dynamic pro-
gramming are two powerful tools for solving most optimal control problems. The
linear quadratic regulator (LQR) of particular importance

A general optimal control problem can be formulated as:

min
u

φ(x(tf )) +

∫ tf

t0

f0 (t, x (t) , u (t))dt

s.t. ẋ (t) = f (t, x (t) , u (t))

x (t0) = x0

x (tf ) ∈ Sf
u(t) ∈ U(t, x(t)).

(2.6)

Pontryagin minimum principle

Define the Hamiltonian function

H(t, x, u, λ) = f0(t, x, u) + λT f(t, x, u), (2.7)

where λ(t) is called the adjoint function.
Then the Pontryagin minimum principle (PMP) provides a necessary condition

for a control input u∗(t) and the corresponding state trajectory x∗(t) to be optimal.

Theorem 2.2.1 (PMP). Suppose (x∗(t), u∗(t)) is an optimal solution of (2.6).
Then there exists a nonzero adjoint variable λ(t) such that

(i) λ(t) satisfies the adjoint equation

λ̇(t) = −∂H
∂x

(t, x∗(t), u∗(t), λ(t)). (2.8)

(ii) u∗(t) is the pointwise minimizer of the Hamiltonian

u∗(t) = arg min
u∈U(t,x∗)

H(t, x∗(t), u, λ(t)). (2.9)
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(iii) λ(tf ) satisfies the boundary condition

λ(tf )−5φ(x∗(tf )) ⊥ Sf . (2.10)

Then with PMP, candidates for optimality can be found by solving a two-point
boundary value problem.

Dynamic programming

Based on the principle of optimality proposed by Richard Bellman, the dynamic
programming equation can be derived for solving the optimal control problem.
And the continuous time dynamic programming is closely related to the Hamilton-
Jacobi-Bellman equation (HJBE), which provides a sufficient condition for opti-
mality.

Theorem 2.2.2. Suppose there exists a continuous function V : [t0, tf ]×Rn → R
such that:

(i) V (t, x) is C1 (in both arguments) and solves the HJBE

−∂V
∂t (t, x) = min

u∈U(t,x)

{
f0(t, x, u) + ∂V

∂x (t, x)T f(t, x, u)
}
,

V (tf , x) = φ(x).
(2.11)

(ii) µ(t, x) = arg min
u∈U(t,x)

{
f0(t, x, u) + ∂V

∂x (t, x)T f(t, x, u)
}

is a piecewise con-

tinuous function for any closed loop solution.

Then

(a) V (t0, x0) is the optimal cost.

(b) µ(t, x) is the optimal feedback control law, i.e. u∗(t) = µ(t, x).

Linear quadratic regulator

In general, there is no systematic way to solve the HJBE (2.11). However, the spe-
cial case of linear quadratic regulator (LQR) is well-studied, where the necessary
and sufficient condition for optimality can be obtained. And a unique feedback
optimal control can be computed by solving the Riccati equation.

Consider the continuous time LQR problem:
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min
u

xT (tf )Fx (tf ) +

∫ tf

0

(
xT (t)Qx (t) + uT (t)Ru (t)

)
dt

s.t. ẋ (t) = Ax (t) +Bu (t)

x (t0) = x0,

(2.12)

where Q = QT � 0, F = F T � 0, and R = RT � 0.

Theorem 2.2.3. The necessary and sufficient conditions for u∗(t) to be the unique
optimal controller of (2.12) is:

u∗(t) = −R−1BTP (t)x (t) , (2.13)

where P (t) = P (t)T � 0 is the unique nonnegative semi-definite solution to the
differential Riccati equation (DRE):

− Ṗ (t) = P (t)A+ATP (t)− P (t)BR−1BTP (t) +Q, (2.14)

with boundary condition P (tf ) = F .
Furthermore, the optimal performance is given by

J∗(x0) =
1

2
xT0 P (t0)x0. (2.15)

For the infinite-horizon case where tf = +∞, the problem ends up with the
algebraic Riccati equation (ARE)

PA+ATP − PBR−1BT +Q = 0, (2.16)

and the unique optimal feedback controller is stabilizing under assumptions of con-
trollability and observability.

2.3 Differential Games

In a nutshell, game theory involves a multi-player decision making process. In
this thesis, noncooperative games are studied, where each player pursues his own
interests which are partially conflicting with each others’.

In particular, we consider the class of differential games, where the evolution
of states is described by a differential equation and the players act throughout a
time interval. As for a system of N players, let xi(t) ∈ Rn denote the state of
player i and x(t) = [x1(t); ...;xN (t)] be the system state. Then a noncooperative
differential game for N players can be defined as following.
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Definition 2.3.1. An N-player differential game of prespecified fixed duration in-
volves the following:

(i) An index set N = {1, ..., N} called the players’ set.

(ii) A time interval [0, T ] which is specified and denotes the duration of the evo-
lution of the game.

(iii) An infinite set S0 with some topological structure, called the trajectory space
of the game. Its elements are denoted as {x(t), 0 < t < T} and constitute
the permissible state trajectories of the game. Furthermore, for each fixed
t ∈ [0, T ], x(t) ∈ S0 , where S0 is a subset of a finite dimensional vector
space, say RNn.

(iv) An infinite set Ui with some topological structure, defined for each i ∈ N
and which is called the control (action) space of game Pi, whose elements
{ui(t), 0 < t < T} are the control functions or simply the controls of Pi.

(v) A differential equation

ẋ(t) = f(t, x(t), u1(t), ..., uN (t)), x(0) = x0, (2.17)

whose solution describes the state trajectory of the game corresponding to
the N-tuple of control functions {ui(t), 0 < t < T} (i = 1, ..., N ) and the
given initial state x0.

(vi) Each player i has his own individual cost to minimize, which is given by a
well-defined functional

Ji(x(0), u1, ..., uN ) =

∫ T

0
li(t, x, u1, ..., uN )dt+ φi(x(T )). (2.18)

Then the dynamic non-cooperative game played by player i is given by (Pi):

min
ui

Ji(x(0), ui, u−i)

s.t. ẋ(t) = f(t, x(t), u1(t), ..., uN (t))

x(0) = x0.

, (2.19)

where u−i is the strategy profile of all players except for player i.
The solution of a non-cooperative game is usually characterized by its Nash

Equilibrium, where no player can benefit by changing strategies while the other
players keep theirs unchanged.
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Definition 2.3.2 (Nash Equilibrium Strategy). The set of admissible control func-
tions (u∗1, u

∗
2, ..., u

∗
N ) is called Nash Equilibrium Strategy if

Ji(x(0), u∗i , u
∗
−i) ≤ Ji(x(0), ui, u

∗
−i), (2.20)

for all ui 6= u∗i , i = 1, 2, ..., N .

For continuous-time differential games, necessary conditions for the existence
of a Nash equilibrium is given by the following theorems.

Theorem 2.3.3. For an N–person differential game on time interval [0, T ], let

(i) f(t, ·, u1(t), ..., uN (t)) be continuously differentiable on RNn, ∀t ∈ [0, T ],

(ii) li(t, ·, u1, ..., uN )dt and φi(·) be continuously differentiable on RNn, ∀t ∈
[0, T ] and ∀i = 1, · · · , N .

If {γ∗i (t, x0) = u∗i (t)}Ni=1 provides an open-loop Nash equilibrium solution on
[0, T ], and x∗(t) is the corresponding state trajectory, then there exist N costate
functions pi(·) : [0, T ]→ RNn , such that the following equations are satisfied:

ẋ∗(t) = f(t, x(t), u∗1(t), ..., u∗N (t)), x∗(0) = x0,

γ∗i (t, x0) := u∗i (t) = arg min
ui∈Ui

H(t, x∗(t), u∗1(t), ..., u∗i−1(t), ui(t),

u∗i+1(t), ...u∗N (t), pi(t)),

ṗi(t) = − ∂

∂x
Hi(t, x

∗(t), u∗1(t), ..., u∗N (t), pi(t)),

pi(T ) =
∂

∂x
φi(x

∗(T )),

(2.21)

where i = 1, ..., N and

Hi(t, x, u1, ..., uN , pi) = li(t, x, u1, ..., uN )dt+ pTi f(t, x, u1, ..., uN ).

As for the closed-loop Nash equilibrium, the following sufficient conditions
can also be derived.

Theorem 2.3.4. For an N-person differential game on [0, T ], an N-tuple strategies
{γ∗i } provides a feedback Nash equilibrium solution if there exist functions Vi :
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[0, T ]× RNn → R, i = 1, · · · , N , such that

−∂Vi(t, x)

∂t
= min

ui∈Ui
{∂Vi(t, x)

∂x
f(t, x, {ui, γ∗−i}) + li(t, x, {ui, γ∗−i})}

=
∂Vi(t, x)

∂x
f(t, x, γ∗) + li(t, x, γ

∗),

Vi(T, x) = φi(x).

(2.22)

And the corresponding Nash equilibrium cost for (Pi) is Vi(0, x0).

2.4 Convex Optimization and Duality

Optimization is a useful tool in many fields. In this part, we give a brief intro-
duction of the convex optimization theory, which is frequently used throughout the
thesis.

Definition 2.4.1. A real-valued functional f defined on a convex subset C of a
linear vector space is called a convex functional if

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2), (2.23)

for all x1, x2 ∈ C and α ∈ [0, 1]. If strict inequality holds whenever x1 6= x2, f is
then said to be strictly convex. And a convex mapping can be defined in a similar
way.

By introducing a cone defining the positive vectors in a given space, it is then
possible to consider inequality constraints for optimization problems.

Definition 2.4.2. Let P be a convex cone in a vector space X . For any x, y ∈ X ,
we write x≥P y (i.e. with respect to P ) if x − y ∈ P . The cone P defining this
relation is called the positive cone in X . The cone N = −P is called the negative
cone in X and we write y≤P x for y − x ∈ N .

LetX be a linear vector space, Z a normed space, Ω a convex subset ofX , and
P the positive cone in Z. Assume that P contains an interior point. In general, a
convex optimization problem can be considered as:

min
x

f(x)

s.t. G(x)≤P 0

x ∈ Ω,

(2.24)
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where f is a real-valued convex functional on Ω and G is a convex mapping from
Ω into Z.

Duality theory is one of the dominating tools in solving optimization problems.
Before considering dual optimization problems, firstly the definition of the dual
space is given.

Definition 2.4.3. Let X be a normed linear vector space. The space of all bounded
linear functionals on X is called the dual of X and is denoted by X∗.

Based on Lagrange duality, the Lagrange Multiplier Theorem can be derived
for convex optimization problems.

Theorem 2.4.4. Consider the convex optimization problem in (2.24). Assume that
there exists of a point x1 ∈ Ω for which G(x1) <P 0 (i.e. G(x1) is an interior
point of N = −P ).

Let
µ0 = inf f(x) s.t. x ∈ Ω, G(x)≤P 0, (2.25)

and assume µ0 is finite. Then there is an element z∗0 ≥ 0 (with respect to the
corresponding positive cone) in Z∗ such that

µ0 = inf
x∈Ω
{f(x) + 〈G(x), z∗0〉}. (2.26)

Furthermore, if the infimum is achieved in (2.25) by an x0 ∈ Ω, G(x0)≤P 0, it
is then achieved by x0 in (2.26) and

〈G(x0), z∗0〉 = 0. (2.27)

Without assumptions of convexity, local optimality can still be studied and
necessary conditions for a local minimum can be derived from Lagrange duality
theory, such as the Karush–Kuhn–Tucker condition.

Theorem 2.4.5 (Generalized Kuhn-Tucker Theorem). Let X be a vector space
and Z a normed space having positive cone P . Assume that P contains an inte-
rior point. Let f be a Gateaux differentiable real-valued functional on X and G a
Gateaux differentiable mapping from X into Z. Assume that the Gateaux differen-
tials are linear in their increments. Suppose x0 minimizes f subject to G(x)≤P 0
and that x0 is a regular point of the inequality G(x)≤P 0. Then there is a z∗0 ≥ 0
in Z∗ such that the Lagrangian

f(x) + 〈G(x), z∗0〉,

is stationary at x0; furthermore, 〈G(x0), z∗0〉 = 0.
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2.5 Estimation and Filtering

Pointwise Estimation

Given a probability space (Ω,F ,P), a random variable Y takes values in the sam-
ple space according to a probability density function (pdf) p(y; θ), where θ ∈ Rn is
an unknow parameter vector. The observed value y of Y constitutes the data. The
task of an estimation problem is to estiamte parameter θ from the observed data. A
real-valued function of Y is called an estimator of θ, which is denoted by θ̂(Y ).

The mean squared error (MSE) is a widely-used risk function to measure the
quality of an estimator, which is defined by

MSE[θ̂(Y )] := E[‖θ̂(Y )− θ‖2]

= E[‖θ̂(Y )− E[θ̂(Y )]‖2] + ‖E[θ̂(Y )− θ]‖2.
(2.28)

The first term is called the variance error and the second term denotes the
square of the bias error.

When we restrict our focus on unbiased estimators, the MSE is equal to the
variance error. Then a lower bound on the variance of any unbiased estimator can
be given by the inverse of the Fisher Information Matrix (FIM).

Definition 2.5.1. The Fisher Information that Y contains about the parameter θ is
defiend by

I(θ) = E[(
∂

∂θ
log p(Y ; θ))(

∂

∂θ
log p(Y ; θ))T ]. (2.29)

Theorem 2.5.2 (Information inequality). Suppose that θ̂(Y ) is an estimator of
parameter θ and we have a family of density functions {p(y; θ), θ ∈ Dθ}. Assume
that

(i) Dθ is an open interval.

(ii) Distributions p(y; θ) have common support, which is independent of θ.

(iii) ∂
∂θp(y; θ) exists and is finite for all θ ∈ Dθ and y in the common support.

Then the variance of any unbiased estimator θ̂(Y ) must satusfy

V ar[θ̂(Y )] ≥ I(θ)−1, (2.30)

which is called the Cramér–Rao lower bound (CRLB). And an unbiased estimator
whose variance reaches the CRLB is called an efficient estimator.
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As is shown above, efficient estimators are uniformly optimal in the class of un-
biased estimators. However, when we take into account all the estimators without
any restrictions, it is impossible to find a uniformly optimal estimator that mini-
mizes the risk at every value of θ. Then some weaker optimality properties can be
considered. Denote R(θ, θ̂(Y )) as some risk function, below are some common
principles for deriving optimal biased estimators

(i) Minmax estimation: a minimax estimator is obtained by minimizing the
worst-case risk

sup
θ∈Dθ

R(θ, θ̂(Y )).

(ii) Average risk minimization: a Bayes estimator is computed by minimizing
the average risk

r(θ̂, fΘ) =

∫
Dθ

R(θ, θ̂(Y ))fΘ(θ)dθ,

where R(θ, θ̂(Y )) is some risk function and fΘ(θ) is a positive weighting
function indicating how important it is to have a low risk for different values
of θ.

Bayesian Theory and Bayesian Filtering

As for filtering problems, Bayesian inference has become an important branch in
statistics inference, which has been applied successfully in statistical decision, de-
tection and estimation, pattern recognition, and machine learning. In particular,
one of the fundamental principles is the Bayes rule, where the posterior probabil-
ity can be derived from a prior probability and a statistical model for the observed
data.

Theorem 2.5.3 (Bayes rule). Given the prior p(x) and likelihood p(y|x), the pos-
terior p(x|y) is obtained by the product of prior and likelihood divided by a nor-
malizing factor as

p(x|y) =
p(x)p(y|x)

p(y)
=

p(x)p(y|x)∫
X p(x)p(y|x)dx

. (2.31)

Consider the general filtering problem

xn+1 = f(xn, un, wn),

yn = g(xn, un, vn),
(2.32)
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where xn is the state vector, yn is the measurement vector, un is the system input,
wn and vn represent the process noise and measurement noise respectively.

Assume that the states follow a first-order Markov process and the observations
are independent of the given states. We denote Yn as a sequence of observations,
i.e. Yn = {y0, ..., yn}. Based on the Bayes rule, the rule for Bayesian Filtering can
be derived as following, where states are regarded as random variables instead of
unknown constants.

p(xn|Yn) =
p(xn)p(Yn|xn)

p(Yn)
=
p(yn|xn)p(xn|Yn−1)

p(yn|Yn−1)
. (2.33)

Bayesian optimal filtering is aimed to apply the Bayesian statistics and Bayes
rule to sequential state estimation problem under some optimal sense. For instance,
some potential criteria for measuring the optimality can be minimum mean-squared
error (MMSE), maximum a posteriori (MAP), maximum likelihood (ML), min-
max, and so on.
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