
INOM EXAMENSARBETE TEKNIK,
GRUNDNIVÅ, 15 HP

, STOCKHOLM SVERIGE 2019

Ethical hacking of IoT
devices: OBD-II dongles

LUDVIG CHRISTENSEN AND DANIEL
DANNBERG

KTH
SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP

Ethical hacking of IoT devices: OBD-II dongles

Ludvig Christensen and Daniel Dannberg
Supervisor: Pontus Johnson

Examiner: Robert Lagerström

Abstract— The subject area of this project is IT security
related to cars, specifically the security of devices connected
through a cars OBD-II connector. The aim of the project is to
see the security level of the AutoPi OBD-II unit and to analyse
where potential vulnerabilities are likely to occur when in use.
The device was investigated using threat modeling consisting
of analysing the architecture, using the STRIDE model to
see the potential attacks that could be implemented and risk
assessments of the attacks using the DREAD model. After
modelling the system, attempts of implementing attacks, with
the basis in the threat modelling, were carried out. No major
vulnerabilities were found in the AutoPi device but a MITM
attack on the user was shown to be possible for an attacker to
succeed with. Even though no major vulnerability was found
IoT devices connected to cars might bring security concerns
that needs to be looked into by companies and researchers.

Sammanfattning— Ämnesområdet för detta projekt är IT-
säkerhet relaterad till bilar, mer specifikt säkerheten gällande
enheter som kopplas in i en bils OBD-II-kontakt. Syftet med
uppsatsen är att bedöma säkerhetsnivån på en OBD-II-enhet
av modell AutoPi och att analysera var potentiella sårbarheter
kan finnas i systemet. Enheten kommer att undersökas med
hjälp av hotmodellering som består av att analysera arkitek-
turen, använda STRIDE-modellen för att upptäcka potentiella
attackmetoder samt bedöma riskerna för attackerna med hjälp
av DREAD-modellen. Efter det steget görs attackförsök utifrån
resultaten från hotmodelleringen. Inga större sårbarheter hit-
tades i AutoPi-enheten men en MITM-attack på användaren
visades vara möjlig för en angripare att lyckas med. Även fast
inga större sårbarheter hittades kan IoT-enheter kopplade till
bilar medföra säkerhetsbrister som företag och forskare måste
se över.

Index Terms— Hacking; OBD-II; Threat model; IoT security;
AutoPi

I. INTRODUCTION
Security is the state of being free from danger or threat1

and to be free from these one must know where these can
occur in a system. In Internet of Things (IoT) security there
are multiple factors that can be liable for damage such as
usage, environment, connection and many more. Thus, a
secure system will have considered as many as possible of
these factors and have a solution for them. Since computer
systems became available for the general population to use,
cyber security needs has seen a increase in its demand,
protecting the users from unknowingly leaking information.

A. Security concerns in IoT devices
The Internet of Things is all embedded computer systems

with internet connection, the number of which is increasing

1https://en.oxforddictionaries.com/definition/security

in recent years. There are many examples of IoT devices
from connected door locks that can be opened from a
smartphone2 to smart fridges3 that let users view the contents
of the fridge remotely through a camera. However, there
has been multiple security concerns with IoT systems. Some
devices are not built with enough emphasis on security which
may lead to widespread problems, such as the Mirai botnet4.
This botnet infected IoT devices that had hardcoded login
credentials, something which could have been avoided by
the vendors, and used the hacked IoT devices to launch
DDoS attacks. With the rise of IoT its security needs to
be explored, especially in cyber-physical systems where an
attacker potentially could harm people. However, research
into these matters is being conducted, such as the security
of connected power grids [1].

In recent time the car industry has entered the IoT sphere
with cars and accessories being internet connected, leading
to incidents such as the remote hack of a Jeep in 20155.
Following these kinds of hacks research into vehicular secu-
rity has gained more traction. Methods for modeling and
assessing risks are being developed, such as vehicleLang [2].

B. Goal

The goal of this project is to evaluate the security and
privacy of the AutoPi6 by trying to find vulnerabilities in
its architecture. The result is an answer to the question: Is
the AutoPi secured from the threats discovered by the threat
modeling process? If not, how can it be exploited and what
are the impacts?

C. Scope

The scope of this project is the AutoPi unit including its
local WiFi network. This means that the SaltStack back-end
and AutoPi’s web service is not included in the scope and
is open to being explored, with permission from the owners
of the infrastructure, if one wishes to continue the research.

II. THEORY

A computer system is built upon many different techno-
logies and techniques. To be able to analyse a system there
has to be a general knowledge about founding structures of
the system one wishes to analyse.

2https://www.yalehome.com/en/yale/yalehome/residential/yale-real-
living/assure-lock/yrl-assurelock-touchscreen/

3https://www.samsung.com/us/explore/family-hub-refrigerator/overview/
4https://www.cloudflare.com/learning/ddos/glossary/mirai-botnet/
5https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
6http://AutoPi.io

A. Threat modeling

Threat modeling is the process of modeling a system to
help identify and rank threats in its architecture. There exist
multiple tools that automate the process of threat modeling,
such as SecuriCAD [3] by foreseeti7 and Microsoft’s Threat
Modeling Tool8. The insights gained from the results of a
threat model can be utilised for different things. The threat
model can both be used by an attacker and a defender to
gain insights of where system vulnerabilities might reside.
Some examples on how threat modeling can be used, is
simulations with vehicles threat modeling [4] and automatic
threat-modeling of networks [5].

There are multiple threat modeling methods to choose
from. In this research two different methods were used to
identify and assess the threats after modeling the system’s
architecture. The STRIDE [6] method was used to identify
threats. In the STRIDE method threats are divided into six
categories: Spoofing identity, Tampering with data, Repudia-
tion, Information disclosure, Denial of service and Elevation
of privileges. After threats have been identified with the
help of STRIDE, the DREAD [7] method is used to rank
the severity of the threats. DREAD works by assigning
a score from one to three in four different categories:
Damage, Reproducibility, Exploitability, Affected users and
Discoverability. The score for each category is then added
to give the threat its final score. By using DREAD one can
prioritise which threats are most critical and how to spend
time researching the security of a system more effectively.

B. OBD-II and IoT

IoT car dongles are IoT devices the user plugs into their
car’s diagnostics port, usually located by the driver’s seat
or in the glove box, to expand the car’s functionality. Some
common examples of added functionality is WiFi with inter-
net connectivity, the ability to read car diagnostics data and
advanced GPS tracking. These features can be advantageous
to consumers with older cars that may lack some of the built-
in features of newer cars, such as internet connectivity. The
IoT car dongles plug in to the car’s diagnostic port for power
and connectivity to the car’s Electronic Control Unit(ECU).
The diagnostic port or on-board diagnostic system (OBD-
II) is a standard [8] mandated in every vehicle manufactu-
red or sold in USA and Canada after 1996 and 2001 in
Europe [9]. The OBD-II port supports multiple protocols
that communicates with the car’s different internal systems,
enabling IoT car dongles to read these internal messages
and sometimes even send its own messages on the internal
buses. The dongles’ connectivity to the car’s internal system
combined with connectivity to the internet may allow remote
access to internal car systems if the dongle doesn’t have
correct security mechanisms in place.

7https://www.foreseeti.com/
8https://docs.microsoft.com/en-us/azure/security/azure-security-threat-

modeling-tool

C. CAN

The Controller Area Network(CAN) [10] is one of the
buses supported by the OBD-II standard, allowing different
embedded computer systems in a car communicate. CAN
bus messages are broadcasted on the bus which means they
reach every connected node which makes a malicious node
a security concern. By default there is no authentication or
encryption of CAN messages, only error detection, which
leads to concerns with man-in-the-middle(MITM) and mes-
sage replay attacks as well as just sending crafted malicious
commands.

D. AutoPi

The AutoPi is a car dongle that is designed and developed
in Denmark. It is marked as being the first extendable IoT
platforms for one’s car. The AutoPi uses a RaspberryPi
running a Linux operating system. The AutoPi has built
in functions for WiFi, 3G/4G connection, Bluetooth, GPS,
Speakers, Accelerometer, HDMI output and also GPIO pins.
The dongle connects to the car using the OBD-II. The AutoPi
is connected to AutoPi’s cloud service and can execute
commands remotely that interact with the car. The AutoPi
device is identified using a serial number which consists
of hexadecimal digits and four hyphens in the following
format: xxxxxxxx-xxxx-xxxx-xxxxxxxx, where x represents
a hexadecimal digit.

The main demographic for AutoPi is car enthusiasts who
wants to make their car smarter in different ways, as can
be seen in the AutoPi community9, but also have some DIY
electronics and programming knowledge.

E. Technical Specifications of the AutoPi

The AutoPi has three main components: the physical
device, a web interface and a back-end. The physical device
is the dongle described in previous section which uses a 4G
connection to communicate with the back-end over internet.
The web interface is used for accessing the physical device
remotely. The web interface fetches data from the back-end
and can send commands to the back-end which are forwarded
to the physical device. The back-end handles data transfers
and uses a software called SaltStack10 to send commands,
updates and queries to the AutoPi device. SaltStack is used
to automate as well as efficiently scale configurations and
control of many IT systems in a secure way. SaltStack works
by having a Master which is a central control server and
having minions, in this case the AutoPi device, connect back
to it for instructions11. A simple architectural overview is
shown in Figure 1.

9https://community.AutoPi.io/
10https://www.SaltStack.com/
11https://docs.SaltStack.com/en/latest/topics/tutorials/walkthrough.html

Fig. 1. AutoPi communication flow

III. METHOD

Multiple methods are used in order to test the security
of the device architecture. First a system model is created
as a base for the threat modeling. The threats uncovered in
the threat modeling process are then ranked and prioritized.
When threats have been established penetration tests are
performed to see if proper counter measures are taken. The
outcome of the threat modeling and attacks is presented in
the results chapter.

A. Threat modeling

The method used in this research is described in “IoT
Penetration Testing Cookbook” [11, p. 42]. First assets of
the AutoPi system were identified and used to create a model
of the system to be used when identifying probable ways of
attacking the system. Then, threats were identified using the
STRIDE method and successively five threats were chosen
using DREAD. The five threats were selected because of
resources available, such as time, but also to make sure
staying within scope. Aforementioned two details combined
with the DREAD score led to the selection of five possible
and plausible threats.

B. Man-In-The-Middle

By putting an attacker-controlled device between a user
and the back-end server a Man-In-The-Middle (MITM) at-
tack tests the security during transport. This attack was carri-
ed out using the Kali Linux12 penetration testing platform in
a lab WiFi network. The steps needed to carry out the attack
are described in “IoT Penetration Testing Cookbook” [11,
p. 78-82] and are easy enough for a novice attacker to follow.
In short, the attack works by the MITM downgrading the
target user to HTTP instead of HTTPS and then proxying
the traffic to the back-end server. This allows the attacker to
see all communication between the user and back-end server,
if the attack is successful.

12https://www.kali.org/

C. WiFi attack

Attacking WiFi networks is a well documented area [12].
Our method of attack was to first evaluate the security
configuration of the WiFi and then, if viable, conduct one
of the attacks documented in literature.

D. Portscanning

To scan the ports of the device the popular network
scanning tool Nmap13 is used. Nmap provides many different
modes and techniques to find open ports and fingerprint
services running on a device. Three different settings were
tested: TCP scan, UDP scan and Service Detection scan.
These three settings were tested on the AutoPi’s WiFi hotspot
network as well as on its public internet-facing interface.

E. Disclosure of versions

Manual analysis of software and configurations in the
AutoPi system is used to try to find software versions
and configurations with public vulnerabilities. By searching
Google and vulnerability databases for the services and their
version numbers one can find out if any public vulnerabilities
exist in the AutoPi. Only services reachable from outside of
the AutoPi are tested in the manual analysis, for example
network services.

F. Firewall rules analysis

To evaluate the security of the firewall rules manual
analysis is used. By reading the firewall configuration file one
can tell how the firewall separates the networks of the device
and which forwarding rules are used for communication
between different networks. The AutoPi uses iptables to
control the Linux firewall and therefore has a config file with
the rules available.

IV. THREAT MODEL

In this chapter the results of threat modeling is presented,
to give an overview of the system and ways into it but also
to show how priorisations were made.

A. Identify Assets

In this section every asset of the AutoPi system is identi-
fied and described.

1) AutoPi Dongle: The dongle plugs into the cars OBD-
II connector and can read messages from the cars ECU.
The dongle connects to a cloud service over 3G/4G network
and has a local WiFi hotspot that allows configuration and
internet connection. It runs software that controls many
functions and is open for users to do a lot with.

2) Radio Communication: The device supports wireless
communication over Bluetooth/BLE, WiFi and 3G/4G. It has
a GPS module for position data.

3) Firmware: Configurations and communication with
OBD-II.

4) Integrated RaspberryPi: Connects to the OBD-II chip
as well as all other modules. Runs a web server interface
that allows local configuration.

13https://nmap.org/

5) Cloud service/web app: The AutoPi dongle communi-
cates with the AutoPi cloud service where live commands
can be executed, firmware can be updated, GPS tracking
and many more features that can be implemented. The cloud
saves historic data such as GPS information plus user defined
data points.

6) Dongle hardware: 2x USB ports, HDMI out, GPIO
pins, Speaker, Accelerometer. The device connects to a car
through the car’s OBD-II port.

7) RaspberryPi OS: Runs a full Linux distribution.

B. Architecture Overview

To fully grasp the system and its information flows an
architecture overview was made. The overview describes
what kinds of information flows exist in the system and their
purpose.

Fig. 2. AutoPi System Model

1) Communication protocol, WiFi 802.11: Local hotspot
for the dongle.

2) Communication protocol, HTTP: Local configuration
interface uses clear text protocol.

3) Communication protocol, HTTPS: Cloud interface on
encrypted text protocol. Used for communication between
SaltStack and dongle as well as remote web app and Salt-
Stack.

4) Communication protocol, Bluetooth low energy 4.1:
Not activated by default. Configurable by user.

5) Communication protocol, 3G/4G: Connect dongle to
the internet, for example to access cloud services.

6) GPS: Dongle has GPS module for location data.
7) OBD-II Port: Port for communication for car internal

system. Using the OBD-II standard protocols.
8) Web application (Local): Used for initial configura-

tions and for basic setups. Has console for AutoPi API
command executing.

9) Web application (Cloud): Cloud interface to remotely
access AutoPi and view statical data. Remote access lets the
user execute AutoPi API commands. Lets you see GPS data.

10) SaltStack: Open source technology used by manu-
facturer to deploy updates and configurations to the device.
All commands and data is encrypted.

11) Linux OS: Runs multiple services with open ports.

C. Entry Points

The entry points of a system are the points in which an
attacker could interact with the system. A description of the
entry points and their use is given.

1) Local web app: Application running on the dongle
connected to with local WiFi connection. Sends traffic over
HTTP. Has console using SaltsStacks API. If connected to
the WiFi the local web app requires no authentication for
login.

2) Dongle: The dongle has multiple communication in-
terfaces. An OBD-II interface for communication with a car.
3G/4G modem for internet connectivity. A WiFi interface
used for having a local WiFi to configure the dongle and
to have internet connectivity(if 3G/4G is connected). The
device has a few services running on its internal network
reachable through the Access Point (AP) but not reachable
from the internet. WiFi interface also allows connection to
other APs for internet connectivity. Dongle has built-in GPS
chip. Bluetooth interface is present but not turned on by
default.

3) Remote Interface: The remote interface is a web app
that lets user connect configure and view data provided from
the dongle remotely by logging into an account. The dongle
is registered to the account with the serial number. Has API
for communicating with SaltStack.

4) SaltStack: Used to push commands, updates and con-
figurations to the AutoPi dongle. AutoPi remote interface
sends commands through the SaltStack API who then sends
it to the dongle.

5) Protocols: Uses HTTP and HTTPS for communication
with cloud and the two different web interfaces.

6) Wireless Connections: Uses Bluetooth 4.1/BLE,
4G/3G and 802.11 WiFi.

D. Identifying Threats (STRIDE)

Threats are identified using the STRIDE method.
• Spoofing identity

– Spoof login to the remote interface.
– Spoof ownership a dongle to connect it to an

attackers account.
• Tampering with data

– Tampering with contents of cookies and tokens to
perform unauthorized actions.

– Tampering with dongle ID when sending requests
to SaltStack or intercepting valid requests to stalt
stack.

– Creating requests that get routed to the dongle’s
internal network, i.e. bypass firewall rules.

• Repudiation

– See if all user actions are logged and authenticated.
• Information disclosure

– Disclosure of dongle ID in requests, such as in
URLs or JSON data.

– Disclosure of credentials through in web interfaces.
– Version and configuration info disclosure as a result

of badly configured services.
– Disclosure of sensitive data by MITM of HTTPS

connection.
– Accessing cookies/tokens by XSS or alike on the

remote web interface.
– Open ports and unsecured services on the AutoPi

device.
• Denial of service (DoS)

– DoS attack on the local dongle WiFi and see if it
clogs the network.

– DoS logged in user on remote interface by sending
bad requests to the API, causing invalidation of
user’s token.

• Elevation of privilege
– Try to elevate from SaltStack minion to master.
– Try to get access to execute commands as user

without the dongle ID.
– Privilege level when executing commands on the

dongle, i.e. if an account breach gives root access.

E. Documenting Threats

Each selected threat is documented and rated. Ratings for
each threat is presented in Table 1.

Threat #1:
– Description: MITM of connection between user and

remote interface.
– Target: AutoPi customer.
– Attack techniques: Set up malicious computer and

intercept the traffic between the two parties.
– Countermeasures: Only allow for HTTPS traffic

and inform users of the importance of HTTPS.
Threat #2:

– Description: Unsecured and open ports on the Au-
toPi.

– Target: AutoPi device.
– Attack techniques: Port scanning.
– Countermeasures: Close all unused services as

well as ports and secure the used ones. Perform
configuration auditing.

Threat #3:
– Description: Disclosure of configurations and ver-

sions of software with public vulnerabilites.
– Target: Services used by AutoPi.
– Attack techniques: Code review of open source

code and config to potentially find known vulne-
rabilities, analysis of the OS.

– Countermeasures: Services should continually be
updated. Configurations should be correct.

Threat #4:

TABLE I
DREAD RANKING OF THREATS

Threat 1 Threat 2 Threat 3 Threat 4 Threat 5
D 3 3 2 3 3
R 1 2 3 2 3
E 3 2 1 2 2
A 1 3 3 3 3
D 3 3 2 2 2

Tot. 11 13 11 12 13

– Description: WiFi attacks.
– Target: WiFi interface on the AutoPi device.
– Attack techniques: WiFi interface on the AutoPi

device.
– Countermeasures: Use randomized and unique

password for WiFi access.
Threat #5:

– Description: AutoPi’s internal network exposed.
– Target: AutoPi device.
– Attack techniques: Reviewing firewall rules to see

if it’s possible to route outside packets to the Auto-
Pi’s internal network.

– Countermeasures: Correct firewall rules.

V. ATTACK RESULTS

This chapter presents the results of attacks performed on
each threat found in chapter IV.

Threat #1: The MITM attack was successful. By being
on the same network as a user it is possible for an adversary
to act as a Man-In-The-Middle and therefore getting access
to all data entered by a user on the AutoPi Cloud interface.
Firefox and Chrome browsers show warnings that the
connection has been downgraded to HTTP but Internet
Explorer show no such warnings. By being able to access
data entered by a user the AutoPi device is compromised in
the form of AutoPi Cloud credentials as well as the Dongle
ID connected to the account a user logs into. However, this
attack targets the user, browser and transport protocols. This
is not a problem unique to the AutoPi but rather a general
attack.

Threat #2: Table II and III show outcomes of the two
rounds of port scanning. All ports not in the tables have a
state of either closed or filtered.

Threat #3: As seen in Table III a couple of service
versions were uncovered in the Nmap scan. Below is the
results of the manual analysis of services reachable from
outside the AutoPi.
• OpenSSH

– Version: 7.4p1
– Public vulnerabilities: No.
– Comment: SSH server running on internal hotspot.

• dnsmasq

TABLE II
PORTSCAN: PUBLIC INTERFACE

Type Open Ports Comments

TCP scan None
All ports are
filtered.

UDP scan None
All ports are
filtered.

Service Detection None

The scan indicates
that the host is
up and reachable
but all ports are
filtered.

TABLE III
PORTSCAN: INTERNAL WIFI

Type Open Ports Comments

TCP scan 22, 53, 80, 9000

More info in
service detection
scan.

UDP scan 53, 67

The Nmap
output indicates
that port 53 is
related to DNS
and that port
67 runs a dhcp
server.

Service Detection

22/SSH,
53/dnsmasq
2.7.6,
80/lighthttpd
1.4.45,
9000/Werkzeug
httpd 0.14.1

Multiple success-
ful fingerprints of
services.

– Version: 2.7.6
– Public vulnerabilities: Yes.
– Comment: dnsmasq runs on internal hotspot. Mul-

tiple public vulnerabilities such as DoS and poten-
tial code execution14.

• lighthttpd
– Version: 1.4.45
– Public vulnerabilities: Yes
– Comment: Lighthttpd runs on internal hotspot. One

potential vulnerability15.
• Werkzeug httpd

– Version: 0.14.1
– Public vulnerabilities: No.
– Comment: Werkzeug running on internal hotspot.

• wpa supplicant
– Version: 2.4
– Public vulnerabilities: Yes.
– Comment: Software used when the device connects

to WiFi networks. Multiple public vulnerabilities

14https://www.cvedetails.com/vulnerability-list/vendor id-
8351/product id-14557/Thekelleys-Dnsmasq.html

15https://www.cvedetails.com/vulnerability-list/vendor id-
2713/Lighttpd.html

such as DoS and potential code execution16.
• hostapd

– Version: 2.4
– Public vulnerabilities: Yes.
– Comment: Software used to set up the AutoPi

hotspot. Multiple public vulnerabilities such as
DoS and potential code execution17.

Threat #4: The WiFi hotspot broadcasted by the AutoPi
device uses WPA2 authentication in Pre-Shared Key(PSK)
mode. According to documentation in the area it is possible
to brute-force the PSK to the network by sniffing packets
from the setup of a connection between a client and the
WiFi access point 18. However, the AutoPi hotspot uses a 13
character password where 12 of the characters are varying
hexadecimal characters, as described in Chapter II. This
means that the password has 1216 different permutations,
making it infeasible to brute-force within reasonable time.
Therefore, the attack was aborted in the evaluation stage.

Threat #5: When manually reviewing the firewall
configuration of the AutoPi the following observations were
made.

• The internal WiFi does not accept input from the
4G internet-connection unless packets have the state
ESTABLISHED or RELATED. This means that com-
munication to a host on the AutoPi hotspot is possible
if it’s initiated by that host, which is necessary for any
host on the internal AutoPi hotspot to be able to reach
the internet.

• Ports 22/TCP, 53/TCP UDP, 67/UDP, 80/TCP and
9000/TCP are open on the internal AutoPi hotspot, all
other ports are closed.

• There are no restrictions on outward connections from
the AutoPi hotspot.

VI. DISCUSSION

As one could tell from reading the results, no major or
critical vulnerabilities were found. However there are some
aspects of the AutoPi that can be hardened to make it more
secure.

A. MITM

As described in the results of the MITM attack it has
potential to compromise a user’s AutoPi by stealing creden-
tials to the AutoPi web interface. To be able to carry out
the attack the attacker and user would just have to be on the
same WiFi network, which the attacker can achieve by, for
example, logging into the same coffeeshop WiFi network
or by setting up a rogue hotspot. The effectiveness of the
attack depends mostly on the user’s general knowledge of

16https://www.cvedetails.com/vulnerability-list/vendor id-
12005/product id-29296/W1.fi-Wpa-Supplicant.html

17https://www.cvedetails.com/vulnerability-list/vendor id-
12005/product id-22495/W1.fi-Hostapd.html

18https://www.evilsocket.net/2019/02/13/Pwning-WiFi-networks-with-
bettercap-and-the-PMKID-client-less-attack/

computers and what browser is used. A well-informed user
probably wouldn’t enter any credentials when the connection
isn’t HTTPS whereas a less-informed one might. The fact
that some browsers display explicit warnings about entering
credentials on an HTTP connection limits the chance of
success of the attack but one should note that certain brow-
sers don’t display warnings. With access to the credentials
an attacker would have full control of the dongle as well
as saved data which could be history of driven routes for
example.

B. Port scan

The results of the portscan did not show any particular
security concerns. A remote attacker cannot, from the fin-
dings of this project at least, access anything on the AutoPi
from its public internet interface if no prior foothold on the
device is gained. As seen in Table III there are multiple
services open on the AutoPi’s hotspot. These open services
are both vital for the functionality of the AutoPi but also
inside one of the AutoPi’s trusted zones, its hotspot. If a
malicious actor were to access the hotspot they would already
have access to the SSH which has hardcoded credentials as
well as the local web interface which allows code execution
and changing of settings.

C. Disclosure of versions

In the AutoPi there are outdated software running with
known vulnerabilities of different degrees. Of the programs
running two of them can be used to communicate outside of
the AutoPi’s trust zones, wpa supplicant and hostapd. The
wpa supplicant program is a common Linux utility used
to connect to WiFi hotspots and the hostapd program is
used for the AutoPi to also act as a hotspot. An example
of concerns with having this kind of software outdated is
the fact that there exist multiple Common Vulnerabilities
and Exposures(CVEs) for the versions running. An example
of an unpatched CVE in wpa supplicant is CVE-2015-1863
which through manipulating the SSID in certain WiFi frames
can cause DoS and possibly execution of arbitrary code.
However, the public vulnerabilities found are not critical.
Many them require very specific conditions and doesn’t let
the attacker choose what can be modified or read. Neverthe-
less, such public vulnerabilities could be used in a chain of
exploits to accomplish more than they would on their own.
Since the problem can be fixed by updating affected software
no major effort is needed to fix the problem.

D. WiFi hacking

AutoPi’s WiFi was not found to be vulnerable to any
particular known attacks against WiFi from our studies of
it and the pre-installed credentials are complex enough to
make bruteforcing infeasible. However, it seems strange to
derive the SSID and password to the WiFi from the dongle
ID. The dongle ID is quite a vital part of the identity of an
AutoPi device it seems like it would be more logical to use a
fully randomised value as SSID and password for the WiFi.
For example, if an AutoPi user wishes to connect friends or

family to the WiFi hotspot one would have to trust them with
a significant part of the dongle ID.

E. Firewall analysis

The analysis of the firewall rules of the AutoPi confirms
the result of the portscan. By segmenting the WiFi interface
and public internet interface the device is hardened in regards
to remote attacks. The fact that it sets no restrictions on
communication in outward direction from its internal hotspot
is vital to make it usable by users browsing the internet
from the hotspot. However, it also contributes to making
it easy for a compromised user device to “phone home”
to establish malicious connections. But, configuring tighter
firewall settings outward would severely reduce the usability
of the AutoPi’s hotspot.

F. Critical components

The dongle ID, described in the theory chapter, is used to
connect a physical device to an account in the cloud service,
in communication with the back-end as well as for the local
WiFi hotspot. In other words, the dongle ID is a vital part
of securing a device and is supposed to be kept a secret. If
an attacker would get access to the dongle ID they would be
able to connect the physical device to their own account(as
long as it’s not already connected to two accounts) as well
as access the AutoPi device’s WiFi hotspot.

Other parts of the AutoPi system are also critical for its
security, SaltStack and the cloud interface. Since the Salt-
Stack service relays commands between the cloud interface
and device an attacker gaining access would likely be able
to replicate and send commands themself. As for the cloud
interface, if an attacker could gain access to a specific user
account using a flaw in the system the device would be
completely in control of the attacker. These two services
that are vital for the way the AutoPi works still increases the
system complexity and attack surface, making them critical
to be secured.

G. Other devices

Brief research was made on another device and came to
the conclusion that it is a very insecure unit. The unit comes
with a hardcoded password which was on the extreme low in
terms of security. But what is alarming with the device is that
there seems to be a possibility to write external commands
to this device. A service such as pythonOBD19 makes the
process easy. Researchers has then showed that if you know
the specific car CAN message then you can use functions that
is not supposed to be enabled such as turning of lights [13].
So the security detail in device lie upon the fact that it
is to slow to snap up the individual can messages. But if
someone already know these then there could be potential
for an attack. A security percussion for the specific device
would be to simply remove it from the OBD-II port. We did
not explore the function if connections would turn on the
device even if the car was off so to assume the worst case

19https://python-obd.readthedocs.io/en/latest/Command%20Tables/

scenario ones best solution is to simply remove the unit from
the OBD-II port when not in use.

H. Impact

A successful attack on the AutoPi would mean that one
has direct access to send commands into the car, making
it display unwanted behavior for example open doors. If the
consumer uses a SIM card then one would also be able to find
the car with its GPS settings. Therefore a potential intruder
could check where the car is and wait until it sees that the
engine is turned off (car owner is not in car) and then lock
the door up, start the car and drive away. If the hacker has
even more malicious intent then he/she can send commands
while the consumer is driving and thus having a potential
to cause serious harm to the everyone surrounding the cars
proximity.

VII. CONCLUSION

From the information gathered, the AutoPi has been made
with some degree of security in mind. The attacks performed
in this report showed no extreme level of exploitability but
this project was also limited by the scope so there is a bigger
surface that a hacker could explore when attacking and also
due to limited time, knowledge and resources there is also
potential for continued penetration testing research on the
unit.

Since no prior agreement was made with AutoPi the
research focused solely on the actual device rather than the
infrastructure behind the scenes, because of legal reasons.
Therefore, the results in this project doesn’t guarantee anyt-
hing about the security of the back-end parts of the system,
such as the Cloud Interface, SaltStack or login mechanisms.

As demonstrated with the MITM attack the user is a
potential attack vector. By tricking the user an attacker could
gain access to the user’s account. The problem causing the
viability of this attack isn’t in the design of the AutoPi but
is rather a general problem of informing users of what is
secure and what is not.

The AutoPi device places a lot of trust in the security
of WiFi, once inside the local WiFi a user or attacker has
access to the inner workings of the device with ease. This
trust poses a potential threat to the security of the device
should the WiFi not be as secure as thought. Also this puts
more security into the hands of the user.

With physical systems like cars connected to the internet
more studies of the security and its importance must be made
by both companies and researchers. The potential outcome of
hacks against cyber-physical systems are severe and should
not be treated as fiction.

ACKNOWLEDGMENT

The authors would like to thank Pontus Johnson and
Robert Lagerström for their guidance, help and feedback
during the project.

REFERENCES

[1] A. Vernotte, M. Välja, M. Korman, G. Björkman, M. Ekstedt, and
R. Lagerström, “Load balancing of renewable energy: a cyber security
analysis,” Energy Informatics, vol. 1, p. 5, Jul 2018.

[2] S. Katsikeas, “vehiclelang: a probabilistic modeling and simulation
language for vehicular cyber attacks,” Master’s thesis, KTH, School
of Electrical Engineering and Computer Science (EECS), 2018.

[3] M. Ekstedt, P. Johnson, R. Lagerström, D. Gorton, J. Nydrén, and
K. Shahzad, “Securi cad by foreseeti: A cad tool for enterprise cyber
security management,” in 2015 IEEE 19th International Enterprise
Distributed Object Computing Workshop, pp. 152–155, Sep. 2015.

[4] W. Xiong, K. Fredrik, and L. Robert, “Threat modeling and attack
simulations of connected vehicles: A research outlook,” 02 2019.

[5] P. Johnson, A. Vernotte, M. Ekstedt, and R. Lagerstrom, “pwnpr3d: An
attack-graph-driven probabilistic threat-modeling approach,” in 2016
11th International Conference on Availability, Reliability and Security
(ARES), (Los Alamitos, CA, USA), pp. 278–283, IEEE Computer
Society, sep 2016.

[6] R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based thre-
at modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe), pp. 1–6,
Sep. 2017.

[7] A. Omotosho, B. A. Haruna, and O. M. Olaniyi, “Threat modeling
of internet of things health devices,” Journal of Applied Security
Research, vol. 0, no. 0, pp. 1–16, 2019.

[8] R. Malekian, N. R. Moloisane, L. Nair, B. T. Maharaj, and U. A. K.
Chude-Okonkwo, “Design and implementation of a wireless obd ii
fleet management system,” IEEE Sensors Journal, vol. 17, pp. 1154–
1164, Feb 2017.

[9] European Parliament Council of the European Union, “Directive
98/69/ec,” Oct 1998.

[10] ISO, “Road vehicles – controller area network (can) – part 1: Data link
layer and physical signalling,” tech. rep., International Organization for
Standardization, 2015.

[11] A. Guzman and A. Gupta, IoT Penetration Testing Cookbook: Identify
Vulnerabilities and Secure Your Smart Devices. Packt Publishing,
2017.

[12] R. Guo, “Survey on wifi infrastructure attacks,” International Journal
of Wireless and Mobile Computing, vol. 16, p. 97, 01 2019.

[13] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental security analysis of a modern automobile,” in 2010
IEEE Symposium on Security and Privacy, pp. 447–462, May 2010.

TRITA-EECS-EX-2019:214

www.kth.se

