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Abstract

Deep learning methods get impressive performance in many Natu-
ral Neural Processing (NLP) tasks, but it is still difficult to know what
happened inside a deep neural network. In this thesis, a general overview
of Explainable AI and how explainable deep learning methods applied
for NLP tasks is given. Then the Bi-directional LSTM and CRF (Bi-
LSTM-CRF) model for Named Entity Recognition (NER) task is intro-
duced, as well as the approach to make this model explainable. The
approach to visualize the importance of neurons in Bi-LSTM layer of
the model for NER by Layer-wise Relevance Propagation (LRP) is pro-
posed, which can measure how neurons contribute to each prediction
of a word in a sequence. Ideas about how to measure the influence of
CRF layer of the Bi-LSTM-CRF model is also described.
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Sammanfattning

Djupa inlärningsmetoder får imponerande prestanda i många naturli-
ga Neural Processing (NLP) uppgifter, men det är fortfarande svårt att
veta vad hände inne i ett djupt neuralt nätverk. I denna avhandling, en
allmän översikt av förklarliga AI och hur förklarliga djupa inlärnings-
metoder tillämpas för NLP-uppgifter ges. Då den bi-riktiga LSTM och
CRF (BiLSTM-CRF) modell för Named Entity Recognition (NER) upp-
gift införs, liksom tillvägagångssättet för att göra denna modell för-
klarlig. De tillvägagångssätt för att visualisera vikten av neuroner i Bi-
LSTM-skiktet av Modellen för NER genom Layer-Wise Relevance Pro-
pagation (LRP) föreslås, som kan mäta hur neuroner bidrar till varje
förutsägelse av ett ord i en sekvens. Idéer om hur man mäter påver-
kan av CRF-skiktet i Bi-LSTM-CRF-modellen beskrivs också.
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Chapter 1

Introduction

In this project, we first investigate several methods to explain the be-
havior of deep neural networks, and their applications in Natural Lan-
guage Processing (NLP) field. We also implement the explainable meth-
ods with the combination of Bi-directional LSTM and CRF (Bi-LSTM-
CRF) used in Named Entity Recognition (NER) as well. This project
was carried out at Seavus Stockholm AB, Sweden.

1.1 Motivation

Machine learning methods have been applied widely in many fields
like recommender system [1], chatbots [2], and self-driving cars [3].
However, some machine learning methods are opaque, non-intuitive,
and difficult for people to understand, the effectiveness of machine
learning are limited.

In recent years, deep learning methods, as a type of machine learn-
ing methods, had yielded state-of-art performance in many problems.
But it is possible that people worry about how to make sure a deep
learning model makes the right decision when huge numbers of pa-
rameters, many rounds of iteration and optimization from deep learn-
ing models are taken into consideration. For example, many medical
systems apply deep learning techniques to help diagnosis, as Wang et
al. [4] uses it to detect breast cancer, but the result needs to be checked
by human doctors in order to make sure the diagnosis is reasonable.
The more complicated the model is, the more difficult to explain how
the result comes out so that people probably suspect the prediction.
If the model can explain itself, it will gain more trust from users, and

1
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be more convenient to debug or improve for developers. Because of
needs for trust and improvements, many researchers devote them-
selves to developing explainable machine learning methods.

Explainable machine learning attracts attention of organizations
such as Defense Advanced Research Projects Agency (DARPA), which
launched the Explainable Artificial Intelligence (XAI) [5], as well as
companies focus on Artificial Intelligence (AI) like Google, which initi-
ated People +AI Research (PAIR)1. In academia, researchers conducted
a lot of methods to make deep learning models more transparent, which
include works on revealing the inner structure and behavior of the
model, as well as generating explainable interfaces which can be ac-
cepted by normal users.

Considering more and more applications will be combined with
AI, and this issue has been attached importance gradually by both
academia and industry, the explainability will become an important
characteristic of a machine learning model in the future.

1.2 Problem Statement

There are many important applications in Natural Language Process-
ing field widely used by people, like machine translation, speech recog-
nition, and information retrieval. With the development of deep learn-
ing, more and more NLP tasks reached impressive performance by
applying deep learning methods. Correspondingly, different explain-
able AI methods are produced to make how the deep learning model
works more transparent and understandable in NLP tasks like senti-
ment analysis. Named Entity Recognition is a basic task in NLP field,
it is also used in many applications like search engine and online ad-
vertisement. As a basic and important task in NLP field, though there
are many works focus on how to apply deep neural networks to solve
NER problem, but not much work about how to apply explainable
deep learning methods to NER. To limit the scope of the thesis and
meet the needs of Seavus Stockholm AB, the following problem should
be considered in this thesis:

How to make the Bi-LSTM-CRF model used in Named Entity
Recognition explainable for people who have machine learning back-
ground?

1https://ai.google/research/teams/brain/pair
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1.3 Purpose

After some literature review, the purpose of this thesis project is stated
as: Investigate different explainable deep learning methods for NLP,
implement an appropriate explainable method for the named entity
recognizer based on Bi-LSTM-CRF, and make people who have some
background knowledge get some explainability from the visualiza-
tion.

1.4 Goals

The goal of this thesis is to help developers at Seavus Stockholm AB to
debug and evaluate the performance of their product in the NER field,
and provide comparisons of different explainable methods so that they
can choose when they develop AI solutions in the future.

1.5 Sustainability and Ethics

Research on explainable machine learning methods could be beneficial
for AI products to gain trust from users, as well as for developers to
get better results from the model. Considering privacy issues, we use
a public dataset to do experiments, more details about the dataset are
described in Section 4.1.

From the sustainability aspect, there is no direct impact on the en-
vironment in developing the explainable AI system. According to our
knowledge, developing this system will not cause obvious pollution
or waste. Though it consumes computer hardware resources and elec-
tricity, the energy consumption is negligible.

From the ethics aspect, research on explainable machine learning
model could help to alleviate the anxiety due to the confusion caused
by the black-box model when the model gets into use in people’s daily
life. Developing explainable machine learning system is beneficial to
make the model get correct and appropriate results, especially in im-
portant fields people who do not have much background knowledge
about machine learning, like medical and crime justification. Explain-
able AI systems are also helpful for increasing the adoption of machine
learning because models with explanation can obtain more trust from
users.
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1.6 Research Methodology

The research methodology employed by this thesis is described in [6].
The literature study was conducted to find ideas to solve the problem
from recent related works. The implementation of the algorithm was
done in an exploratory and iterative way. After the experiments, the
inductive approach will be used to analyze the results and find the
possible patterns of how the model thinks. We also discuss the pros
and cons of different approaches, to make recommendations about
when to use what model and provide suggestions for future work.

The programming language is Python. The model was implemented
by Keras, more details about the tool and libraries used in this thesis
project is described in Section 4.2.

1.7 Project Environment

This thesis project was conducted in collaboration with Seavus Stock-
holm AB. Seavus is a software development and consulting company
with a proven track record in providing successful enterprise-wide
business solutions. I joined a project about NER in medical field, and
was responsible for providing some explainability for the named en-
tity recognizer.

1.8 Delimitations

The research of explainable AI includes two aspects, namely explain-
able model and explainable interface. It is important to design meth-
ods to make the explanation acceptable for normal users, however, this
is out of scope of this thesis. This thesis focuses on developing explain-
able model in NLP field for people who have technology background.

1.9 Thesis Outline

The remainder of this thesis is organized as follows. Chapter 2 shows
the background theories used in this thesis and discusses the related
works. Chapter 3 gives a more specific description about how to make
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explainable NER, which includes details of the model. Chapter 4 rep-
resents the introduction of the public dataset and configurations of
the experiment environment. The result from the explainable NER is
demonstrated to see how to visualize the inner states of the model
and how input variables contribute to the generated result. Chapter 5
draws the conclusion of the thesis.



Chapter 2

Background and Related Works

2.1 Machine Learning and Deep Learning

Machine learning, as a subset of AI, attracts the attention of many re-
searchers. It often ’learns’ some implicit rules from labeled data and
makes predictions based on some statistical techniques [7]. Machine
learning has been applied in many research fields such as Computer
Vision (CV) [8] and Natural Language Processing (NLP) [9]. As a
thriving research field, there are also a lot of practical applications
applying machine learning techniques, such as machine translation
[10], face recognition [11], and so forth. Machine learning includes
tasks like supervised learning and unsupervised learning. In super-
vised learning, the model can learn possible patterns from labeled
data, while in unsupervised learning, the model could just find struc-
ture or rules from input unlabeled data on its own.

Due to more accessible hardware and the improvements of GPUs,
deep learning has been explored by researchers in recent years. Deep
learning methods try to imitate the way in which human brain works,
it consists of hidden layers consist of multiple neurons. Using deep
learning can get good performance in several applications such as play-
ing go [12] and speech recognition [13] without manual feature engi-
neering and domain expertise.

2.1.1 Neural Networks

A Neural Network (NN) is a machine learning model which imitates
the function and structure of the human brain. It includes simple

6
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computational nodes called neurons or units. How a single neuron
works are demonstrated in Figure 2.1. This neuron receives informa-
tion along with the incoming edges which are sent from x1, x2 and x3,
and computes how much it receives by the weight of the edge, by ap-
plying a non-linear activation function to the sum of all it receives, it
produces an output as its activation value. Suppose x is the input vec-
tor, w is the weight vector, b is the bias, f is the activation function, �
means element-wise multiplication, the output z can be calculated by
equation 2.1.

z = f(w� x+ b) (2.1)

Figure 2.1: Structure of a single neuron [14]

There are several activation functions often used, such as Sigmoid
(σ), Rectified Linear Units (ReLU), and tanh. These functions are defined
by equation 2.2, 2.3 and 2.4.

σ(z) =
1

1 + e(−z)
(2.2)

ReLU(z) = max(0, z) (2.3)

tanh(z) =
ez − e−z

ez + e−z
(2.4)

Figure 2.2 shows an example of a multi-layer NN. Multiple neu-
rons form layers of units, each neuron is connected to all neurons in
the previous layer by edges with different weights, and several con-
nected layers compose the neural network. The first layer is the input
layer which receive inputs, and the last layer which yields the output
is called the output layer, the intermediate layers are regarded as hidden
layers. When information comes in, it flows from the input layer to the
output layer and lights the correspond neuron in the output layer to
indicate the result.
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Figure 2.2: structure of a multi-layer NN [14]

To measure the difference between the output made by the neural
network and the expected output, the Mean Square Error (MSE) loss
function is often used. It evaluates the average squared distance be-
tween predictions and true values. The equation of MSE is indicated
as 2.5, N represents the number of samples used by the model, y de-
notes the true value while ŷ means the value yielded by the neural
network.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (2.5)

Then the learning problem is converted to an optimization problem
which aims to minimize the loss function by adjusting parameters in
the neural network. The optimization method used is called Gradient
Descent. The gradient measures the changes of loss value correspond-
ing to the small changes of parameters, it is calculated as the partial
derivatives of parameters regarding the loss function. Suppose L is
the loss function, θ are parameters, η is a small positive number called
learning rate to control the pace to tune the parameters, we can update
parameters by equation 2.6 iteratively, so that we keep decreasing the
value of loss function until we reach a global minimum.

θ = θ − η∂L(θ)
∂θ

(2.6)

Usually, there are a lot of training samples, so it is not an efficient
way to calculate gradient separately for each training input. To deal
with this issue, we choose a small number of training samples ran-
domly, each set of training samples is referred as a mini-batch, and then
we update parameters after calculating the loss of each mini-batch.



CHAPTER 2. BACKGROUND AND RELATED WORKS 9

This method is called Stochastic Gradient Descent (SGD). More details
about training methods can be found in [15].

2.1.2 Recurrent Neural Networks

Standard RNNs

Traditional neural networks do not consider the relations and the or-
der of the input data. For example, if a NN is trying to classify what
happened in a video, since the traditional NN deal with sample data
individually, it cannot use the former frames to help understand later
ones. Recurrent Neural Network (RNN) was proposed to solve se-
quence problems by taking the continuity of individual data sample
into consideration. In units of RNN, there is a loop to keep the history
information, and convey the information from previous hidden state
to the next. Figure 2.3 shows an example of RNN. There is a single
unit of RNN on the left side of this figure, the loop of this unit can con-
vey the state at current timestep to the next timestep. In each timestep,
the input xt RNN generates a hidden state ht. According to the right
side of figure 2.3, the loop operation of a single unit in RNN can be re-
garded as a sequence of copies of the same unit in chronological order,
each copy passes information to the copy in next timestep. There are
several variations of RNN depends on different needs. In this thesis,
we will use Long Short-Term Memory (LSTM).

Figure 2.3: Structure of RNN [16]

LSTM

RNNs can keep the memory of every timestep before the current one
to help predict the result. For example, to predict the next word of a
text, we only need to consider a few adjacent words, the word to be



10 CHAPTER 2. BACKGROUND AND RELATED WORKS

predicted has little distance from its related words. In this case, the
RNN works. But what if the relevant information is far away from the
word to be predicted? It is difficult for standard RNNs to associate the
information to be predicted and its relevant information once the gap
between them is increasing.

To solve the problem caused by "long-term dependencies", Hochre-
iter and Schmidhuber [17] proposed Long Short-Term Memory which
aims to remember information for short term. Comparing to stan-
dard RNNs, LSTM performs better at overcoming vanishing gradients
problem by using the unit with more complex architecture as shown in
Figure 2.4. There are three gates designed to control how the informa-
tion pass through the cell. These three gates are described as follows:

Figure 2.4: Structure of a unit in LSTM [16]

• Forget gate: The forget gate controls how the information from
the current input xt and the output from the previous time step
ht−1 flow in the current cell, after calculated by an activation
function σ. Following equation 2.7 it outputs a vector ft with all
elements between 0 and 1. This vector points which information
is allowed to pass.

ft = σ(Wf · [ht−1, xt] + bf ) (2.7)

• Input gate: The input gate decides how much new input infor-
mation should be added to the cell state. First, a sigmoid function
decides which information needs to be updated, and a tanh func-
tion generalizes the Ĉt which means the contents available for
update. Then, the old cell state Ct−1 can be replaced by adding
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new information into the cell state and get Ct. This process is
represented by equations 2.8:

it = σ(Wi · [ht−1, xt] + bi)

Ĉt = tanh(WC · [ht−1, xt] + bC)

Ct = ft ∗ Ct−1 + it ∗ Ĉt

(2.8)

• Output gate: What to output depends on the output gate. The
output gate will filter the cell stateCt and output the hidden state
ht at current timestep. As equations 2.9 states, it uses a sigmoid
layer to calculate a vector decides which part of the information
in Ct is allowed to output (ot). ot is multiplied by Ct to get the
final result.

ot = σ(Wo[ht−1, xt] + bo)

ht = ot ∗ tanh(Ct)
(2.9)

Note: in equations 2.7, 2.8, and 2.9, W∗ and b∗ means weights and biases for
the same cell in different time step respectively.

Bi-directional LSTM

Standard LSTM only considers the influence of past information. Some-
times future feature can also influence the prediction. Bi-directional
LSTM (Bi-LSTM) [18] enables the use of both past features and future
features for a certain time step. The structure of Bi-LSTM is showed
in Figure 2.5. For example, if a input sample sentence has 10 words
(10 timesteps) x1, x2, · · · , x10, there exists two separate LSTM cells, the
Bi-LSTM network works as follows:

1. For forward-direction LSTM cells, the order of input words is
x1, x2, · · · , x10, the output is a set of hidden states

−→
h1,
−→
h2, · · · ,

−→
h10;

2. For backward-direction LSTM cells, the order of input words is
x10, x9, · · · , x1, and output the hidden states set

←−
h10,
←−
h9, · · · ,

←−
h1;

3. Concatenate two sets of hidden state as [
−→
h1,
←−
h1], [
−→
h2,
←−
h2], · · · , [

−→
h10,
←−
h10]

4. For input xt at each time step, get output statesHt = [
−→
ht ,
←−
ht ], then

the rest operations are as same as in LSTM network.
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Figure 2.5: BiLSTM structure [19]

2.2 Conditional Random Field

Conditional Random Field (CRF) can be considered as a logarithmic
linear model suitable for sequence tagging when context information
is taken into consideration. Suppose there are two random variables
X and Y , P (Y |X) is the conditional probability distribution of Y given
X , if Y can form a Markov random field, then the conditional proba-
bility distribution P (Y |X) can be considered as a conditional random
field, if X and Y have the similar structure, like X = (X1, X2, · · · , Xn),
Y = (Y1, Y2, · · · , Yn) are random variable sequences represented by
linear chain, then P (Y |X) is the linear chain conditional random field
(linear-CRF). In sequence tagging tasks, CRF can define feature func-
tions to capture the relations between labels and use these feature func-
tions to give scores to different predicted tag sequence. In the model
which implements NER task described by this thesis, we use linear-
CRF as the layer on the top of Bi-LSTM layer.

2.3 Natural Language Processing

2.3.1 Bag of Words

Bag-of-Words (BoW) first appeared in NLP and Information Retrieval
field. BoW generates a dictionary of all distinct words appear in all
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texts, and uses vectors to represent words or documents. The element
in the vector is the number of appearances of every word in the dictio-
nary. In this model, words in the texts appear independently, the se-
quence, semantics and syntax information is neglected. BoW can also
be regarded as a histogram of frequency of words. However, when the
dictionary becomes large, the number of dimension of the vector will
increase large as well, which could bring more complexity in subse-
quent operations.

2.3.2 Word Embedding

Word Embedding is a method which maps words or phrases in vo-
cabulary to vectors are consists of real numbers. The basic word em-
bedding is One-Hot Encoding based on BoW. It uses a n-dimension vec-
tor to represent a word, n is the number of words in the vocabulary.
In this word vector, except the value of kth dimension is 1, values of
other dimensions are 0, k is the sequence of this word in the vocabu-
lary. Though One-Hot is easy to use and implement, it suffers from
the curse of dimension when the vocabulary is too large. It does not
consider the sequence of words in a document.

Another word embedding method is Concurrence Matrix. The idea
is that it takes a word holds close relations with nearby words. It al-
lows users to set a window size n which includes the target word and
its nearby words (total 2n + 1 words in the current window) to gen-
erates a concurrence matrix which has the dimension D × D, D is
the number of words in the vocabulary. To get the word vector, the
number of concurrences should be calculated for each pair of words
in the window, each column or row of the concurrence matrix is the
vectorized representation for the corresponding word. Although this
method considers the positions of words, it still yields too long word
vectors.

Word2Vec

One of the most frequently used methods of word embedding is Word2Vec
[20, 21] which is based on neural networks which can map words to
low-dimensional space. Word2Vec is based on two neural network
models: the Continuous Bag-of-Words Model (CBOW) and the The Skip-
Gram Model. For example, in figure 2.6, the center word is ’hiking’,
the window size is 2. If Skip-Gram model has been used, it aims to
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generate each word in the context given center word, which means the
model would learned by predicting words ’to’, ’go’, ’on’, and ’Sunday’
from word ’hiking’. While the CBOW model trys to learn by predict-
ing ’hiking’ by ’to’, ’go’, ’on’, and ’Sunday’. The word embedding pro-
duced by Word2Vec can learn some certain semantic patterns because
it uses contexts words to train. Due to its ability to evaluate the seman-
tic similarities and make semantic analogies (like "King" - "Queen" ≈
"man" - "woman"") between words, Word2Vec becomes very popular.

Figure 2.6: An example of context window for the word ’hiking’

Glove

After works of Word2Vec published, Pennington, Socher, and Man-
ning [22] tried to make use of statistical information of the corpus and
proposed another word embedding method called Glove. Based on
the observation that two words are more relevant if they have shorter
semantic distance, Glove uses word-pair co-occurrence to make re-
lated words more distinct. For example, there are three words i, j,
and k, if word i and word j are relevant, while word i and word k

are irrelevant, the ratio of co-occurrence P (j|i)/P (k|i) should have a
comparatively large value, if word pairs i, j and i, k are not relevant
or relevant at the same time, the ratio is close to 1. So that this ratio
could differentiate relevant words and irrelevant words, and get rele-
vant word-pair. Glove is a count-based method, it can be regarded as a
method to decrease the dimension of the co-occurrence matrix. There
is not much difference on performance between Glove and Word2Vec,
but Glove is more appropriate for tasks with a large volume of data
because it is faster on parallelization. In this thesis, we use pre-trained
Glove word vectors to initiate the embedding layer of the Bi-LSTM-
CRF model for NER.

2.3.3 Named Entity Recognition

Named Entity Recognition (NER) is a classic NLP task, it aims to find
pre-defined categories for each word in the text, these categories in-
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clude names of persons, names of organizations, expressions of times,
etc. The output of named entity tags could be used in many applica-
tions, such as find relevant web pages in the search engine, and post-
ing ads according to identified texts. Most NER system takes a block
of text without annotation, and outputs the annotated text or the se-
quence consists of name entity tags. For example, if the input is:

Bob bought a laptop from Canada.

Then the output should be:

B-PER O O O O B-LOC

In this example, ’B-PER’ represents the beginning of persons’ name,
and ’B-LOC’ means the beginning of a location’s name, while ’O’ indi-
cates ordinary word which is not a named entity.

NER is a challenging problem, not only because labeled data is not
enough in every language, but also lies in there are a few constraints on
which kind of words can be named entities. Most existing methods to
solve this task are linear statistical models, like Hidden Markov Mod-
els (HMMs), Maximum Entropy Markov Models (MEMMs) [23], and
CRF [24]. With the thrift of deep learning, Convolutional Neural Net-
work has been used to tackle NER problem [25], as well as RNN, like
Graves and Schmidhuber [26] and Kawakami [27] used bi-directional
RNN to do the sequence labelling. Currently the popular solution for
NER is to use Bi-LSTM combined with CRF [28]. The Bi-LSTM layer
could capture relations of texts from both directions of the text, and
CRF layer is able to create rules of output labels to avoid situations
like ’B-PER’ followed by ’B-ORG’ (it is not possible that the beginning
of an organization’s name follows the beginning of a person’s name).
This method can attain 90.94% accuracy according to Lample et al. [29].

In this thesis, we also use this Bi-LSTM combined with CRF, and
try to use explainable deep learning methods to interpret this model
for better debugging and improving the model in practical work.

2.4 Deep Learning for NLP

In recent years, deep neural networks have get considerable perfor-
mance among many NLP tasks like sentiment analysis [30, 31, 32],
syntactic analysis [33, 34], and machine translation [35, 36]. Different
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deep neural networks are applied for various tasks in NLP field. For
example, in tasks of dialogue system, Zhou et al. [37] used the LSTM
encoder on the top of CNN for multi-turn human-computer conversa-
tion which takes utterance into consideration to catch utterance-level
relations in the text. For POS tagging, Andor et al. [38] proposed
a transition-based approach combined with feed-forward neural net-
work, and Huang, Xu, and Yu [28] also used Bi-LSTM to predict POS
tags. Various deep models have become the new state-of-art methods
in NLP field. Correspondingly there appears some explainable deep
models focus on NLP tasks or adapted existed explainable methods to
NLP tasks, related works will be introduced more in section 2.5.5.

2.5 Understanding Neural Networks

In this section, the concept of Explainable Artificial Intelligence and
different kinds of explainable methods are discussed. The first type
talks about models which are easy to understand by humans. Then
we discuss more on explanations for complex models on specific in-
stances (locally) or on the whole behaviors (globally). Some related
works about applications in NLP field with explainable deep learning
methods are introduced as well.

2.5.1 Explainability of Machine Learning

When the expert system appears [39, 40, 41], many researchers started
to explore how to explain the intelligent system, which mainly focused
on designing more explainable representations to reduce the complex-
ity from complicated rules. However, AI systems nowadays are dif-
ferent from those rule-based systems in the past. The model becomes
more complex because of the increased number of parameters and op-
erations, thus it is more difficult to explain the decision of the model.
There is no commonly agreed definition so far. Doshi-Velez and Kim
[42] consider the interpretability (or explainability) as the ability to
explain or to present in understandable terms to a human. Another
elegant definition of interpretability from Miller [43] states that inter-
pretability is the degree to which a human can understand the cause
of a decision. Doran, Schulz, and Besold [44] proposed a new con-
cept of interpretability, which is that an AI system is able to explain
the decision-making process of a model using human-understandable
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features of the input data. Usually, simple models like linear classi-
fier are easy to interpret, while a complicated model like a deep neural
network is difficult to understand owing to its layer-wise structure and
nonlinearity of computation. In this thesis, we define the explainabil-
ity of an AI system as the ability to explain the reason why it makes
the decision in a human-understandable way, and describe more about
the explainable model for deep neural networks.

There comes an intuitive question. Why do we need explainabil-
ity? According to Samek, Wiegand, and Müller [45], reasons can be
described from four aspects: trust from users, modification of the sys-
tem, learn from the system, and moral and legal issues.

• Trust from users. The complicated machine learning model is a
black box. Normal users do not know how it makes decisions
and how to make sure its decisions are correct. They may sus-
pect the model and worry about if the model is trustable. Once
the model can explain itself, users can know the rationale of the
model, why it makes right or wrong decisions, so that users can
have more trust to the system.

• Modification of the system. Some complex models like deep
neural networks have too many operations and parameters, so
they are difficult to explain. If developers do not know why it
performs bad, then it is difficult to debug. Therefore, it should
be easier to improve the AI system if the developer can easily
modify it.

• Learn from the system. Sometimes we can learn new insights
from the AI system. For example, AI systems outperform human
Go players and perform strategies unexpected by human. We
can extract some new knowledge or insights from the AI and
explainable AI models can let us learn from it.

• Moral and legal issues. Though AI affects our daily life gradu-
ally, related legal issues such as how to assign the responsibility
when AI makes the wrong decision, have not received much at-
tention until recent years. It is difficult to find perfect solutions
for these legal issues because we rely on black-box models.

In some situation, explainability is not necessary, such as applications
in a certain domain is resistant to unexpected errors, or the domain
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which has been studied thoroughly and its application has been tested
well, then the explainability for the model is unlikely to be a prerequi-
site.

2.5.2 Interpretable Models

Interpretable models are considered to be easier to understand by hu-
man without explicit explanations. For example, rule-based methods
such as decision trees [46] uses nodes and branches to represent its
reasoning when making decisions. It is more intuitive and straightfor-
ward for human to trace from a leaf to the root to understand the deci-
sion. Considering the difficulties in constructing high-accuracy inter-
pretable trees, Letham et al. [47] proposed the Bayesian Rule List intro-
duced Bayesian framework into rule-based methods. But this kind of
methods suffers from scalability problem. When the number of nodes
and rules grows fastly, understanding the classifier as a whole is diffi-
cult. Except for rule-based models, linear models and k-nearest neigh-
bors (kNN) models are also believed easy to interpret.

2.5.3 Local Explainable Methods

For a given input point, if the explainable method generates explana-
tion in a small region around this given point for the model, we call
it as a local explanation. In local explanation, certain inputs and their
corresponding predictions are usually taken as examples to explain
how the model behaves. We categorize the local explanation into two
types, namely model-unaware explanations and model-aware expla-
nations, depending on if the explanation is generated using parame-
ters or structures directly from the model.

Model-unaware explanations

Most works about Model-unaware explanations often derive explana-
tions based on sensitivity. For example, Simonyan, Vedaldi, and Zis-
serman [48] use the squared partial derivatives as the class saliency
score of an image classifier with respect to a given input image, and
highlight the most sensitivity part on this image which gives spatial
support to the prediction. Similarly, Li et al. [49] compute the first-
order derivative as the salience score of a unit from different RNN clas-
sifiers for sentiment analysis, and generate heatmap matrices as expla-
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nations to which dimension in the embedding vector or which word
contribute most to the prediction. Although generating explanations
based on sensitivity is effective and intuitive, the high non-linearity of
complex models may cause the explanation noisy.

Except for the sensitivity-based method, some works try to use a
simple model to imitate the behavior of a complex model. Ribeiro,
Singh, and Guestrin [50] proposed Local Interpretable Model-Agnostic
Explanations (LIME), which is a method tries to apply a simple linear
model to approximate the behavior of a complex model on a region
around a single instance. This method takes one instance and per-
mutes it to generate a new dataset and fit it with both complex model
and simple model to see how the prediction changes. Based on this
idea, Wu et al. [51] introduce a tree regularization method to make the
decision boundaries of deep models to be easily understood by hu-
man. LIME-based methods are model-agnostic. Though this kind of
methods has advantages like model flexibility and easy comparisons
between different deep models, they have difficulties in understand-
ing the global situation, and inconsistency among explanations of dif-
ferent samples[52].

Model-aware explanations

Methods derive model-aware explanations often make use of the pa-
rameters of the model. For CNNs, Selvaraju et al. [53] use the gra-
dients from the final convolutional layer to visualize important pix-
els in the input images corresponding to the classification. Bach et
al. [54] use Layer-wise Relevance Propagation (LRP) to flow the rele-
vance score from the output layer to the input layer of CNNs with lin-
ear sum-pooling and convolution or simple multiple perceptron. This
method could measure the contribution of each input variables. Hen-
dricks et al. [55] implement an image classifier based on CNN which
could output explanatory text by an RNN trained by descriptive la-
bels and descriptions of the images. Kuwajima and Tanaka [56] pro-
posed a general idea to give inference of decision for visual recognition
tasks by extracting the overlaps between highly activated features and
frequently activated features in each class. For RNNs, Murdoch and
Szlam [57] propose an approach to generates representative phrases
from the input for LSTM model, they validate these phrases are im-
portant features by using them to construct a simple rule-based model
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to approximate the performance of original LSTM model. Some works
aim to visualize how the deep model learns, like Karpathy, Johnson,
and Fei-Fei [58] visualize the hidden units of the RNN and find some
learning mechanisms of how an LSTM language model learn. Stro-
belt et al. [59] develop a framework which allows users to choose the
input range and visualize the corresponding change in hidden state
patterns.

2.5.4 Global Explainable Methods

If the explanation is generated for the whole input space or as an
overview of how the model behaves, we regard it as global explana-
tion. Similar to the category of local explanations, we also discuss
global explainable methods from model-unaware and model-aware
approaches.

Model-unaware explanations

There is not much work about how to generate model-unaware expla-
nations globally in a model-agnostic way. Ribeiro, Singh, and Guestrin
[50] make the global explanations by presenting a set of representative
local explanations to users one at a time. This method is easy to fail
when there is too much training data, and users cannot remember a
lot representative local explanations to form a global view.

Model-aware explanations

Bau et al. [60] take the activation of each neuron for an image as the se-
mantic segmentation of concepts represented by this image. Through
this dissection process, they align neurons and human-understandable
concepts to assess how well a concept is represented by a single unit.
Based on the idea of disentangled patterns, Zhang et al. [61] use an ex-
planatory graph to represent the knowledge hierarchy of a pre-trained
CNN, which enables the logic-based rules as the representations of
the inner logic of the CNN knowledge, so that the explanation could
be more concise and meaningful.
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2.5.5 Explainable Methods for NLP

In additional to explainable models for visual information classifica-
tion or prediction, there are many methods developed for text data.
Like LRP [54] has been transferred to deep models for text data [62].
This method was adapted to sentiment analysis task [63] and neural
machine translation field [64] as well. The sensitivity-based method
has also been applied to NLP field. After constructing saliency map for
every dimension of a word vector in sentiment analysis task [49], Li,
Monroe, and Jurafsky [65] propose a general methodology to measure
the importance of different representations, like the input word vector
dimension, the intermediate hidden unit or the input word, by erasing
various representations. There are also methods which could gener-
ate rationales as inference for the decision of deep models, like Zhang,
Marshall, and Wallace [66] train a sentence-level CNN for text clas-
sification by using rationale annotations, Lei, Barzilay, and Jaakkola
[67] develop a model to extract phrases which are enough to make
predictions from the input text as the rationale of the predictions in a
sentiment classifier consists of two modules.
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Approaches

In this chapter, we describe the Bi-LSTM-CRF model for NER, and how
to apply LRP [54] to explain the Bi-LSTM layer of the model, as well as
the approach to visualize word vectors and measure the effectiveness
of CRF layer. First, we introduce the model as a whole, then analyze
the explainability of Bi-LSTM-CRF model for NER layer by layer.

3.1 Bi-LSTM-CRF Model for NER

Most of the methods mentioned in Chapter 2 aim to reveal the ex-
plainability for tasks with the single output for each input instance.
But in NER problem, both the input and the output are the sequence.
To make NER explainable, in this thesis, we implement a named en-
tity recognizer by Bi-LSTM and CRF model as same as the approach
from Huang, Xu, and Yu [28], and use LRP [54] to measure the contri-
bution of inputs to the prediction inspired by work from Arras et al.
[62] and Ding et al. [64], the former apply this method to LSTM and
the latter adapt it to explain neural machine translation, which is a se-
quence prediction task. As for the visualization, we take the similar
methodology from Li et al. [49], the difference is that rather than use
the partial derivative to colorized the saliency matrices, we use the rel-
evance score to construct the heat map. So that we can visualize how
word vectors or hidden state units contributed to the generalization of
the output sequence.

For the neural model to implement the named entity recognizer,
between the input layer and the output layer, we use the pre-trained

22



CHAPTER 3. APPROACHES 23

word vectors Glove1 [22] to initialize the embedding layer, then fol-
lows a bi-directional LSTM layer and a CRF layer. The structure of the
model is shown in Figure 3.1.

Figure 3.1: Bi-LSTM-CRF model for NER [28]

In this model, information from the past (via forward states) and
the future (via backward states) can be used by the Bi-LSTM layer,
while the CRF layer can capture the relation of contextual labels to
assist the prediction of the current label. To clarity this model, we ex-
plain different layers in the model combined with the example stated
in Figure 3.1.

In the input layer, the length of each input sequence will be padded
to the same length. We suppose l is the length of each input sequence.
The length of the input sequence is equal to the number of timesteps.
At time t, the input layer takes the token of the current input sequence
which could consist of one-hot-encoding word vectors or dense vec-
tors. For example, if t = 1, the input sentence is "EU rejects German
call", in this timestep the neural network takes the word representation
of the word "EU". After l timesteps passed, the whole input sentence
has been processed.

In the Bi-LSTM layer, each neuron consist of input gate, forget gate,
and output gate as described in section 2.1.2. These neurons are dev-
ided into two directions, which takes each input sequence in order or
in reverse order to process, so that the neural network can use both

1http://nlp.stanford.edu/data/wordvecs/glove.6B.zip
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past and future information of current word. In every timestep, the
model can output the hidden state of current timestep. But usually, we
take the last hidden state as the output of a RNN in classification prob-
lems. Since NER is a sequence tagging problem, it predicts a tag for
each components of the input sentence. Thus, the hidden state output
in each timestep shows the predicted tag for current word. Consider-
ing the output of the Bi-LSTM layer in each timestep is a probability
distribution of possible tags for current word, in this thesis, we use
these hidden states before the last timestep, and get the highest entry
of these vectors as the relevance score of the current predicted tag.

As for the CRF layer, we try to visualize how the CRF layer influ-
ence the prediction made by Bi-LSTM layer. Since we use linear chain
CRF, we do not use LRP to explain the effect caused by this layer. By
using the CRF layer after the Bi-LSTM layer, we can make use of in-
formation from neighbor tags to predict the current tag. A CRF layer
includes a transition matrix as parameters which defines feature func-
tions of CRF and capture the relation between different tags. For each
input sentence, the CRF layer combined the predicted scores assigned
to each word and the transition scores to choose the predicted tag se-
quence with highest score.

3.2 t-SNE for Embedding Visualization

In the training process, we use pre-trained Glove[22] word vectors to
initialize the embedding layer. The reason we use pre-trained word
embeddings is that it can get better performance than random em-
beddings or word vectors trained by limited tagging data. To cap-
ture the relations between different words vectors in the input text,
we use t-Distributed Stochastic Neighbor Embedding (t-SNE)[68] to
visualize these pre-trained word vectors, in order to show how simi-
lar words get together. t-SNE is a non-linear method which aims to
reduce dimension of vectors with high dimensionality. To embeds
high-dimensional data points to low-dimensional space, it turns the
similarities of data points to probabilities, uses joint probability under
Gaussian distribution to represent the similarity between data points
in original high-dimensional space, while in low-dimensional space
it uses t-distribution [69]. By calculating the Kullback-Leibler diver-
gence of the joint probability of original space and embedded space,
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we can evaluate the performance of dimension reduction. t-SNE can
keep similar words as close as possible while maximizing the distance
among words are dissimilar.

3.3 Layer-wise Relevance Propagation for Bi-
LSTM

We follow Bach et al. [54] to use LRP to compute relevance score of
each hidden states or each variable in the input layer. Here we use an
example shown in 3.2 to describe how LRP works in general.

Figure 3.2: An example of how LRP works

LRP aims to redistribute the relevance score of activated neuron in
the output layer to variables in the input layer via the backpropagation
operation, the relevance score refers to the function value calculated
by neuron networks of the activated unit in the output layer. In the
following, we describe how LRP assign the relevance score to units
in a neural model. There is a 3-layered NN shown in figure 3.2, the
input layer has 3 neurons, while for the hidden layer and the output
layer each has 2 units. Each layer and each unit are labeled as shown
in the figure. In this example, we use R(l,m)

i←j , (l < m) to represent the
relevance distributed from the neuron j in layer m to the neuron i in
layer l, R(l)

i refers to the relevance score of neuron i in layer l, ai means
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the activation of neuron i, wij is the weight connection between neuron
i and neuron j. For example, in figure 3.2, R(1,2)

1←4 means the relevance
score assigned from neuron 4 in layer (2) to the neuron 1 in layer (1),
R

(1)
1 represents the relevance score assigned to neuron 1, w14 means

the weight vector between neuron 1 and neuron 4.Then we illustrate
how LRP calculates the relevance of input variables by the following
procedure.

1. LRP propagates the relevance from units in output layer to units
in intermediate layer. Here we calculate relevance propagate
from neuron 6 to neuron 4 and neuron 5:

R
(2,3)
4←6 =

a4 · w46

a4 · w46 + a5 · w56

·R(3)
6 (3.1)

R
(2,3)
5←6 =

a5 · w56

a4 · w46 + a5 · w56

·R(3)
6 (3.2)

Here R(3)
6 refers to the function value calculated by the neural

model, which means the prediction of neuron 6. The relevance
from neuron 7 to neuron 1 can be calculated similarly as:

R
(2,3)
4←7 =

a4 · w47

a4 · w47 + a5 · w57

·R(3)
7 (3.3)

R
(2,3)
5←7 =

a5 · w57

a4 · w47 + a5 · w57

·R(3)
7 (3.4)

2. Then further propagate relevance R
(3)
6 to neurons in the input

layer:
R

(1,3)
1←6 =

a1 · w14

a1 · w14 + a2 · w24 + a3 · w34

·R(2,3)
4←6+

a1 · w15

a1 · w15 + a2 · w25 + a3 · w35

·R(2,3)
5←6

(3.5)

R
(1,3)
1←7 =

a1 · w14

a1 · w14 + a2 · w24 + a3 · w34

·R(2,3)
4←7+

a1 · w15

a1 · w15 + a2 · w25 + a3 · w35

·R(2,3)
5←7

(3.6)

We can use similar approach to get R(1,3)
2←6 , R(1,3)

3←6 , R(1,3)
2←7 , and R

(1,3)
3←7 .

3. Then we can summarize the relevance of each neuron in the in-
put layer obtained from neurons in output layer, which can be
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calculated as:

R
(1)
1 =R

(1,3)
1←6 +R

(1,3)
1←7

=
a1 · w14

a1 · w14 + a2 · w24 + a3 · w34

· (R(2,3)
4←6 +R

(2,3)
4←7)+

a1 · w15

a1 · w15 + a2 · w25 + a3 · w35

· (R(2,3)
5←6 +R

(2,3)
5←7)

(3.7)

We can also calculate R(1)
2 and R

(1)
3 in similar way.

There is an assumption LRP based on: the relevance in every layer of
the neural model keeps same. Take the model in figure 3.2 as instance,
the relevance of all units in the neural network should satisfy:

R
(3)
6 +R

(3)
7 = R

(2)
4 +R

(2)
5 = R

(1)
1 +R

(1)
2 +R

(1)
3 (3.8)

Thus, if we calculate the relevance of neuron 1 the feed-forward
prospective, same result can be obtained, we should get the same re-
sult as 3.7:

R
(1)
1 = R

(1,2)
1←4 +R

(1,2)
1←5

=
a1 · w14

a1 · w14 + a2 · w24 + a3 · w34

·R(2)
4

+
a1 · w15

a1 · w15 + a2 · w25 + a3 · w35

·R(2)
5

(3.9)

From the forward propagation, we have:

R
(2)
4 = R

(2,3)
4←6 +R

(2,3)
4←7

R
(2)
5 = R

(2,3)
5←6 +R

(2,3)
5←7

(3.10)

Take equation 3.10 into 3.9, we can get the result of 3.9 which is as same
as the result from 3.7.

Now we can make a general rule of how LRP works. Suppose Rk

is the relevance score of neuron k in layer l + 1 in a multilayer neural
network, Rj is the relevance score of neuron j in layer l. We can follow
equation 3.11 to calculate Rj as:

Rj =
∑
k

xjwjk∑
j xjwjk + ε

Rk (3.11)

Where xj is the activation of neurons at layer l, wjk is the weight con-
nection between neuron j and neuron k, and ε is a stabilization term
to avoid division by zero.
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As we can observe from Bi-LSTM, for NER problem, the output of
each time step of Bi-LSTM is the prediction of current input word. So
we take the score predicted by the Bi-LSTM layer as the initial weight
for LRP. The goal of applying LRP is to visualize the hidden states
generated from the input sequences by the model.

In RNNs, the approach to calculate the relevance of weight con-
nections from the neuron in upper-layer to neuron in lower-layer of
LSTMs is very similar to the standard LRP aforementioned, except a
stabilizer ε (set to 0.001 in experiments) is added to the numerator of
equation 3.11. Here we assume a part of the relevance was "absorbed"
by the biases so conservation of relevance propagation is only kept
approximately. We use Rj←k in equation 3.12 to imply the relevance
received by neuron j in layer l from neuron k in layer l + 1, where
xk =

∑
j xj · wjk + bk, therefore

∑
k Rj←k represent the relevance score

of neuron j.

Rj←k =
xj · wjk + ε·sign(xk)

N

xk + ε · sign(xk)
·Rk (3.12)

where sign(xj) = (1xj≥0 − 1xj≤0), xj is the activation of neuron j, N is
the number of all neurons in lower-layer which connected by j.

To quantify how much one contextual word vector contributes to a
hidden state, equation 3.13 is introduced, where u is the word vector,
v is the current hidden state.

Ru←v =
∑
u

∑
v

ru←v (3.13)

Based on formulas mentioned above, we use algorithm 1 to illus-
trate the approach to visualize the impact generated by hidden states
and word vectors to the prediction.

3.4 Explanation for the CRF Layer

In each timestep, the Bi-LSTM layer takes a word vector and output
a vector which represents the probability distribution of possible tags
for this word. The CRF layer takes the score of most possible tag for
the current word as the emission score of this word. Then it adds the
emission score and a transition score which represents the probabil-
ity of a tag followed by another tag. The transition score describes
the probability of a label followed by another label. For each input
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Algorithm 1: Layer-wise relevance propagation for Bi-LSTM in
Named Entity Recognition

Input: A pre-trained Bi-LSTM G for a paired sequence
Output: Word-level relevance vector Rw

1 for unit z in the output layer of G do
2 Rz = f(z);
3 end
4 for unit i in intermediate layer l do

5 R
(l,l+1)
i←j =

xi·wij+
ε·sign(xj)

N

xj+ε·sign(xj) ·Rj ;
6 Rl

i =
∑

j Ri←j ;
7 end
8 for word representation w in input sequence do
9 Rw =

∑
iR

l
i;

10 end

sentence, the CRF layer calculates the corresponding tag sequence by
taking emission scores, transition score, and previous tags into consid-
eration, and choose the sequence which gets the highest score. The en-
tries of the transition score matrix are parameters of the model which
can be trained. To explain the influence from the CRF layer, we used
the weights and biases to calculate the emission score vector for each
word, and compare it with the output from the CRF layer, so that we
can observe how transition score matrix change the prediction from
Bi-LSTM layer. Considering the parameters of CRF layer are trained
together with parameter on other layers, so we just apply LRP to Bi-
LSTM layer in a pre-trained Bi-LSTM model without CRF layer, while
when generate explanation of CRF layer, we use the Bi-LSTM-CRF
model as a whole.



Chapter 4

Experiment and Result Analysis

4.1 Dataset

In the experiments of the named entity recognizer implemented by
Bi-LSTM CRF model in this thesis, we use the CoNLL 2003 English
named entity dataset [70], which is a public dataset contains indepen-
dent named entity tags. Table 4.1 shows the size of sentences and to-
kens in training, validating and test datasets.

English data Sentences Tokens
Training 14,987 203,621
Validating 3,466 51,362
Test 3,864 46,435

Table 4.1: Number of sentences and tokens in each data file

This dataset contains four different types of named entities: loca-
tions (LOC), persons (PER), organizations (ORG) and miscellaneous
names (MISC). Each line of the data file is consists of two fields, namely
a word and its named entity. In each type of named entities, the first
word of a named entity is tagged ’B-XXX’ to show this word is the
beginning of a named entity, the rest words of this named entity are
tagged as ’I-XXX’. Words tagged with ’O’ means they are outside of
named entities. Table 4.2 shows the number of named entities in data
file.
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English data LOC MISC ORG PER
Training 7140 3438 6321 6600
Validating 1837 922 1341 1842
Test 1668 702 1661 1617

Table 4.2: Number of each named entity

4.2 Environment and Parameters

In this thesis project, experiments were run on a machine with follow-
ing configurations:

• Intel Core i7-6500U CPU, 2.5 GHz, 2 cores

• 8 GB DDR4 RAM

• Windows 10 64-bit OS

The Bi-LSTM-CRF model used in this thesis is implemented by Keras
and Python. Keras is an open source project which provides high-level
API to implement deep neural networks and runs on top of deep learn-
ing libraries like Tensorflow and Theano. It can make the information
about other libraries or tools used in this thesis is listed below in table
4.3.

Library Version

Python 3.5.4
Keras 2.1.5
TensorFlow 1.5.0
Sickit-learn 0.19.1
Pandas 0.22.0
numpy 1.14.2
matplotlib 2.2.2

Table 4.3: Tools and libraries used in this thesis

In the experiment, we employed one hidden-layer bi-directional
LSTM, which takes a sequence of words x1, x2, · · · , xT and its reversed
order format as input, each word vector is represented by a word em-
bedding has 100 dimensions. The size of nodes in the hidden layer is
100 as well, and the output is a sequence of named entity tags, each tag
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is chosen from 9 tags, namely B-PER, I-PER, B-LOC, I-LOC, B-ORG, I-
ORG, B-MISC, I-MISC, O. The output sequence has the same size as
the input sequence. We train the Bi-LSTM-CRF model with batch size
32 and 5 epochs. Another thing to note is that we use LRP for Bi-LSTM
model without CRF layer, because in this way the heat map can show
how the Bi-LSTM layer make correct predictions, which can be easier
to understand. However, in Bi-LSTM-CRF model, all parameters are
trained simultaneously, it could cause some confusion from the result
of Bi-LSTM layer.

4.3 Result Analysis

4.3.1 Visualizing Word Embeddings by t-SNE

We apply t-SNE to visualize the pre-trained embedding vectors as
shown in Figure 4.1. This figure shows the visualization of all word
vectors mapped to 2-dimensional space.

Figure 4.1: Glove embeddings for training data

Zoom in the figure above, we can visualize how words close to each
other in a certain region as shown in figure 4.2. Two axes represent
the position in each direction for the word vectors after decrease the
dimension. For example, in figure 4.2, these words which are close to
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each other represent names of countries or cities, they are similar in
way of use, which meets the idea of word embedding.

Figure 4.2: Local word embeddings represent names of countries

4.3.2 Visualization of the Bi-LSTM Layer

Considering LRP is a local explainable method, it generates explana-
tions for certain input instance, so here are a few examples to show
how it visualize the importance of single words in the input sequence.

Visualizing contribution of contextual words in hidden states

As shown in figure 4.3, the input sequence, and the predicted tag se-
quence are listed. The ’simulated’ column shows the result calculated
by all parameters of Bi-LSTM from the forward phase in LRP method.
The ’True’ column represents real tags of the input sequence, while
the ’pred’ column shows the predictions generated by the model. The
’simulated’ column should be as same as the ’pred’ column because it
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is generated via a forward propagate process applied with all param-
eters generated by the model.

Figure 4.3: Prediction generated by Bi-LSTM layer

According to the prediction result of this sentence in figure 4.3, the
named entity tag for the word "clive" is "B-PER" (the beginning of a
person’s name). We regard "clive" as a target word, and the rest words
are regarded as contextual words. By applying the LRP method, we
can obtain a matrix of relevance scores of every context word in for-
warding and backward hidden states as shown in figure 4.4. In this fig-
ure, every grid represents the relevance level of each contextual word
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contribute to the prediction of the target word. 4.4(a) and 4.4(b) repre-
sent forward hidden states and backward hidden states respectively.

(a) Visualizing forward hidden
states for a content word "clive"

(b) Visualizing backward hidden
states for a content word "clive"

Figure 4.4: Heatmap of a content word "clive" in Bi-LSTM layer in two
directions

From figure 4.4 we can observe that the word "manager" (the one
before "clive") and the word "lloyd" (the one after "clive") contribute
more to the hidden states of "clive" than other words, which means
these two adjacent words shows more importance when the model is
predicting the named entity tag for "clive". Considering the word be-
fore "clive" is used to describe a person’s occupation, and the word
after "clive" is the intermediate word of the person’s name, also these
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two words are closest to the target word, it is easy to understand why
the neural network thinks these two words contributes most to the
prediction of the target word. The relevance of other contextual words
decreases when the distance of them to the target word becomes larger.
It is reasonable to say that the model captures the relation between
nearby words and the target word in this instance. But from 4.4(b), it
is clear that the relevance of the word "clive" is more concentrated on
itself. To be more specific, we visualize how every unit in the Bi-LSTM

(a) Visualizing dimensions of for-
ward hidden states for content
word "clive"

(b) Visualizing dimensions backward hid-
den states for content word "clive"

Figure 4.5: Heatmap of every unit for a content word in Bi-LSTM layer
in two directions

layer contribute to the result of a certain word. In figure 4.5, the rele-
vance score of every dimension of hidden states for predicting the tag
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of the word "clive" is shown. It follows the trends in figure 4.4, namely
nearby contextual words contributes more to the target word. But we
notice there are some salient dimensions in both forward and back-
ward order. From 4.5(a), the 63th unit of the word vectors represent
"tour" and "clive" contribute more relevance, while in the backward
state, the 69rd unit of the word representation of "clive" shows most
importance. According to this visualization of every unit’s relevance,
we can find have a more direct impression of which units influence the
prediction.

We can also check the contribution of contextual words to any tar-
get word. For example, from figure 4.3, we can notice that the pre-
dicted tag for the word "australia" is "B-LOC" (the beginning of a loca-
tion). While from the heat map as shown in figure 4.6(a), the important
words are "manager" and "dressing" (both are a bit far away from the
target word), though "australia" itself shows quite a relevance. It is
hard to explain why a location can be tagged as the named entity "B-
LOC", we can only conclude that contextual words mentioned above
give the most contribution to the prediction for this target word.

(a) Visualizing forward
hidden states for a con-
tent word "australia"

(b) Visualizing backward hidden
states for a content word "aus-
tralia"

Figure 4.6: Heatmap of content word "australia" in Bi-LSTM layer in
two directions
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Figure 4.7: Visualize relevance of embedding layer for the last hidden
state

Visualizing the relevance of contextual word vectors

Except for the relevance of hidden states, we also want to know which
dimension of word vectors has more relevance to the prediction result.
Figure 4.7 shows the relevance score of the word vectors contribute
to the final hidden state for the input sentence aforementioned. Each
row means the representation of a word, which is a 100-dimension
vector. Each grid is the dimension of corresponding word vectors. As
shown in figure 4.7, to contribute the last hidden state, namely the
prediction for the last word, its nearby contextual word vectors shows
more importance, and the 12th, 59th, and 84th dimensions perform
more relevance in the generation of the tag of the last word. We can
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observe that the Bi-LSTM keep focus on contextual words near the last
word.

For the case mentioned above, we can also visualize the relevance
of the word vectors as shown in figure 4.8. We can observe that for
the forward sequence, the word "tour" shows more relevance while in
the backward sequence the word "on" shows most importance when
predicting the tag of the target word "clive". Compare to figure 4.4, we
can show how relevance transfers among units in different layers.

(a) Visualizing forward
word vectors for word
"clive"

(b) Visualizing backward word vectors for
word "clive"

Figure 4.8: Visualizing word vectors of word "clive" in embedding
layer in two directions
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To be more clear, we visualize every dimension of word vectors
from two directions in the embedding layer. From figure 4.9, the 55th
dimension of the word "tour" and the 61st dimension of the word
"clive" show more relevance than other words in the same direction.

(a) Visualizing dimensions of for-
ward word vectors for word
"clive"

(b) Visualizing dimensions back-
ward word vectors for word
"clive"

Figure 4.9: Visualizing dimensions of the word vector for "clive" in
embedding layer in two directions

Visualizing word relevance for wrong predictions

Another interesting problem is that how words contribute to wrong
predictions. In figure 4.10, there is a predicted with wrong predicted
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tags, from that we can observe the tag of the word "major" is predicted
wrongly. The true tag is ’B-PER’ while the prediction is ’O’. We visu-
alize the forward hidden states and backward hidden states for this
word "major" and take it as the target word as shown in figure 4.11.
According to 4.11(a), in the forward hidden states of the word "major",

Figure 4.10: Wrong prediction generated by Bi-LSTM layer

words "not" and "between" shows more importance to the generation
of the tag of the target word, and in the backward hidden states, the
relevance focused on the target word itself. One possible reason could
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be the model does not capture the relation expressed by "between",
though it predicts the word "clark" as ’B-PER’, which means the model
does not notice the concatenation between the word "clark" and the
target word, so it generates different tags for these two words.

(a) Visualizing forward hidden
states for a content word "major"

(b) Visualizing backward hidden
states for a content word "major"

Figure 4.11: Visualizing hidden states of content word "major" in Bi-
LSTM layer in two directions

4.3.3 Influence from the CRF Layer

From Keras we can get parameters from the CRF layer. By using the
output from Bi-LSTM layer, we calculate the emission score vectors
for each word in an input sentence, and listed these result in figure
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Figure 4.12: Prediction from Bi-LSTM layer and emission vectors

4.12. From this figure, we can observe the difference between results
from Bi-LSTM layer and final prediction generated by CRF layer, in or-
der to know how CRF layer changes the results. We can also observe
the influence from transition score matrix in CRF layer according to
the difference between column ’emission’ and output from CRF layer
(column ’crfout’). However, the result does not show some relations
between results from the intermediate layer and the final output. Per-
haps it is because the parameters of the CRF layer are trained together
with other parameters rather than step by step. Therefore further in-
vestigation regards the effect of transition score matrix to every word
should be made, but this is out of the scope of this thesis since it fo-
cuses more on the explanation of deep neural networks while CRF is
a statistical modeling method. This could be a part of future work as
mentioned in section 5.2.



Chapter 5

Discussion and Conclusion

5.1 Discussion

In this thesis, we applied different methods to make Bi-LSTM-CRF
model explainable according to features of each layers. To understand
the deep model used in the named entity recognizer, we visualize the
behavior of this model. For example, t-SNE is used to visualize the
relation of different word vectors. Considering the pre-trained Glove
embedding has high dimensions for each word, we use t-SNE to re-
duce dimension of word vectors, map them to a 2-dimension coordi-
nate system, and use the distance between coordinates to represent the
similarity among words. Though t-SNE performs good on visualiza-
tion, it can cause large memory usage and long running time. If there
is a high-dimensional dataset and we do not know if it is separable, it
is suitable to project it to low-dimensional space by t-SNE and check
the separability of the dataset.

To visualize how the deep neural network behaves, sensitivity-
based or saliency-based methods which measure the importance of
each neuron could be useful. Though they are simple and intuitive,
they suffer from noise generated by high non-linearity of complex
models. In this thesis, we applied LRP to evaluate the importance
of each unit in each layer of the neural network. Although LRP is
a model-aware method, we make it adapted to NER problem. Now
it can be used for multiple types of NN. From experiments in [45]
and [62], LRP outperformed saliency-based method Sensitivity Analy-
sis [48] because LRP showed better performance on recognizing units
with most contributions for the prediction. Thus, if the deep model of
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the application is not known, saliency-based methods could be good
choices. For model-agnostic applications, LIME is also applicable by
perturbing inputs and observing how the black box model performs.
If user wants to compare two machine learning models or to change
models more frequently, LIME can perform well because its model-
agnostic feature, though it has disadvantages like inconsistency among
explanations of different samples. For the named entity recognizer im-
plemented in this thesis project, we chose LRP to explain the Bi-LSTM
layer of the model, not only because it is easier to be adapted for se-
quence tagging problem solved by RNN than LIME, but also it can
presents how the relevance score flow inside the model by plotting
heat maps, which meets the requirements of the development team
from Seavus.

There are several weak points of this work, like the explanation
for CRF layer is still not clear and it is hard to make inference about
why a word is predicted to a named entity. How to use this method to
analyze wrong predictions needs further consideration, as well as the
the evaluation methods to make sure the explanation generated from
LRP is correct.

5.2 Future Work

Though we applied the visualization method to show how the deep
neural network "think" to some extent, the explanation should be more
clear and easier to understand by normal users. Since we did not find
much related works of applying explainable methods to NER model,
we learn from ideas in related works which apply the LRP method to
RNN and sequence tagging problem. Some challenges still need to
be dealt with, like how to explain this model from an integrated view
rather than layer-by-layer. We also need to figure out how to visual-
ize the influence from CRF layer to the prediction. Further works to
make this task more explainable includes how to apply other explain-
able methods to NER, and a more general approach to make sequence
tagging problem solved by deep neural networks more interpretable.
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5.3 Summary and Conclusion

In this thesis, we adapted LRP, an interpretable method for deep neu-
ral models, to make Bi-LSTM-CRF model explainable for NER task.
We first introduce the motivation, and give a clear description of the
goals of this thesis, then follows the background, which includes de-
tails of every component of the Bi-LSTM-CRF model. Considering the
main purpose of this thesis is to implement an explainable named
entity recognizer, some related works of explainable deep learning
methods are introduced and categorized as local or global explainable
methods. Then we describe several related works which talk about
how to apply explainable methods in NLP tasks. Then approaches
which used to implement the explainable NER are described thor-
oughly, each component of this model and methods to apply LRP
to this model are depicted in detail. Finally, we visualize how much
each word contribute to the output and how contextual words related,
and give several examples to see how to explain the wrong predic-
tion. Considering NER is an important task in NLP, the method we
provide can give some insights about how to visualize deep neural
networks used for NER. Since both the input and output of NER are
the sequence, our approaches can also give some ideas of how to make
the deep models explainable in sequence tagging problems as well.
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