Postprint

This is the accepted version of a paper presented at The 22nd International Conference on Artificial Intelligence and Statistics (AISTATS).

Citation for the original published paper:

Gain estimation of linear dynamical systems using Thompson Sampling
In: Kamalika Chaudhuri, Masashi Sugiyama (ed.), Proceedings of Machine Learning Research (pp. 1535-1543).

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256045
We present the gain estimation problem for linear dynamical systems as a multi-armed bandit. This is particularly a very important engineering problem in control design, where performance guarantees are casted in terms of the largest gain of the frequency response of the system. The dynamical system is unknown and only noisy input-output data is available. In a more general setup, the noise perturbing the data is non-white and the variance at each frequency band is unknown, resulting in a two-dimensional Gaussian bandit model with unknown mean and scaled-identity covariance matrix. This model corresponds to a two-parameter exponential family. Within a bandit framework, the set of means is given by the frequency response of the system and, unlike traditional bandit problems, the goal here is to maximize the probability of choosing the arm drawing samples with the highest norm of its mean. A problem-dependent lower bound for the expected cumulative regret is derived and a matching upper bound is obtained for a Thompson-Sampling algorithm under a uniform prior over the variances and the two-dimensional means.

1 INTRODUCTION

Control engineering has been one of the most relevant disciplines during the last century. The control problem can be seen as a Markov decision problem [1] with a continuous state space and where the transition probabilities are known and may depend on all the past values of the input sequence; the most common class of such systems are the so-called linear dynamical systems [2], which will be considered in this paper. The system aimed to be controlled is completely characterized by these probabilities which, in the control field, are obtained from input-output data using techniques from identification for control [3]. The different sources of uncertainty during modelling (such as noise present in the data) lead to a mismatch between the system to be controlled and its model. This mismatch is a complex-valued function in the frequency domain, and known as modelling error.

The success of control engineering lies on the robustness with which control laws can be designed to account for modelling errors. In fact, the performance of the control policy depends on the largest magnitude of the modelling error across the frequency axis [4], what we call the ℓ_2-gain or the H_∞-norm [5] of the modelling error. It is then a crucial step in the control design process to estimate this quantity. The difficulty of this problem lies on the nature of the modelling error itself, which indeed characterizes what the model cannot explain, introducing a challenging task.

In this work we focus on the problem of finding the maximum amplitude of the modelling error in a model-free manner by casting the problem as a multi-armed bandit. When a system is only accessible through input-output data, the problem of efficiently estimating the H_∞ norm involves finding the peak frequency as quickly as possible, so the H_∞ norm can be estimated by applying a sinusoidal input of such frequency as input. In our setup, data is collected sequentially by adaptively designing the input sequence. The model-free condition is motivated by the fact that the system under study (being the one for which we want to derive its H_∞-norm) is equal to the modelling error which is, by its nature, unknown. The alternative approach requires one to derive an explicit model for the modelling error (from input-output data), as a transfer function or a state-space model, and then apply standard H_∞-norm computation methods such as the ones in [6] and [7]. We avoid the process of deriving a (new) model for the modelling error, which would be naturally uncertain,
Introducing an additional modelling error. However, as discussed in [8], it is not clear if there is a gap, from an information-theoretic standpoint, between the sample complexity of the model-free approach and the one incurred by deriving a model for the modelling error.

The presented problem corresponds to a nonlinear bandit with two-dimensional Gaussian feedback, since the measurements of the modelling error are complex-valued. The agent is allowed to perform an experiment at each round, from which it collects input-output data, disturbed by additive Gaussian noise, in the time domain followed by a Fourier transformation. The input is a sinusoidal signal of a frequency adaptively chosen by the agent, denoting the played arm. The twist of this problem is that, unlike traditional bandit problems, the goal here is to find the arm whose complex mean has the largest magnitude. The problem presented in this work is interesting not only because it models an important engineering problem, but also since it introduces a non-traditional bandit problem in which the best arm is defined by a nonlinear function of its Gaussian outcomes’ parameters.

Our contributions: Summarizing, the main contributions of our work are:

1. a model to the problem of gain estimation as a multi-armed bandit;
2. a lower bound on the asymptotic regret any uniformly good algorithm will incur in;
3. a thorough theoretical derivation of the matching upper bound on the asymptotic regret that Thompson Sampling incurs in for the nonlinear bandit with two-parameter bivariate Gaussian feedback, when the optimal arm is the one whose two-dimensional mean has the highest norm;
4. a numerical simulation illustrating the optimality of the algorithm.

The remainder of this paper is organized as follows: Section 2 formulates the H_∞-norm estimation problem and describes it as a stochastic multi-armed bandit, while Section 3 describes the preliminaries on multi-armed bandits and Thompson Sampling. Concentration inequalities for the Gaussian model are derived in Section 4 and the optimality of Thompson Sampling is shown in Section 5. Finally, an illustrative example is introduced in Section 6 and conclusions are presented in Section 7. For brevity, proofs are appended in the supplementary material.

1.1 Related work

Multi-armed bandits (MAB) are a class of reinforcement learning problems formally introduced in [9], which exhibit the so-called exploration-exploitation dilemma. In these problems, an agent bets on an arm at each round, and this action generates an outcome the agent perceives. The outcome is a realization drawn from a parametrized distribution where the parameters for each arm are unknown to the agent. In the traditional bandit setup [10], the goal of the agent is to minimize the expected cumulative difference between the outcome of its choice and the one an oracle would have drawn by always choosing the optimal arm.

Fundamental limitations on the regret depend on how many of the parameters the agent knows beforehand, where a detailed analysis is provided in [11] for a general class of problems. Explicitly derived as lower bounds, these limitations motivate the search for optimal algorithms whose asymptotic performance match these restrictions. Different classes of optimal algorithms can be found in [10].

Thompson Sampling [12] (TS) is one of the most interesting algorithms in MAB due to its excellent empirical finite-time performance for many models, compared to other optimal algorithms [13]. It corresponds to a Bayesian policy that keeps track of the posterior mean for each of the arms, where the agent decides the next action by sampling these posteriors and choosing the arm with the largest sample. Optimality of TS for the Bernoulli model [14] has been extended to the one-parameter one-dimensional exponential family bandit in [15]. Recently, [16] has developed a thoroughly analysis for this algorithm under a two-parameter (mean and variance) Gaussian bandit, concluding that its optimality crucially depends on the choice of the prior. In fact, the algorithm does not achieve optimality when a Jeffreys prior is employed, not even achieving logarithmic asymptotic regret. The authors also discuss that the main difficulty of proving optimality for the two-parameter Gaussian bandit lies in the posterior distribution for the mean being heavy-tailed, so no straightforward upper/lower bounds can be found. For the bandit model considered in our paper, the two-dimensional posterior mean distribution is a linear transformation of a multivariate t-distribution. Perhaps surprisingly, the latter can not be factorized as the multiplication of both one-dimensional marginal posteriors, even when their outcomes and prior distributions are statistically independent, as we show later. This counter-intuitive phenomenon forces us to derive multivariate concentration inequalities instead of recycling the ones in [15], making the extension of their work into the bivariate Gaussian bandit of highest norm not straightforward. A one-parameter Gaussian bandit model (known variance) for H_∞-norm estimation was firstly introduced in [17] when the policy allows to choose arms inside a simplex. The authors of [17] showed that the asymptotic regret lower bound for
Figure 1: Mathematical relationship of a linear system with additive non-white noise.

these policies is equal to the one of policies playing only one arm per round, proving that playing several arms does not increase the performance of an optimal algorithm (i.e., an algorithm whose asymptotic regret matches the lower bound).

Some iterative approaches have been already proposed in system identification for control \cite{18,19}, where the input signal is allowed to be designed upon previous data at each round, based on the power-iterations method of numerical linear algebra. The particular problem of H_{∞}-norm estimation has gained some attention in computer science, where \cite{8} has derived sharp asymptotic bounds on the error incurred by a method that firstly fits an L-FIR (finite impulse response) filter of L coefficients to N-length data, in terms of N.

2 MODEL SETUP AND PROBLEM STATEMENT

Following the set-up described in \cite{3}, let $g := (g_\tau)_{\tau=0}^\infty$ and $h := (h_\tau)_{\tau=0}^\infty$ denote the impulse responses of systems G and H, respectively, depicted in Fig. 1, where $g_\tau, h_\tau \in \mathbb{R}, \tau = 1, 2, \ldots$. The systems are assumed to be linear and time-invariant (LTI) and causal ($g_\tau, h_\tau = 0 \forall \tau < 0$). Then, in experiment t, the output signal $(y_\tau)_{\tau=0}^\infty$, as a function of the input $(u_\tau)_{\tau=0}^\infty$ and the zero-mean unit-variance white \cite{2} \mathcal{N}_0 Gaussian sequence $(w_\tau)_{\tau=0}^\infty$ is defined as

\[
y_\tau = (g * u)_\tau + (h * w)_\tau = \sum_{\tau'=0}^\infty g_{\tau'}u_{\tau-\tau'} + \sum_{\tau'=0}^\infty h_{\tau'}w_{\tau-\tau'},
\]

where each term corresponds to a convolution (denoted as $*$) between a signal and an impulse response. We also impose the assumption that both systems in Fig. 1 are stable, that is, $(u_\tau)_{\tau=0}^\infty$ satisfying $|u_\tau| < \infty, \forall \tau$, implies that $|y_\tau| < \infty, \forall \tau$. The latter implies that the Fourier transforms of g and h exist for each frequency $\omega \in [0, \pi]$, denoted by $G(e^{j\omega})$ and $H(e^{j\omega})$, also known as the frequency responses of G and H, respectively, with $j := \sqrt{-1}$.

The system in Fig. 1 is suitable to model the problem of collecting noisy data from the modelling error system $G = G_o - \hat{G}$, where G_o denotes the real system we are trying to derive a model for and where \hat{G} is the actual model. Assuming that G_o and \hat{G} are stable LTI systems, the difference is also stable and LTI, implying that measurements from $G = G_o - \hat{G}$ can be collected by exciting G_o and \hat{G} independently with the same input sequence (u_τ) and then subtracting their outputs. When G denotes the modelling error, the goal is to estimate the H_{∞}-norm of G: $\|G\|_\infty := \max_{\omega \in [0, \pi]} |G(e^{j\omega})|$, where both G and H are unknown to us. We assume that the maximum is attained in $(0, \pi)$.

In this work, we estimate $\|G\|_\infty$ recursively from input-output data collected in sequential experiments (rounds) $t = 1, \ldots, T$. At each round $t \in \{1, \ldots, T\}$, experiments are designed by defining an input sequence $u^t := (u^t_0, \ldots, u^t_{N-1})$ and collecting a noisy output $y^t := (y^t_0, \ldots, y^t_{N-1})$ disturbed by the additive non-white Gaussian sequence $e^t := (e^t_0, \ldots, e^t_{N-1})$ of zero mean. Experiments are performed independently of previous and future ones by waiting long enough between two consecutive experiment.\cite{3} We allow experiments to be sequentially designed, that is, sequence u^t is mapped from previous input-output data $(u^1, y^1, \ldots, u^{t-1}, y^{t-1})$. Furthermore, the input to G at round $t \in \{1, \ldots, T\}$ is restricted to be a unit-norm sinusoidal sequence parametrized by frequency $\omega \in [0, \pi]$. As we explain in the following paragraph, we make use of bandit technology to design an agent π able to design these experiments optimally by discretizing the frequency axis into K (with K large enough) equally spaced frequencies, denoting the possible arms the agent can choose at each round. Then, the discretized H_{∞}-estimation problem becomes $\|G\|_\infty := \max_{\omega \in [0, \pi]} |G(e^{j\omega})| \approx \max_{k \in \{1, \ldots, K\}} |G(e^{j\omega_k})|$, where $\omega_k := 2\pi k / (2K + 1)$. Hence, at every round t, u^t is completely characterized by its frequency ω_k, with $k \in (t)$ being selected by the agent π among the K different arms (frequencies). To avoid frequency leakage, N is set to $2K + 1$.

For every k, U^t_k, Y^t_k and E^t_k denote the discrete Fourier transforms (DFT) of u^t, y^t, e^t, respectively, at frequency $\omega_k(t)$ where $U^t_k = U^t(\omega_k) := \frac{1}{\sqrt{N}} \sum_{\tau=0}^{N-1} u^t_\tau e^{-j\omega_k(t)\tau}$, and analogously for y^t and e^t. The agent has access to both U^t and Y^t, but not to E^t, where $U^t_{k(t)} = 1$, and $U^t_i = 0, i \neq k(t)$.

\footnote{This is assumed since $\|G\|_\infty = \sup_{u, \|u\|_0} \|y\|_\infty / \|u\|_1$ is attained by a sinusoidal sequence of frequency $\omega^* = \arg \max_{\omega \in [0, \pi]} |G(e^{j\omega})|$ \cite[Chapter 7]{30}}

A zero-mean sequence (w_τ) is said to be white if $\mathbb{E}\{w_\tau w_\tau\} = \delta_{\tau\tau}$.
Remark 1 \(E_{k}^{[2]} \) is a circularly symmetric [27, Section 3.7] complex zero-mean and white sequence, whose real and imaginary parts are statistically independent for every \(k \in \{1, \ldots, K\} \). Moreover, for every \(k \), the real and imaginary parts of \(E_{k}^{[2]} \) are zero-mean Gaussian with variance \(\sigma_{k}^{2} = 2 : = E(E_{k}^{[2]}E_{k}^{[2]})/2 = |H(e^{j\omega_{k}})|^{2}/2 \). Notice that the sequence \((\sigma_{k}^{2})_{k} \) is unknown since \(H \) is unknown.

The outcome perceived by the agent when it plays arm \(k \) at experiment \(t \) is the \(\mathbb{R}^{2} \)-vector
\[
X_{t}^{[k]} = X_{t}(\omega_{k}) := \left[\text{Re} \frac{Y_{t}^{[k]}}{U_{t}^{[k]}}, \text{Im} \frac{Y_{t}^{[k]}}{U_{t}^{[k]}}\right]^{T}
\]
\[
= \left[\text{Re} \left\{ G(e^{j\omega_{k}}) + \frac{E_{t}^{[k]}}{U_{t}^{[k]}} \right\} \right. \text{Im} \left\{ G(e^{j\omega_{k}}) + \frac{E_{t}^{[k]}}{U_{t}^{[k]}} \right\} \right]^{T},
\]
for every \(k \in \{1, \ldots, K\} \) and \(t \in \{1, \ldots, T\} \). Since \(G(e^{j\omega_{k}}) \) is deterministic, it follows that
\[
E \{ X_{t}^{[k]} \} = \left[\text{Re} G(e^{j\omega_{k}}) \text{ Im} G(e^{j\omega_{k}})\right]^{T},
\]
\[
\text{var} \{ X_{t}^{[k]} \} = E \left\{ \left| \frac{E_{t}^{[k]}}{U_{t}^{[k]}} \right|^{2} \right\} = \sigma_{k}^{2}.
\]
Therefore, the outcome \(X_{t}^{[k]} \) corresponds to a bivariate Gaussian vector
\[
X_{t}^{[k]} \mid U_{t}^{[k]} \sim N(\mu_{k}, \sigma_{k}^{2}I_{2}/2),
\]
where \(I_{n} \) is the \(n \times n \) identity matrix, \(\mu_{k} := [\text{Re} G(e^{j\omega_{k}}) \text{ Im} G(e^{j\omega_{k}})]^{T} \), and where the best arm is denoted by \(k^{*} := \text{arg max}_{k \in \{1, \ldots, K\}} \| \mu_{k} \| = \text{arg max}_{k \in \{1, \ldots, K\}} |G(e^{j\omega_{k}})| \).

The selection of \(k(t) \) is adaptive, depending on the collected outcomes and played arms on previous rounds, i.e., for class of policies considered in this paper, \(k(t) \) is \(F_{t} \)-measurable, where \(F_{t} \) is the sigma algebra generated by \(\{k(1), X_{k(1)}^{[1]}, \ldots, k(t-1), X_{k(t-1)}^{[1]}\} \). Denote \(\Pi \) as the set composed by these policies. For a given policy \(\pi \), its performance is indexed by the cumulative expected regret \(E \{ R_{\pi}^{T}(\mu, T) \} = \sum_{i=1}^{T} E \{ \Delta_{k^{*}(t)} \} \) it incurs, where \(\Delta_{k} := \| \mu_{k} \| - \| \mu_{k^{*}} \| \), with \(\| \cdot \| \) being the Euclidean norm, and where \(k^{*}(t) \) is the arm at round \(t \) under policy \(\pi \). The bandit problem is then summarized as [10]
\[
\min_{\pi \in \Pi} E \{ R_{\pi}^{T}(\mu, T) \} = \min_{\pi \in \Pi} \sum_{k \neq k^{*}} E \{ N_{k}^{T}(T) \} \Delta_{k},
\]
where \(N_{k}^{T}(T) = \sum_{i=1}^{T} 1 \{ k^{*}(t) = k \} \) is the number of times arm \(k \) has been played up to round \(t \) under policy \(\pi \).

Remark 2 Our definition of regret involves the measurement of a random variable of mean \(\| \mu_{k} \| \) for each arm \(k \in \{1, \ldots, K\} \). However, the feedback the agent receives is not the reward, but the outcome \(X_{k(t)}^{[k]} \). This supposes an important difference to traditional MAB problems.

Remark 3 The gain estimation problem can be cast in different ways. In the traditional approach, we wish to solve \(\min_{\pi \in \Pi} E \{ \| \mu_{k^{*}(T)} \| - \| \mu_{k}(T) \| \} ^{2} \}, \) where \(k^{*}(T) \) is an \(F_{T+1}(T) \)-measurable estimation of \(k^{*} \) under policy \(\pi \in \Pi \). As discussed in [22], solving (6) is much more challenging because it accounts for the sample complexity. Additionally, the traditional problem only minimizes the estimation after \(T \) experiments, whereas in [6] we minimize the cumulative error when estimating the gain after each of the \(T \) experiments.

3 UNIFORMLY GOOD POLICIES AND THOMPSON SAMPLING

In the following, and without loss of generality, we assume that \(k^{*} = 1 \). This is possible because smoothness of the frequency responses \(G, H \) is not exploited by the considered class of algorithms. As discussed in [23], the regret can be pushed down if the agent were allowed to consider smoothness as prior knowledge.

Definition 1 A policy \(\pi \) is said to be uniformly efficient [10] \(\bar{N}_{k}(t) = o(t^{\alpha}) \), for every \(\alpha > 0 \), and for every suboptimal arm \(k \).

When \(k = 1 \) is the unique optimal arm, among other mild regularity conditions, a lower bound derived in [11] for the asymptotic number of times each suboptimal arm is played holds. Using a similar reasoning, we derive the following lower bound for the regret incurred by any uniformly efficient algorithm aimed at solving (6).

Lemma 1 Under every uniformly efficient algorithm \(\pi \), the expected cumulative regret satisfies
\[
\liminf_{T \to \infty} \frac{E \{ R_{\pi}^{T}(\mu, T) \}}{\log T} \geq \sum_{k=2}^{K} \frac{\| \mu_{1} \| - \| \mu_{k} \|}{\log \left(1 + \frac{\| \mu_{1} \| - \| \mu_{k} \|}{\sigma_{k}^{2}} \right) ^{2}},
\]
\[
\liminf_{T \to \infty} \frac{E \{ N_{k}(T) \}}{\log T} \geq \frac{1}{\inf_{\mu, \sigma^{2} : \| \mu \| > \| \mu_{k} \|} \mathbb{D} \{ \mu_{k}, \sigma_{k}^{2} ; \mu^{2} \sigma^{2} \}} \]
\[
\geq \frac{1}{\inf_{\mu_{k}, \sigma_{k}^{2} : \| \mu \| > \| \mu_{k} \|} \mathbb{D} \{ \mu_{k}, \sigma_{k}^{2} ; \mu^{2} \sigma^{2} \}},
\]
where \(\mathbb{D} \{ \mu_{k}, \sigma_{k}^{2} ; \mu^{2} \sigma^{2} \} \) denotes the Kulback-Leibler (KL) divergence between two bivariate distributions parametrized by \(\langle \mu_{k}, \sigma_{k}^{2} I_{2} \rangle \) and \(\langle \mu^{2} \sigma^{2} I_{2} \rangle \),
respectively, and is given by
\[\mathbb{D} \{ \mu_k, \sigma_k^2 \mid \mu', \sigma'^2 \} = \log \frac{\sigma'^2}{\sigma_k^2} + \frac{\sigma_k^2 + \| \mu_k - \mu' \|^2}{\sigma'^2} - 1. \]

It then follows that
\[\inf_{\mu', \sigma'^2} \frac{\sigma'^2}{\sigma_k^2} \log \frac{\sigma'^2}{\sigma_k^2} + \frac{\sigma_k^2 + \| \mu_k - \mu' \|^2}{\sigma'^2} - 1 = \log \left(1 + \frac{\| \mu_k \| - \| \mu_k \|^2}{\sigma_k^2} \right). \quad (9) \]

The proof is completed by observing that \(\mathbb{E} \{ R^\pi(T) \} = \sum_{k=1}^{K} \Delta_k \mathbb{E} \{ N^\pi_k(T) \} \). \qed

Thompson Sampling (TS) is a Bayesian bandit policy. It starts with a prior distribution over the unknown parameters parametrizing the distribution of each arm. These parameters are deterministic but unknown, and the prior distribution represents our belief on each value being the actual parameter. At each experiment, the agent collects data and updates our belief, known as the posterior distribution of the parameters. TS keeps track of the posterior distribution for the mean of the rewards, drawing one sample of these posteriors at each round in order to play the arm with the highest sample during the next round. Algorithm 1 summarizes this procedure.

Algorithm 1 Thompson Sampling

1: Input: \(\rho^1 = (\rho^1, \ldots, \rho^k) \) (prior distribution for each reward mean)
2: for \(t = 1 \) to \(T \) do
3: \hspace{1em} for \(k = 1 \) to \(K \) do
4: \hspace{2em} Draw one sample \(\tilde{\mu}_k \sim \rho^k \)
5: \hspace{1em} end for
6: \hspace{1em} Play arm \(k^{TS}(t) = \arg \max_k \tilde{\mu}_k \)
7: \hspace{1em} Collect the outcome from arm \(k^{TS}(t) \)
8: \hspace{1em} Update the posterior \(\rho^{t+1} \) (given \(F_{t+1} \))
9: end for

In our case, the prior distribution is selected as \(f_{\mu_k, \sigma_k^2}(\mu_k, \sigma_k^2) \propto 1, (\mu_k, \sigma_k^2) \in \mathbb{R}^2 \times (0, \infty), k \in \{1, \ldots, K\} \). This corresponds to an improper prior (since it is not integrable) that, in spirit, assigns the same confidence to each pair in \(\mathbb{R}^2 \times (0, \infty) \).

The drawback of using TS to solve our problem is that the posterior mean of the rewards, say \(\tilde{\mu}_k \), might be hard to obtain. However, we can overcome this issue in two steps. Firstly, for every \(\ell \in \{1, \ldots, T\} \), we condense \(F_{\ell+1} \) into the sufficient statistics
\[\bar{x}_k(\ell) = \bar{x}_{k,N_k(\ell)} := \frac{1}{N_k(\ell)} \sum_{t=1}^{\ell} X_k^t \mathbb{I} \{ k(t) = k \} \]
\[S_k(\ell) := S_{k,N_k(\ell)} = \sum_{t=1}^{\ell} \mathbb{I} \{ k(t) = k \} \| X_k^t - \bar{x}_{k,N_k(\ell)} \|^2, \]
and then \(\bar{x}_{k,n} \sim \mathcal{N}(\mu_k, \sigma_k^2/(2n)) \) and \(S_{k,n} / (\sigma_k^2/2) \sim \chi^2_{2(n-1)} \). Secondly, samples from \(f_{\| \mu_k \|} \) can be obtained by sampling \(f_{\mu_k} \mid \bar{x}_k(t) = x, S_k(t) = s \) and then taking the norm of the sample. Let \(\tilde{\mu}_k(t) \sim f_{\mu_k} \mid \bar{x}_k(t) = x, S_k(t) = s \) denote a random vector whose pdf (probability density function) is the posterior distribution for \(\mu_k \) given \(F_t \).

The following result shows that, for every \(k \in \{1, \ldots, K\} \), given \(\bar{x}_k(t) \) and \(S_k(t) \), \(2\sqrt{(N_k(t) - 2)n/S_k(t)}(\tilde{\mu}_k(t) - \bar{x}_N(t)) \) has a bivariate \(t \)-distribution with parameter \(\nu = 2(N_k(t) - 2) \).

Lemma 2 Let the outcomes \(X_{k(t)} \) be generated as in (9), and consider the improper prior \(f_{\mu_k, \sigma^2}(\mu, \sigma^2) \propto 1 \). Then, for every \(k \in \{1, \ldots, K\} \), the posterior mean density function, given \(n := N_k(t) \geq 2 \) samples and sufficient statistics \(\hat{\theta}_{k,n} = (\bar{x}_{k,n}, S_{k,n}) \), is
\[\hat{\rho}_k(\mu) := f_{\mu_k} \mid \bar{x}_k = x, S_{k,n} = s(\mu) = \frac{n(n-2)}{\pi n} \left(1 + \frac{n \| x - \mu \|^2}{s} \right)^{-n+1}. \quad (10) \]

Remark 4 After \(t \) experiments, \(\| G \|_\infty \) can be estimated as \(\| x_{\beta(t)}(t) \| \) where \(\beta(t) = \arg \max_{k\in\{1,\ldots,K\}} N_k(t) \). However, different methods to perform the estimation at round \(t \) may be considered, as we explain in Section 6.

4 CONCENTRATION INEQUALITIES

In this section we provide concentration inequalities for the tail upper bounds of the sufficient statistics and for the posterior mean conditioned on them.

Lemma 3 For every arm \(k \in \{1, \ldots, K\} \), with \(N_k(t) = n \geq 2, \) and \(\epsilon > 0 \), it holds that
\[P \{ \| x_{k,n} \| \geq \| \mu_k \| + \epsilon \} \leq e^{-n\epsilon^2/\sigma_k^2}, \]
\[P \{ S_{k,n} \geq n(\epsilon^2 + \sigma_k^2) \} \leq \left(1 + \frac{\epsilon}{\sigma_k^2} \right)^{-1} e^{-nh(\epsilon/\sigma_k^2)}, \]
where \(h(x) = x - \log(1 + x) > 0, \forall x > 0 \).

Proof: Consider any arbitrary arm \(k \in \{1, \ldots, K\} \), and let \(n \geq 2 \) arbitrary. For the first inequality, observe that
\[P \{ \| x_{k,n} \| \geq \| \mu_k \| + \epsilon \} \leq P \{ \| x_{k,n} - \mu_k \| \geq \epsilon \} \]
\[= \int_{\| x \| \geq \epsilon} P_{\| x \|} e^{-n\| x \| / \sigma_k^2} = 2 \int_{n^2/\sigma_k^2}^{\infty} e^{-y} dy = e^{-n\epsilon^2/\sigma_k^2}. \]

For the second inequality, we relax Chernoff’s bound:
\[P \{ S_{k,n} \geq n(\epsilon^2 + \sigma_k^2) \} \]
Gain estimation of linear dynamical systems using Thompson Sampling

\[P \{ \| \hat{\mu}_k - \bar{x}_{k,n} \| \geq \delta \mid S_{k,n} = s \} = \left(1 + \frac{n \delta^2}{s} \right)^{-n+2} . \]

(12)

5 OPTIMALITY OF THOMPSON SAMPLING

In this section we present the main result of our work. We derive an upper bound for \[\delta \] under TS by splitting the non-expected regret into three different terms parametrized by some arbitrary \(\epsilon(T) > 0 \) depending on the time horizon \(T \). It is shown then that as \(T \to \infty \), one of the terms achieves the lower bound, while the other two increase slower than \(\log T \).

Theorem 1 Under the improper prior \(f_{\mu_k, \sigma_k^2}(\mu_k, \sigma_k^2) \propto 1 \), the regret incurred by TS satisfies

\[\limsup_{T \to \infty} \frac{\mathbb{E} \{ R^\text{TS}(T) \}}{\log T} \leq \sum_{k=2}^K \frac{\| \mu_1 \| - \| \mu_k \|}{\log \left(1 + \frac{\| \mu_1 \| - \| \mu_k \|}{1 + \| \mu_k \| - \| \mu_k \|} \right)} . \]

(14)

Proof: Define the following events for \(0 < \epsilon < \min_k (\| \mu_1 \| - \| \mu_k \|)/2 \):

\[\mathcal{A}(t) := \{ \| \hat{\mu}^*(t) \| \geq \| \mu_1 \| - \epsilon \}, \]

\[\mathcal{B}_k(t) := \{ \| \bar{x}_k(t) \| \leq \| \mu_1 \| + \epsilon, S_k(t) \leq n(\sigma_k^2 + \epsilon) \}, \]

where \(\hat{\mu}_k(t) \) follows the posterior distribution in Lemma 2 and where \(\| \hat{\mu}^*(t) \| := \max_k \| \mu_k(t) \| \). Let \(\Delta_{\max} := \max_k \Delta_k \), and let \(k^\text{TS} \) denote the arm played at round \(t \) under TS. Define also \(\tilde{T} := 3K \). The non-expected cumulative regret can be then written as

\[R^\text{TS}(\mu, T) = \sum_{t=1}^T \Delta_{\text{TS}}(t) \]

\[\leq \sum_{t=1}^{\tilde{T}} \sum_{k=2}^K \Delta_k \mathbb{I} \{ k^{\text{TS}}(t) = k \} \]

\[+ \sum_{t=1}^{\tilde{T}} \sum_{k=2}^K \Delta_k \left(\mathbb{I} \{ k^{\text{TS}}(t) = k, \mathcal{A}(t) \} \right) \]

\[+ \mathbb{I} \{ k^{\text{TS}}(t) = k, \mathcal{A}(t) \} \]

\[\leq \Delta_{\text{max}} \sum_{t=\tilde{T}+1}^T \sum_{k=2}^K \mathbb{I} \{ k^{\text{TS}}(t) \neq k, \mathcal{A}(t) \} \]

\[+ \sum_{t=\tilde{T}+1}^T \mathbb{I} \{ k^{\text{TS}}(t) \neq k, \mathcal{B}_k(t) \} \]

\[\leq \Delta_{\text{max}} \sum_{t=\tilde{T}+1}^T \sum_{k=2}^K \mathbb{I} \{ k^{\text{TS}}(t) \neq k, \mathcal{B}(t) \} \]

\[+ \sum_{t=\tilde{T}+1}^T \mathbb{I} \{ k^{\text{TS}}(t) \neq k, \mathcal{B}_k(t) \} + \tilde{T} \].

(15)

Now, by Lemmas 3 and 4 (all of them appended in the suplementary material), expectation in (15) yields

\[\mathbb{E} \{ R^\text{TS}(\mu, T) \} \]

\[\leq \frac{1}{\log \left(1 + \frac{\| \mu_1 \| - \| \mu_k \| - 2\epsilon}{\sigma_k^2 + \epsilon} \right)} + \frac{1 - O(\epsilon^{-2}) + O(\epsilon^{-6})}{\log T} , \]

(16)

so the result follows by choosing \(\epsilon \leq \log^{-a} T \), \(1/6 > a > e^{(\min_k \| \mu_1 \| - \| \mu_k \|)/2} \).
6 APPLICATION TO \mathcal{H}_∞-NORM ESTIMATION

The previous sections establish a framework for selecting the optimal frequency as often as possible; however, they do not provide an estimate of $\|\mu_k\|$ or $\max_{k\in\{1, \ldots, K\}}\|\mu_k\| \approx \|G\|_\infty$. In this section we discuss the challenge of how TS can be employed to estimate the \mathcal{H}_∞-norm of a system, given collected data on previous experiments, in an asymptotically efficient manner.

The theoretical relationship between regret-optimal algorithms and asymptotically efficient estimation is still ongoing research. We remark that there exist several ways to proceed that can also lead to asymptotically efficient estimates but we only address two here.

Let $\beta := \|G\|_\infty$ denote the target parameter, and let $\hat{k}^{(1)}(t) := \text{arg max}_{k\in\{1, \ldots, K\}} N^T_k(t)$ and $\hat{k}^{(2)} := \text{arg max}_{k\in\{1, \ldots, K\}} \|\hat{x}_k(t)\|$ denote two different estimators of the best arm at round t. In this case, $\hat{k}^{(1)}$ takes the best arm as that one played the most up to round t, while $\hat{k}^{(2)}$ is that arm whose empirical mean is the largest at round t. The two considered estimators are then

$$\hat{\beta}^{(i)}(t) := \|\hat{x}_{\hat{k}^{(i)}(t)}\|, \quad i \in \{1, 2\}. \tag{17}$$

Algorithm 2 summarizes the procedure within a bandit set-up.

Algorithm 2 \mathcal{H}_∞-norm estimation using Thompson Sampling

1: Input: $\rho \equiv (\rho_1, \ldots, \rho_K)$ (prior distribution for each reward mean)
2: for $t = 1$ to T do
3: \hspace{1em} Play arm $k^{TS}(t)$ (see Algorithm 1)
4: \hspace{1em} Obtain $\hat{k}^{(i)}(t)$
5: \hspace{1em} Set $\hat{\beta}^{(i)}(t) := \|\hat{x}_{\hat{k}^{(i)}(t)}\|$, \quad $i \in \{1, 2\}$
6: end for

In the following subsections, an illustrative example is provided where the analysis of Algorithm 2 is done separately in terms of regret and estimation analysis, and the estimation analysis includes a comparison to other well known algorithms for \mathcal{H}_∞-norm estimation. The first method corresponds to a well established algorithm based on the power-iterations method to estimate the largest eigenvalue (in absolute value) of a matrix. This algorithm is well known for having a fast rate of convergence and by being asymptotically efficient in the absence of output noise, although it is also well known that it leads to bias estimation.

6.1 An illustrative example

We consider systems G, H having frequency responses depicted in Fig. 3. The frequency axis is discretized into $K = 200$ equispaced frequencies. Under this setup, the optimal arm is $k^* = 76$ ($\omega_{k^*} = 2\pi \frac{k^*}{2K+1} = 1.1908 \text{ [rad/s]}$), satisfying $\|\mu_k\| = \max_k \|\mu_k\| = \|\mu_76\|$

Figure 2: Expected number of times each of the 200 arms has been played at round $T = 10^6$ for each arm $k \in \{1, \ldots, K\}$ (in blue) and for the optimal arm ($k^* = 76$) in red.

![Figure 2](image2.png)

Figure 3: Frequency response of G together with the frequency response of G at arm $k^* = 76$. Additionally, we present $\hat{x}_k(T)$ as red dots and $S_k(T)/N^T_k(T)$ as red bars around $\hat{x}_k(T)$, for $i \in \{35, 76, 115, 154, 190\}$.

under noisy measurements. The second algorithm is a method recently analyzed in [8] in terms of sample complexity. This rather old algorithm estimates a transfer function from input-output data and uses this information to compute its largest gain.

6.1.1 Regret analysis

We observe in Fig. 2 that the algorithm is able to find the optimal arm. Figure 3 shows the sufficient statistic for only five arms (including k^*): the empirical mean $\hat{x}_{k^*}N^T_{k^*}(T)$ and the empirical variance $S_{k^*,N^T_{k^*}}(T)$. It can be seen that the estimation of the variance for each arm grows as the arm is played less often, as predicted. In this line, the length of the estimated variance is smaller on the optimal arm and higher for the suboptimal ones, since the latter are less often played.

4 Asymptotically efficiency means that the proposed estimator has an asymptotic estimation variance that matches the lower bound stated in [25, 26].
Gain estimation of linear dynamical systems using Thompson Sampling

Expected cumulative regret

\[
\mathbb{E}\{R_{TS}(\mu, T)\}
\]

Number of rounds \(T\)

Thompson Sampling

Lower bound

\[
E\{R_{TS}(\mu, T)\}
\]

\[
10^0
\]

\[
10^2
\]

\[
10^3
\]

\[
10^4
\]

\[
10^5
\]

\[
10^6
\]

Figure 4: Comparison between the regret incurred by Thompson Sampling and the theoretical lower bound derived in Lemma 1.

Mean-squared error

\[
\text{MSE}
\]

Number of rounds \(T\)

\[
10^0
\]

\[
10^2
\]

\[
10^4
\]

\[
10^6
\]

\[
10^8
\]

\[
10^{10}
\]

\[
10^{12}
\]

\[
10^{14}
\]

\[
10^{16}
\]

Figure 5: Performance of different \(H_\infty\)-norm estimators in the mean-squared error sense.

Figure 4 shows the performance of TS comparing it with the predicted lower bound in Lemma 1. As predicted by Theorem 1, the asymptotic slope in the rate of growth of the expected cumulative regret under Thompson Sampling matches the slope described by the lower bound in Lemma 1.

6.1.2 Estimation analysis

Figure 5 depicts how the proposed algorithms perform, in a MSE (mean-squared error) sense, against two other methods for data-driven \(H_\infty\)-norm estimation, named PI (power-iterations based algorithm [19]) and L-FIR (computation of the \(H_\infty\) norm of an \(L\)-length fitted FIR filter from input-output data). To make the test more challenging, the noise level is increased so that \(\|H(e^{j\omega})\|\) is always above \(\|G(e^{j\omega})\|\), \(\forall \omega\) (the noise level is now 40 times larger than in Fig. 3). Covering \(|G|\) with the noise level reveals that some algorithms are just unable to create accurate estimates.

We start by noticing the poor performance of the estimates provided by PI where, in line with what is predicted by [19], the stationary estimates are biased and the error covariance is significantly higher than the rest of the algorithms. On the other hand, we see that the quality of the estimates passing through an \(L\)-length FIR model do not provide efficient estimates and that, at least empirically, the estimation quality does not increase with the length of the filter, reinforcing what we have discussed in the introduction. On the other hand, we see that both proposed estimators \(\hat{\beta}^{(i)}\), \(i \in \{1, 2\}\) perform similarly (they actually overlap in Fig. 5) well compared to the other algorithms. We remark that the MSE in the estimation of \(\hat{\beta}^{(i)}\), \(i \in \{1, 2\}\) can not be lower that the discretization error \(\|G\|_\infty - \|\mu_{k,}\|\).

Finally, we notice that the proposed algorithm behaves similar in both cases, attaining a covariance that decreases to zero, suggesting that these methods could provide efficient estimates of \(\beta\).

7 CONCLUSIONS

We have presented a novel application of multi-armed bandits to the problem of estimating the \(H_\infty\)-norm of a linear dynamical system. The novelty of this approach lies in that the optimal arm is given by the one whose bivariate outcomes have the largest mean norm, arising an interesting variation of the two-parameter Gaussian bandit. We provide results with high theoretical quality by deriving a lower bound for this class of problems together with an algorithm which attains such regret. Additionally, we have proposed two different ways of obtaining an estimator from Thompson Sampling for the \(H_\infty\)-norm of an LTI system under colored noise, which compare to other known algorithms for \(H_\infty\)-norm estimation, outperforming the latter in a simulation study.
References

A Appendix: Supplementary Material

A.1 Proof of Lemma 2

Proof: Let \(k \) be fixed and \(n_k = n \). Let \((X_t)_{t=1}^n\) denote the sequence of rewards associated with arm \(k \), where we recall that \(X_t \sim N(\mu, \sigma^2_k I_2/2) \). Then \(\bar{x}_{k,n} = \frac{1}{n} \sum_{t=1}^n X_t \sim N(\mu, \sigma^2_k I_2/(2n)) \), implying that \(\text{cov} \{ (X_t - \bar{x}_{k,n}), \bar{x}_{k,n} \} = \frac{1}{n^2} (n\sigma^2 I - n\sigma^2 I) = 0 \). It follows that, conditioned on \(\sigma^2_k \) and \(\mu_k \), \(\bar{x}_{k,n} \) and \((X_t - \bar{x}_{k,n})\) are statistically independent for every \(t \in \{1, \ldots, n\} \), so \(\bar{x}_{k,n} \) and \(S_{k,n} \) are also independent.

On the other hand, because \(\text{Re} \ X_t \) and \(\text{Im} \ X_t \) have equal variances, \(S_{k,n} \) satisfies

\[
S_{k,n} = \sum_{t=1}^n \left| X_t - \frac{1}{n} \sum_{i=1}^n X_i \right|^2 = \sum_{t=1}^n X_t^\top X_t - \frac{1}{n} \sum_{i,j=1}^n X_{i}^\top X_{j},
\]

hence, defining

\[
A := \begin{bmatrix}
\left(\frac{1}{n} + \frac{\lambda}{\sigma^2_k} - \lambda\right) I_2 & -\frac{1}{n} I_2 & \ldots & -\frac{1}{n} I_2 \\
\frac{1}{n} I_2 & \left(\frac{1}{n} + \frac{\lambda}{\sigma^2_k} - \lambda\right) I_2 & \ldots & \frac{1}{n} I_2 \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{n} I_2 & \frac{1}{n} I_2 & \ldots & \left(\frac{1}{n} + \frac{\lambda}{\sigma^2_k} - \lambda\right) I_2 \\
\end{bmatrix} \in \mathbb{R}^{2n \times 2n},
\]

it follows that

\[
E\left\{ e^{\lambda S_{k,n}} \right\} = \frac{1}{(\pi \sigma^2_k)^n} \int_{\mathbb{R}^{2n}} e^{\lambda \left(\sum_{i=1}^n X_i^\top X_i - \frac{1}{n} \sum_{i=1}^n X_i^\top X_i \right) - \frac{1}{n} \sum_{i=1}^n X_i^\top X_i} dX_1 \cdots dX_n = \frac{1}{(\pi \sigma^2_k)^n} \int_{\mathbb{R}^{2n}} e^{\left| \begin{array}{c}
X_1 \\
\vdots \\
X_n \\
\end{array} \right|^\top A \left| \begin{array}{c}
X_1 \\
\vdots \\
X_n \\
\end{array} \right| dX_1 \cdots dX_n = \sqrt{\det A^{-1}} \sigma_k^{2n} \left(\frac{1}{\sigma^2_k} - \lambda \right)^{-(2n)/2} \cdot \left(1 + \frac{\lambda}{n \left(\frac{1}{\sigma^2_k} - 1 \right)} \right)^{1/2} = \frac{1}{(1 - \sigma^2_k \lambda)^{n-1}}, \quad \lambda < 1/\sigma^2_k,
\]

where \(\otimes \) denotes Kronecker’s product. Thus, \(S_{k,n}/(\sigma^2_k/2) \sim \chi^2_{2(n-1)} \) because of uniqueness of the moment-generating function, so its pdf is given by

\[
f_{S_{k,n}|\mu,\sigma^2_k}(s) = \frac{s^{n-2} e^{-s/\sigma^2_k}}{\Gamma(n-1) \sigma^2_k^{2(n-1)}},
\]

and the likelihood of \((\bar{x}_{k,n}, S_{k,n})\) is given by

\[
\tilde{f}_{S_{k,n}|x_{k,n}|\mu,\sigma^2_k}(s, x) = \tilde{f}_{S_{k,n}|\mu,\sigma^2_k}(s) \tilde{f}_{\bar{x}_{k,n}|\mu,\sigma^2_k}(x) = \frac{n}{\pi \sigma^2_k} e^{-\frac{n}{\sigma^2_k} \|x-\mu\|^2} \frac{s^{n-2} e^{-s/\sigma^2_k}}{\Gamma(n-1) \sigma^2_k^{2(n-1)}} = \frac{ns^{n-2} e^{-\frac{1}{n} s + n \|x-\mu\|^2}}{\pi \Gamma(n-1) \sigma^2_k^{2n}}.
\]
It now follows that, for a uniform (improper) prior over \((\mu_k, \sigma_k^2)\), for every arm \(k \in \{1, \ldots, K\},\)

\[
f_{\mu_k, \sigma_k^2 | x_{k,n} = x, S_{k,n} = s}(\mu_k, \sigma_k^2) = \frac{f_{S_{k,n}, x_{k,n} | \mu_k, \sigma_k^2}(s, x) \cdot 1}{\int_0^\infty \int_{\mathbb{R}^2} f_{S_{k,n}, x_{k,n} | \mu_k, \sigma_k^2}(s, x) \cdot 1 \, d\mu_k(\sigma_k^2)} \\
= \frac{1}{\pi \Gamma((n-1)\sigma_k^2) e^{-s/\sigma_k^2}} \int_0^\infty \int_{\mathbb{R}^2} e^{s} \|x - \mu_k\|^2 \, d\mu_k \, d\sigma_k^2 \\
= \frac{1}{\pi \Gamma((n-1)\sigma_k^2) e^{-s/\sigma_k^2}} \int_0^\infty \int_{\mathbb{R}^2} \frac{1}{\sigma_k^2} (s+n\|x-\mu_k\|^2) \, d\sigma_k^2 \\
= \frac{n s^{n-2}}{\pi (n-2) \sigma_k^2} e^{-s/\sigma_k^2} \\
= \frac{n s^{n-2}}{\pi (n-2) \sigma_k^2} \cdot \frac{-\frac{1}{k}(s+n\|x-\mu_k\|^2)}{e^{-s/\sigma_k^2}},
\]

where (a) follows from \(u = s/\sigma_k^2\). Therefore, the posterior distribution for the mean \(\mu_k\) is

\[
f_{\mu_k | x_{k,n} = x, S_{k,n} = s}(\mu_k) = \int f_{\mu, \sigma^2 | x_{k,n} = x, S_{k,n} = s}(\mu, \sigma^2) \, d\sigma^2 \\
= \frac{n s^{n-2}}{\pi (n-2) \sigma_k^2} \cdot \frac{-\frac{1}{k}(s+n\|x-\mu_k\|^2)}{e^{-s/\sigma_k^2}} \\
= \frac{n(n-2)}{\pi s} \left[1 + \frac{n\|x-\mu_k\|^2}{s}\right]^{-n+1},
\]

where (b) follows from \(u = (s + n\|x - \mu_k\|^2)/\sigma_k^2\).

\(\blacksquare\)

A.2 Lemma 5

Lemma 5 Under the conditions of Theorem 1

\[
E \left\{ \sum_{t=T+1}^{T} 1 \{ k^{TS}(t) = k, A(t), B_k(t) \} \right\} \leq \frac{\log T}{\log \left(1 + \frac{\|\mu_1\|-\|\mu_k\|-2\epsilon}{\sigma_k^2} \right)} + 3.
\]

Proof: Firstly, the fact that \(1 \{ k^{TS}(t) = k, A(t), B_k(t) \} = 1\) implies that \(\|\tilde{\mu}^*(t)\| = \|\tilde{\mu}_k(t)\| \geq \|\mu_1\| - \epsilon\) under \(B_k(t)\). Recall also the fact that \(k^{TS}(t) = k \implies N_k(t+1) \geq N_k(t) + 1\). Then, for every \(n > 0\) it holds that

\[
\sum_{t=T+1}^{T} 1 \{ k^{TS}(t) = k, A(t), B_k(t) \} = \sum_{t=T+1}^{T} 1 \{ k^{TS}(t) = k, \|\tilde{\mu}_k(t)\| \geq \|\mu_1\| - \epsilon, B_k(t) \} \\
\leq 1 \{ k^{TS}(t) = k, \|\tilde{\mu}_k(t)\| \geq \|\mu_1\| - \epsilon, B_k(t), N_k(t) \geq n \} \\
+ \sum_{t=T+1}^{T} 1 \{ k^{TS}(t) = k, N_k(t) \leq n \} \\
\leq n + \sum_{t=T+1}^{T} 1 \{ \|\tilde{\mu}_k(t)\| \geq \|\mu_1\| - \epsilon, B_k(t), N_k(t) \geq n \}.
\]

(26)
Secondly, we can upper bound \(P \{ \| \hat{\mu}_k(t) \| \geq \| \mu_1 \| - \epsilon \mid B_k(t), N_k(t) = n \} \) as depicted in Fig. 6. From Lemma 4, it follows that

\[
P \{ \| \hat{\mu}_k(t) \| \geq \| \mu_1 \| - \epsilon \mid B_k(t), N_k(t) = n \}
\leq P \{ \| \hat{\mu}_k(t) - \bar{x}_{k,n} \| \geq \| \mu_1 \| - \| \mu_k \| - 2\epsilon \mid B_k(t), N_k(t) = n \}
\leq \left(1 + \frac{\| \mu_1 \| - \| \mu_k \| - 2\epsilon}{\sigma_k^2 + \epsilon} \right)^{-n+2}.
\]

Now notice that \((27) \) is decreasing in \(n \), which means that \(P \{ \| \hat{\mu}_k(t) \| \geq \| \mu_1 \| - \epsilon \mid B_k(t), N_k(t) \geq n \} \leq P \{ \| \hat{\mu}_k(t) \| \geq \| \mu_1 \| - \epsilon \mid B_k(t), N_k(t) = n \} \), for every \(n > 0 \). Then, the expected value of \((26) \) yields

\[
E \left\{ \sum_{t=T+1}^{\infty} \mathbb{1} \{ k^{TS}(t) = k, \mathcal{A}(t), B_k(t) \} \right\} \leq n + \sum_{t=T+1}^{\infty} P \{ k^{TS}(t) = k, \mathcal{A}(t), B_k(t), N_k(t) \geq n \}
\leq n + \sum_{t=T+1}^{\infty} P \{ k^{TS}(t) = k, \mathcal{A}(t), B_k(t), N_k(t) = n \}
\leq n + T \left(1 + \frac{\| \mu_1 \| - \| \mu_k \| - 2\epsilon}{\sigma_k^2 + \epsilon} \right)^{-n+2}.
\]

In particular, for \(n = 2 + \frac{\log T}{\log(1 + (\| \mu_1 \| - \| \mu_k \| - 2\epsilon)^2 / (\sigma_k^2 + \epsilon))} > 0 \) we have that

\[
E \left\{ \sum_{t=T+1}^{\infty} \mathbb{1} \{ k^{TS}(t) = k, \mathcal{A}(t), B_k(t) \} \right\} \leq \frac{\log T}{\log \left(1 + \frac{\| \mu_1 \| - \| \mu_k \| - 2\epsilon}{\sigma_k^2 + \epsilon} \right)} + 3,
\]

which concludes the proof.

\[\square\]

A.3 Lemma 6

Lemma 6 Under the conditions of Theorem 4 and for every \(k \in \{2, \ldots, K\} \):

\[
E \left\{ \sum_{t=T+1}^{\infty} \mathbb{1} \{ k^{TS}(t) = k, B_k(t)^c \} \right\} \leq O(\epsilon^{-2}).
\]

\section*{Figure 6: Upper-bounding the probability of \(\| \hat{\mu}_k(t) \| \leq \| \mu_1(t) \| - \epsilon \), given \(\hat{\theta}_{k,n} \).}

On the left side, the red area is upper bounded by the points outside the white circle centered at \(\bar{x} \). The right figure shows that the symmetric distribution around \(\bar{x} \) and an upper bound for the area outside the circle of radius \(\| \mu_1 \| - \epsilon \) is upper bounded by any circle of radius \(\Delta_k - 2\epsilon \) centered at \(\bar{x} \), whenever \(\| \bar{x} \| \leq \| \mu_k \| - \epsilon \).

\[\square\]
Proof: We start by noting that the event $B_k^c(t)$ is independent of t whenever $N_k(t)$ is known. Then,

$$
\sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) = k, B_k^c(t) \right\} = \sum_{t=T+1}^{T} \sum_{n=T/K}^{T} \mathbb{I} \left\{ k^{TS}(t) = k, B_k^c(t), N_k(t) = n \right\}
$$

Then, by means of Lemma 3, the expected value of (30) yields

$$
\mathbb{E} \left\{ \sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) = k, B_k^c(t) \right\} \right\} \leq \sum_{n=T/K}^{T} \mathbb{P} \left\{ \| \tilde{x}_{n,k} \| \geq \| \mu_k \| + \epsilon \text{ or } S_{n,k} \geq n(\sigma_k^2 + \epsilon) \right\}.
$$

A.4 Lemma 7

Lemma 7 Under the conditions of Theorem 1

$$
\mathbb{E} \left\{ \Delta_{\text{max}} \sum_{t=T+1}^{T} \mathbb{E} \left\{ \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t) \right\} \right\} \right\} \leq O(\epsilon^{-6}).
$$

Proof: Note that

$$
\sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t) \right\} = \sum_{t=T+1}^{T} \sum_{n=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t), N_1(t) = n \right\}
$$

$$
= \sum_{n=T+1}^{T} \sum_{m=1}^{T} \mathbb{I} \left\{ m \leq \sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t), N_1(t) = n \right\} \right\},
$$

since, for a fixed t, $\mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t), N_1(t) = n \right\} = 1$ only for that value of n being exactly $N_1(t)$. Observe that $k^{TS}(t) \neq 1$ means that $\| \tilde{\mu}_1(t) \| \leq \| \tilde{\mu}^*(t) \|$, and $\mathcal{A}^c(t)$ means $\| \tilde{\mu}^*(t) \| \leq \| \mu_1 \| - \epsilon$. Then, (33) implies that, for a fixed n, the event $\| \tilde{\mu}_1(t) \| \leq \| \mu_1 \| - \epsilon$ has taken place, at least, m times. Let $\nu_n := \mathbb{P} \left\{ \| \tilde{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n} \right\}$. This implies that

$$
\mathbb{E} \left\{ \sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t) \right\} \right\} = \sum_{n=T+1}^{T} \sum_{m=1}^{T} \mathbb{P} \left\{ m \leq \sum_{t=T+1}^{T} \mathbb{I} \left\{ k^{TS}(t) \neq 1, \mathcal{A}^c(t), N_1(t) = n \right\} \right\} \leq \mathbb{E} \left\{ \sum_{n=T+1}^{T} \sum_{m=1}^{T} \left(1 - \mathbb{P} \left\{ \| \tilde{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n} \right\} \right)^m \right\} \leq \sum_{n=T+1}^{T} \mathbb{E} \left\{ \frac{1 - \mathbb{P} \left\{ \| \tilde{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n} \right\}}{\mathbb{P} \left\{ \| \tilde{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n} \right\}} \right\}.
$$
Now, when \(\|\bar{x}_{1,n}\| \geq \|\mu_1\| - \epsilon \) the symmetry of \(p_{k,n}(\hat{\mu}_1) \) (defined in (10)) around \(x_{1,n} \) guarantees that
\[
P\{\|\hat{\mu}_1\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\} \geq 1/2,
\]
and then it follows that
\[
1 - P\{\|\hat{\mu}_1\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\} \leq \frac{1}{2}
\]
\[
\frac{1}{P\{\|\hat{\mu}_1\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\}} \leq 2.
\]
(35)

This argument allows us to split (34) as
\[
\mathbb{E}\left\{1 - P\{\|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\}\right\}
\]
\[
= \mathbb{E}\left\{\mathbb{I}\{\|\bar{x}_{1,n}\| \geq \|\mu_1\| - \epsilon \}\right\} + \mathbb{E}\left\{\frac{\mathbb{I}\{\|\bar{x}_{1,n}\| \leq \|\mu_1\| - \epsilon \}}{P\{|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\}}\right\}
\]
\[
= \mathbb{E}\left\{\mathbb{I}\{\|\mu_1\| - \frac{\epsilon}{2} \geq \|\bar{x}_{1,n}\| \geq \|\mu_1\| - \epsilon \}\right\} + \mathbb{E}\left\{\frac{\mathbb{I}\{\|\bar{x}_{1,n}\| \leq \|\mu_1\| - \epsilon \}}{P\{|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\}}\right\}
\]
\[
+ \mathbb{E}\left\{\mathbb{I}\{\|\bar{x}_{1,n}\| \geq \|\mu_1\| - \frac{\epsilon}{2}, S_{k,n} \geq 2\sigma_1^2 n\}\right\}
\]
\[
+ 2\mathbb{E}\left\{\mathbb{I}\{\|\bar{x}_{1,n}\| \geq \|\mu_1\| - \frac{\epsilon}{2}, S_{k,n} \leq 2\sigma_1^2 n\}\left(1 - P\{\|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\}\}\right\}\right\}.
\]
(36)

We now proceed to upper bound each term in (36). For the first term, we have that
\[
\mathbb{E}\left\{\mathbb{I}\{\|\mu_1\| - \frac{\epsilon}{2} \geq \|\bar{x}_{1,n}\| \geq \|\mu_1\| - \epsilon \}\right\} \leq P\{\|\bar{x}_{1,n}\| \leq \|\mu_1\| - \frac{\epsilon}{2}\}
\]
\[
= \int_{\|z\| \leq \|\mu_1\| - \frac{\epsilon}{2}} \frac{n}{\pi \sigma_1^2} e^{-\frac{z^2}{\sigma_1^2}} d\phi
\]
\[
\leq \int_{\|z\| \leq \|\mu_1\| - \frac{\epsilon}{2}} \frac{n}{\pi \sigma_1^2} d\phi
\]
\[
= \left(\|\mu_1\| - \frac{\epsilon}{2}\right)^2 \frac{n}{\sigma_1^2} e^{-\frac{n^2 e^{\frac{-\pi^2 \epsilon^2}{\sigma_1^2}}}{\frac{4\pi^2}}}
\]
\[
\leq \|\mu_1\|^2 \frac{n}{\sigma_1^2} e^{-\frac{n^2}{\sigma_1^2}}.
\]
(37)

For the second term, observe that, given \(\|\bar{x}_{1,n}\| \leq \|\mu_1\| - \epsilon \) and \(S_{1,n} = s \):
\[
P\{|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\} \geq \int_{-\infty}^{\alpha} \int_{\|\mu_1\| - \epsilon}^{\infty} \frac{n(n - 2)}{\pi s} \left(1 + \frac{nr^2}{s}\right)^{-n+1} r dr d\phi
\]
\[
= \frac{\alpha}{\pi} \left(1 + \frac{n\left(\|\mu_1\| - \|\bar{x}_{1,n}\| - \epsilon\right)^2}{s \cos^2 \alpha}\right)^{-n+2},
\]
(38)

for every \(\alpha \in (0, \pi/2) \). It then follows that
\[
\mathbb{E}\left\{\mathbb{I}\{\|\bar{x}_{1,n}\| \leq \|\mu_1\| - \epsilon\} \right\}
\[
P\{|\hat{\mu}_1(t)\| \geq \|\mu_1\| - \epsilon | \hat{\theta}_{1,n}\} \right\}
\]
where inequality (a) follows from $\|\boldsymbol{\mu}_1 - \boldsymbol{x}\|^2 \geq (\|\boldsymbol{\mu}_1 - \boldsymbol{x}\| - \epsilon)^2 + \epsilon^2 \geq (\|\boldsymbol{\mu}_1\| - \|\boldsymbol{x}\| - \epsilon)^2$ whenever $\|\boldsymbol{x}\| \leq \|\boldsymbol{\mu}_1\| - \epsilon$. Equality in (b) follows from a change of variables \boldsymbol{x} to polar coordinates (v, θ), while (c) is consequence of changing v via $r = \|\boldsymbol{\mu}_1\| - v$. We now introduce a new change of variables in (39):

$$
\begin{align*}
 r &= -\cos \alpha \sqrt{\frac{n}{n - 1}} \\
 s &= \bar{w} (1 - w)
\end{align*}
$$

allowing us to rewrite the double integral in (39) as

$$
\begin{align*}
 \int_0^\infty \int_0^\infty e^{-s - s^2/\sigma_1^2} e^{-z - z^2/\sigma_2^2} w^{-1/2} \cos \alpha \sqrt{\frac{n}{n - 1}} dw dz \\
 &= \cos \alpha \sqrt{\frac{n}{n - 1}} \int_0^\infty e^{-s - s^2/\sigma_1^2} e^{-z - z^2/\sigma_2^2} \sqrt{\frac{z}{\sigma_1^2}} D \left(\sqrt{\frac{z}{\sin \alpha}} \right) dz \\
 &\leq \frac{\sigma_1}{2 \sqrt{n} \tan \alpha} \int_0^\infty e^{-z - z^2/\sigma_2^2} e^{-z - z^2/\sigma_2^2} dz \\
 &= \frac{\sigma_1}{2 \sqrt{n} \tan \alpha} \frac{\Gamma(n - 1)}{\Gamma(n - 1)},
\end{align*}
$$

where (d) follows from Dawson’s function D [27] being upper bounded by 1. Finally, using this upper bound in (39) yields

$$
\begin{align*}
 \mathbb{E} \left\{ \mathbb{I} \left\{ \|\bar{x}_{1,n}\| \leq \|\boldsymbol{\mu}_1\| - \epsilon \right\} \right. \\
 \left. \mathbb{P} \left\{ \|\hat{\boldsymbol{\mu}}(t)\| \geq \|\boldsymbol{\mu}_1\| - \epsilon \mid \bar{t}_{1,n} \right\} \right. \\
 &\leq \frac{\|\boldsymbol{\mu}_1\| \cos^2 \alpha}{\sigma_1 \sin \alpha} \sqrt{n} \left(\cos^2 \alpha \right)^{-1},
\end{align*}
$$

for every $\alpha \in (0, 2\pi)$. In particular, when α is small, the sequence in n defined by the right-hand side of (41) converges to zero for α satisfying $\cos^2 \alpha \approx 1 - \alpha^2/2 = e^{-\alpha^2/(2\sigma_1^2)}$, i.e., for $\alpha = \sqrt{2 (1 - e^{-\alpha^2/(2\sigma_1^2)})} = O(\epsilon)$. With this particular choice, and for small ϵ, the bound in (41) becomes

$$
\begin{align*}
 \mathbb{E} \left\{ \mathbb{I} \left\{ \|\bar{x}_{1,n}\| \leq \|\boldsymbol{\mu}_1\| - \epsilon \right\} \right. \\
 \left. \mathbb{P} \left\{ \|\hat{\boldsymbol{\mu}}(t)\| \geq \|\boldsymbol{\mu}_1\| - \epsilon \mid \bar{t}_{1,n} \right\} \right. \\
 &\leq \frac{\|\boldsymbol{\mu}_1\|}{\alpha^2 \sigma_1} \sqrt{n} \left(e^{-\alpha^2/(2\sigma_1^2)} \right)^{-1}.
\end{align*}
$$

From Lemma 3, the third term in (36) is upper bounded as

$$
\begin{align*}
 \mathbb{E} \left\{ \mathbb{I} \left\{ \|\bar{x}_{1,n}\| \geq \|\boldsymbol{\mu}_1\| - \epsilon/2, S_{1,n} \geq n2\sigma_1^2 \right\} \right. \\
 \left. \mathbb{P} \left\{ S_{1,n} \geq n2\sigma_1^2 \right\} \right. \\
 &\leq \mathbb{P} \left\{ S_{1,n} \geq n2\sigma_1^2 \right\} \leq 2 \left(1 + \frac{\epsilon}{\sigma_k^2} \right)^{-1} e^{-nh(1)}.
\end{align*}
$$
To upper bound the fourth term in (36), denote \(C_{1,n} := \{ \| \bar{x}_{1,n} \| \geq \| \mu_1 \| - \frac{\epsilon}{2}, S_{1,n} \leq 2\sigma_1^2 n \} \). Then by introducing a polar-coordinates change of variable:

\[
1 - \mathbb{P}\{\| \bar{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | C_{1,n}\} = \mathbb{P}\{\| \bar{\mu}_1(t) \| \leq \| \mu_1 \| - \epsilon | C_{1,n}\} \\
\leq \int_{-\pi}^{\pi} \int_{\pi s}^{\infty} \frac{n(n-2)}{\pi s} \left(1 + \frac{n r^2}{s} \right)^{-n+1} r dr d\phi, \quad (\cdot, s) \in C_{1,n},
\]

and therefore

\[
\mathbb{E}\left\{ \mathbb{I}\left\{ \| \bar{x}_{1,n} \| \geq \| \mu_1 \| - \frac{\epsilon}{2}, S_{k,n} \leq n2\sigma_1^2 \right\} \left(1 - \mathbb{P}\{\| \bar{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n}\} \right) \right\}
\leq \left(1 + \frac{\epsilon^2}{8\sigma_1^2} \right)^{-n+2}.
\]

Putting together (37), (42), (43) and (45) together with (34) lead us to

\[
\sum_{n=T+1}^{T+T} \mathbb{E}\left\{ \frac{1 - \mathbb{P}\{\| \bar{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n}\}}{\mathbb{P}\{\| \bar{\mu}_1(t) \| \geq \| \mu_1 \| - \epsilon | \hat{\theta}_{1,n}\}} \right\}
\leq \sum_{n=T+1}^{T+T} \left(\| \mu_1 \|^2 \frac{n}{\sigma_1^2} \frac{e^{n \epsilon^2/(2\sigma_1^2)}}{\alpha^2 \sigma_1^2} \sqrt{n} \left(e^{-\epsilon^2/(2\sigma_1^2)} \right)^n \right)
\leq \left(\| \mu_1 \|^2 \frac{e^{-\epsilon^2/(4\sigma_1^2)}}{1 - e^{-\epsilon^2/(4\sigma_1^2)}} + \pi \| \mu_1 \| \frac{e^{-\epsilon^2/(2\sigma_1^2)}}{\alpha^2 \sigma_1^2} \right) \frac{2 \left(1 + \frac{\epsilon^2}{8\sigma_1^2} \right)^{-n+1}}{1 - e^{-\epsilon^2/(2\sigma_1^2)}} + \frac{8\sigma_1^2}{\epsilon^2}
= O(\epsilon^{-2}) + O(\epsilon^{-6}) + O(1) + O(\epsilon^{-2}) = O(\epsilon^{-6}).
\]