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Abstract

Inverse problems arise in any scientific endeavor. Indeed, it is seldom the
case that our senses or basic instruments, i.e., the data, provide the answer
we seek. It is only by using our understanding of how the world has generated
the data, i.e., a model, that we can hope to infer what the data imply. Solving
an inverse problem is, simply put, using a model to retrieve the information
we seek from the data.

In signal processing, systems are engineered to generate, process, or trans-
mit signals, i.e., indexed data, in order to achieve some goal. The goal of a
specific system could be to use an observed signal and its model to solve
an inverse problem. However, the goal could also be to generate a signal
so that it reveals a parameter to investigation by inverse problems. Inverse
problems and signal processing overlap substantially, and rely on the same
set of concepts and tools. This thesis lies at the intersection between them,
and presents results in modeling, optimization, statistics, machine learning,
biomedical imaging and automatic control.

The novel scientific content of this thesis is contained in its seven com-
posing publications, which are reproduced in Part[[] In five of these, which
are mostly motivated by a biomedical imaging application, a set of related
optimization and machine learning approaches to source localization under
diffusion and convolutional coding models are presented. These are included
in Publications @, |EL |E and @ which also include contributions to the
modeling and simulation of a specific family of image-based immunoassays.
Publication [C] presents the analysis of a system for clock synchronization
between two nodes connected by a channel, which is a problem of utmost
relevance in automatic control. The system exploits a specific node design
to generate a signal that enables the estimation of the synchronization pa-
rameters. In the analysis, substantial contributions to the identifiability of
sawtooth signal models under different conditions are made. Finally, Publi-
cation [D| brings to light and proves results that have been largely overlooked
by the signal processing community and characterize the information that
quantized linear models contain about their location and scale parameters.






Sammanfattning

Inversa problem uppstar vid alla vetenskapliga undersékningar. Vara sin-
nen och métinstrument -radata -ger faktiskt séllan svaren vi letar efter. Vi
behover da utveckla var forstaelse av hur data genererats, d.v.s., anvdnda en
modell, fér att kunna dra korrekta slutsatser. Att 16sa inversa problem &r,
enkelt uttryckt, att anvinda modeller for att fa fram den information man
vill ha fran tillgangliga data.

Signalbehandling handlar om utveckling av system som skapar, behandlar
eller 6verfor signaler (d.v.s., indexerade data) for att na ett visst mal. Ett ex-
empel pa mal for en sadant system ar att 16sa ett inverst problem utifran den
analyserade signalen med hjélp av en modell. Signalbehandling kan dock dven
handla om att skapa en signal, sa att denna avslojar en parameter for utred-
ning genom ett inverst problem. Inversa problem och signalbehandling ar tva
falt som Overlappar i stor utstrackning, och som anvinder sig av samma kon-
cept och verktyg. Denna avhandling utforskar grianslandet mellan dessa tva
falt, och presenterar resultat inom modellering, optimering, statistik, mask-
ininldrning, biomedicinsk avbildning och automatisk kontroll.

Det nya vetenskapliga innehéllet i den har avhandlingen &r baserat pa de
sju artiklar som aterges héar i Del E I fem av dessa artiklar beskrivs ett antal
relaterade metoder for optimering och maskininlarning for kéllokalisering med
hjalp av diffusions- och konvolutionsmodellering, med tillimpningar framfor
allt inom biomedicinsk bildbehandling. Dessa inkluderas i Publikationer|ﬂ7
[E] [E] och [G] och behandlar ocksd modellering och simulering av en familj av
bildbaserade immunkemiska detektionsmetoder. Publikation [C] presenterar
analys av ett system for klocksynkronisering mellan tva noder férbundna
med en kanal, vilket &r ett problem med sédrskild relevans fér automatisk
kontroll. Systemet anvénder en specifik noddesign for att generera en signal
som mojliggdr skattning av synkroniseringsparametrarna. Analysen bidrar
avsevart till metodiken for att identifiera sagtandsmoénstrande signalmodeller
under olika férhallanden. Avslutningsvis presenteras i Publikation [D] resul-
tat som tidigare i stora drag forbisetts inom signalbehandlingsfdltet. Hér
karaktédriseras dven den information som kvantiserade linjdra modeller in-
nehaller om deras lages- och skalparametrar.
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Part 1

Summary



Cause I'm the greatest star, I am by far! But no one knows it.
Lyrics by Bob Merrill, “Funny Girl”, 1964.
Favourite version performed by Barbra Streisand in the 1968 movie of the same
name.



Chapter 1

Introduction

Many theses start with a few words on the hard work of research.
This is not one of those theses, since I can think of few things equally
rewarding.

Modified, from J. Jaldén’s, “Detection for multiple input
multiple output channels: Analysis of sphere decoding and semidefinite
relaxation”, Doctoral thesis at KTH Royal Institute of Technology, 2006.

While reading this thesis, one may have the impression that the chapters of
Part [[I] are disconnected investigations into different aspects of signal processing
and inverse problems through different applications. This is true, because the di-
rections of the research projects were mostly guided by circumstance, impact, fund-
ing, and the coauthors’ interests. Nonetheless, this thesis, as a collection of works,
consistently revolves around the ideas of signals, modeling, and inverse problems,
while all the considered applications address signal processing problems.

In particular, three different projects are considered in the thesis. The most
extensive involves Publications [A] [B] [E] [F] and [G] We will refer to it as Cell de-
tection, even if the formulation in Publication [F] contemplates the more general
problem of source localization in imaging under convolutional coding models. Fur-
thermore, when discussing cell detection, the functional notation of Publications [A]
and [B] will be preferred over the discretized notation of Publications [E] [F] and [G]
Further information on the transformation from one to the other can be found in
Publication [A] The second project delves on Clock synchronization over networks,
and it is detailed in Publication [C] Finally, the third project explores Inferences
from quantized data, and it is explored in Publication

Each of the publications in Part [I] thoroughly motivates the corresponding
project, refers to the relevant state of the art, and presents the proposed solutions.
Consequently, here I introduce inverse problems in signal processing in a general
setting, punctuating the explanations with examples from our work. Nonetheless, I
do not aim to give a complete picture of the field of inverse problems, but simply to
give the basics that are more relevant to the understanding of the results in Part[I]

3



4 CHAPTER 1. INTRODUCTION

which I summarize in Chapter 2] For excellent descriptions of the field from a
number of different perspectives and conceptual frameworks, see [11[3}|{14}/19}/20129}
33].

1.1 Models

Mathematical models are at the core of modern scientific reasoning. A model repre-
sents an understanding, however accurate, on the relation between some quantities,
say, a measured signal y € ) and some parameter x € X. Here, ) and X are two
generic topological spaces with arbitrary dimension and structure, and their prop-
erties will be determined in each specific problem.

A fully specified model is a mapping M : X — P()), where P()) is the space
of all probability measures on Y. In this manner, for any given x € X, M(z) is a
probability distribution over ) such that y ~ M(z), and, for any set S C Y, we can
measure its probability according to our model as Pr, [S] = M(z)[S]. This mirrors
the physical reality that even when the relevant parameter x is known, a mea-
surement is never completely determined. Consequently, we will refer to the fully
specified models M as stochastic models. In many cases in science and engineering
this full characterization is not available or is mathematically intractable, and a
deterministic model D : X — Y such that y = D(z) is used instead. A stochas-
tic model often arises from a deterministic model D combined with a stochastic
model on possible modeling errors. In the simplest cases, the deterministic model
D characterizes the location parameter of the observed signal y, while the predic-
tion error D(z) — y is modeled by a stochastic model. For example, the common
additive white Gaussian noise model, where x € R™ and y € R¥, is clearly in
this category, because y ~ M(z) = N (D(z),0%Iy). In other words, we have a
deterministic model for y, D : RM — RY and we model the prediction errors of
the model as independent random samples from a fixed normal distribution. For
the rest of this introduction we shall refer to models constructed in this manner as
deterministic-and-error models

A further category that is often employed in the inverse problems, signal pro-
cessing and statistical communities is that of linear models. However, the term is
not well defined in the generic framework presented here, and, most importantly,
does not correspond to a linear mapping between X and P(Y). In the introduction
to this thesis, I refer to models as linear in two cases. First, a deterministic model
is linear if it is an affine continuous mapping between X and Y, i.e., D(x) = Ax+b
with A € L(X,)Y) and b € Y, where £ (X,)) is the set of linear and continu-
ous operators between X and ). Second, a stochastic model is linear if it can be
constructed from a linear deterministic model for the location parameter of the
distribution and a stochastic model for the modeling error. Table includes a
classification of the models employed in the different applications explored in Part [[I]
with respect to the categorization presented here.

The framework introduced here does not entail neither a frequentist nor a
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Project | Cell detection Clock synchronization
Parameter | Density rate (PSDR) a  Parameter vector 8 = [p, fq, ¢s]
7space X | A=La(B X [0,0max)) Ry xR x[0,27)

Signal y | Image dgps Measured RTTs y
”space Y | D=1,y (Rz) RN
Model type | Deterministic Stochastic
Linear | v/ X

Project | Inferences from quantized data
Parameter z | Location and scale parameters (x, ¥)
7 space X | R™ x M (R)
Signal y | Quantized observation z
” space ) | Countable set Z
Model type | Stochastic
Linear | X

Table 1.1:  Signal and parameter spaces, as well as model classification, in the
different applications explored in Part [II} Here, we use B as a generic bounded set
in R? and M, (R) as the set of symmetric positive definite matrices of size n x n.

Bayesian treatment of statistics. The frequentist view is that there is a true value
x € X, while the Bayesian treatment is to propose that the parameter is sam-
pled from a distribution over the parameter space, i.e., x ~ II € P(X). Simply
stated, a stochastic model M is equivalent to the likelihood function in statistics
(see Section for more details).

To conclude this section, I include a word of warning for those interested in
working on mathematical modeling. Like animal models in biology, mathematical
models only represent the phenomena we are interested in up to a certain extent.
Although we use the precise language of mathematics in statements as y ~ M(x) or
y = D(z), y and x do not refer to the real quantities we assign them to, but only to
our understanding of them, i.e., to their modeled versions. As a consequence, the
use of mathematical modeling in science and engineering should always be accom-
panied by honest and dedicated empirical validation. This is illustrated in Fig.
with a side-to-side comparison of animal models used to study human behavior and
the mathematical model we introduced in Publication [A] for cell detection.

1.2 Forward problems

Mathematical models subject to the due empirical scrutiny and limited to their
verified application range remain extremely useful. Their most direct application
is forward evaluation (solving the forward problem), i.e., for a given parameter
x € X or a given distribution II € P(X), generating a signal y € ) according
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Jit \ , 7 %c = DAc - s(x,y, 1)
=y %d = /-cac| I Kad
5 "8 ms- Y| D
animal model mathematical model
Jﬁ 2 as much as 2
.
human subject FluoroSpot assay

Figure 1.1:  Visual reminder of the disclaimer at the end of Section [[.I] Math-
ematical models are only a specific type of models. All models represent reality
only up to a certain extent. Real FluoroSpot data (displayed with inverted colors)
provided by Mabtech AB. Assay picture by Kristoffer Hellman and Mabtech AB.
Picture of the author, a human subject, by Dr. Celia Garcia-Pareja.

to the model. In the context of stochastic models, this implies sampling from the
distribution M(z), while in the context of deterministic models, it implies evaluating
the mapping D(z).

Depending on the formulation of the model and the characteristics of X and
YV, forward evaluation can either be trivial or extremely challenging to do exactly.
In fact, even deterministic linear models, e.g., D(x) = Az + b, may be expressed
in manners that make evaluation laborious. For example, the physical partial-
differential equation (PDE) model for image-based immunoassays used in Publica-
tion [A] could not be evaluated easily without the parametrization of the solution
we developed in Theorem 1 therein. Indeed, other known methods to evaluate the
model are to either employ numerical solvers for the PDE or run non-exact particle-
by-particle stochastic simulations. Both these methods are approximated and com-
putationally expensive. While our solution still requires numerical approximations,
it is much more efficient, and it enabled the numerical results in Publications
[E} and [G] For details on our approach and the approximations involved, see the
sketch in Fig. and the explanations in the supplementary material to Publi-
cations [A] and [B] What prevents exact evaluation in this case is that the model
operates on (infinite-dimensional) function spaces X and Y. Infinite-dimensional
models often result in the impossibility of obtaining closed-form expressions for
evaluating the model for a generic parameter value, even when one only aims to
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; z = E gr(z,y) ® a(z,y, o)
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zro T1 X2

dobs (T, y)
Figure 1.2: Diagram for the forward model evaluation for cell detection in a toy
example. The random locations and random square-pulse secretion rate of each
cell are sampled independently. Each of the source density rates s(z;,y;,t) are
translated to their approximated (step-constant) equivalent PSDRs a(z;, y;, o) (see
Publication and its supplementary material). Then, the model is evaluated from
this approximated PSDR by using discrete convolution (®) with the integrated ker-
nels gi. The data and the kernels are displayed with inverted colors for visualization
clarity. In connection with Publication [G] an implementation of this forward eval-
uation procedure is publicly available in [EI] Note that in Publications |A| and
we only studied the inversion of the last part of the model, i.e., we obtain PSDRs
a from an image dops.
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evaluate a specific discretization of the corresponding signal y € ). Similar issues
arise in the evaluation of infinite-dimensional stochastic models. For example, in
stochastic models of continuous-time processes, e.g., diffusions, exact simulation is
a novel and exciting topic of active research |15].

In the previous section, we introduced models as relationships between a pa-
rameter x and a signal y, but we never attributed any meaning to these terms,
i.e., to the choice of one name or the other for a given quantity in an application.
Consequently, whether a problem is a forward problem (obtaining y from x) or an
inverse problem (obtaining x from y) is simply a matter of choice, convenience or
convention. Although traditionally the forward relation was assumed to be causal,
the mathematics employed to solve either of these problems do not depend on or
assess the causal structure of the model. Indeed, we will see that while the causal
relation between parameter and signal is quite clear in our three applications, it
plays no role in how we formulate and solve the different inverse problems. Tech-
niques for causal discovery and inference do exist, however, and are an exciting
topic of active research in statistics and machine learning [241/26,27]. In this thesis,
I assume that the forward problem can be (maybe approximately) solved with less
computations than the inverse problem. This is important because, as we will see in
the next section, solving the inverse problem will often involve solving a collection
of forward problems under different conditions.

1.3 Inverse problems

Often, for historical reasons, one of the two problems has been stud-
ied extensively for some time, while the other is newer and not so well
understood. In such cases,... the latter is called the inverse problem.

From Joseph B. Keller’s, “Inverse problems”, The
American Mathematical Monthly, vol. 83, no. 2, pp. 107-118, Feb. 1976.

Another application of mathematical models is inverse evaluation, i.e., using
an observed signal y € ) to make statements about the parameter. In particular,
one generally aims to obtain either a distribution over the parameter space, i.e.,
II, € P(X), or an approximation of the parameter value Z(y) € X. To obtain
the former, one needs to have a fully specified stochastic model M(z), and one
employs techniques rooted in probability, Bayesian statistics, and measure theory
(see [1L)291[33]). To obtain the latter, one can use a more diverse collection of tools
from either frequentist and Bayesian statistics or variational problems’ theory.

Well-posedness and identifiability

In this thesis, I only consider problems in which the aim is to recover an ap-
proximation or estimate of x, Z(y). In these cases, a relevant gold standard was
introduced by Jacques Hadamard for deterministic models D, the well-posed prob-
lem. A well-posed problem is an inverse problem for which Vy € Y, i) 32(y) € X
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satisfying D(2(y)) = v, ii) £(y) is unique, and iii) the mapping that inverts D, i.e.,
& :)Y — X, is continuous. Intuitively, i) and ii) guarantee that what the solution
to the inverse problem is well defined, while iii) ensures that random deviations of
the signal y, which are not accounted for in deterministic models, do not affect the
solution Z(y) wildly. In many practical cases, an inverse problem is not well-posed
(known as ill-posed), or establishing whether it is or not is challenging. This does
not mean a solution can not be found, and in fact, most of the active research
addresses precisely these cases. For example, in Publications [A] and [B] it is not
established whether a solution always exists, and when it does, it is definitely not
unique. Nonetheless, some of the methods I introduce below allow one to incorpo-
rate additional information into the problem and design an algorithm to provide
an estimate for the solution.

A notion similar that is similar to well-posedness but applies to stochastic mod-
els is identifiability. A stochastic model M is identifiable if for any two param-
eters 1,29 € X, M(x1) = M(x2) is equivalent to 1 = z5. Here, the equality
between two probability distributions should be interpreted in terms of agreeing
measures, i.e., that for any S C Y, M(z1)[S] = M(z2)[S]. The notation introduced
in Section reveals that identifiability is simply the parallel of condition ii) of
well-posedness for stochastic models. Indeed, in simple cases such as the example
of additive white Gaussian noise in Section [L.I] identifiability is simply a relaxed
version of well-posedness. In general cases, however, the difference between ii) in
well-posedness and identifiability is that now one requires knowledge on the entire
distribution M(z) to uniquely map it back to . This links the difficulty of an
identifiable problem with the degree of structure in M(z). On one hand, if M(x)
is, for example, a product measure with many identical factors, i.e., y is a large
vector of independent and identically distributed samples, it may be straightfor-
ward to estimate z accurately. On the other hand, if M(z) does not have much
structure, it may be demanding to obtain a good estimate of x from y. Similarly to
well-posedness, identifiability may be challenging to verify, and its absence does not
necessarily preclude consistent estimators. In Publication [C] we study the identifi-
ability of a deterministic-and-error stochastic model constructed by first deriving a
non-linear deterministic model D and then adding stochastic terms to represent the
known sources of error. There, we obtain a rather unexpected result: the model
is identifiable when all sources of error are considered, but not when some are
disregarded.

Stochastic methods and logconcavity

A common technique to estimate the parameter x when one has a stochastic model
M is maximum likelihood. In this methodology, one estimates by maximizing the
Radon-Nikodym derivative evaluated at the observed signal y, i.e., the likelihood,

dM(z)
dp

2(y) = arg max {log [C(x; y)]}, where L(x;y) = (y) - (1.1)
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The Radon-Nikodym derivative should be interpreted as an infinitesimal increment
of probability when measuring y with the measure assigned to the parameter x by
the stochastic model M. Here, the increment is measured with a reference measure
w of Y that should satisfy certain technical conditions, the most intuitive being
absolute continuity, i.e., that for any S C Y, p[S] = 0 implies that M(z)[S] = 0 for
any x € X. This set-up accommodates a wide variety of signal spaces ), as long
as one can find the right reference measure . For example, in Publication [D] we
choose the counting measure on ) = Z (a countable set, see Fig.|1.1)) as a reference
to define a likelihood L£(z;y), while in Publication |[C| we choose the Lebesgue mea-
sure on Y = RY. The maximum likelihood approach also has many benefits when
y is composed of many independent and identically distributed replicates (large
sample properties) [28] section 7.3.2]. However, there are many conditions that
have to be fulfilled for to be a valid definition of an estimator £ : Y — X.
Some of these are rather technical and guarantee the existence of a maximum in
, while others contribute to its unicity. For example, if the model M is not
identifiable, there may be multiple maxima of the likelihood for some observed sig-
nals y. Note here that for deterministic-and-error stochastic models, evaluating the
likelihood involves evaluating the deterministic model to determine the parameters
of the distribution. Thereby, each step in any numerical optimization technique to
solve comes at least at the computational cost of evaluating the deterministic
forward model. Finally, in certain infinite-dimensional parameter spaces X', direct
maximum likelihood is known to exhibit theoretical problems (see [18]).

A property that guarantees that the multiple maxima of (if any) are to-
gether in a convex set and can be found numerically is likelihood logconcavity.
Basically, this property ensures that the cost functional in is concave with
respect to x, and thus, the optimization problem is convex if X’ is convex. Many
of the most common stochastic models have a parametrization with logconcave
likelihood. Besides the advantages for maximum likelihood estimation, likelihood
logconcavity also provides many benefits for other techniques, such as uncertainty
quantification, hypothesis testing and the Bayes filter. In Publication [D} we prove
that a broad range of quantized linear models driven by continuous noises have
logconcave likelihood with respect to both location and scale parameters. This re-
sult was initially stated (without explicit proof) in the statistical literature in the
1980s [5], but seems to have been overlooked by the signal processing community.

Nonetheless, practical problems in which a stochastic model is not identifiable
or has a likelihood that is not logconcave are commonplace. Within the Bayesian
community, there is an obvious way to proceed: if one first infers a probability
distribution over the parameter space, I, € P(X), that incorporates all the knowl-
edge available, i.e., 1) a prior distribution II € P(X), ii) the stochastic model M(z),
and iii) the fact that the signal y has been observed, one has all the information to
build a good estimator of x. Then, according to Bayesian decision theory |28, ch. 5],
one should choose a loss functional £ : X x X — R such that ¢(z,#) reflects the
practical relevance of estimating #(y) = & # x. Then, one should find the estimator
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Z : Y — X that minimizes the posterior risk

r(aly) = /X U, i(y)) dII,, (1.2)

for each possible observed y € ). Bayesian estimation approaches have even been
successful in infinite-dimensional parameter spaces, in what is known as the promis-
ing (and wrongly-named [22]) field of Bayesian nonparametric inference [16}/17].

Minimizing often requires large amounts of computations. Most often, a
simpler techique to build an estimate from the posterior distribution II, is used, i.e.,
maximum-a-posteriori estimation. In this technique, the Radon-Nikodym deriva-
tive of 11, with respect to a measure v on X is maximized. In particular, if the prior
accepts a Radon-Nikodym derivative m(x) = dII/dr(x) and the likelihood L£(z;y)
is well defined, the maximum-a-posteriori estimate is

& = argmax {log [£(z; y)] + log [r(2)]} . (1.3)

In , the conditions for the optimization problem to be convex, and thus effi-
ciently solvable numerically, are more relaxed. Indeed, even if the likelihood is not
logconcave, the addition of the logarithm of the prior in may still make the
overall cost functional concave. In fact, when is a convex problem, [25] shows
that the maximum-a-posteriori estimator is actually a formal Bayes rule, i.e., it
minimizes for each observed signal y € ), for a specific loss functional (-, -)
induced by the geometric structure of the posterior 11, over X.

Regularization methods

Let now L(z;y) = exp (—gy(z)) and w(x) = exp (—f(z)), with g, and f proper,
lower semi-continuous functionals. Then, we see that logconcavity of L£(x;y) and
m(x) corresponds to convexity of g,(z) and f(z), and that we may write (L.3]) as

2(y) = argmin {gy () + f(2)}. (14)

The minimization in of the sum of a signal-dependent cost function g, : X — R
and a signal-independent functional f : X — R that promotes features of the so-
lution that are known apriori or desired (also known as a regularizer) is much
more general than Bayesian statistics. In fact, it is one of the most representative
among regularization methods [14], which are techniques designed specifically to
solve challenging inverse problems by incorporating additional (prior) information
to the solution. Other regularization methods (see [14]) are i) projection or dis-
cretization methods that solve the inverse problem in a lower-dimensional space,
and ii) iterative optimization techniques designed to be stopped after a number
of steps. As an example of i), in |18], maximum likelihood methods are extended
to otherwise problematic infinite-dimensional parameter spaces by introducing the
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“method of sieves”, in which the parameter is estimated on a finite-dimensional sub-
space of the parameter space, with dimension that grows according to the amount
of structure in M(z).

In this thesis, I only study regularization through the variational formulation
in for ill-posed inverse problems that arise from deterministic models. In my
exposition, I assume that both X and ) are Hilbert spaces, and therefore i) are
equipped with norms ||-||x and || - ||y, respectively, which allow one to measure dis-
tances between any two elements of the space, or to easily define neighbourhoods,
ii) their norms are coherent to their respective inner products, i.e., || - ||> = (-, ),
which enables interpretable Fréchet derivatives through their Riesz representation,
and iii) are complete, which implies that they may have compact subsets, in which
the extrema of continuous functions are met. The variational formulation of reg-
ularization is the most studied due to its simple interpretation and flexibility. In
short, by choosing the functionals g,(x) and f(x), we are specifying, respectively,
in exactly which sense do we want the solution to relate to the observed signal,
and exactly which features we want to promote in it. Furthermore, the variational
approach is attractive due to its connection to Tikhonov regularization, the most
classic technique in the field. In Tikhonov regularization theory, a linear contin-
uous operator A € L(X,)) is considered as a deterministic linear model, i.e.,
y = D(x) = Ax, where A has a non-empty nullspace. Thus, estimating = from y
is an ill-posed inverse problem. Then, the Tikhonov technique is to estimate the
parameter as 2(y) = (A" A —i—)\Id)_l A*y, where A > 0 is a regularization parameter
and A* € £ (Y, X) is the adjoint to A. In fact, the Tikhonov estimate #(y) is also
the solution to for gy(z) = ||[Az — yHi, and f(z) = A|jz||%. Here, the intuitive
understanding is that the regularizer promotes solutions that are small in norm, so
that the resulting inverse mapping, & : ) — X, is bounded, i.e., continuous, recov-
ering the gold standard of point iii) in the definition of well-posedness (see above).
Through this variational formulation of Tikhonov regularization, one can easily ex-
tend the approach to non-linear models by simply choosing g, (z) = |D(z) — yll%,
which in general will not yield a closed form solution for . A common fact in
variational regularization is that there are a number of criteria to select the “right”
regularization parameter A\ > 0, depending on the theoretical guarantees one aims
to obtain. For instance, if we use the relation between with maximum-a-
posteriori estimation (see ) in Euclidean spaces, Tikhonov regularization cor-
responds to an isotropic normal stochastic model around D(z) for the signal y with
isotropic normal prior around 0 for the parameter x, and A is a ratio between the
variances of the likelihood and the prior.

Despite its attractive closed-form solution, Tikhonov regularization only incor-
porates the loose prior knowledge that a solution that is “small” is preferred. In-
deed, in linear Tikhonov regularization the operator A completely determines the
parametric form of the solution, while f(z) = A|z|* only contributes to its spe-
cific coeflicients. In contrast, the most common family of regularizers in current
use, sparsity-promoting regularizers, fully characterize the parametric form of the
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solution independently of A when g,(z) = ||[Az — yHi,, as shown by the representer
theorems in [30,31]. In these techniques, the idea is to identify some feature of
the parameter that is known to be sparse, say R(x), and to use as a regularizer a
functional f that promotes zeroes in this feature. Here, R : X — R, where R is
some Banach space, and one generally selects the regularizer as f(z) = A [|[R()||,
i.e., proportional to the norm in R, which should be a sparsity-promoting func-
tional. Most commonly, R will correspond to i) ¢; or its subspaces in countable or
finite-dimensional spaces, ii) L in function spaces, or iii) the space of signed Radon
measures M, i.e., the continuous dual of the space of continuous functions imbued
with the L; norm, in measure spaces |[10,[30]. A number of particular cases of this
approach have been extensively investigated, and theoretical properties and intu-
itive explanations can be found in many sources [10-13}21,[30-32]. For example,
sparsity-promoting regularizers have been linked back through the maximum-a-
posteriori interpretation of to the theory of sparse stochastic processes [32].
Finally, sparsity has had much success within the field of compressed sensing [13],
in which the focus is on designing a methodology to represent accurately and with
the least samples possible continuous (infinite-dimensional) signals that are known
to have some underlying structure |12].

As an example, in Publication [A] we have X = Ly(B X [0, 0max)), YV = Lo (RQ)
and R = Ly (B) (for B C R? a bounded set, see Table|1.1|in Section|L.1|and Publica-
tion@) with R : Ly(B X [0, omax)) — L1(B) such that R(a)(r) = [[a(r,)||1y(0,0mu))
where 2 = a is a generic point in X and r € R2. This selection is a group spar-
sity regularizer, in which one promotes sparsity on an object constructed by taking
Ly /¢s-norms of subsets of the parameter. The aim in selecting this regularizer is to
i) induce joint behavior in each of these subsets, i.e., either all elements in a sub-
set become zero or all become non-zero, ii) promote boundedness in the mapping
& :)Y — X, and iii) promote sparsity in the number of subsets that are non-zero.
This concept matches excellently with our cell detection application, in which the
parameter a € Ly(B x [0, 01ax)) is expected to be sparse in its spatial dimensions,
r € B, which represent cell locations, while the third dimension characterizes the
scale description of the spots generated by those cells, which are supposed to stay
in the same location throughout the experiment. Note here that the regularizer
proposed in Publication |Ais slightly more complicated, including i) a term to im-
pose non-negativity on a, and ii) a weighting function ¢ over the domain [0, omax),
which can be used to incorporate further prior information.

Iterative solvers for nonsmooth optimization problems

Problems of the form do not generally have closed-form solutions. Conse-
quently, estimators based on this optimization problem have to be obtained from
iterative algorithms that converge to one of its solutions (if any). In this the-
sis, I discuss a specific first-order method [2] known as the accelerated proximal
gradient (APG) algorithm or the “fast iterative shrinkage-thresholding algorithm”
(FISTA), on which we based the results of our cell detection publications. First-
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order methods are techniques that only require information on the first derivative
(or subdifferential) of the functions to optimize. These methods are generally pre-
ferred when the parameter = (or its discrete representation) is high-dimensional and
the forward evaluation of the deterministic model D(z) has a high computational
cost. This is because each iteration comes at a cheaper cost in memory and com-
putation compared to alternative approaches. Notwithstanding, for the common
choice g, (z) = ||D(z) — yH; each such iteration comes at a cost proportional to the
evaluation of the forward model D(-). In the most common example of a linear
model D(x) = Az, for example, the major cost of an iteration is dominated by
that of evaluating the gradient, and thus, evaluating either A and A* once, or A* A
once.

The APG algorithm is particularly tailored to problems in which g, is smooth
(differentiable and with a Lipschitz gradient) and f is non-smooth, such as the
regularizers discussed above to promote sparsity. In particular, the algorithm is
described by the iterations

@ prox. s {i“(i_l) - Vg, (j(i_l))} , (1.5)

PO IO RN G| (xm _ x(i—l)) , (1.6)

Here, v > 0 depends on the smoothness properties of g,, while a) is a sequence
that regulates the momentum term (Y — (=1 and thereby, the speed of conver-
gence (see Publication [B| for some details and [2] for a comprehensive overview).
Additionally, the proximal operator of the functional f is defined as

prox. ;(r) = arg Iirél;l {||57 —z|% +2vf (:i)} . (1.7)

Intuitively, the prox operator can be seen as a bridge between the two extremes

of a projection and a gradient step. Indeed, on one extreme, if we consider the
(00, 0)-indicator of a convex set C, i.e., the functional éc : X — R such that
dc(z) = oo if z ¢ C and dc(x) = 0 if z € C, we see that prox. ;. (z) = Pc[z] =
arg min { |z —z||?:% € C}, i.e., the proximal operator is simply a projection onto
C. On the other extreme, if f is convex and differentiable and p = prox, ;(z), we
have that x = p + vV f(p), i.e., ascending one gradient step from p would lead us
to x.

The APG algorithm, then, is readily implementable for a large collection of prob-
lems, and provides some form of convergence guarantees regardless of the convexity
assumptions on g, and f [2]. Of particular interest is the worst-case function-value
convergence rate of O(1/k?) when both gy and f are convex and respect the con-
ditions above. Given a new problem, one simply needs to compute, bound above,
or approximate 7, and have routines to evaluate the gradient of g, and the prox
operator for f. In Publication |B], we derive a number of results in order to employ
the APG algorithm. On one hand, we have a linear model with squared norm cost,
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Figure 1.3: Scheme followed in the Appendix of Publication [B] to prove the ex-
pression for the proximal operator of the non-negative weighted norm in a Hilbert
space X. Here, £ € X, Pc : X — C is the projection onto a convex set C, B ()
is the closed ball with norm bounded by =, Bé (7) is a closed ellipsoid with 1/¢-
weighted norm bounded by v, and B* (y) and Bg (7) are their dual equivalents.
The result indicated by the dashed arrow is obtained by following the solid arrows,
using the results in the lower corners of the square as stepping stones to achieve it.
In the inner square, the classical proof of the prox of a norm in a Hilbert space. In
the outer square, the results of our generalization to the weighted, non-negatively
constrained norm.

and so we obtain Vg, (z) and v by i) deriving the adjoint to what we call the diffu-
sion operator, the mapping, a € La(B x [0, 0max)) — fog""‘“‘ G, aydo, where G, is
a Gaussian blur with scale o > 0, and ii) bounding the norm of this same operator
to quantify the smoothness of Vg,. On the other hand, we use a non-negative
group-sparsity regularizer, i.e.,

fla)=A HHa(r, ~)HL2([0,amax))HLl(B) + 0Ly (B [0,0max)) (@) - (1.8)

A major technical result in Publication [B] is the derivation of the prox operator
for in closed form for any Hilbert space. The most important step towards
that result is obtaining the prox operator of a non-negative weighted norm in any
Hilbert space, a process which is summarized in Fig.[T.3] As it turned out, the result
depicted in Fig. was encompassed by a previous and broader one [4, Proposi-
tion 2.2]. Furthermore, the full expression for the prox of was simultaneously
derived in a broader setting in [7, Lemma 2.2] and in a more restricted setting
in [34, Lemma 2], which definitely highlights the interest and timeliness of the re-
sult. Regardless, the result proved useful in the APG algorithm we obtained in
Publication [B] and exploited in Publications [E] and [F}
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Figure 1.4: Steps and computational graph of a generic iteration of the APG
algorithm for g, (z) = |Az — y||* with X = RMN.K ) — RMN and A such that
Az = hi ® xg, with {h}1* a set of arbitrary convolutional kernels. Here,
hi refers to the matched filter for the corresponding hj, and the regularizer is
left unspecified under the assumption that py(z) = prox,s(x). Here, simplifying

assumptions on the norms of the {hk}llI< have been made with no loss of generality
(see Publication , and the computational graph incorporates some more degrees
of freedom, e.g., a® + ) £ 0. In a learned iterations framework, one trains
a selection of the algorithm parameters above, i.e., o, B0 X1 and the hg)s,
independently for each layer.

Although first-order methods are computationally attractive, their rate of con-
vergence is often too slow for practical applications. The advent of deep learning
techniques, however, has generated technology such as differentiable programming
frameworks. In these frameworks, any algorithm can be adapted through the op-
timization of a loss function on a collection of examples. This has led to the novel
research topic known as unfolded algorithms, learning to learn, loop unrolling, or
simply learned iterations. In this field, one typically implements a given number of
iterations of a first-order method to solve a specific optimization problem within a
differentiable programming framework. The number of iterations is either as small
as possible or adapted to the computational requirements of the end application.
Then, one gathers pairs of signals y and desired solutions Z(y), and adapts a selec-
tion of parameters of the given steps so that the output of the resulting graph is as
close as &(y) as possible, in a precise sense defined by a given loss function. These
pairs may be extracted from running the original first-order method on a platform
with higher computational capabilities, or be artificially generated by exploiting the
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forward model. Although simple, it has been shown that this technique can result
on very fast algorithms [6] when it is trained adequately. Furthermore, even if these
techniques lack many of the theoretical guarantees of more traditional approaches,
they may be used as heuristic starting points for conventional iterative methods
that have strong guarantees and convergence criteria, and thus still reduce the
computational burden significantly. To the best of our knowledge, Publication [G]
is the first to apply this approach to the APG algorithm, as described in Fig. [[.4]






Chapter 2

Overview of contributions

In this chapter, I highlight the contributions of each publication included in the
thesis in the light of the context presented in Chapter [l Furthermore, I attempt
to duly acknowledge the work of all my co-authors, collaborators, reviewers, and
other agents without whom these would not have been possible.

Publication A, Cell detection by functional inverse diffusion
and non-negative group sparsity—Part I: Modeling and
Inverse Problems, Journal paper

o Authors: Pol del Aguila Pla (PdAP) and Prof. Joakim Jaldén (JJ).

o Influential figures: Prof. Mark A. Davenport, the team of four anonymous
reviewers, Prof. Lars Jonsson, Dr. Axel Ringh, Assoc. Prof. Johan Karlsson,
Assoc. Prof. Ozan Oktem, Dr. Holger Kohr, Dr. Christian Smedman and
Dr. Celia Garcia-Pareja.

Contributions

In this paper, we start by introducing the closed-form solution for the forward prob-
lem of a known deterministic linear model for certain image-based immunoassays
(Theorem 1). In particular, we reparametrize the model so that forward evalua-
tion can be approximated efficiently by two stages composed of simple (finite, by
Lemmas 1 and 2) sums and convolutions. Then, we pose the inverse problem cor-
responding to the second stage of this new formulation of the model (Section IIT),
which allows us to recover the cell detection information we seek in a manner that
is independent of the unknown physical characteristics of the assays. We propose
to solve this inverse problem using a regularized variational approach in function
spaces (13), and we provide ingredients towards showing its good condition (Lem-
mas 3 and 6). Furthermore, we provide the adjoint and norm of the linear contin-
uous operator at the core of the linear model, which are fundamental results for
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any gradient-based iterative scheme to solve variational problems that involve this
model (Lemmas 4 and 5). We then propose a specific discretization scheme and
provide empirical cell detection results on real data that suggest human-like perfor-
mance. These results are obtained using the algorithms we derived in Publication [B]
for the specific variational problem proposed here.

Division of work

The structure of the paper was designed jointly by both authors, with very sub-
stantial contributions from the fantastic team of reviewers and Associate Editor
Prof. Mark A. Davenport. The writing of the paper was mostly PdAP’s re-
sponsibility, but some specific sections were heavily based on JJ’s initial drafts.
JJ provided extensive feedback in several internal rounds of review, and occasion-
ally polished some sections. PAAP did the literature review, classified the relevant
state of the art and wrote the introduction. The paper was reviewed extensively
by both authors.

JJ identified the physical model and linked it to the observation model (Theo-
rem 1, Lemma 1, and Theorem 2 together with their proofs in Appendix A), where
valuable insights and helpful discussions with Prof. Lars Jonsson were much ap-
preciated. Nonetheless, PAAP decided on the final structure of the corresponding
sections and was mostly responsible for their presentation and technical correctness.
PdAP developed Lemma 2 and its proof in Appendix A to strengthen the results
of Theorem 2.

JJ had the original idea to pose an inverse problem to recover a 3-dimensional
characterization of the assay and implemented solvers for the naive least squares
problem (12). The addition of a group-sparsity regularizer emerged from a discus-
sion between JJ and PdAP after PAAP implemented and compared empirically
4 different proximal-optimization solvers for 3 different regularized versions of (12).
PdAP formulated the inverse problem in function spaces at JJ’s suggestion and as
a reaction to Theorem 1 not requiring any discretization. Lemmas 3 to 5 and their
proofs in Appendix B were derived by PAAP. However, substantial contributions
from a reviewer heavily improved the proof of Property 1 therein. Lemma 6 and
its proof in Appendix B were formulated and proved by PAAP at the suggestion
of a reviewer and with some guidance from JJ.

The discretization in Section IV was heavily based on Dr. Axel Ringh’s and
Assoc. Prof. Johan Karlsson’s valuable advice, as well as on an unpublished docu-
ment by Assoc. Prof. Ozan Oktem and Dr. Holger Kohr that relates to [23]. The
real-data example was implemented by PdAP using data provided by Mabtech
AB and annotations by Dr. Christian Smedman. Finally, the choice of the random
seeds to obtain realistic paths in Fig. 1, as well as the choice of the specific section
where detection results on real data are shown in Fig. 4, was done by Dr. Celia
Garcia-Pareja, who also gave extensive feedback on earlier versions of Section I.
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Publication B, Cell detection by functional inverse diffusion
and non-negative group sparsity—Part II: Proximal
optimization and Performance evaluation, Journal paper

o Authors: Pol del Aguila Pla (PdAP) and Prof. Joakim Jaldén (JJ).

o Influential figures: Prof. Mark A. Davenport, the team of four anonymous
reviewers, Prof. Mario A. T. Figueiredo, Prof. Radu Ioan Bot, Prof. Krister
Svanberg, and Dr. Celia Garcia-Pareja.

Contributions

In this paper, we provide an iterative solver for the regularized variational problem
we proposed in Publication[A]to solve an inverse problem in image-based immunoas-
says. For that, we provide a closed-form expression for the proximal operator of
the non-negative group-sparsity regularizer (Theorems 1 and 2, along with Lem-
mas 1 to 4 as part of their extensive proof in the Appendix). Lemma 4, the proximal
operator of the non-negative weighted norm in a Hilbert space, is included in pre-
vious work that we did not know at the time of acceptance |4, Proposition 2.2].
Theorems 1 and 2 are novel results, but were simultaneously derived in other works
(see [7, Lemma 2.2] and |34, Lemma 2]), albeit in slightly different settings. Af-
ter this result, we proceed to the thorough empirical evaluation of the proposed
methodology on synthetic data under different experimental conditions. We evalu-
ate the performance of our methodology both in terms of optimal-transport metrics
that evaluate the quality of our inversion and in terms of purely operational metrics
for cell detection. Yet again, the empirical results suggest human-like performance.
The synthetic observations used in the empirical results are generated using the
forward evaluation procedure presented in Publication [A]

Division of work

Similarly to Part I, the structure of the paper was designed jointly by both authors,
with very substantial contributions from the fantastic team of reviewers and As-
sociate Editor Prof. Mark A. Davenport. PdAP wrote the paper, with extensive
feedback in several rounds of internal review by JJ. PAAP did the literature re-
view and classified the relevant state of the art. The original idea to bring forward
the contribution in Theorems 1 and 2 by writing Section I.A. can be attributed to
one of the reviewers, and was heavily influenced by Prof. Mario A. T. Figueiredo,
who, at the workshop Generative models, parameter learning and sparsity at the
Isaac Newton Institute for Mathematical Sciences in 2017, also pointed out the
importance of the result.

The introduction to proximal optimization, Theorem 1, and Theorem 2, as well
as their proofs in the Appendix (and Lemmas 1, 2, 3, and 4) were developed by
PdAP and reviewed by JJ. This was done in function spaces at JJ’s suggestion
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and as a reaction to the model formulation in Publication [A] not requiring any
discretization. To that respect, Prof. Radu Ioan Bot’s lecture series Recent Advances
in Numerical Algorithms for Convex Optimization, given at KTH in May 2016,
and Prof. Krister Svanberg’s course SF3810 - Convezity and optimization in linear
spaces, given at KTH in 2015, were instrumental. Furthermore, the proof technique
employed to show Lemma 1 was suggested by one of the anonymous reviewers.

The decision to implement the algorithm on graphical processing units and
perform the filtering in the sample domain by approximating the kernels with low-
rank or separable filters came after much discussion and empirical testing by both
JJ and PdAP. PAAP investigated the different low-rank kernel approximations
and discussed the results with JJ. PAAP implemented and designed the numeri-
cal results section, with the help of occasional discussions with JJ. In particular,
PdAP almost exclusively developed and implemented the data-generation scheme
detailed in the supplementary material. The optimal transport distance referred
to as earth mover’s distance (EMD) was included by PdAPat the suggestion of
one of the reviewers after discussions with JJ. Finally, the choice of the specific
section where detection results on synthetic data are shown in Fig. 4 was done by
Dr. Celia Garcia-Pareja, who also gave extensive feedback on earlier versions of the
Appendix.

Publication C, Clock synchronization over networks —
Identifiability of the sawtooth model, Submitted manuscript

o Authors: Pol del Aguila Pla (PdAP), Lissy Pellaco (LP), Dr. Satyam
Dwivedi (SD), Prof. Peter Hindel (PH) and Prof. Joakim Jaldén (JJ).

o Influential figures: Dr. Hugo Tullberg and Gerard Farré.

Contributions

In this paper, we start by introducing novel non-linear deterministic and stochastic
models for round-trip time measurements for short pulses between networked nodes
under specific conditions (Theorem 1 and (9), under the protocol in Fig. 2). We
validate the deterministic model by simulating the behavior of two such nodes and
visually assessing the similarity of the predicted signal and the observed signal. We
then proceed to provide identifiability results (negative in Lem. 1 and positive in
Theorem 2) for a broader class of stochastic models, i.e., sawtooth signals, under
different assumptions. In particular, we show that the addition of noise that affects
the observation in a non-linear manner makes the model identifiable. We then pro-
pose estimation performance lower bounds derived from a linear approximation of
our stochastic model, and present simple estimation techniques. We conclude by
exemplifying these performance references through extensive numerical results and
identifying future lines of research for the estimation of clock synchronization pa-
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rameters using our stochastic model. Furthermore, we provide the implementation
of all and any computations in a publicly accessible repository in [§].

Division of work

The overall structure of the paper was designed by PAAP and discussed with JJ.
The structure of Sections IV and V was designed by PAAP and discussed with LP.
PdAP wrote the paper, although Section IV.B was based on an initial draft by
LP, and both JJ and LP provided extensive feedback in several rounds of internal
review. PH provided extensive and critical feedback in one final round of internal
review.

The original research idea of exploring the theoretical condition of the sawtooth
model was proposed by SD, who also introduced JJ and PdAP to clock syn-
chronization over networks. PdAAP derived the deterministic model in Theorem 1,
formulated the stochastic model (9) and designed the standard parametrization in
(10). Fig. 4 was designed by PAAP based on data obtained by SD and PH for
a previous publication. Fig. 5 was designed by LP and PdAP, and implemented
by LP. PAAP developed Lem. 1, Theorem 2 and their proofs, which were extremely
improved by discussions with JJ. Furthermore, the proof of Theorem 2 was only
completed due to Dr. Hugo Tullberg, who first directed the authors to the existing
results on circular statistics. Similarly, the discussion of Lem. 1 was only complete
after Gerard Farré suggested previous results from dynamical systems on the orbit
of a rotation of the circle. PdAP developed the graphical representation of the
proofs of Lemma 1 and Theorem 2 in Figs. 6, 7 and 8, which improved substan-
tially due to extensive feedback from JJ and minor feedback from LP. PAAP also
developed the Cramér-Rao lower bounds in Section IV.A (and their proofs in the
Appendix and the supplementary material) at the suggestion of SD, JJ and PH,
and with some feedback from LP.

The basic ideas for the estimation strategies were suggested by PH and SD, and
were implemented and improved upon by LP and PAAP. All the empirical results
were generated by LP and PdAP, with the exception of the simulated protocol
that resulted in Fig. 3, which was entirely implemented and generated by PdAP.

Publication D, Inferences from quantized data — Likelihood
logconcavity, Manuscript

o Authors: Pol del Aguila Pla (PdAP) and Prof. Joakim Jaldén (JJ).

o Influential figures: Dr. Celia Garcia-Pareja.

Contributions

In this paper, we present to the signal processing community the most general
likelihood logconcavity statement for quantized data to date (previously stated
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in [5]), together with its proof, which, to the best of our knowledge, has never been
published. In particular, we show how Prékopa’s theorem can be used to show that
the likelihood for quantized linear models is jointly logconcave with respect to both
its location and scale parameter in a broad range of cases (Theorem 1, including
Lemmas 2 and 3 as partial steps). In order to show this result and explain the
limitations of the proof technique, in Lemmas 4 and 5 we study sets generated
by the generalization of the coefficients of a convex combination to positive semi-
definite matrices (i.e., matrices whose sum is the identity). Finally, by the time
of submission the manuscript will also include examples from a number of signal
processing applications in which this result is useful.

Division of work

The overall structure of the paper was designed by PAAP and discussed with JJ.
PdAP wrote the paper, and JJ provided feedback in several rounds of internal
review.

The original research idea of attempting to show likelihood logconcavity for
quantized data originated in discussions between both authors. Both authors col-
laborated in proofs for specific subcases such as when the data were normal and
identically distributed, or when the quantizers were composed of simple monotonic
analog-to-digital converters for each dimension. Motivated by JJ, PAAP general-
ized the results to the current form of Theorem 1 and developed Lemmas 1 to 4
after discovering Prékopa’s theorem in the literature. For Lemma 5, PAAP proved
that points generated by the generalization of convex combinations to positive
semidefinite matrices would lie inside the ball and conjectured the converse, which
JJ proved. JJ provided considerable feedback and advice on the first versions of
the proofs of Lemmas 1 to 4. After having completed the proof of Theorem 1,
PdAP discovered that [5] had presented a similar result without explicit proof
that did refer to Prékopa’s theorem. The illustrations of Lemmas 4 and 5 in Fig. 4
were suggested by JJ and implemented by PdAP.

The signal processing applications used as examples will mostly be suggested by
JJ, discussed between both authors, and implemented by PAAP. Finally, Dr. Celia
Garcia Pareja provided feedback on writing and clarity in several versions of the
work, and found a major flaw in a previous version of the proofs.

Publication E, Cell detection on image-based immunoassays,
Conference paper

o Authors: Pol del Aguila Pla (PdAP) and Prof. Joakim Jaldén (JJ).

o Influential figures: The team of four anonymous reviewers.
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Contributions

In this paper, we present a summary of the work in Publications[A]and [B]in a timely
manner and in a language accessible to a broader community. The variational
problem and the iterative solver are presented directly in finite-dimensional spaces,
and the focus is placed on the application, operational evaluation metrics, and
empirical results on real data.

Division of work

The structure and content of the paper was decided jointly between both authors.
PdAP wrote the article and JJ provided feedback in several rounds of internal
review. The anonymous team of reviewers contributed to making the exposition of
the results more accessible.

Publication F, Convolutional group-sparse coding and source
localization, Conference paper

o Authors: Pol del Aguila Pla (PdAP) and Prof. Joakim Jaldén (JJ).

Contributions

In this paper, we draw the connection between problems that are very popular
in different fields, i.e., convolutional sparse coding in machine learning, spatially
variant deconvolution in mathematical imaging, and source-localization problems
in many scientific-imaging application domains. Then, we demonstrate the strength
of this connection by employing iterative solvers very similar to those developed in
Publication |B| for cell detection for foreground recovery in astronomical data.

Division of work

The structure of the paper was decided jointly between both authors. PAAP devel-
oped most of the content and wrote the paper, and JJ provided feedback in several
rounds of internal review. PdAP chose and implemented the real-data example
using data captured by the Hubble telescope.

Publication G, SpotNet — Learned iterations for cell
detection in image-based immunoassays, Conference paper

o Authors: Pol del Aguila Pla (PdAP), Vidit Saxena (VS) and Prof. Joakim
Jaldén (JJ).
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Contributions

In this paper, we expand on the available empirical basis for the neural network
design strategy known as learned iterations, in which the neural network is de-
signed to replace an iterative solver to solve a variational problem by borrowing its
computational graph. In this case, we used the structure of the solver developed
in Publication [B] to design a neural network for cell detection, and provided ample
evidence of the advantages of this approach when compared to another popular
neural network design. Furthermore, we provide the implementation for any and
all computations involved in the paper in a publicly available repository, including
the synthetic data generation procedure proposed in Publication [B]

Division of work

The structure of the paper was decided by VS and PdAP, who also wrote the pa-
per with some feedback from JJ. The idea of the paper was proposed and developed
by PAAP. VS and PdAP implemented all the necessary code, and PdAP de-
signed Figs. 1 to 4, with extensive feedback by VS.
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Have ya guessed yet!? Who’s the best yet? If ya ain’t, I'll tell ya one more time.

You’ll bet your last dime. In all of the world so far I am the greatest, greatest star!

Lyrics by Bob Merrill, “Funny Girl”, 1964.

Favourite version performed by Barbra Streisand in the 1968 movie of the same
name.



Publication A

Cell detection by functional
inverse diffusion and non-negative
group sparsity—Part I: Modeling
and Inverse Problems

Journal paper. © 2018 IEEE. Reprinted, with permission, from P. del Aguila
Pla and J. Jaldén, IEEFE Transactions on Signal Processing, vol. 66, no.
20, pp. 5407-5421, Oct. 2018.

A number of idealizations and assumptions were made when deriving
the model. In practice these may be more or less invalid.

Modified, from M. Jansson’s, “On

subspace methods in system identification and sensor array signal pro-

cessing”, Doctoral thesis at KTH Royal Institute of Technology, 1997.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233824| for the
full text of the paper.
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Publication B

Cell detection by functional
inverse diffusion and non-negative
group sparsity—Part II: Proximal
optimization and Performance
evaluation

Journal paper. © 2018 IEEE. Reprinted, with permission, from P. del Aguila
Pla and J. Jaldén, IEEFE Transactions on Signal Processing, vol. 66, no.
20, pp. 5422-5437, Oct. 2018.

One may go quite far using the functional formulation, even if, at
the end, some sort of discretization is used for the actual computations.
From A. Tarantola’s “Inverse Problem

Theory and Methods for Model Parameter Estimation”, STAM, 2012.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233827| for the
full text of the paper.
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Cell detection by functional
inverse diffusion and non-negative
group sparsity — Supplementary
material

Supplementary material to Publications[Aland[B] © 2018 IEEE. Reprinted,
with permission, from P. del Aguila Pla and J. Jaldén, IEEE Transac-
tions on Signal Processing, Oct. 2018.

. cutus rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet.
From
Pierre de Fermat’s notes on his copy of Diophantus’ “Arithmetica”,
1637.

See https://ieeexplore.ieee.org/ielx7/78/8464033/8453854/supp_mat.
pdf 7tp=&arnumber=8453854 for the complete supplementary material.
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Publication C

Clock synchronization over
networks — Identifiability of the
sawtooth model

Submitted manuscript. P. del Aguila Pla, L. Pellaco, S. Dwivedi, P. Handel
and J. Jaldén, submitted to IEEFE Transactions on Control Systems
Technology, 2019.

A consistent estimator of © fails to exist if the parameter is not
identifiable through the sequence of data values.

From Mark J. Schervish’s, “Theory of Statistics”, Springer, 1995.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256072| for the
full text of the paper.
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Clock synchronization over
networks — Identifiability of the
sawtooth model, Supplementary
material

Supplementary material to Publication [C]

The supplementary material will be available online after the publication of the
paper.
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Publication D

Inferences from quantized data —
Likelihood logconcavity

Manuscript. P. del Aguila Pla and J. Jaldén, Work in progress, 2019.

At the time, most of these techniques were based on digitally approz-
imating various well-known analog methods.

From A. V. Oppenheim’s,

“Algorithm kings — The birth of digital signal processing”, IEEE Solid-

State Clircuits Magazine, vol. 4, no. 2, pp. 34-37, Spring 2012.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-256078| for the
full text of the paper.
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Publication E

Cell detection on image-based
immunoassays

Conference paper. © 2018 IEEE. Reprinted, with permission, from
P. del Aguila Pla and J. Jaldén, 2018 IEEE 15th International Sym-
posium on Biomedical Imaging (ISBI 2018), Apr. 2018, pp. 431-435.

Tidigare har analysen av inspelad data ofta gjorts manuellt, men
detta ar mycket tidskrdvande och resultaten blir ofta subjektiva och svdra
att reproducera.

From K. E. G. Magnus-
son’s, “Segmentation and tracking of cells and particles in time-lapse mi-
croscopy”, Doctoral thesis at KTH Royal Institute of Technology, 2016.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223933| for the
full text of the paper.
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Publication F

Convolutional group-sparse coding
and source localization

Conference paper. © 2018 IEEE. Reprinted, with permission, from
P. del Aguila Pla and J. Jaldén, 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Apr. 2018, pp.
2776-2780.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-224253 for the full
text of the paper.
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Publication G

SpotNet — Learned iterations for
cell detection in image-based
immunoassays

Conference paper. © 2018 IEEE. Reprinted, with permission, from
P. del Aguila Pla, V. Saxena and J. Jaldén, in 2019 IEEE 16th In-
ternational Symposium on Biomedical Imaging (ISBI 2019), Apr. 2019,
pp. 1023-1027.

See http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-250464 for the full
text of the paper.
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