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Abstract

In this thesis, optimization approaches for intensity-modulated radiation therapy are de-
veloped and evaluated with focus on numerical e�ciency and treatment delivery aspects.
The �rst two papers deal with strategies for solving �uence map optimization problems
e�ciently while avoiding solutions with jagged �uence pro�les. The last two papers con-
cern optimization of step-and-shoot parameters with emphasis on generating treatment
plans that can be delivered e�ciently and accurately.

In the �rst paper, the problem dimension of a �uence map optimization problem is
reduced through a spectral decomposition of the Hessian of the objective function. The
weights of the eigenvectors corresponding to the p largest eigenvalues are introduced as
optimization variables, and the impact on the solution of varying p is studied. Including
only a few eigenvector weights results in faster initial decrease of the objective value, but
with an inferior solution, compared to optimization of the bixel weights. An approach
combining eigenvector weights and bixel weights produces improved solutions, but at the
expense of the pre-computational time for the spectral decomposition.

So-called iterative regularization is performed on �uence map optimization problems
in the second paper. The idea is to �nd regular solutions by utilizing an optimization
method that is able to �nd near-optimal solutions with non-jagged �uence pro�les in few
iterations. The suitability of a quasi-Newton sequential quadratic programming method
is demonstrated by comparing the treatment quality of deliverable step-and-shoot plans,
generated through leaf sequencing with a �xed number of segments, for di�erent num-
ber of bixel-weight iterations. A conclusion is that over-optimization of the �uence map
optimization problem prior to leaf sequencing should be avoided.

An approach for dynamically generating multileaf collimator segments using a col-
umn generation approach combined with optimization of segment shapes and weights is
presented in the third paper. Numerical results demonstrate that the adjustment of leaf
positions improves the plan quality and that satisfactory treatment plans are found with
few segments. The method provides a tool for exploring the trade-o� between plan qual-
ity and treatment complexity by generating a sequence of deliverable plans of increasing
quality.

The �nal paper is devoted to understanding the ability of the column generation
approach in the third paper to �nd near-optimal solutions with very few columns compared
to the problem dimension. The impact of di�erent restrictions on the generated columns
is studied, both in terms of numerical behaviour and convergence properties. A bound on
the two-norm of the columns results in the conjugate-gradient method. Numerical results
indicate that the appealing properties of the conjugate-gradient method on ill-conditioned
problems are inherited in the column generation approach of the third paper.

Key words: Optimization, intensity-modulated radiation therapy, conjugate-gradient
method, step-and-shoot delivery, column generation, quasi-Newton method, regulariza-
tion, sequential quadratic programming.
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Introduction

Radiation therapy, the use of ionizing radiation to treat cancer disease, is one of
the three most common types of cancer treatments. The other two are surgery and
chemotherapy. Of the approximately 1.4 million people diagnosed with cancer in
USA 20061, 68% received some form of radiation therapy [37]. This thesis deals with
optimization approaches for an advanced and increasingly used form of radiation
therapy called intensity-modulated radiation therapy (IMRT).

A challenge in IMRT is to design treatment plans that can be delivered e�ciently
and accurately while ful�lling the designated treatment goals. The aim of the
research described in this thesis is to develop and evaluate optimization approaches
that solve IMRT optimization problems e�ciently while �nding solutions that are
advantageous from a clinical perspective. To develop such approaches, the problem
structure of the IMRT optimization problems must be understood and utilized.

The content of this thesis is divided into an introduction and four appended
papers. The introduction gives the basics of radiation therapy and introduces fun-
damental concepts of optimization theory. The latter part of the introduction deals
with optimization of IMRT treatment plans, with particular emphasis on math-
ematical structure and treatment delivery requirements. In the �nal part of the
introduction, the main contributions of this thesis are discussed and a summary of
the appended papers is given.

1 Radiation therapy

Radiation therapy, or radiotherapy, may be used either as a stand-alone treatment
or in conjunction with other forms of treatment such as surgery or chemotherapy.
Radiotherapy is used both as a curative treatment with the aim of curing the cancer,
and as a palliative treatment to control symptoms and improve quality of life if a
cancer is too advanced to cure. Radiotherapy is a common treatment for many
di�erent cancer types, such as cancer in the prostate, head-and-neck region, breast,
lung, brain and skin [37].

Radiotherapy treatments can be classi�ed as either external (beam) or internal,
referring to the location of the source of radiation relative the patient. External
beam radiotherapy is by far the most commonly used. For example, 90% of all
radiotherapy treatments in USA 2006 were external beam treatments according
to [37].

1 http://www.cancer.gov
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The extensive development of software and hardware during the last decades
for imaging and external beam radiotherapy has paved the way for the IMRT tech-
nique. IMRT belongs to the class of external photon beam radiotherapy, which uses
megavoltage X-rays as the treatment modality. IMRT can be seen as a general-
ization of three-dimensional conformal radiation therapy (3DCRT); see Section 1.2.
3DCRT is, in turn, an enhancement of conventional radiation therapy, where the
treatments are based primarily on two-dimensional X-ray images. For a discussion
on the advances in external photon beam radiotherapy, see [19]. External beam ra-
diotherapy also includes other treatment modalities such as protons, neutrons and
light ions. Other radiotherapy treatment techniques include brachytherapy (inter-
nal) and stereotactic radiosurgery (external). From here on, radiotherapy refers to
external photon beam radiation therapy.

1.1 Radiobiology

Radiotherapy strives for destroying as many (all if curative treatment) cancer cells
as possible, while limiting damage to the healthy tissue. This is accomplished by
directing high energy photons to the target volume with high precision. The pho-
tons interact with the tissue in the patient through elastic and inelastic collisions.
Electrons and free radicals that are released from these collisions scatter through
the tissue and eventually collide with the DNA molecules of the cells. These colli-
sions break the DNA molecule by ionizing atoms in the molecule. A small fraction
of the damages are non-repairable, which results in that the cells eventually die.
Healthy cells have a better ability to recover from sublethal damages than cancer
cells. The radiotherapy treatment is therefore divided into fractions that are given
daily over a speci�c time period, typically �ve days a week for six to eight weeks.
The healthy cells can then recover and repopulate between each treatment delivery
at a faster rate than the cancer cells. For a thorough description of radiobiology,
see, e.g., [71].

1.2 Hardware

A linear accelerator (linac) generates the megavoltage photon �uences used in
radiotherapy. The linac accelerates electrons in a strong electric �eld onto a brehms-
strahlung target made of high density material, where collisions result in scattering
of high-energy photons. This target is referred to as the primary photon source.
A portion of the photons are collected and pass a �attening �lter before leaving
the linac through the gantry head (see Figure 1, number 2). The gantry (Figure 1,
number 1) rotates around the patient in order to deliver the photon �elds, or beams,
from di�erent directions. The gantry rotation is centered at the isocenter point, and
the patient is normally positioned such that the isocenter point lies in the target
volume.

The amount of radiation absorbed by the tissue is called dose and has the unit
Gray (abbreviated as Gy), with 1Gy = 1 J/kg. The output of a linac is measured
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Figure 1: A treatment room with a linear accelerator (a Varian Clinac at the
Karolinska University Hospital, Stockholm), equipped with an MLC and a cone-
beam CT system.

in monitor units (MUs), and 1 MU is de�ned as the �uence of a square �eld that
results in a dose of 1 cGy at a speci�c depth in a water phantom. The dose-rate of
a linac is measured in MU/min. Typically, a dose-rate between 100-600 MU/min
is used and the fraction dose to the target volume is in the order of 2 Gy. This
results in a beam-on-time between 20 and 120 seconds for a fraction. With smaller
�eld sizes, which are typical for IMRT treatments, the beam-on-time is longer.

In 3DCRT, each beam is shaped to match the projection of the target vol-
ume onto the �uence plane of the beam; see Figure 2. The evolvement of three-
dimensional imaging technology providing accurate information of the tumor ge-
ometry and location has made it possible to compute these projections accurately.
One or two pairwise opposed movable metal blocks called jaws (Figure 1, number 5)
are positioned in the gantry head to block parts of the beam not intersecting with
the target volume, resulting in a rectangular beam shape. A multileaf collimator
(MLC) can be used to improve the matching further. The MLC is mounted in
the gantry head and consists of several pairwise opposed tungsten leaves (Figure 1,
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Figure 2: A schematic illustration of one projection-based segment for a prostate
case and the resulting dose distribution visualized in a transversal slice. The blue
contour outlines the target volume in the slice. Red regions have high dose and
blue regions have low dose.

number 6). The leaves can be independently positioned with high accuracy to �ne-
tune the shape of the beam. A con�guration of the jaws and the leaves of the MLC
is called a segment, or aperture. Due to mechanical limitations of the MLC, not
every combination of leaf positions can be realized. These limitations di�er between
MLCs from di�erent manufacturers. An extensive description of some MLCs used
clinically is given in [30]. Figure 2 shows a schematic illustration of one projection-
based segment for a prostate case, the resulting �uence and the dose distribution
in the patient (red regions have high dose and blue regions have low dose). Note
that the dose is higher close to the intersection of the beam with the patient than
further away. This is a characteristic of photon �elds, which implies that more than
one beam is necessary for generating conform dose distributions to target volumes.

1.3 Beam model and dose calculation

An accurate computation of the dose delivered to the patient requires an accurate
estimate of the photon energy �uence distribution incident on the patient. The
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calculation of the incident �uence is based on a beam model. It models scattering
e�ects in the gantry head and the impact of the jaws and the MLC on the �u-
ence. Often, beam models split the �uence into primary and secondary photons
emerging from the source and the �attening �lter, respectively. The models also
account for e�ects induced by the jaws and the MLC such as leakage and scatter
around the edges of the leaves. It is hard to accurately model the transmitted �u-
ence of small and/or irregular segments since the scattering and leakage e�ects are
considerable [22, 66]. Additional requirements on minimum area and regularity of
segments may therefore be imposed by the clinicians to reduce this source of error.

A crucial component of the software for radiotherapy is the dose engine. It
computes a dose distribution d in the patient volume V given the incident �uence
τ and the patient geometry G describing the patient surface and the tissue density.
In all four papers, a pencil beam algorithm [34] is used as the dose engine during
optimization since it is very fast. In paper C, a collapsed cone algorithm is used
to compute a more accurate �nal dose distribution. The increased accuracy is a
result of a more precise handling of how heterogeneities in the patient, i.e., varying
tissue density, a�ect the dose deposition [2]. For a description of the collapsed cone
algorithm, see [1].

The pencil beam algorithm is based on a pencil beam kernel which is pre-
calculated for a homogeneous medium (water) using a Monte Carlo particle trans-
port method. The pencil beam kernel is then applied to the treatment and pa-
tient geometries, which results in beamlets p(r, ρ,G(r)), describing the energy de-
position per unit mass at a point r in the patient volume due to �uence inci-
dent on a point ρ on a �uence plane. Assuming radially symmetric beamlets,
a parametrization of p in cylindrical coordinates (ρ, z) can be made such that
p = p(r, ρ,G(r)) = p(ρ − ρ0, z(r, ρ,G(r))), where ρ is a coordinate in the �uence
geometry, ρ0 lies on the �uence plane on the line between the source and r, and z is
the depth; see Figure 3 for an illustration of the geometry. The in�uence of tissue
heterogeneity may be corrected for when computing z [39]. The total dose d(r) in
a point r ∈ V is given by the convolution integral

d(r) =
∫∫
S

p(ρ− ρ0, z(r, ρ,G(r))) τ(ρ)dρ, (1)

where τ(ρ) is the incident �uence at ρ and S is the union of the �uence planes, or
cross-sections, of all beams. In (1), mono-energetic photons are assumed. A more
general formulation includes an integration over photon energies with the beamlets
being functions of the photon energy.

In practice, V is discretized into m cubic voxels and S is discretized into n
rectangular bixels which results in that (1) can be written as

d = Pτ, (2)

where d is the m-dimensional dose distribution vector, P is the m×n dose matrix,
and τ is the n-dimensional �uence vector, or bixel vector. Typical sizes are 4×4×4
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Figure 3: Geometry for calculating the dose in r due to �uence incident on a point
ρ on the �uence plane of a beam.

mm3 for the voxels and 5×5 mm2 for the bixels. This results in n being in the order
of 103 and m being in the order of 105. The speed of the dose computation (2) can
be increased by approximating the pencil beam kernel by a decomposition [15]. A
similar method to this has been used in papers B and C.

1.4 Imaging techniques and patient geometry

The quality of radiotherapy treatments relies heavily on the accuracy of the geomet-
rical data of the patient provided by digital images. The technology for generating
high-resolution and high-contrast images of the patient in three-dimensions (3D)
has evolved rapidly over the last two decades. This has radically improved the
conditions for accurate delineation of tumor regions and normal structures which
is an important part of the radiotherapy treatment planning process.

Imaging techniques for radiotherapy planning include computed tomography
(CT), magnetic resonance imaging (MRI), positron emission tomography (PET),
and single photon emission computed tomography (SPECT). They all belong to the
class of tomographic techniques, where 2D projection data from multiple directions
is gathered and fed into a tomographic reconstruction software algorithm to yield
a 3D dataset of the patient. The dataset may be viewed in 2D slices orthogonal
to di�erent axis of the body. By far the most common imaging technique for
radiotherapy planning is CT, where X-rays are used to acquire data about tissue
density. CT images are necessary for dose computation since they hold density
information of the patient. High-contrast resolution images are obtained in regions
with varying densities, e.g., the surroundings of a bone structure, while the soft
tissue contrast is lower. However, the delineation of organs is often performed on CT
images also in soft tissue regions. MRI visualizes the structure and function of the
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body by creating a strong magnetic �eld which, combined with radio waves, results
in that hydrogen atoms emit a weak radio signal that is detected. PET visualizes
functional processes in the body by detecting pairs of gamma rays generated when
positrons emitted from a radio-isotope are annihilated by electrons. SPECT uses
a gamma camera to acquire multiple 2D images from di�erent directions. Many
modern scanners combine CT with either MRI or PET to yield images that combine
the high-contrast resolution of CT with the functional imaging capabilities of MRI
and PET. For more details on medical imaging, see, e.g., [72].

Once the images are acquired, so-called regions of interest (ROIs) of the patient
are speci�ed. The ROIs represent regions of the patient of speci�c interest for
the treatment, such as the tumor region(s) and healthy organs. ROIs representing
healthy organs are called organs-at-risk (OARs). The ROIs are often delineated
manually slice by slice, which may be time-consuming. Image segmentation software
can speed-up the delineation process by automating part of it.

The de�nition of target volume is commonly separated into di�erent ROIs [60].
The gross target volume (GTV) is de�ned as the gross extent of the malignant
growth as determined by images or palpation. The clinical target volume (CTV)
is speci�ed as an expansion of the GTV to account for spread of microscopic ma-
lignant disease that cannot be seen in the images. The task of specifying a correct
CTV region is, of course, very complicated and based on clinical experience. Con-
sequently, delineation of the CTV is one of the more prominent sources of error in
radiotherapy planning [75].

1.5 Geometrical uncertainties

The regions of interest delineated on the acquired planning images represent the
patient at the time of scanning. Between and during fractions, the actual shape and
position of the organs that the ROIs represent change due to factors such as rectal
�lling and breathing motion. Other factors include patient setup errors, tumor
shrinkage and weight loss. Since IMRT plans typically have dose distributions with
high dose to the tumor and a sharp dose fall o� outside the tumor, it is important
to handle these geometrical uncertainties.

A common practice for reducing setup errors is to position the patient using laser
alignment or to perform a couch correction, where real-time images are compared
to the planning images and the couch is moved to compensate for deviations. Such
real-time images may be acquired by a portal imaging device or a cone-beam CT;
see Figure 1, number 4. The motion during the treatment delivery can be reduced
for head-and-neck cases by immobilization techniques such as �xation masks and
biteplates. For cancers located in regions a�ected by the breathing cycle, gating
techniques can be used to avoid irradiating the patient when the displacements of
ROIs are intolerable.

The precautions described above can reduce the geometrical uncertainties, but
cannot remove them entirely. There are also other sources of errors present in the
treatment such as delineation errors and inaccuracies in the treatment delivery. To
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compensate for these, a margin is applied to the CTV to generate a planning target
volume (PTV) [60]. The size of this margin is, of course, very important; if the
margin is too large, a large portion of healthy cells receives high dose, and if the
margin is too small, there is a risk that cancerous cells do not receive high doses in
some fractions and survive the treatment.

It is possible to compensate for delivery errors in previous fractions by adaptively
replanning between fractions [11, 47, 59]. This requires that images of the patient
are acquired during treatment. For a review of motion e�ects and compensation
approaches in radiotherapy, see [78].

1.6 Treatment planning and IMRT

The goal of radiotherapy treatment planning is to design a treatment plan that
handles the con�ict of delivering high dose to the target volume while avoiding
excessive dose to OARs in the best possible way. The �eld of radiotherapy treatment
planning can be divided into forward treatment planning and inverse treatment
planning. Figure 42 illustrates the conceptual di�erences between these approaches.

Forward treatment planning is essentially a trial-and-error procedure. Given
the patient geometry data, the planner de�nes a set of beams, their angles and pos-
sibly attenuates some beams by using wedge-shaped metal blocks. The dose is then
computed and if the planner is not satis�ed with the dose distribution, the setup
is altered and a new dose is computed. The procedure continues until the planner
is satis�ed with the plan. Forward treatment planning is the original procedure
for generating treatment plans and it is commonly used for conventional treatment
planning and 3DCRT treatment planning. In inverse planning, computer algo-

Figure 4: A comparison of forward planning and inverse planning.

2 The �gure is based on an illustration by Anders Brahme.
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rithms are used to convert treatment goals usually formulated in the dose domain
into treatment parameters associated with the delivery system. Inverse treatment
planning problems are formulated as optimization problems which are solved iter-
atively. Inverse treatment planning is always used for IMRT, but may also be used
for other forms of radiotherapy.

Radiotherapy treatment plans are often evaluated by studying dose distribu-
tions on 2D slices and so-called dose-volume histograms (DVHs), where the dose
distribution of a ROI is displayed as a curve. The interpretation of a point (x, v)
on a DVH curve is that v percent of the ROI receives a dose of at least x Gy. The
DVH holds no spatial information of the dose distribution but is nevertheless useful
since many treatment protocols are based on dose-to-volume requirements. Other
measures of plan quality include radiobiological functions such as tumor control
probability (TCP) and normal tissue complication probability (NTCP), which are
based on biological models of the response of the cells to dose; see, e.g., [46].

The concept of IMRT was �rst introduced in [18], where it was shown that
non-uniform �uences improve the dose conformity to a nonconvex target. Instead
of introducing yet another de�nition of IMRT, the one presented in [13] is quoted:
�IMRT is a radiation treatment technique with multiple beams in which at least
some of the beams are intensity-modulated and intentionally deliver a non-uniform
intensity to the target. The desired dose distribution in the target is achieved af-
ter superimposing such beams from di�erent directions. The additional degrees of
freedom are utilized to achieve a better target dose conformity and/or better spar-
ing of critical structures�. Comprehensive introductions to IMRT can be found
in [3, 13,77].

The bene�ts of IMRT are most prominent for cases with the tumor located close
to healthy organs, such as cancer in the head-and-neck region and prostate cancer.
For cases with simpler geometry, 3DCRT or conventional radiotherapy is often used.
However, the rate of clinical acceptance for IMRT has increased signi�cantly the
last few years [49]. The potential for dose escalation to the target volume and
enhanced normal tissue sparing are the two main reasons for this increase [49].

Figure 5 illustrates an MLC-based IMRT plan for a head-and-neck case with
nine angularly equidistant beams. The dose distribution presented is the total dose
delivered over all fractions. The top images show a transversal slice (left) and a
sagittal slice (right) of the CT images of the patient together with the delineated
ROIs. The plan has two CTV regions; one called CTV 72 for escalating dose to
the GTV and one called CTV 49.5 for directing radiation to a larger volume where
microscopic malignant disease may be present. Here, the PTV is given by a �ve
millimeter expansion of the CTV 49.5 region. The image in the middle of the �gure
illustrates the treatment geometry and the beam pro�les, while the DVH curves for
some of the ROIs of the plan are shown at the bottom.

By viewing the CT slices and the DVH curves, it is clear that the high dose
region is concentrated to the CTV 72 region while the maximum dose to the cord
is low. Note that one parotid gland is sacri�ced while the other is spared, this
strategy allows for higher conformity to the CTV 72 region. A uniform dose to a
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Figure 5: A head-and-neck IMRT plan, illustrating the ROIs and the dose distribu-
tion in a transversal slice (top left) and a sagittal slice (top right). The treatment
setup and the beam pro�les are shown in the middle and the DVH curves for some
of the ROIs are shown at the bottom.
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ROI corresponds to the DVH curve being a vertical line, which is almost the case
for the CTV 72 region here. The DVH curves corresponding to the OARs should,
ideally, be as far to the left as possible. Overlap between OARs and target ROIs
and the scatter of dose in the patient will, however, imply that some parts of the
OARs will receive high dose. There is obviously a con�ict in delivering high dose
to the target volume while avoiding excessive dose to OARs.

1.7 IMRT delivery techniques

Modulating the beam pro�les to deliver IMRT treatment plans can be done in var-
ious ways. This thesis considers the commonly used step-and-shoot IMRT delivery
technique, where a �xed set of beams are de�ned and the �uence of each beam is
modulated by superimposing the �uence of a few MLC segments. Typically, three
to nine beams are used. Since the radiation is o� when the leaves and jaws move
to form the next segment, a step-and-shoot plan with many segments may lead to
a long delivery time. This issue is addressed in paper C, and to some extent in
papers B and D. It is also preferable to use large and regular segments since such
plans have a low number of MUs and can be delivered accurately. This issue is also
addressed in paper C.

An alternative to step-and-shoot delivery is dynamic MLC (DMLC) delivery,
where the �uence modulation is achieved by moving the MLC leaves while the radia-
tion is on. An increasingly popular technique for performing IMRT is tomotherapy,
where the treatment is delivered with a narrow slit beam. The patient is moved
through a rotating gantry and irradiated continuously. Other techniques for de-
livering modulated �uence include inserting a metal compensator in the beam, a
computer-controlled scanned beam and a linac mounted on a highly manoeuvrable
robotic arm. A relatively new approach to IMRT delivery with the potential for
shorter delivery times is referred to as volumetric arc therapy (VMAT) or intensity-
modulated arc therapy (IMAT). The technique is a generalization of DMLC in that
the gantry is rotating continuously while the beam is on and the leaves move. For
more thorough descriptions of IMRT delivery techniques, see, e.g., [28, 38,56].

2 Optimization concepts

In optimization, also referred to as mathematical programming, the goal is to de-
termine the values of a set of variables such that the objective function is minimized
(or maximized) while satisfying prede�ned restrictions. This is done by formulat-
ing and solving an optimization problem. For real-life applications, the formulation
of the optimization problem is based on a model of the underlying problem. The
model aims at describing the problem as accurately as possible, while allowing for a
formulation that is suitable for optimization solvers. For instance, if the underlying
problem is in�nite-dimensional, a discretization is often necessary to make the prob-
lem practically solvable. All optimization problems formulated in this thesis are
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�nite-dimensional, i.e., the variable set is represented by a �nite vector. Further,
all problems are formulated as minimization problems. Maximization problems
are equivalent to minimization problems with the sign of the objective function
reversed.

The restrictions on the variables form a feasible region F with elements denoted
by feasible solutions. The objective function F quanti�es the quality of every feasi-
ble solution by associating a real value to it, i.e., F : F → IR. The optimal solution,
or minimizer, is given by the feasible solution with the lowest objective value. The
optimization problem of minimizing F over F is written

minimize
x

F (x)

subject to x ∈ F ,
(3)

where the variables are denoted by x. From here on, this section deals with continu-
ous optimization, where the variables are allowed to assume real values, as opposed
to discrete optimization, where the variables are restricted to assume integer values.
The feasible region is assumed to be a subset of IRn, the n-dimensional Euclidean
space.

A point x∗ ∈ F is a global minimizer to (3) if F (x∗) ≤ F (x) for all x ∈ F .
A point x∗ ∈ F is a local minimizer to (3) if there exists an ε > 0 such that
F (x∗) ≤ F (x) for all x ∈ F that satisfy ‖x − x∗‖ < ε, that is, there is no point in
the neighbourhood of x∗ with a lower objective value. A global minimizer is also a
local minimizer, but the converse is not true in general, as is discussed in the next
section.

2.1 Convexity

The concept of convexity is central in optimization and much research has been
devoted to the �eld of convex optimization; see, e.g., [61].

A set F is said to be a convex set if αx + (1 − α)y ∈ F for all x, y ∈ F and
0 < α < 1. In other words, for every pair of points in F , the entire straight line
segment that joins them lies in F . If F is de�ned on a convex set F , then F is said
to be a convex function on F if

F (αx + (1− α)y) ≤ αF (x) + (1− α)F (y), (4)

for all x, y ∈ F and 0 < α < 1. If F is a convex function, then −F is a concave
function. A�ne functions ful�ll (4) with equality and are thus both convex and
concave. Finally, if F ful�lls (4) with �≤� replaced by �<� for all x, y ∈ F such
that x 6= y and for all 0 < α < 1, then F is strictly convex.

An optimization problem with a convex objective function and a convex feasible
region is a convex optimization problem. For convex optimization problems, local
minimizers are global minimizers. This is a great advantage from a practical view-
point; many e�cient optimization methods are designed to �nd local minimizers.
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If F , in addition, is strictly convex, then the optimal solution is unique. A non-
convex optimization problem is any problem where either the feasible region or the
objective function is nonconvex.

2.2 Nonlinear programming

This section considers general nonlinear optimization problems and their so-called
�rst order necessary optimality conditions. These conditions are the foundation of
the optimization methods used in this thesis.

The feasible region is commonly de�ned by a set of constraint functions Ci(x),
i = 1, . . . ,m. More speci�cally, the feasible region consists of points satisfying the
inequality constraints Ci(x) ≥ 0 for i ∈ I and the equality constraints Ci(x) = 0
for i ∈ E , where I and E partition the set {1, . . . ,m}. The nonlinear programming
problem is given by

(NLP )

minimize
x

F (x)

subject to Ci(x) = 0, i ∈ E ,
Ci(x) ≥ 0, i ∈ I.

(5)

The feasible region of (5) is convex if Ci(x), i ∈ I, are concave functions on IRn

and Ci(x), i ∈ E , are a�ne functions on IRn. If, in addition, F is convex, then
(5) is a convex problem. A constraint Ci(x) ≥ 0 is active at x if Ci(x) = 0, and
consequently, all equality constraints are active in the feasible region. Throughout
Section 2, it is assumed that F and Ci, i = 1, . . . ,m, are twice continuously di�er-
entiable. The gradient of the objective function at a point x is denoted by ∇F (x),
and the Jacobian of the constraints C(x) is denoted by J(x). The Jacobian is an
m× n matrix, with the ith row given by ∇Ci(x)T.

Let x∗ be a local minimizer to (5) and assume that the gradients of the active
constraints at x∗ are linearly independent. Then, there exists a vector λ∗ such that
the �rst order necessary conditions hold, i.e., such that:

∇F (x∗) = J(x∗)Tλ∗, (6a)

Ci(x
∗) = 0, i ∈ E , (6b)

Ci(x
∗) ≥ 0, i ∈ I, (6c)

λ∗i ≥ 0, i ∈ I, (6d)

Ci(x
∗)λ∗i = 0, i ∈ I, (6e)

where λ∗i is the so-called Lagrange multiplier associated with the ith constraint.
The conditions (6) are often referred to as the Karush-Kuhn-Tucker (KKT) condi-
tions [40, 41]. For convex problems, these conditions are su�cient for determining
(global) optimality. This is generally not true for nonconvex problems. The assump-
tion of linearly independent gradients of the active constraints can be weakened,
see [8] for a discussion.
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A special case of (5) is the quadratic programming (QP) problem, which is given
by

(QP )
minimize

x

1
2xTHx + cTx

subject to Ax = b,
x ≥ 0,

(7)

where H is an n× n symmetric matrix and A is an m× n matrix. The constraints
of (7) are called linear constraints and bound constraints, respectively.

Let x be a local minimizer to (7). Applying the KKT conditions, there exist
vectors s ∈ IRn and λ ∈ IRm such that

Hx + c = ATλ + s, (8a)

Ax = b, (8b)

xjsj = 0, j = 1, . . . , n, (8c)

x, s ≥ 0. (8d)

If H is positive semi-de�nite, then (7) is convex and the conditions of (8) are
su�cient for global optimality.

2.3 Solvers

The optimization methods utilized in this work are designed for �nding a KKT
point, i.e., a feasible point that satis�es the KKT conditions, at least in some
approximate sense. Given a starting point x0, the methods proceed by generating
a sequence of iterates {xk}k≥0 until a termination criterion is ful�lled. In each
iteration k, the algorithms compute a search direction pk and the new point is
given by xk+1 = xk +αkpk, where αk is the step length. The step length is (ideally)
given as the solution of

minimize
α>0

F (xk + αpk), (9)

but it is often impractical to solve (9) exactly. Instead, an approximate step length
is computed by evaluating F (xk + αpk) for a few di�erent values of α. For more
details on methods for computing step lengths, see, e.g., [54].

In the following discussion, it is assumed that the objective function is strictly
convex. First, unconstrained problems where the feasible region equals IRn are
considered. For these problems, minimizing F (x) is equivalent to �nding a point x∗
such that ∇F (x∗) = 0. Three related search direction strategies for this problem
class are described, starting with Newton's method.

The search direction of Newton's method is given by the step to the minimizer of
a local second-order approximation of F about xk. The quadratic model, denoted
by qk, is given by

qk(xk + p) = F (xk) +∇F (xk)Tp + 1
2pTH(xk)p, (10)
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where H(x) denotes the Hessian ∇2F at a point x. The Newton direction pk is
given by the unique minimizer to ∇pqk = 0, which results in the Newton equations

H(xk)pk = −∇F (xk). (11)

The more accurately the quadratic model approximates F (xk+p), the more reliable
search direction pk is obtained. Newton's method has a fast rate of local conver-
gence, but requires explicit computation of the Hessian in every iteration. This is
a major drawback for large problems, which the following two algorithms avoid by
not requiring computation of the Hessian.

The search directions of quasi-Newton methods are given by (11), with the true
Hessian H(xk) replaced by a symmetric approximation Bk. This approximation is
updated in every iteration to satisfy Bk+1(xk+1 − xk) = ∇F (xk + 1) − ∇F (xk).
For practical reasons, an update strategy that preserves positive de�niteness while
being of low rank may be preferable. An important class of update strategies
ful�lling these requirements is the Broyden class. For an overview of quasi-Newton
methods, see, e.g., [54].

The nonlinear conjugate-gradient method computes search directions through
pk = −∇F (xk)+βkpk−1, where βk is a scalar. In this thesis (papers B and D), the
conjugate gradient method is solely used for solving QP problems. Then, the search
directions are conjugate, i.e., pT

kHpl = 0 if k 6= l, and the method converges in at
most n iterations in exact arithmetic. The quasi-Newton methods of the Broyden
class generate identical iterates to the conjugate-gradient method for QP problems,
given that (9) is solved exactly in every iteration [53].

The �nal part of this section is devoted to sequential quadratic programming
(SQP) methods for solving general nonlinear problems of the form (5). An SQP
method proceeds by solving a sequence of QP subproblems. In the kth iteration,
the search direction pk is computed by solving the QP problem (with x = xk �xed),

minimize
p

1
2pT∇2

xxL(x, λ)p +∇F (x)Tp

subject to ∇Ci(x)Tp = −Ci(x), i ∈ E ,
∇Ci(x)Tp ≥ −Ci(x), i ∈ I,

(12)

where L(x, λ) is the Lagrangian function L(x, λ) = F (x)−λTC(x) and∇2
xxL(x, λ) is

positive de�nite (otherwise it is replaced by a positive de�nite approximation). The
Hessian of the Lagrangian may be approximated by a quasi-Newton approximation
Bk. The Lagrange multipliers λ are updated in every iteration. Note that (12)
has linear constraints, which means that a strategy for generating feasible solutions
must be adopted. The original constraints C(x) may be violated in the new point
xk+1 = xk+αkpk since pk is feasible with respect to the linearizations of the original
constraints in (12). However, the SQP method will asymptotically converge to a
feasible solution to the original problem (5). A comprehensive presentation of the
SQP method can be found in [32]. In papers A and B, the SQP solver NPSOL3 [33]
is used, while an SQP solver developed at RaySearch is used in paper C.

3 NPSOL is a registered trademark of Stanford University.
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3 Optimization of IMRT treatment plans

The �rst optimization approaches to the inverse problem of IMRT, which occurred
twenty years ago, were often inspired by optimization methods used for image re-
construction problems. The early publications include [16], where an inverse back
projection is performed to �nd the optimal shapes of the incident beam pro�les,
and [76], where an approach using a global optimization method called simulated
annealing is presented. Optimization approaches to IMRT using local methods
more related to the approaches used in this thesis, and in many modern treat-
ment planning software packages, were �rst introduced in [14, 45]. Other IMRT
optimization strategies include integer optimization approaches, see, e.g, [43], and
approaches focusing on robustness with respect to treatment uncertainties [21,55].
A presentation of several optimization approaches to IMRT is given in [68].

3.1 Mathematical formulation

The inverse problem of �nding the �uence τ that generates the prescribed dose
distribution d̂ is equivalent to �nding the solution to the Fredholm integral equation
of the �rst kind,

d̂(r) =
∫∫
S

p(ρ− ρ0, z(r, ρ,G(r))) τ(ρ)dρ, (13)

with notation following (1). This is an ill-posed problem since it in general has no
solution, even if negative �uence is allowed. The integration with the beamlet p
has a smoothing e�ect on τ in the sense that high-frequency components in τ are
smoothed out. The reverse process, i.e., computing τ from d̂, therefore tends to
amplify high-frequency components in d̂. Such components are typical for IMRT
problems since the dose prescriptions to the target volume and the OARs are con-
�icting, which results in a discontinuous d̂.

To solve the inverse problem numerically, (13) is discretized, which results in the
problem of �nding the non-negative n-dimensional �uence τ such that the di�erence
between d̂ and Pτ is minimized. Here, d̂ is the m-dimensional prescription vector
and P is the m × n dose matrix introduced in Section 1.3. In practice, m � n
and P has full column rank. Measuring the di�erence between d̂ and Pτ by the
two-norm results in the QP

minimize
τ

‖d̂− Pτ‖22
subject to τ ≥ 0,

(14)

which is convex since the Hessian H = PTP is positive de�nite. The ill-posedness of
(13) is inherited in (14) in that H is ill-conditioned with many eigenvalues close to
zero [4]. This ill-conditioning results in that many di�erent �uence vectors produce
similar dose distributions, and thus similar objective values. The unique optimal
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solution of (14) is typically very jagged due to the high frequencies associated with
eigenvectors corresponding to small eigenvalues; see the left part of Figure B.1.
Jagged �uence pro�les should be avoided in radiotherapy since they result in an
increased number of MUs and may a�ect the accuracy of MLC-based deliveries [52].
One approach for avoiding this problem is to apply regularization techniques to
obtain solutions with less jagged �uence pro�les; see Section 3.3. Another approach
is to optimize directly on the treatment parameters rather than the �uence. This
approach is described in Section 3.4.

3.2 Optimization functions

In practice, it is not viable to specify the m-dimensional prescription vector d̂
used in (14). Instead, the treatment goals of an IMRT plan are described by
optimization functions Fk, k = 1, . . . ,K. Each function maps the dose distribution
of one ROI to a single number, which serves as a measure of the quality of the
dose distribution of the ROI. One ROI can have many associated functions since
it may be hard to capture the treatment goals of a ROI by a single function. The
optimization functions can be partitioned into physical functions and biological
functions. Physical functions are based on direct measures in the dose domain,
e.g., the maximum dose should not exceed a certain dose level in a ROI, while
biological functions are based on radiobiological models that predict the clinical
outcome of the dose distribution, see, e.g., [17].

This thesis concerns optimization functions that are commonly used in the clin-
ics. They all belong to the class of physical functions and are based on quadratic
penalties from some prescribed dose level. The uniform dose, max dose, and min
dose functions are given by

F k(d) =
1
2

∑
i∈V

f(di, d̂
k)∆vi

(
di − d̂k

d̂k

)2

, (15)

where f(di, d̂
k) = max(di − d̂k, 0) for the max dose function, f(di, d̂

k) = max(d̂k −
di, 0) for the min dose function and f(di, d̂

k) = 1 for the uniform dose function, V
speci�es the voxels included in the ROI, ∆vi is the relative volume of voxel i, di is
the dose in voxel i, and d̂k is the function speci�c prescribed dose level. The max
dose function is typically used for OARs, since only voxels with dose exceeding the
prescribed dose level are penalized. Conversely, the min dose function is only used
for target ROIs.

The max dose-volume and min dose-volume functions are based on ful�lling
DVH requirements for the ROI, e.g., no more than x percent of the ROI should
receive a dose that exceed y Gy. Dose volume functions are given by (15) with the
modi�cation that V depends on a speci�ed volume level and the dose distribution.
This is illustrated in Figure 6, where a max dose-volume function is applied to
an OAR and a min dose-volume function is applied to a PTV. The crosses in the
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Figure 6: An illustration of a max dose-volume function to an OAR and a min dose-
volume function to a PTV. The crosses specify the prescribed DVH requirements
and the grey areas point out the violations of these.

�gure specify the prescribed DVH requirements and the grey areas point out the
violations of these. The prescribed dose levels are denoted by d̂oar and d̂ptv, and
the speci�ed volume levels are denoted by voar and vptv for the OAR and the
PTV, respectively. The voxels of the OAR included in (15) are the ones with dose

between d̂oar and doar. For the PTV, the voxels included in (15) are the ones with

dose between dptv and d̂ptv. The dose-volume functions are nonconvex and not
continuously di�erentiable [27, 64]. However, in practice, the impact of the local
minimas induced by this nonconvexity on the outcome is clinically insigni�cant [81].
An approach similar to the one presented in [80] has been used in this thesis for
handling of the dose-volume functions, where the set of voxels included in (15) is
updated in every iteration.

Finally, the max mean-dose and min mean-dose functions, which are used in
paper C, are given by (with the same notation as above)

F k(d) =
1
2
f(d̄, d̂k)

(
d̄− d̂k

d̂k

)2

, (16)

where d̄ =
∑
i∈V

∆vidi is the mean dose of the ROI.
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3.3 Fluence map optimization

The original IMRT optimization problem is the �uence map optimization problem

minimize
τ∈IRn

F (d(τ))

subject to τ ≥ 0,
(17)

where τ denotes the variables of the discretized �uence of all beams and d(τ) = Pτ .
This is also referred to as the bixel-weight optimization problem. The objective func-
tion F is composed of the optimization functions F k, k = 1, . . . ,K, described in the
previous section. Throughout this thesis, F is given by a weighted sum of the opti-
mization functions, with weights re�ecting the relative importance of the treatment
goals. No nonlinear constraints are used. The weights often need to be adjusted a
few times in order to �nd a solution of (17) where the trade-o� between high dose
to target ROIs and sparing of OARs is well-balanced. An interesting alternative to
the weighted sum approach in IMRT is multi-objective optimization [51], where the
K optimization functions form a K-dimensional objective function. The compro-
mises between con�icting treatment goals can then be explored in a more intuitive
manner, see, e.g., [26, 36,42,63] and references therein.

The structure of (17) is very similar to the structure of (14) with F as above.
This means that (17) is an ill-conditioned problem, typically with a jagged opti-
mal solution. To generate solutions of practical interest, optimization approaches
applied to (17) must incorporate some regularization or smoothing strategy. Three
popular regularizing strategies for ill-conditioned problems are: (i) Tikhonov's
method, (ii) truncated SVD, and (iii) iterative methods; see [35]. The equivalence
of these techniques under certain conditions is discussed in the same paper.

Tikhonov's method works by adding a stabilizing function to the objective func-
tion [74]. This method is used in [24], and it is demonstrated that adding a quadratic
term based on the gradient of F to the objective function of (17) results in less
jagged solutions. A method based on so-called L-curve analysis to select an appro-
priate weight of this term is described in [23].

Truncated SVD is based on the singular value decomposition (SVD), which, for
an m× n matrix M of full rank and with m ≥ n, is given by

M =
n∑

i=1

σiuiv
T
i , (18)

where ui and vi, i = 1, . . . , n, are the singular vectors and the singular values σi

are ordered so that σ1 ≥ σ2 ≥ · · · ≥ σn. In the truncated SVD method, the right
hand side of (18) is truncated to remove the terms associated with small singular
values. In paper A, a variant of this regularization strategy is applied to (17) by
performing an SVD of a matrix M such that H = MTM , where H is the Hessian
of the objective function of (17). This produces singular vectors, or eigenvectors,
vi, i = 1, . . . , n, of H. An optimization problem of reduced dimension is obtained
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by using ξ as variables, where τ = V ξ and V consists of eigenvectors corresponding
to large eigenvalues.

Iterative methods refer to using optimization methods that initially proceed in
directions corresponding to the dominant singular values, e.g., a conjugate-gradient
method. This approach is explored in paper B, where regular solutions to (17) are
obtained by applying a quasi-Newton SQP method to solve (17). The optimiza-
tion is terminated before the method proceeds in directions corresponding to small
singular values.

Several other approaches for obtaining smooth solutions to (17) have been pro-
posed. In [83], an algorithm which inherently �nds smooth solutions is used.
Functions di�erent from the Tikhonov function are incorporated into the objec-
tive function in [5, 48, 70], while upper bounds on τ are added in [25]. In [70, 79],
high-frequency components of the �uence are removed between iterations.

Since τ is not a treatment parameter, the solution of (17) is not deliverable.
With an MLC-based delivery system, a so-called leaf sequencing step is required,
where the �uence pro�les are converted into feasible MLC segments such that the
deliverable �uence resembles the solution of (17). For step-and-shoot IMRT plans,
the leaf sequencing approaches aim at minimizing either the number of MUs or
the number of segments, while resembling the original �uence to some accuracy.
The latter problem is in fact NP complete [7]. There is a vast literature on leaf
sequencing methods; see, e.g., [20,44,82] and references therein. There is a potential
risk for plan quality degradation if the objective function of (17) is not incorporated
into the process of generating segments. Some approaches address this issue by
alternating between solving (17) and performing leaf sequencing; see, e.g., [6,65,69].

3.4 Step-and-shoot parameter optimization

By formulating IMRT optimization problems with the treatment parameters as
optimization variables, the generated solutions correspond to deliverable treat-
ment plans and no post-processing such as leaf sequencing is needed. Also, the
ill-conditioning of the dose matrix is no longer an issue. However, this formulation
is generally nonconvex even if F is convex in dose. Further, a beam model must be
incorporated into the optimization problem with this formulation.

The available degrees of freedom in step-and-shoot delivery, and thus possible
optimization variables, include: gantry angles, collimator (MLC) angles, couch
angles, leaf positions and segment weights. At a higher level, one may also include
fractionation schedule and photon energy as variables in the problem. However, to
formulate a tractable optimization problem, one has to limit the choice of variables.
Fixing all parameters listed above except for the leaf positions and the segment
weights results in the direct step-and-shoot optimization problem

minimize
x,w

F (d(τ(x,w)))

subject to A(s)x(s) ≥ b(s), s = 1, . . . , S,
w ≥ w0,

(19)
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where x(s) denotes the leaf position variables for segment s, w ∈ IRS denotes the
segment weight variables for all S segments, d(τ) = Pτ , τ = (τT

1 . . . τT
B)T, and

τb(x,w) =
∑
s∈Sb

wsτ(x(s)), b = 1, . . . , B, (20)

where B is the number of beams in the plan, Sb speci�es the segments of beam b
and τ(x(s)) is the transmitted �uence distribution of segment s. The bounds on w
are included to ensure that all segments ful�ll their lower monitor unit limit in order
to avoid segments with very short beam-on-time. The linear constraints represent
MLC requirements such as interdigitation, minimum gaps and minimum segment
areas; see Figure 7 for an illustration.

Figure 7: An illustration of four common requirements on MLCs, highlighted with
ovals. The contiguous rows requirement must always be ful�lled, while the other
three may or may not need to be ful�lled depending on MLC type. Grey areas
correspond to leaves and white areas correspond to openings.

The computation of the �uence distribution τ(x(s)) is based on integration of
the intensity distributions of the primary source and the �attening �lter. Assum-
ing Gaussian intensity distributions of both these results in a �uence distribution
described by a combination of error functions [29]. Figure 8 illustrates the trans-
mitted �uence distribution in one dimension with a leaf pair intersecting the beam.
Clearly, τ(x(s)) is a nonconvex function.

Many optimization approaches to (19) start with a set of prede�ned segments
specifying the number of segments, their distribution over the beams and the set
of leaves included in the optimization problem. The variable sets ws and x(s),
s = 1, . . . , S, of (19) are thus �xed throughout the optimization. In many of
these approaches, the initial segments are based on projections of ROIs onto the
�uence planes of the beams. Another strategy for generating initial segments is to
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Figure 8: An illustration of the transmitted �uence distribution with one intersect-
ing leaf pair. The computation of τ(x) is based on integration of two Gaussian
intensity distributions, originating from the source and the �attening �lter.

solve the �uence map optimization problem (17) approximately and then perform
leaf sequencing. Since (19) is a nonconvex optimization problem, one must either
utilize global optimization methods or rely on the initial set of segments and their
distribution being su�ciently good to reach high-quality solutions. Approaches
using global stochastic optimization methods for solving (19) are found in [10,67,73],
while two approaches more based on heuristics are discussed in [9, 31].

An approach for solving (19) that dynamically alters the variable set was in-
troduced in [62]. This approach has two main advantages compared to the pre-
viously mentioned approaches: (i) The nonconvexity induced by the leaf position
variables can be removed and (ii) the set of segments is not �xed. This gives an
opportunity to study the impact of adding segments on the plan quality and, more
generally, the relation between plan quality and delivery time. Papers C and D are
both inspired by this approach, which uses an optimization method called column
generation. Other approaches using column generation for generating deliverable
step-and-shoot plans are presented in [50,58].

The idea of column generation applied to (19) is to start with few or no seg-
ments and then only generate segments that have potential to improve the objective
function value. Consider a pool of segments where all feasible segment shapes for
all beams are included such that the leaves are aligned with the bixel grid and
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the leaf positions are �xed to the bixel boundaries. The working set W speci�es
the segments generated, or picked from this pool, during the optimization process.
The column generation approach proceeds by alternating between solving a master
problem and a subproblem, where the master problem is given by

minimize
w

F (d(τ(x,w)))

(MASTER) subject to wi ≥ w0 i ∈ W,
wi = 0 i /∈ W,
x �xed,

(21)

which is a convex problem if F is convex in d (since d is linear in w). The role of
(21) is to optimize the segment weights of the segments included in the working
set. Problem (21) may be viewed as a restricted version of (19) with S = |W| and
with the leaf positions �xed.

Since the leaf positions are �xed to the bixel boundaries, one may view each
segment as a set of exposed bixels. For each beam, the solution of the subproblem
corresponds to the most promising segment, in terms of the gradient of F with
respect to the exposed bixels, not yet included in W. The subproblem for beam b
is given by

minimize
z

(
∂F
∂τb

)T

z

(SUB) subject to z ∈ Z,

z ∈ {0, 1},

(22)

where Z is the set of bixel regions corresponding to feasible segments with respect
to the MLC used. Such a bixel region is represented by a binary vector, where
zero components correspond to bixels covered by a leaf while the components with
value one correspond to exposed bixels. The solutions of (22) are easily transformed
into MLC segments by placing the leaves such that all zeros in the solution vector
are covered. After solving (22) for each beam, some or all of the corresponding
segments are included in W and (21) is solved again, using the previous solution
as starting point. The solution process proceeds until the user is satis�ed with the
plan quality or until no solutions to (22) can be found such that the optimal value
of (22) is negative.

The strategy for solving (22) depends on the MLC requirements. If the require-
ments are separable in leaf pairs, i.e., if the only requirement is to have contiguous
rows (see Figure 7), an algorithm presented in [62] solves (22) e�ciently. If the
MLC does not support interdigitation or requires a connected opening, the sub-
problem cannot be separated in bixel rows (leaf pairs). However, the subproblem
of each beam can be formulated as a shortest-path problem that incorporates all
of the requirements illustrated in Figure 7 [12, 62]. The shortest-path problem is
to �nd a path between a certain pair of nodes in a graph such that the sum of
the weights of its constituent arcs is minimized; see, e.g., [57] for an introduction.
For each beam, a layered graph is constructed where each layer corresponds to a
bixel row. Each node represents a leaf pair con�guration and the weights of all
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arcs incident on a node is given by the sum of the components of the gradient of F
with respect to the exposed bixels for that leaf pair con�guration. In paper C, the
problem is modi�ed by scaling the weight of each arc with a factor based on the
relative overlap of the exposed bixels for the two nodes of the arc. By doing this,
arcs that may lead to jagged segment shapes can be avoided.

A drawback of the column generation approach compared to the approaches
solving (19) directly is that the leaf positions are �xed to the bixel boundaries.
This can be overcome by combining the column generation approach with direct
step-and-shoot optimization to �ne-tune the leaf positions after the solution of every
master problem. This is the idea of paper C; see Figure C.1 for an illustration of the
solution process. In that paper, both (19) and (21) are solved with a quasi-Newton
SQP method developed at RaySearch.

4 Main contributions

Although iterative regularization is widely known in the �eld of inverse problems, it
was �rst introduced in the context of IMRT optimization in paper B. The results of
that paper clearly demonstrate the suitability of a quasi-Newton SQP method for
performing iterative regularization. The paper also provides an explanation of the
e�ciency of this optimization method on IMRT problems, which is based on the
numerical behaviour of the conjugate-gradient method on ill-conditioned problems.
Since this optimization method is widely used clinically in a very similar way to the
setup in paper B, an important message of the paper is to avoid over-optimizing
the treatment plans prior to leaf sequencing.

Generating high-quality step-and-shoot treatment plans with few and regular
segments is a challenge, and the number of required segments varies from case to
case depending on the patient geometry and the choice of optimization functions.
The approach in paper C provides a method that gives support in exploring the
trade-o� between plan quality and treatment complexity. The novelty of the method
is the combination of the �exibility of dynamically altering the set of segments
with the ability to �ne-tune the segment shapes. The method generates a sequence
of deliverable plans while being capable of �nding satisfactory treatment plans
with few segments. Column generation approaches to step-and-shoot IMRT tend
to �nd near-optimal solutions with very few segments compared to the problem
dimension. This behaviour is, to some extent, explained in paper D by interpreting
the conjugate-gradient method as a special case of a column generation method.

5 Summary of the appended papers

Of the four papers included in this thesis, the �rst two papers focus on methods for
solving the �uence map optimization problem e�ciently while avoiding jagged so-
lutions. The last two papers deal with a column generation approach for generating
segments dynamically when optimizing step-and-shoot parameters.
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Paper A: Using eigenstructure of the Hessian to reduce the

dimension of the intensity modulated radiation therapy

optimization problem

Paper A is co-authored with Anders Forsgren, Henrik Rehbinder and Kjell Eriksson,
and has been published in Annals of Operations Research, Vol. 148, pp. 81-94, 2006.

The e�ect of reducing the dimension of the �uence map optimization prob-
lem through a spectral decomposition of an approximation of the Hessian of the
objective function is studied in this paper. An optimization problem with lower
dimension is formulated by introducing eigenvector weights as optimization vari-
ables, where only eigenvectors corresponding to large eigenvalues are included. The
approach is evaluated on a prostate case by applying a quasi-Newton SQP method
to a suite of problems, where the number of included eigenvectors is varied.

Optimization of a few eigenvector weights results in a faster initial decrease of
the objective value, but with an inferior solution after 25 iterations, compared to
optimization of bixel weights. By combining eigenvector weights and bixel weights
as variables, a lower objective value is obtained after 25 iterations. However, this
advantage comes at the expense of the pre-computational time for the spectral
decomposition.

Paper B: Iterative regularization in intensity-modulated radiation

therapy optimization

Paper B is co-authored with Anders Forsgren, and has been published in Medical
Physics, Vol. 33(1), pp. 225-234, 2006.

The suitability of using a quasi-Newton SQP method for performing iterative
regularization of �uence map optimization problems is demonstrated in this paper.
This is done by comparing the treatment quality of deliverable step-and-shoot plans,
generated through leaf sequencing with a �xed number of segments, for di�erent
number of bixel-weight iterations.

Numerical results for ten IMRT problems show that the SQP method with
diagonal initial Hessian estimate ful�lls the requirements for performing iterative
regularization; it initially proceeds in directions corresponding to smooth �uence
pro�les and �nds high-quality solutions in few iterations. The deliverable plans
obtained after 35 iterations of �uence map optimization and a leaf sequencing step
outperform the deliverable plans obtained if 100 bixel-weight iterations are per-
formed instead. It is concluded that performing too many bixel-weight iterations
deteriorates the quality of the deliverable plan.
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Paper C: Combining segment generation with direct

step-and-shoot optimization in intensity-modulated radiation

therapy

Paper C has been submitted to Medical Physics. Part of the material has been
published in the ICCR 2007 Conference Proceedings.

In this paper, a method that combines generation of new segments with the
optimization of segment shapes and weights is presented. The method may be
viewed either as (i) a generalization of direct step-and-shoot optimization methods
by dynamically altering the set of optimization variables or as (ii) an extension of
a column generation approach to step-and-shoot problems by �ne-tuning the leaf
positions of the generated segments.

The method is evaluated on a test suite consisting of ten cases and it is found
that the adjustment of leaf positions improves the plan quality. The improvement
in plan quality when adding segments is larger for plans with few segments. Eventu-
ally, adding more segments contributes very little to the plan quality. The method
provides a tool for controlling the number of segments and, indirectly, the delivery
time. The generated sequence of deliverable plans can thus support the planner in
�nding a sound trade-o� between plan quality and treatment complexity.

Paper D: A conjugate-gradient based approach for approximate

solutions of quadratic programs

Paper D is co-authored with Anders Forsgren, and has been submitted to Annals
of Operations Research.

An attempt to explain the promising numerical results obtained with the column
generation approaches of paper C and [50, 62] on step-and-shoot IMRT problems
is carried out in this paper. The impact of di�erent restrictions on the generated
columns of a column generation method is studied, both in terms of numerical
behaviour and convergence properties. It is noted that a bound on the two-norm
of the columns results in that the column generation method is equivalent to the
conjugate-gradient method. The column generation approach for IMRT is obtained
by employing a restriction based on the in�nity-norm and non-negativity.

The column generation method has weak worst-case convergence properties if
restricted to generating feasible step-and-shoot plans. However, the numerical re-
sults of three IMRT QPs indicate that the appealing properties of the conjugate-
gradient method on ill-conditioned problems are inherited in the column generation
approach for IMRT; as observed in paper C, near-optimal solutions are found in
very few iterations compared to the problem dimension.
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