Control and Analysis of Pulse-Modulated Systems

STEFAN ALMÉR

Academic Dissertation which, with due permission of the KTH Royal Institute of Technology, is submitted for public defence for the degree of Doctor of Technology on Friday the 23rd May 2008, at 10:00 a.m. in D3, D, Lindstedsvägen 5, KTH, Stockholm.
Abstract

The thesis consists of an introduction and four appended papers. In the introduction we give an overview of pulse-modulated systems and provide a few examples of such systems. Furthermore, we introduce the so-called dynamic phasor model which is used as a basis for analysis in two of the appended papers. We also introduce the harmonic transfer function and finally we provide a summary of the appended papers.

The first paper considers stability analysis of a class of pulse-width modulated systems based on a discrete time model. The systems considered typically have periodic solutions. Stability of a periodic solution is equivalent to stability of a fixed point of a discrete time model of the system dynamics.

Conditions for global and local exponential stability of the discrete time model are derived using quadratic and piecewise quadratic Lyapunov functions. A gridding procedure is used to develop a systematic method to search for the Lyapunov functions.

The second paper considers the dynamic phasor model as a tool for stability analysis of a general class of pulse-modulated systems. The analysis covers both linear time periodic systems and systems where the pulse modulation is controlled by feedback. The dynamic phasor model provides an \textbf{L}_2-equivalent description of the system dynamics in terms of an infinite dimensional dynamic system. The infinite dimensional phasor system is approximated via a skew truncation. The truncated system is used to derive a systematic method to compute time periodic quadratic Lyapunov functions.

The third paper considers the dynamic phasor model as a tool for harmonic analysis of a class of pulse-width modulated systems. The analysis covers both linear time periodic systems and non-periodic systems where the switching is controlled by feedback. As in the second paper of the thesis, we represent the switching system using the \textbf{L}_2-equivalent infinite dimensional system provided by the phasor model. It is shown that there is a connection between the dynamic phasor model and the harmonic transfer function of a linear time periodic system and this connection is used to extend the notion of harmonic transfer function to describe periodic solutions of non-periodic systems. The infinite dimensional phasor system is approximated via a square truncation. We assume that the response of the truncated system to a periodic disturbance is also periodic and we consider the corresponding harmonic balance equations. An approximate solution of these equations is stated in terms of a harmonic transfer function which is analogous to the harmonic transfer function of a linear time periodic system. The aforementioned assumption is proved to hold for small disturbances by proving the existence of a solution to a fixed point equation. The proof implies that for small disturbances, the approximation is good.
Finally, the fourth paper considers control synthesis for switched mode DC-DC converters. The synthesis is based on a sampled data model of the system dynamics. The sampled data model gives an exact description of the converter state at the switching instances, but also includes a lifted signal which represents the inter-sampling behavior. Within the sampled data framework we consider H-infinity control design to achieve robustness to disturbances and load variations. The suggested controller is applied to two benchmark examples; a step-down and a step-up converter. Performance is verified in both simulations and in experiments.

Key Words
Pulse-width modulation, Periodic systems, Stability analysis, Harmonic analysis, Lyapunov methods, Dynamic phasors, Harmonic transfer function, Switched mode power converters, Sampled data modeling, H-infinity synthesis