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Abstract: 

This paper analyzes the relationship between movements in property transaction prices 
and movements in the underlying reservation price distributions of buyers and sellers 
and how these movements are linked to time varying turnover rate. A main conclusion 
in previous research is that transaction prices lag changes in buyers’ reservation price 
distribution and that an index tracking transaction prices is less volatile than an index 
tracking buyer reserves. We show that our less restrictive model of search and price 
formation reverses the volatility result in previous papers in realistic scenarios, i.e., 
transaction prices may be more volatile than underlying buyer reserves. We model 
transaction prices and turnover rates as functions of the moments of buyers’ and 
sellers’ reservation price distributions, the search intensity and the average bargaining 
power among buyers and sellers respectively. We derive the probability density 
function of transaction prices as a function of these parameters and hence a Maximum-
likelihood estimator of the parameters, which serves as a new method of estimating 
indexes tracking movements in reservation price distributions from transaction data. 
We perform simulations where we show that the Maximum-likelihood estimator 
works as intended. 
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1. Introduction 

Pro-cyclical liquidity is a well-known phenomenon in property markets, i.e., turnover rates normally 
increase in up-turns and decrease in down-turns. Since shifts in the reservation price distributions of 
buyers and seller are partially absorbed by these cyclical changes in the turnover rate, observed 
transaction prices do not reveal complete information about shifts in buyer (demand) and seller 
(supply) reserves (Fisher et al., 2003; Goetzmann and Peng, 2006). For example, sticky prices in 
combination with a dried up liquidity is commonly observed in the initial phase of a down-turn in the 
property market. A common belief among researches and real estate professionals is that this 
stickiness is due to demand reacting faster than supply to adverse market conditions, see Clayton et 
al. (2008) for an analysis of possible reasons for this behavior. That is, buyers initially lower their 
reservation prices more than sellers, which reduces the turnover rate but to a lesser extent 
transaction prices since predominantly buyers with higher than average reservation price will match. 
In a booming property market the opposite may be the case, i.e., the buyers’ reservation prices 
moves faster upwards than the sellers’, which increases the turnover rate and initially dampens 
movements in transaction prices. Consequently, movements in the underlying demand and supply 
may differ significantly from movements in observed transaction prices over the property cycle. 
These observations are important in that most research on property markets and their influence on 
the economy as a whole predominantly use indexes based on transaction prices as the benchmark 
for measurement of changes in property market conditions. Furthermore, transaction prices are 
regularly used to infer property returns as well as the value of the stock of properties1. 
 
A number of papers have brought to attention the discrepancy between changes in observed property 
prices and changes in the underlying demand and supply and how these variables are related to 
changes in turnover rates and time on market. Fisher et al. (2003), Fisher at al. (2007) and Goetzman 
and Peng (2006) model property prices in a search market and develop different methods to estimate 
indexes tracking, separately, buyers’ and sellers’ reservation prices2. Krainer (2001) uses a search-
theoretical model to explain pro-cyclical transaction volumes in the property market. In his model 
sellers price their homes to sell quickly when prices are high (a “hot” market) in order to reduce the 
risk of having to sell when buyer valuations are low. When valuations are low (a “cold” market) the 
opportunity cost of waiting is low with the implication that sellers do not price their homes at levels 
that would yield the same liquidity as in a hot market. In a similarly spirited paper, Novy-Marx (2009) 
stresses the importance of a feedback mechanism in the explanation of pro-cyclical liquidity. For 
example, a positive demand chock increases the ratio of buyers to sellers which improves sellers 
bargaining position. This makes sellers transact more quickly, which in turn decreases the stock of 
active sellers relative to buyers which amplifies the initial chock.  Clayton et al. (2008) empirically 
evaluate competing explanations for pro-cyclical liquidity in property markets and finds evidence for 
an appraisal smoothing/rational updating based explanation as well as the opportunity cost based 
explanation suggested by Krainer (2001) and Novy-Marx (2009). 

 

 

                                                           
1 For example, according to the accounting standards of the International Accounting Standards Board (IASB),the IAS 40 fair 
value model for investment properties implies the following: “Gains or losses arising from changes in the fair value of 
investment property must be included in net profit or loss for the period in which it arises. [IAS 40.35]”. Furthermore, “Fair 
value should reflect the actual market state and circumstances as of the balance sheet date. [IAS 40.38] The best evidence 
of fair value is normally given by current prices on an active market for similar property….”., 
http://www.iasplus.com/en/standards/ias/ias40 . 
2 Two earlier papers in this strand of literature (Gatzlaff and Haurin, 1997 and 1998) estimate models in the same spirit. In 
effect, they estimate characteristics of the offer price distributions. But they do not discuss the deeper implications of 
introducing buyer and seller reserves. 

http://www.iasplus.com/en/standards/ias/ias40
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Our paper is most similar to Fisher et al. (2003) and Goetzmann and Peng (2006) in that it focuses on 
modeling the buyer and seller reservation price distributions as well as the transaction price 
distribution and the relationship between these distributions and the liquidity in the property market. 
Both Fisher et al. (2003) and Goetzmann and Peng (2006) makes the point that unless buyers’ and 
sellers’ reservation price distributions move in lockstep, movements in equilibrium price (the mean of 
observed transaction prices) do not track the spread between buyer and seller reserves and their 
movements over time3. Differential movements of these reserves are instead partially reflected in time 
varying liquidity. 

The observation that movements of transaction prices and the underlying reservation price 
distributions may differ significantly from each other questions the relevance of using the standard 
definition of market value, i.e. the expected selling price of a property4, as the sole metric for 
construction of property price indexes regardless of the intended use of the index. In terms of index 
construction, market value defined as expected selling price is captured by the mean of observed 
(quality adjusted) transaction prices. Goetzmann and Peng (2006) conclude that observed transaction 
prices are biased measures of market value and suggest that a plausible definition of market value 
would be the pair of the means of the buyers’ and sellers’ reservation price distributions since they 
track both market demand and market supply simultaneously. They, however, choose to define market 
value as the mean of the buyers’ reservation price distribution alone since this equals the mean of the 
valuations of all market participants. Similarly, Fisher et al. (2003) differentiate between an index 
tracking observed transaction prices (a standard transaction price index), which they denote a variable 
liquidity index, and an index tracking the mean of the buyers’ reservation price distribution, which they 
denote a constant liquidity index5. We will adopt the Goetzmann and Peng (2006) definition of market 
value as the mean of the buyers’ reservation price distribution in the remainder of the paper.  

We develop a new method to estimate price indexes tracking, separately, the means of buyers’ and 
sellers’ reservation price distributions in a search market for heterogeneous goods, and in which the 
surplus of a transaction is split between the buyer and seller according to a (market wide) bargaining 
power parameter. We further model a market in which properties are sold through auctions or in an 
auction like environment. Our method is similar to Goetzmann and Peng (2006) in that only data 
concerning transacted properties are needed for the estimation of the model. In contrast, Fisher et al. 
(2003) base their model on a Heckman (1979) approach and hence require data about both sold and 
unsold properties. The latter approach has the benefit of using more data to estimate the means of 
the reservation price distributions compared to methods only using data from transacted properties. 
An important downside, however, is that one seldom has relevant data on the whole population of 
properties. 

 

 

 

                                                           
3 Both Fisher et al. (2003) and Goetzman and Peng  (2006) assume that all moments of the reservation price distributions 
except the means, as well as all other variables affecting price formation such as e.g. search intensity and negotiation 
power are constant over time. As we show in this paper, if this does not hold, the equilibrium price will not track changes in 
buyers’ and sellers' reservation price distributions even if their means move in lockstep. 
4 There exist a number of slightly different versions of this definition with respect to the requisites that define an “arm’s-
length” transaction, but the common denominator is that market value is derived from observed transaction prices. 
5 It is not clear from Fisher et al. (2003) exactly why an index tracking the mean of the buyers reservation price distribution 
would be a constant liquidity index, but they argue that ”Asset owners must sell to buyers;  hence, it is the buyers who 
determine the prices that are required to maintain a constant ease of selling….”. Our interpretation is that they, similar to 
Goetzmann and Peng (2006), implicitly assume that all moments of the reservation price distributions except the means, as 
well as other variables affecting price formation such as search intensity and negotiation power are constant over time. 



5 
 

Our paper contributes in several ways to previous studies on property price index construction and the 
estimation of indexes tracking buyers’ and sellers’ reservation price distributions. Firstly, while 
previous papers recognize that property markets are search markets, their model specifications 
implicitly or explicitly imply a very specific search market in which sellers always meet exactly one 
buyer during an index period. We model a market in which sellers meet a random number of buyers 
and where the search intensity, defined by a market wide search intensity parameter, is estimated by 
the model together with the bargaining power parameter6. Secondly, previous models require that 
buyers’ and sellers’ reservation price distributions are identical except for their first moments. We 
apply no restrictions on the reservation price distributions. For example, and importantly, their 
variances may differ. Thirdly, in contrast to previous models we explicitly derive, in a very general form, 
the probability density function of observed transaction prices. This allows a straight-forward 
Maximum-likelihood estimation of all model parameters and makes the model very flexible with 
respect to distributional assumptions. Basically any “well-behaved” reservation price distributions, as 
well as a distribution describing search intensity, can easily be inserted in the model. Fourthly, unlike 
earlier models the empirical turnover rate is not a necessary input for our Maximum-likelihood 
estimator. This is because we derive the probability density function of observed transaction prices 
and may thus base the estimation solely on observed prices. This is an advantage since it is not always 
easy to correctly measure the turnover rate7. Finally, the explicit derivation of the probability density 
function of observed transaction prices as a function of the parameters of the model provides a simple 
analytical framework for analysis of how changes in observed property prices and market liquidity are 
related to changes in underlying demand and supply.  

To summarize our contributions, we derive a model of search and price formation in the property 
market that is in important ways richer than models used in previous studies on property price index 
construction and the estimation of indexes tracking buyers’ and sellers’ reservation price distributions. 
In previous papers changes in observed property prices and turnover rate are solely driven by a time 
varying distance between the means of buyers’ and sellers’ reservation price distributions. 
Furthermore, sellers always meet exactly one buyer during an index period. These assumptions impose 
strong restrictions on the price formation in property markets which are contradicted by empirical 
observations.  

We apply our theoretical model and the Maximum-likelihood estimator in simulations where we show 
the importance of enriching the model as discussed above. For example, a main conclusion in both 
Fisher et al. (2003) and Goetzmann and Peng (2006) is that a standard transaction price index is less 
volatile than the mean of the underlying buyer reservation price distribution. We show that this 
conclusion mainly follows from the strong restrictions their models impose on the search process and 
the price formation in property markets. In our richer model setting, a standard transaction price index 
may realistically be more volatile than the underlying reservation price distributions.  

 

 

 

 

                                                           
6 In our model the exact determinants of how the surplus is divided is unimportant. We are only interested in estimating a 
bargaining power parameter (all buyers are assumed to have the same bargaining power) in each index period.  See e.g. 
Quan and Quigly (1991) or Novy-Marx (2009) for a discussion on bargaining power and the division of the surplus of a 
transaction. 
7 It is a fairly straightforward exercise to include the turnover rate in the estimation if deemed advantageous in some 
situations. Inclusion may then be done in a way that, unlike previous papers, does not assume that observed turnover 
exactly equals the theoretically expected one.  



6 
 

2. Model 

In this section we model the transaction price distribution for properties in a simple search market. 
We consider two different selling mechanisms. First we model the case in which a property for sale is 
visited sequentially by potential buyers and where the property, after a negotiation, is sold to the 
first visitor with a reservation price higher than the seller´s. Thereafter we model the case in which 
sales are executed through auctions or in an auction like environment8. 

We derive an expression for the probability density function of observed property prices and show 
how this function is related to the probability distribution of error terms in a hedonic model of 
property prices. We furthermore present a Maximum-likelihood estimator of the reservation price 
distribution of buyers and sellers respectively, as well as of a search intensity parameter and, in the 
case of sequential search, a bargaining power parameter.9 

 

 

Search market with sequential arrival 

Assume a search market in which a seller of a property is visited by 𝑀𝑀 buyers during the time period

[ ]1,t t−  , where 0 ≤ ≤M N .  The property is sold to visitor 𝑀𝑀, the first of the sequentially arriving 
buyers with a reservation price higher than the seller’s.  Hence, if none of the 𝑁𝑁 visitors has a 
reservation price that is higher than the seller’s, the property remains unsold during the time period. 
The variable 𝑁𝑁 is a Poisson distributed random variable with mean λ and represents the maximum 
number of buyers that visit a seller during the time period. The reservation price 𝑠𝑠 of a seller and the 
reservation price 𝑏𝑏 of a buyer visiting the seller are realizations of i.i.d. continuous random variables 
denoted by 𝑆𝑆 and 𝐵𝐵 respectively.  

                                                           
8 While private negotiation is the dominant sales method in most markets, sales through auctions or in auction-like 
environments are common in several countries, e.g. in Australia, New Zealand, Ireland, and the Nordic countries. In 
Sweden, virtually all sales of residential real estate in larger cities are executed through auctions, either online or conducted 
by the broker using text message and phone calls, see Hungria-Gunnelin (2014). As pointed out by Han and Strange (2014), 
the fraction of houses sold in a bidding war, i.e. in an auction-like environment, has increased considerably in the U.S. 
during the last decade and while the bust of the housing market has decreased this fraction, it has not come down to 
historical levels. 
9 It should be noted that by buyers and sellers we mean not only the buyers and sellers that actually take part in a 
transaction but also potential buyers and sellers. 
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Let kB , where 1,2,...k = , be the reservation price of visitor 𝑘𝑘. Define the highest reservation price 
among all visitors as:  

 

{ }{max 1 2max , ,..., , 0: , 0.
   

                             
>= −∞ =

NB B B NB N  (1) 

 

It is convenient to define an indicator variable 𝑍𝑍 as: 

 

max

max
1,: 0, .

B SZ B S
 ≥=  <

   
  

 (2) 

 

Hence, a property is sold during the time period [ ]1,t t−   if 1Z = . Define visitor 𝑀𝑀 as: 

 

{ }{min k : , 1: , 0.
   

                             
kB S ZM Z
≥ == ∞ =  (3) 

 

Define 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠, the reservation price of the first of the sequentially arriving buyers who fulfill B S≥ , as: 

 

, 1
:

, 0
      
    

 
   

=
=

−∞ =


Mseq B Z
B

Z
 (4) 

 

Applying the law of total expectation, the probability that a seller with reservation price 𝑠𝑠 does not 
match during the time interval [ ]1,t t−   can be expressed as: 

 

( ) ( ) ( )

( ) ( )

0

0

0 0 ,

0 ,

n

n

Z S s Z N n S s N n S s

Z N n S s N n

∞

=

∞

=
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= = = = ⋅ =

∑

∑
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 (5) 

 

Due to independence between 𝑁𝑁 and 𝑆𝑆, the last probability in (5) equals ( )N n=P . Denote the 

cumulative distribution functions of buyers’ and sellers’ reservation prices with bF and sF  
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respectively. Assuming that the reservation price 𝑏𝑏 of a buyer visiting a seller, and the reservation 
price 𝑠𝑠 of the seller are independent, the probability that the buyer and the seller do not match 
equals ( )bF s . Given that ( )~N Po λ , expression  (5) equals: 

 

( ) ( )

( ) ( ) ( )( ) ( )( )
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1

0
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!
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n
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F sF s F s

n
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e e e e

n

λ

λλ λλ

λ

λ

∞
−

=

∞
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= =

∑

∑

P
 (6) 

 
Denote the stock of properties by TotQ . Let Q  denote the number of transacted properties and rateQ  

denote the turnover rate during the time interval [ ]1,t t−  . The expected number of transacted 
properties can be expressed as: 
 

 

[ ] ( )1Tot Tot rateQ Q Z Q Q = = =  E P E   (7) 

 

Initially, for ease of derivation, we assume that all properties are identical. This assumption will later 
be relaxed. Again applying the law of total expectation, expression (7) becomes: 

 

 
[ ] ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )1

1 1

1 0 1
b

Tot Tot s

F sTot s Tot s

Q Q Z Q f s Z S s ds
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P
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where ( )sf s is the probability density function of the sellers’ reservation price distribution. All 
buyers are assumed to have the same bargaining power, denoted by 𝑤𝑤, and all sellers have the 
bargaining power ( )1− w , where 0 1≤ ≤w  represents the fraction of the surplus (the difference 
between the seller´s and the buyer´s reservation price) that goes to the buyer in a successful match. 
Hence, a match results in the transaction price TP  equal to ( )1ws w b+ − . The expected transaction 

price conditional on a match, 1TP Z = E , equals10: 

 

                                                           
10 For the derivation of the model it is convenient to define the unconditional expected transaction price as 
[ ] ( ) ( )1 1 0 0TP TP Z Z TP Z Z=  =  = +  =  =   E E P E P , where 0 0TP Z =  = E is not of interest in this analysis since we do not observe 

any transaction price if there is no match.  
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where ( ) , 1g s TP S s Z=  = =  E  and equals: 
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where ( )bf b is the probability density function of the buyers’ reservation price distribution. Since 

𝐵𝐵1,𝐵𝐵2, … are independent we have that 1seqB Z B B S   = = ≥  E E  in expression (10). 

In order to empirically estimate the parameters of the reservation price distributions, as well as the 
Poisson parameter 𝜆𝜆 and the bargaining power parameter 𝑤𝑤, it is convenient to derive an expression 
for the probability density function of observed transaction prices as a function of these parameters 
since the parameters can then be estimated using a straight-forward Maximum-likelihood approach. 

Denote with TPF and TPf the cumulative distribution function and the probability density function of 
observed transaction prices respectively. If the transaction price TP y= and the reservation price of 

the seller S s= , then seqB b= where ( )1y ws w b= + −  according to the bargaining power 
assumption. Since the derivation concerns a match we have that y s≥ and that both 

( ), 1= =TPF y S s Z and ( ), 1= =TPf y S s Z  equal zero for y s< . We now derive TPf from TPF : 
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We further know that 

( ) ( )
( ) ( )

( )( )

( )
111

1
1

bF s

s s s
rate

eZ S s
f s Z f s f s

Z Q

λ− − −= =   = = =
=   

P
P E

 (12) 

 

Combining (11) and (12) and integrating we have the following expression for the probability density 
function of observed transaction prices: 
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Similar to expression (9), the expected transaction price conditional on a match equals11: 

 

( )1 1
∞

−∞
 =  = ⋅ =  ∫ TPTP Z y f y Z dyE  (14) 

 

Sales through auctions 
 
Assume that properties are sold through auctions or following a bidding war as discussed in Han and 
Strange (2014). Assume further that an observed transaction price equals the reservation price of the 
winning bidder12, i.e.  𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 in expression (1) . Let N be a Poisson distributed random variable with 

meanλ , representing the number of bidders in an auction.  Denote with 
maxBG and 

maxBF  the 

cumulative distribution functions of 𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚 and observed transaction prices respectively. 
maxBG  

conditional on 𝑛𝑛 bidders equals: 
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Noting that max ≥B s  for observed transactions and using (15), the probability density function of 
observed transaction prices conditional on 𝑆𝑆 = 𝑠𝑠, ( )max

, 1= =Bf y S s Z ,  can be derived as follows: 

                                                           
11 The expectation in expressions (14) of course coincide with the expectation in expression (9), the difference in derivation being that in 
(9) the law of total expectation is applied to the expected price conditional on the reservation price of the seller. 
12 A more realistic assumption would be that the sales price ends up somewhere between the winner’s and the second highest bidder’s 
reservation price. However, this will not alter the qualitative results of our model.  
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Integrating the conditional probability density function in (16) we have the following expression for 
the probability density function of observed transaction prices13: 

 

                                                           
13 Assuming that each auction is visited by only one buyer who bids her reservation price and the reservation price distributions only differ 
in their first moments, our auction model collapses to the model of Goetzmann and Peng (2006) and the simplified probability density 

function of observed transaction prices equals: ( ) ( ) ( )
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The expected transaction price in the auction case equals: 
 
 

( )max

1 1
∞

−∞
 =  = ⋅ =  ∫ BTP Z y f y Z dyE  (18) 

 
 
3. A method for index estimation and correction of sample selection bias 

In order to use expression (13) or (17) to construct an empirically applicable Maximum-likelihood 
estimator of the parameters of the model we now relax the assumption that properties are identical. 
Following Goetzmann and Peng (2006), we define the market value of property  𝑖𝑖 at time 𝑡𝑡, 𝑀𝑀𝑀𝑀𝑖𝑖,𝑡𝑡, as 
the mean of all potential buyers’ private valuations: 

 

( ), ,i t i tMV b m=  (19)
 

 

where 𝑚𝑚𝑖𝑖,𝑡𝑡 are the attributes of property  𝑖𝑖 at time  𝑡𝑡. Denote by ( ),i ts m the mean of all sellers’ 

reservation prices for a property with the attributes 𝑚𝑚𝑖𝑖,𝑡𝑡.  The reservation price of the buyer, 𝑏𝑏𝑖𝑖,𝑡𝑡,  in 
a transaction of property  𝑖𝑖  equals the market value plus an error term, ,

b
i tε : 

 

( ), , ,
b

i t i t i tb b m ε= +  (20) 

 

Similarly, the reservation price of the seller, ,i ts , can be expressed as: 

 

( ) ( ), , , , ,µ ε ε= + + = +s s
i t i t t i t i t i ts b m s m  (21) 
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where ( ) ( ), ,t i t i t t ts m b m s bµ = − = − ,  i.e. the distance between the means of the reservation price 

distributions (assumed to be the same for all 𝑖𝑖) and ,
s
i tε  is the error term of the seller. Since we model 

an observed transaction it must be the case that , ,i t i tb s≥ , or equivalently , ,
b s
i t t i tε µ ε≥ + . Applying 

our bargaining power assumption the price of property 𝑖𝑖 can be expressed as: 

 

( )

( ) ( ) ( )

( ) ( )

( )

, , ,

, , , ,

, , ,

, ,

1

1

1

i t t i t t i t

s b
t i t t i t t i t i t

s b
i t t t t i t t i t

i t i t

TP w s w b

w b m w b m

b m w w w

b m

µ ε ε

µ ε ε

ε

= ⋅ + − ⋅

   = ⋅ + + + − ⋅ +   

= + ⋅ + ⋅ + − ⋅

= +

 (22) 

where 

 

( ), , , , ,1s b b s
i t t t t i t t i t i t t i tw w wε µ ε ε ε µ ε   = ⋅ + ⋅ + − ⋅ ≥ +   E E  (23a) 

 

In the auction case expression (23a) becomes: 

 

, , , ,ε ε ε µ ε   = ≥ +   
b b s

i t i t i t t i tE E  (23b) 

 

When relaxing the assumption that properties are identical, differences between properties must be 
controlled for in the construction of a property price index. Assuming ( ),i tb m is linear in parameters, 

equation (22) can be estimated by running a hedonic regression using OLS and estimate the following 
equation:  

 

𝑇𝑇𝑇𝑇𝑖𝑖,𝑡𝑡 = 𝑏𝑏���𝑚𝑚𝑖𝑖,𝑡𝑡� + 𝜀𝜀�̂�𝑖,𝑡𝑡
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟      (24) 

 

𝑏𝑏���𝑚𝑚𝑖𝑖,𝑡𝑡� is the predicted part of the transaction price and 𝜀𝜀�̂�𝑖,𝑡𝑡
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟  are the residuals. 

Expression (23a) or (23b) is in general not zero while the residuals from estimating (22) using OLS by 
construction has zero mean. Hence, the intercept of the hedonic regression is estimated with bias14. 

                                                           
14 Only the intercept is estimated with bias, not the slope coefficient(s) (Bierens, 2007). This is because the selection process is governed by 

µt ,  𝜀𝜀𝑖𝑖,𝑡𝑡𝑠𝑠  and 𝜀𝜀𝑖𝑖,𝑡𝑡𝑏𝑏  which are all uncorrelated with 𝑚𝑚𝑖𝑖,𝑡𝑡 by assumption.  
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However, the expectation in (23a) or (23b) can be estimated using a Maximum-likelihood estimator 
based on expression (13) or (17) in order to provide the bias correction term for the intercept. 

Denote the means of the buyer and seller reservation price distributions in expressions (13) or (17) at 
time t ,  [ ]t BE  and [ ]t SE ,  with b

tµ  and s
tµ  respectively.  When substituting zero for b

tµ  and 
s b

t t t t ts bµ µ µ= − = −  for s
tµ , the transaction price distribution given by (13) or (17) corresponds to 

the probability density function of the error term ,i tε  in (22).  Hence, by calculating ,t i tε  E   from 

expression (14) or (18) and estimating ,ε i t from the relationship   𝜀𝜀�̂�𝑖,𝑡𝑡 = 𝜀𝜀�̂�𝑖,𝑡𝑡
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟 + ,t i tε  E , all model 

parameters and the bias correction term (23a) or (23b) can be estimated using the residuals in (24) 
as input for the Maximum-likelihood estimator based on (13) or (17). 

Expressions (13) and (17) are very general allowing for basically any well-behaved reservation price 
distributions. In our simulations we assume normal distributions, ( )~ 0, b

tB N σ  and 

( )~ ,s s
t tS N µ σ , thereby limiting the number of moments to estimate to two for the buyer and 

seller reservation price distribution, respectively. We also have to add the Poisson parameter yielding 
in total five parameters to estimate in the auction case. In the case of sequential arrival and 
negotiation, the bargaining power parameter must also be estimated, which is rather demanding 
from a computational point of view. However, since we only need to estimate the distance between 
the means of the buyer and seller reservation price distributions in order to obtain the bias 
correction term we can drop one dimension.  This is done by the substitution of zero for b

tµ  and tµ  

for s
tµ  in expression (13) or (17). An estimate of b

tµ  is retrieved by subtracting the bias correction 
term (23a or 23b) from the mean quality adjusted transaction price. 
 

The Maximum likelihood-estimator has the following form in the case of sequential arrival:
  

Max ∏ 𝑓𝑓𝑡𝑡𝑇𝑇𝑇𝑇 �𝜀𝜀�̂�𝑖,𝑡𝑡
𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟 + ,t i tε  E �  𝑄𝑄𝑡𝑡

𝑖𝑖=1  (25) 

w.r.t. , , , ,b s
t t t t twµ σ σ λ . 

 

In the auction case we have: 
 

Max ∏ 𝑓𝑓𝑡𝑡𝐵𝐵
𝑚𝑚𝑚𝑚𝑚𝑚 �𝜀𝜀�̂�𝑖,𝑡𝑡

𝑟𝑟𝑠𝑠𝑟𝑟𝑟𝑟 + ,t i tε  E �  𝑄𝑄𝑡𝑡
𝑖𝑖=1  (26) 

w.r.t. , , ,b s
t t t tµ σ σ λ . 

 
  
The fact that the estimator works without information about the size of the stock and the turnover 
rate implies an advantage compared to previous models since such information often is difficult to 
obtain. For example, in the empirical application of their model, Goetzmann and Peng (2006) caution 
their results since they lack information about the actual size of the stock of properties and the 
trading volume and therefore must use estimates of these parameters in order for their model to 
work. 
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4. Model simulations 

In the following we perform simulations in order to 1), show how the proposed estimator improves 
on previous research and 2), show how our richer model modifies the conclusion in previous 
research that an index tracking movements of buyer reserves is more volatile than a traditional index 
tracking observed transaction prices. Due to the ease of computation of probability density function 
(17) compared to probability density function (13), and the large amount of simulations we make, 
the auction market case is used in all simulations. 

We generate samples of transaction prices from a stock consisting of 100 000 properties, which with 
our base-case parameter values results in about 5 000 observations, corresponding to a turnover 
rate of 5 percent. One time period is simulated, time indexes are therefore dropped. As in 
Goetzmann and Peng (2006) properties are assumed to vary in one dimension m, where m is 
randomly generated from a uniform distribution [1, 4]. We may think of m as the size of the 
property. 

Buyers’ (or bidders’) and sellers’ reservation prices are generated according to expression (20) and 
(21) respectively, where the market value of a property, ( )ib m , equals im and where the error 

terms ε b
i and ε s

i are normally distributed with standard deviations equal to 𝜎𝜎𝑏𝑏 = 𝜎𝜎𝑠𝑠 = 0.1 in the 
base case15. The search intensity parameter, λ, equals 0.2 meaning that each seller meets an 
expected 0.2 number of buyers during a time period. The mean of buyer reserves (for one unit of m) 
is 1 and the distance between the means of the buyer and seller reserves, 𝜇𝜇, is 0.1 corresponding to a 
mean of seller reserves (for one unit of m) equal to 1.1. 

Transaction prices are generated by allocating to each seller a random number of bidders (Poisson 
distributed with 0.2λ = ) with reservation prices randomly drawn from the buyers’ reservation price 
distribution. A transaction occurs if at least one of the allocated bidders has a reservation price 
higher than the seller’s. Since we simulate the auction case buyers bargaining power is set to zero, 
with the implication that the transaction price equals the reservation price of the highest bidder and 
(dropping the time index) expression (23b) simplifies to [ ] b b s

i i i iε ε ε µ ε = ≥ + E E . 

After generating transaction prices we use the proposed Maximum likelihood estimator given by 
expression (26) to estimate the parameters of the reservation price distributions as well as the 
Poisson parameter. The parameters are found by grid-searching all combinations of reasonable 
parameter values to find the values that satisfy (26). Variation in the attribute m is controlled for by 
running regression (24). We run 100 rounds of simulations for each set of parameter values that we 
want to estimate. 

Since it is not feasible to calculate numerically expression (26) for all possible parameter value 
combinations we have limited the parameter values included in the grid search to intervals with 
endpoints that are sufficiently far from the true parameter values. The intervals were chosen as 
follows: 0 0.25, 0.02 0.25, 0.02 0.25, 0.025 0.75b sµ σ σ λ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤         . More sophisticated 
numerical methods than our grid search method may of course allow search over unlimited intervals, 
but optimizing the numerical estimation method is not within the scope of this research. 

                                                           
15 To obtain the same setting as in Fisher et al. (2003) and Goetzmann and Peng (2006) we may simply interpret the reservation prices as 
the log of the actual reservation prices. 
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An observation that may be related to possible shortcomings of our numerical method is that the 
following bootstrapping approach lowers the variance of our parameter estimates.  For each round 
of simulation we draw 100 random subsamples consisting of 10 percent of the original sample.  Then, 
for each subsample, we estimate the parameters of interest using our grid search method.  After that 
we take, for each parameter, the median of the 100 subsample estimates. This procedure is repeated 
for each of the 100 original samples. When comparing the variance of the 100 estimates of the 
parameters without bootstrapping with the variance of the 100 median estimates of the parameters 
resulting from the bootstrapping approach, the latter produces in general lower variance of the 
estimated parameters. Due to the cumbersome calculations involved in maximizing expression (26) 
no exhaustive comparison was made between parameter estimates with and without bootstrapping, 
but for the various parameter combinations we did test the same pattern remained. The point of 
making inference based on the medians within each original sample instead of making inference 
from the 100 × 100 = 10 000 subsamples directly is that in an application using real data there is 
only one “simulation round”. In this context our observation that bootstrapping improves the 
variance of the parameter estimates compared to the “raw” estimates from the original sample 
alone may be of interest. We, however, caution the above result since it may simply be an artifact of 
our crude estimation method and errors when calculating expression (17) numerically. That is, it may 
be the case that uncorrelated errors in individual sub-samples due to inaccuracy of the numerical 
calculations are “diversified” when taking averages of sufficiently many subsamples.   

We run simulations for four cases, A-D. In case A and B it is demonstrated that the Maximum 
likelihood estimator’s performance is satisfactory. In case A data is generated using equal variance 
for buyer and seller reserves while in case B their variance differ. 100 rounds of simulations are run 
for each case. In this way it is possible to study the performance of the estimator by the mean 
outcome of the 100 estimates as well as the standard deviation of the estimates16.  

Simulations C and D are constructed to illustrate some aspects of how our richer model and 
estimation procedure improves on previous research. Since the model used in case A and B collapses 
into the Goetzmann and Peng (2006) model when restricting the auctions to contain exactly one 
bidder bidding his reservation price, and also restricting the buyer and seller reservation price 
distributions to be identical except for the means, it is convenient to use their model as comparison 
benchmark. 

Transaction prices in simulation C and D are generated in the same manner as in simulation A and B, 
i.e. allowing for a search intensity parameter and for buyer and seller reserves to have different 
variance. We then estimate parameter values using the method of Goetzmann and Peng (2006) 
where it is assumed that all sellers meet exactly one buyer and that buyer and seller reserves have 
identical variance.  As in case A, transaction prices in case C are generated from buyer and seller 
distributions with equal variance. In case D the distributions have different variance. In all cases each 
seller meets an expected 0.2 number of buyers. The results from simulation of case A-D are reported 
in Table 1. 

 

 

                                                           
16 It is not within the scope of this paper to find an optimal method of finding the solution to the maximization problem in (26). We 
demonstrate the results using one possible method. The particular results in terms of precision are thus in part determined by the 
particular numerical calculation method that we use.  
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Table 1. Results from simulations testing the performance of the proposed maximum likelihood estimator. 

 

Expected number 
of buyers per 

seller, 𝜆𝜆 

Mean of 
buyer 

reserves, 𝜇𝜇𝑏𝑏   
Std. of buyer 
reserves, 𝜎𝜎𝑏𝑏 

Mean of 
seller 

reserves, 𝜇𝜇𝑠𝑠 
Std. of seller 
reserves, 𝜎𝜎𝑠𝑠 

”Traditional” 
hedonic price 

index 

Case A: The parameters are estimated using the ML-estimator given by expression (26). 

True value 0.2 1 0.1 1.1 0.1  

Bootstrapping       

Mean of estimates 0.234 1.002 0.097 1.110 0.105 1.094 

Std. of estimates 0.117 0.025 0.006 0.041 0.013 0.002 

No Bootstrapping       

Mean of estimates 0.360 0.986  0.101 1.111 0.103 1.094 

Std. of estimates 0.239 0.043  0.009 0.047 0.016 0.002 

 
Case B: The parameters are estimated using the ML-estimator given by expression (26). 

True value 0.2 1 0.08 1.1 0.12  

Bootstrapping       

Mean of estimates 0.298 0.991 0.081 1.131 0.127 1.060 

Std. of estimates 0.111 0.013 0.003 0.042 0.018 0.002 

No Bootstrapping       

Mean of estimates 0.344 0.990 0.081 1.119 0.125 1.060 

Std. of estimates 0.222 0.024 0.005 0.057 0.028 0.002 

Case C: The parameters of the buyer and seller reserve distributions are estimated with the restriction that each seller 
meets exactly one buyer and  𝜎𝜎𝑏𝑏 and  𝜎𝜎𝑠𝑠 are restricted to be equal. 
True value 0.2 1 0.1 1.1 0.1  
Mean of estimates 0.941 0.104 1.188 0.104 1.094 
Std. of estimates  0.003 0.002 0.003 0.002 0.002 

Case D: The parameters of the buyer and seller reserve distributions are estimated with the restriction that each seller 
meets exactly one buyer and  𝜎𝜎𝑏𝑏 and  𝜎𝜎𝑠𝑠 are restricted to be equal. 
True value 0.2 1 0.08 1.1 0.12  
Mean of estimates 0.924 0.092 1.143 0.092 1.060 

Std. of estimates  0.003 0.001 0.002 0.001 0.002 
The number of simulations for each case is 100. “True values” means the parameter values that were used when 
simulating the samples. Bootstrapping means that mean and standard deviation of parameter estimates are calculated 
using the median parameter estimates (for each round of simulation) from 100 random sub-samples, where each sub-
sample equals 10 percent of the original sample. 

 

The estimated parameters in case A and B are fairly close to their respective true values (the 
parameters used when generating the data) and the standard deviation of the 100 estimates in each 
case is also rather small. In comparison, the Goetzmann and Peng (2006) model also estimates the 
standard deviation of the reserves fairly accurately in case C. However, the buyer reserve mean is 
downward biased by six percentage points and the seller reserve mean is biased upwards by nine 
percentage points. Reserve means are thus estimated far apart relative to their true values. This 
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stems from the fact that Goetzmann and Peng (2006) assume that all properties are on the market in 
each time period. In order for their model to obtain a turnover rate on the order of 5 percent in a 
world where all properties are on the market, the distance between buyers and sellers must be large 
and/or variance small. 

The richer framework we propose allows for the search intensity parameter to partly account for the 
turnover rate. This also allows the intuitively appealing interpretation that not all properties are on 
the market in every time period (see Novy-Marx, 2009, for a discussion of time varying market 
tightness) and that buyers and sellers may have fairly similar views of the values of properties 
without that resulting in a huge turnover. In contrast, Goetzmann and Peng (2006) estimate vast 
differences between buyer and seller reserves in their empirical application using real transaction 
data from the Los Angeles housing market. For example, seller reserve mean is 86 % higher than 
buyer reserve mean at one point while buyer reserve mean is almost twice the seller reserve mean at 
another point, which are arguably not realistic results. These results are not discussed in the paper 
but one may speculate that their model specification is too simplified in that it does not capture 
important features of the price formation in property markets, such as time varying search intensity 
and non-equal moments of the buyer and seller reservation price distributions, as well as time 
varying bargaining power of buyers and sellers. 

In case D, where prices are generated from buyer and seller reservation price distributions with 
unequal variance, the common standard deviation estimated by the Goetzmann and Peng (2006) 
model ends up between the true standard deviations. Buyer and seller means are lower than those 
estimated in case C. For the seller mean this happens to be an improvement from case C with the 
particular parameters used, but for the buyer the estimated mean is further from the true value. 

Table 1 also displays the value of a traditional hedonic price index for each case. This shows an 
important point: reserve means of buyers and sellers are the same in all simulations, yet the price 
index changes. In other words, even if underlying demand and supply are constant over time in terms 
of reserve means, observed transaction prices may change significantly. An index tracking transaction 
prices may thus be more volatile than an index tracking underlying demand (or supply). This result 
represents an important difference from the results in Fisher et al. (2003) and Goetzmann and Peng 
(2006), where changes in observed property prices and turnover rate are solely driven by differential 
movements of the means of buyers’ and sellers’ reservation price distributions17. With this restriction 
transaction prices are always less volatile than the underlying demand. 

Graph 1 shows our opposing result and how price is influenced by the difference in buyer and seller 
reserve variance. For example, the hedonic price changes from 1.131 in the case when 𝜎𝜎𝑏𝑏 = 0.12 and 
𝜎𝜎𝑠𝑠 = 0.08  to 1.060  when 𝜎𝜎𝑏𝑏 = 0.08 and 𝜎𝜎𝑠𝑠 = 0.12,  keeping the other parameters constant. But 
price also changes when buyers’ and sellers’ common variance changes. When both buyers’ and 
sellers’ reserve variance changes from 0.1 to 0.05, price changes from 1.094 to 1.067. Hence, unless 
there are compelling reasons why the second and higher moments of the reservation price 
distributions should be equal and constant over time, imposing restrictions on the moments may 
significantly bias estimates of distribution parameters. 

                                                           
17 Krainer (2001) also derive the result that prices vary less than buyers’ valuations although his result is driven by different causes. 
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Graph 1. Comparison of a hedonic price index with the mean of the buyers’ and sellers’ reservation price 
distributions when standard deviations of the reservation price distributions changes according to case A-D in 
Table 1. 

 

𝜆𝜆 is 0.2. Turnover is 4.6-4.7 percent for all the parameter cases in Graph 1 except for the case where standard deviation is 
0.05 for both buyers and sellers where turnover is 1.5 percent. 

Why would the second and higher moments be time varying and/or differ between buyers and 
sellers? Firstly, one may hypothesize that due to the price discovery process the buyers’ reservation 
price distribution is skewed to the left and the sellers’ reservation price distribution is skewed to the 
right. That is, only a smaller fraction of potential buyers are prepared to pay much more than 
observed prices while many potential buyers (those who are not actively searching) have reservation 
prices significantly below observed prices and vice versa for potential sellers18. Secondly, if we 
consider the characteristics of different phases in a property cycle one would typically expect that 
turnover increases in an upturn, giving buyers and sellers more price information which would lead 
to smaller variance in reserves compared to when turnover is lower. Thirdly, in a down-turn sellers’ 
reservation prices may become more dispersed than the buyers’ as some sellers are reluctant to, or 
cannot, lower their reservation price (e.g. due to mortgages restrictions, see discussion in e.g. 
Springer, 1996), while other sellers choose to lower their reservation prices significantly in order to 
sell quickly e.g. due to financial distress. The point here is not to give an exhaustive discussion on 
why the second and higher moments of the reservation price distribution would be unequal among 
buyers and sellers and time varying, but to argue that this idea is not just of theoretical interest.  
 
In the context of our model of sequential search not only movements in reserve means and variation 
in reserve variance affect the level of transaction prices significantly. Also variation over time of the 
bargaining power parameter, w, will act in the direction of increasing the volatility of observed 
transaction prices compared to that of the underlying reservation price distributions. For this to be 
the case buyers bargaining power should vary counter-cyclically, i.e. buyers (sellers) bargaining 
                                                           
18 While we are not simulating distributions that are skewed in this manner, the maximum-likelihood estimator in expression (26), which is 
derived in a completely general form, easily accommodate such a specification. 
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power should increase (decrease) in a downturn and vice versa in an upturn, which seems plausible, 
see e.g. Novy-Marx (2009) and Carillo (2013). Using US residential real estate transaction data Carillo 
(2013) empirically estimates variation over time of sellers’ bargaining power during the time period 
1998-2009 and obtains estimates ranging from 0.4 to 0.9 (where zero means no bargaining power 
and 1 means complete bargaining power). 

Graph 2 shows that prices may vary significantly when bargaining power changes.  When  going from 
a market in which the seller has most of the bargaining power ( 𝑤𝑤 = 0.1) to a market in which the 
opposite is the case (𝑤𝑤 = 0.9), keeping all moments of the buyer and seller reserve distributions and 
the search intensity constant, the price index changes from 1.084 to 1.019. Hence, similar to the case 
of changes in the variance of the reservation price distributions, variation in bargaining power alone 
may make observed transaction prices more volatile than the underlying reservation price 
distributions.  

Graph 2 Comparison of a hedonic price index with the mean of the buyers’ and sellers’ reservation price 
distributions when the bargaining power parameter, 𝑤𝑤, changes from 0.1 to 0.9. 

 

The following parameter values are used: 𝜆𝜆 = 0.2, 𝜇𝜇𝑏𝑏 = 1, 𝜇𝜇𝑠𝑠 = 1.1, 𝜎𝜎𝑏𝑏 = 0.1,  𝜎𝜎𝑠𝑠 = 0.1 . 

Finally, assuming that search intensity is higher in an upturn than in a downturn (Novy-Marx, 2009), 
variation over time of the search intensity parameter, 𝜆𝜆, also affects the price index in the way of 
making it more volatile. For example, if we change 𝜆𝜆 from 0.2 to 1 in case A, the price changes from 
1.095 to 1.105 and turnover increases from 4.6 percent to 19.3 percent. 

 

5. Conclusions 

We derive a model of property transaction prices in a search market where changes in observed 
transaction prices and transaction volumes are driven by changes in buyers’ and sellers’ reservation 
price distributions as well as changes in search intensity and bargaining power over the property 

0,9

0,95

1

1,05

1,1

1,15

0,1 0,3 0,5 0,7 0,9
Bargaining power (w)

price index buyer reserve mean seller reserve mean



22 
 

cycle. We further derive a new Maximum-Likelihood estimator of the parameters of the reservation 
price distributions as well as the search intensity parameter and the bargaining power parameter. 
The estimator uses observed transaction prices (adjusted for property characteristics) as input. 

We show that the estimator works as intended by performing simulations where the estimator 
successfully recovers the parameters used to generate the data in the simulations. We further show 
that one of the central results in the previous literature that an index tracking observed transaction 
prices is always less volatile than an index tracking the underlying buyer reservation price distribution 
does not hold in a more realistic model of search and price formation.  In our richer model setting 
observed transaction prices may be more volatile than the underlying demand for realistic parameter 
values.  This is an important observation since movements of the underlying demand and supply 
capture fundamental property market information that is not captured by observed transaction 
prices alone.  

Whether or not our model contributes with less biased indexes tracking buyer and seller reserves 
compared to more restrictive models in previous research is in the end an empirical question. We 
believe, however, that the new features of our model have strong empirical support.  Sellers do not 
meet exactly one buyer during a typical index period. There is no reason why buyers’ and sellers’ 
reservation price distributions should be identical except for the first moments, nor that they should 
be constant over time. It is unlikely that the bargaining power of buyers and sellers respectively 
should be constant over the property cycle. Our model does not rely on these restrictions. 

 

This research was supported by generous grants from the Swedish Bank Research Foundation 
(Bankforskningsinstitutet). 

 

References 

Bierens,H.J. 2007. Maximum likelihood estimation of Heckman’s sample selection model. Working 
Paper, Pennsylvania State University. 
 
Carillo, P. 2013. To sell or not to sell: Measuring the heat of the housing market. Real Estate 
Economics 41.2: 310-346. 
 
Clayton, J., G. MacKinnon and L. Peng. 2008. Time variation of liquidity in the private real estate 
market: An empirical investigation. Journal of Real Estate Research 30.2: 125-160. 
 
Fisher, J., D. Gatzlaff, D. Geltner and D. Haurin. 2003. Controlling for the impact of variable liquidity in 
commercial real estate price indices. Real Estate Economics 31.2: 269-303. 
 
Fisher, J., D. Geltner and H. Pollakowski. 2007. A quarterly transactions-based index of institutional 
real estate investment performance and movements in supply and demand. Journal of Real Estate 
Finance and Economics 34.1: 5-33. 
 
Gatzlaff , D.H. and D.R. Haurin. 1997. Sample Selection Bias and Repeat-Sales Index Estimates.  
Journal of Real Estate Finance and Economics 14.1-2: 33-50. 
 
Gatzlaff , D.H. and D.R. Haurin. 1998. Sample Selection and Biases in Local House Value Indices. 
Journal of Urban Economics 43.2: 199-222. 
 



23 
 

Goetzmann, W. and L. Peng. 2006. Estimating house price indexes in the presence of seller 
reservation prices. The Review of Economics and Statistics 88.1: 100-112. 
 
Han, L. and W. Strange. 2014. Bidding war for houses. Real Estate Economics 42.1: 1-32. 
 
Heckman, J. 1979. Sample selection bias as a specification error. Econometrica 47.1: 153-161. 
 
Hungria-Gunnelin, R.  2013. Impact of Number of Bidders on Sale Price of Auctioned Condominium 
Apartments in Stockholm. International Real Estate Review, 16.3: 274-295. 
 
Krainer, J. 2001. A Theory of Liquidity in Residential Real Estate Markets. Journal of Urban Economics 
49: 32-53. 
 
Novy-Marx, R. 2009. Hot and cold markets. Real Estate Economics 37.1: 1-12. 
 
Quan, D. and J. Quigley. 1991. Price formation and the appraisal function in real estate markets. 
Journal of Real Estate Finance and Economics 4: 127-146. 
 
Springer, T.M. 1996. Single-family housing transactions: seller motivations, price, and marketing 
time. Journal of Real Estate Finance and Economics 13.3: 237-254. 

http://kth.diva-portal.org/smash/record.jsf?dswid=3396&pid=diva2:475853
http://kth.diva-portal.org/smash/record.jsf?dswid=3396&pid=diva2:475853

