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Abstract

Striatal medium spiny neurons (MSNs) play a crucial role in various motor and cognitive func-

tions. They are separated into those belonging to the direct pathway (dMSNs) and the indi-

rect pathway (iMSNs) of the basal ganglia, depending on whether they express D1 or D2 type

dopamine receptors, respectively. In this thesis I investigated the input processing of both MSN

types, the characteristics of dMSN outputs, and the effect that aberrant iMSN activity has on

the subthalamic nucleus-globus pallidus externa (STN-GPe) network.

In order to verify a previous result from a computational study claiming that dMSNs should

receive either more or stronger total input than iMSNs, I performed an analysis of in vivo whole-

cell MSN recordings in healthy and dopamine (DA) depleted (6OHDA) anesthetized mice. To test

this prediction, I compared subthreshold membrane potential fluctuations and spike-triggered

average membrane potentials of the two MSN types. I found that dMSNs in healthy mice

exhibited considerably larger fluctuations over a wide frequency range, as well as significantly

faster depolarization towards the spiking threshold than iMSNs. However, these effects were

not present in recordings from 6OHDA animals. Together, these findings strongly suggest that

dMSNs do receive stronger total input than iMSNs in healthy condition.

I also examined how different concentrations of dopamine affect neural trial-by-trial (or response)

variability in a biophysically detailed compartmental model of a direct-pathway MSN. Some

of the sources of trial-by-trial variability include synaptic noise, neural refractory period, and

ongoing neural activity. The focus of this study was on the effects of two particular properties

of the synaptic input: correlations of synaptic input rates, and the balance between excitatory

and inhibitory inputs (E-I balance). The model demonstrates that dopamine is in general a

significant diminisher of trial-by-trial variability, but that its efficacy depends on the properties

of synaptic input. Moreover, input rate correlations and changes in the E-I balance by themselves

also proved to have a marked impact on the response variability.

Finally, I investigated the beta-band phase properties of the STN-GPe network, known for

its exaggerated beta-band oscillations during Parkinson’s disease (PD). The current state-of-

the-art computational model of the network can replicate both transient and persistent beta

oscillations, but fails to capture the beta-band phase alignment between the two nuclei as seen

in human recordings. This was particularly evident during simulations of the PD condition,

where STN or GPe were receiving additional stimulation in order to induce pathological levels

of beta-band activity. Here I show that by manipulating the percentage of the neurons in

either population that receives stimulation it is possible to increase STN-GPe phase difference

heterogeneity. Furthermore, a similar effect can be achieved by adjusting synaptic transmission

delays between the two populations. Quantifying the difference between human recordings and

network simulations, I provide the set of parameters for which the model produces the greatest

correspondence with experimental results.
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Zusammenfassung

“Striatal Medium Spiny Neurons“ (MSNs) spielen eine essentielle Rolle in verschiedensten Motor-

und kognitiven Funktionen. Sie werden unterschieden in solche, die dem direkten (dMSNs)

und dem indirekten (iMSNs) Signalweg der Basalganglien zugeordnet werden, abhängig davon

ob sie D1- oder D2-typ Dopaminrezeptoren exprimieren. In dieser Arbeit untersuche ich die

Eingangsverarbeitung beider MSN-Typen, die Charakteristiken von dMSN-Ausgängen, sowie

den Effekt, den anomale iMSN-Aktivität auf das “Subthalamischer Nucleus-Globus Pallidus

Externa” (STN-GPe)-Netzwerk hat.

Um die Ergebnisse einer vorangehenden rechnergestützten (computational) Studie zu verifizieren,

die den Anspruch erhebt, dass dMSNs entweder mehr, oder stärkeren Eingang als iMSNs bekom-

men sollten, habe ich in-vivo Ganzzellen-MSN-Messdaten in gesunden und Dopamin (DA)-

abgereicherten (6OHDA) anästhesierten Mäusen analysiert. Um diese Vorhersage zu prüfen,

habe ich Schwankungen des Membranpotentials unterhalb der Feuerschwelle und Spike-induzierte

mittlere Membranpotentiale jener beiden MSN-Typen verglichen. Ich fand heraus, dass in gesun-

den Mäusen sMSNs deutlich größere Schwankungen über eine große Frequenzspanne, sowie eine

signifikant schnellere Depolarisation hin zur Feuerschwelle zeigen als iMSNs dies tun. In Mess-

daten von 6OHDA-Versuchstieren hingegen waren diese Effekte nicht zu beobachten. Diese

beiden Befunden zusammengenommen legen nahe, dass in gesundem Zustand dMSNs stärkeren

Gesamteingang erhalten als iMSNs.

Zudem habe ich untersucht inwiefern verschiedene Dopaminkonzentrationen neurale “trial-by-

trial”-variabilität bzw. Antwort-Variabilität in einem biophysikalisch detaillierten Kompartiment-

Modell von dMSNs beeinflussen. Quellen von trial-by-trial-Variabilität sind unter anderem

synaptisches Rauschen, neurale Refraktionszeit und fortlaufende neurale Aktivität. Der Schwer-

punkt dieser Studie lag auf dem Effekt zweier bestimmter Eigenschaften von synaptischem Ein-

gang: Zum einen Korrelationen von synaptischen Eingangsraten, zum anderen die Balance zwis-

chen anregenden und hemmenden Eingängen (“E-I-balance”). Das Modell zeigt, dass Dopamin

im allgemeinen die trial-by-trial-Variabilität erheblich verringert, aber seine Wirkungskraft von

den Eigenschaften des synaptischen Eingangs abhängt. Darüber hinaus hat es sich herausgestellt,

dass Korrelationen der Eingangsraten und Änderungen in der E-I-Balance für sich genommen

ebenfalls deutlichen Einfluss auf die Antwortvariabilität haben.

Schließlich habe ich die Beta-Band Phaseneigenschaften des STN-GPe Networks untersucht, von

welchem bekannt ist, dass im Falle von Parkinson (PD) in übersteigertem Maße Beta-Band Os-

zillationen stark erhöht sind. Der mathematische Modell nach aktuellem Stand der Wissenschaft

ist in der Lage sowohl das transiente, sowie auch anhaltende Beta-Oszillationen zu replizieren,

scheitert aber daran die Beta-Band-Phasenbeziehung zwischen den zwei Nuklei zu erfassen, wie

sie in Messungen am Menschen beobachtet wird. Dies war besonders deutlich ersichtlich bei

Simulationen des Parkinson-Zustands, bei welchen STN oder GPe zusätzlich stimuliert werden

um pathologische Niveaus von Beta-Band-Aktivität zu herbeizuführen. Durch diese Ergebnisse

zeige ich, dass durch Anpassen des Bruchteils – wie viele Neuronen derjenigen der beiden Popu-

lationen die Stimulation erhält, tatsächlich stimuliert werden – es möglich ist, die Heterogenität

der STN-GPe-Phasendifferenzen zu erhöhen. Ein ähnlicher Effekt kann erreicht werden, in dem
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man die synaptischen Transmissionszeiten zwischen den beiden Populationen anpasst. Um die

Diskrepanz zwischen Daten aus Messungen am Menschen und Daten aus Netzwerksimulatio-

nen zu quantifizieren, liefere ich Parameterwerte für die die Ergebnisse des Modells die größte

Übereinstimmung mit den experimentellen Daten zeigen.
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Abstrakt

Striatala medium spiny neuroner (MSNs) spelar en stor roll för olika motoriska och kognitiva

funktioner. Beroende p̊a huruvida dessa neuroner uttrycker dopaminreceptorer av D1- eller D2-

typ, klassificeras de som tillhörande den direkta (dMSN) respektive den indirekta (iMSN) vägen

genom basala ganglierna. I denna avhandling undersöker jag hur inputet fr̊an kortex till de tv̊a

typerna av MSNs processas och jag karakteriserar aktiviteten fr̊an dMSNs, samt undersöker även

vilken effekt avvikande iMSN aktivitet ger upphov till i det basala ganglienätverk som best̊ar av

den subthalamiska kärnan (STN) och globus pallidus externa (GPe).

För att verifiera resultaten fr̊an en tidigare modelleringsstudie, som predicerat att dMSNs erh̊aller

fler eller f̊ar starkare inputs fr̊an kortex jämfört med iMSNs, analyserade jag in vivo data

fr̊an MSN ’wholecell’ registreringar gjorda i nedsövda möss som antingen tillhört en kontroll-

grupp (friska möss) eller en grupp där dopamin (DA) reducerats m.h.a. 6OHDA. För att testa

modellprediktionen jämförde jag subtröskliga membranpotentialfluktuationer och spik-triggade

medelvärdesbildade membranpotentialer fr̊an de tv̊a typerna av MSNs. Jag upptäckte att dM-

SNs fr̊an kontrollgruppen uppvisade avsevärt större fluktuationer över ett brett frekvensintervall

och ocks̊a hade en snabbare depolarisering mot spiktröskeln jämfört med iMSNs. Dessa effekter

syntes dock inte i experimentella data fr̊an de djur som behandlats med 6OHDA. Sammantaget

tyder dessa observationer p̊a att dMSNs i friska möss f̊ar starkare kortexinput än iMSNs.

Jag använde även en biofysikaliskt detaljerad kompartmentmodell av en dMSN för att undersöka

hur olika dopaminkoncentrationer p̊averkar responsvariabiliteten vid upprepade försök. Synap-

tiskt brus, neuronens refraktärperiod s̊aväl som den p̊ag̊aende nätverksaktiviteten kan utgöra

orsaker till responsvariabiliteten. I den här studien fokuserade vi p̊a effekten av tv̊a egen-

skaper hos synapsinputet: korrelationer mellan synapsernas aktiveringsfrekvens, och balansen

mellan de excitatoriska och inhibitoriska inputen (E-I balansen). Modellen visar att dopamin

generellt förminskar responsvariabiliteten signifikant, men att effekten beror p̊a synapsinputets

egenskaper. Dessutom fann jag att b̊ade korrelationer i inputfrekvensen och förändringar i E-I

balansen hade en stark inverkan p̊a responsvariabiliteten

Slutligen undersökte jag STN-GPe nätverkets egenskaper vad gäller faskopplingen i beta-bandsomr̊adet,

vilket är intressant eftersom oscillationer med beta-bandsfrekvenser ses vid Parkinson’s sjukdom

(PD). Dagens state-of-the-art nätverksmodeller kan reproducera b̊ade transienta och persistenta

betaoscillationer, men kan inte f̊anga den faskoppling mellan STN och GPe inom beta-bandet

som ses i data fr̊an människa. Detta är särskilt tydligt vid simulering av PD, när STN eller

GPe stimuleras extra för att inducera patologiska niv̊aer av beta-bandsaktivitet. Jag visar att

genom att ändra den andel av neuronerna i de tv̊a kärnorna som stimuleras, är det möjligt

att öka heterogeniciteten i fasskillnaden mellan STN och GPe. Dessutom kan en liknande ef-

fekt även erh̊allas genom att ändra fördröjningen i synapserna mellan de tv̊a populationerna.

Genom att kvantifiera skillnaderna mellan humana data och nätverkssimuleringarna kunde jag

bestämma den uppsättning parameterar där modellen producerar den största likheten med de

experimentella resultaten.
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Chapter 1

Introduction

The basal ganglia (BG) is a set of interconnected subcortical nuclei involved in sev-

eral critical brain functions, including action selection, motor control, and reinforcement

learning (Figure 1.1A) (Averbeck and Costa, 2017, Groenewegen, 2003). Their dysfunc-

tion is implicated in such pathologies as Parkinson’s disease (PD), Huntington’s disease,

and other movement-related disorders, but also addictive behavior, depression, anxiety,

and similar (Albin et al., 1989, Miller, 2007). Given this, understanding both function

and dysfunction of the BG is of supreme importance not just for neuroscience, but also

for medicine and other related fields.

The main input station and the largest nucleus of the basal ganglia is the striatum –

“the striped body”, named for its patterned white-and-grey matter appearance. The

striatum receives direct input from multiple cortical and thalamic regions, with different

upstream areas innervating different striatal sections (Wall et al., 2013).

Anatomically, the striatum is a complex and fairly large brain structure composed of

ventral and dorsal sections. The ventral striatum consists of the nucleus accumbens and

the olfactory tubercle, and is associated with limbic system and reward-related behavior

(Tremblay et al., 2009). The dorsal striatum is divided into the caudate nucleus and the

putamen that are separated by a layer of white matter called the internal capsule, and is

involved in motor function and associative learning (Anderson et al., 2017, Groenewegen,

2003). Both striatal sections are targets of dopamine (DA) neurons, with the ventral

striatum being innervated from the ventral tegmental area in the midbrain (mesolimbic

pathway), and the dorsal striatum receiving dopaminergic projections from substantia

nigra pars compacta (SNc), another of the BG nuclei (Ikemoto, 2010, Lammel et al.,

2011, Lynd-Balta and Haber, 1994).

1



Chapter 1. Introduction 2

Fig 1.1. The basal ganglia with their constituent nuclei. Figure taken from https:

//beyondthedish.wordpress.com/tag/basal-ganglia/.

The most prominent targets for dopamine afferents are medium spiny neurons (MSNs),

the principal neurons of the striatum that comprise 95% of its total neuronal population.

MSNs are GABAergic cells that receive excitatory inputs from cortex and thalamus and

inhibitory inputs from several different types of striatal interneurons, as well as lateral

inhibitory connections from other MSNs. This makeup makes the striatal network a

purely inhibitory one, driven only by excitation coming from upstream brain areas. Ad-

ditionally, MSNs are divided into two groups based on which dopamine receptor they

express: D1-type MSN group that includes D1 and D5 receptors and whose excitability

is increased by the presence of dopamine, and D2-type MSNs that express D2, D3, and

D4 receptors that get suppressed with increased DA levels. The two MSN types are also

the originators of the “direct” and “indirect” neural pathways of the basal ganglia that

are thought to regulate action selection and voluntary movement (Figure 1.2) (Gerfen

and Scott Young, 1988, Nambu, 2004). D1-type MSNs are associated with the direct

pathway, and are thus often abbreviated as “dMSNs”, while D2-type MSNs are consid-

ered to be a part of the indirect pathway and are similarly called “iMSNs”. This is also

the notation that is going to be used throughout this thesis.
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Fig 1.2. Functional pathways in the basal ganglia. Blue connections indicate stimula-
tion, and red arrows suppression of the target. The left side of the figure represents a human
brain in normal conditions, whereas the right side shows the changes in connection strengths
during Parkinson’s disease. Figure taken from https://commons.wikimedia.org/wiki/File:

DA-loops_in_PD.jpg.

1.1 A short history of the striatal research

While the structure, composition, and the assumed function of the striatum as described

above are textbook knowledge today, the road to these discoveries was very long. Indeed,

it started already in the 2nd century AD with Claudius Galenus, a Greek physician and

surgeon in the Roman Empire also known as Galen of Pergamon. He was the first to

leave a written record of basal forebrain structures that he named glutia (buttocks)

(Parent, 2012). Yet, it wasn’t until the 16th century and the Flemish anatomist Andreas

Vesalius that the first illustrations including delineations of the basal ganglia structures

could be found (Figure 1.3A). Even though Vesalius’s work was of great importance,

he didn’t provide any specific labeling of BG nuclei. This was remedied by Thomas

Willis who, apart from coining the term “neurology”, had very detailed drawings of

the basal ganglia made for his 1664 treatise Cerebri anatome (Figure 1.3B). Giving a

special focus to the structure he named corpus striatum, he hypothesized that it had

a crucial role in the control of motor behavior (Parent, 2012). Over the span of the
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Fig 1.3. Graphical representations of the BG of old. A Andreas Vesalius’s depiction
of the BG from the 16th century, showing a horizontal section through the human brain.
Putamen and thalamus can be recognized in the right hemisphere in the sections labeled with
the letter D, and tracts of white matter labeled with E and roughly corresponding to internal
capsule can be seen separating them. B Depiction of the BG found in Thomas Willis’s 17th

century text Cerebri anatome. Corpus striatum on the right side has been bisected to expose
the eponymous striations. Figures taken from Parent (2012).

next two centuries, several prominent European anatomists and physiologists further

improved on the knowledge of basal ganglia, providing ever more detailed illustrations

and delineating many of the discrete BG nuclei. However, only with the work of Karl

Friedrich Burdach in the 19th century was that the striatum received more attention. In

his seminal work Vom Baue und Leben des Gehirns, published in three parts between

1819 and 1826, Burdach recognized that caudate nucleus and putamen were different

structures divided by the internal capsule. He also described the globus pallidus (GPe),

substantia nigra (SN), claustrum, and the external capsule, with the subthalamic nucleus

(STN) being the only one of BG constituents left unexplored (Parent, 2012).

Even though the caudate and putamen were now treated as separate nuclei, a common

embryonic origin of the two structures was discovered by Carl Wernicke (1876), and their

identical structures together with a connecting region described by Charles Foix and Ion

Nicolesco (1925). Finally, Cécile and Oskar Vogt (1941) and one of their students,

Harald Brockhaus (1942), established the single term “striatum” for all elements that

were previously considered individual parts of the corpus striatum: the caudate nucleus,

the putamen, and the narrow bridge of grey matter that connected them called “fundus

striati” (Percheron et al., 1994).



Chapter 1. Introduction 5

A quite fascinating aspect of the history of striatal research is the discovery of cortico-

striatal connections. Namely, already in the second half of the 19th century Theodor

Meynert (1871) and Jules Bernard Luys (1882) speculated about the striatum being the

source of the motor tract in the brain, which consequently necessitated the presence of a

cortico-striatal connection. However, during this period several anatomical experiments

performed by Jean Martin Charcot (1876), Paul Flechsig (1877), and Wernicke (1880)

demonstrated the existence of the pyramidal tract and its independence with respect to

the basal ganglia. This resulted in the rejection of the idea of a cortico-striatal connection

for the following 80 years, with many of the prominent neurophysiologists and anatomists

of the first half of the 20th century (Joseph Jule Dejerine, S.A.K. Wilson, M.A. Souques,

Foix, Nicolesco) denying its existence (Percheron et al., 1994). The whole issue stemmed

from the fact that the cortico-striatal axons are very fine and – most importantly – not

myelinated, while the staining methods used in that period were myelin-based. This of

course prevented the anatomists from observing the presence of such connections. Not

until an influential topographical study of Janet Kemp and Thomas Powell in 1970 was

the cortico-striatal projection explicitly identified Jones (1999).

The history of striatal pathophysiology began with the description of caudate atrophy

in Huntington’s disease (although it is contested whether the initial discovery was made

by G. Anton in 1896, or by Alois Alzheimer in 1911), and continued with the Vogts

who were convinced of the major role of the basal ganglia in motor disorders (Percheron

et al., 1994).

Chief among BG pathologies, Parkinson’s disease was described a century earlier (origi-

nal essay reproduced in Parkinson 2002), but its mechanism was an enigma until 1970s.

An aspect of PD that was known at the start of the 20th century was the dying out of

neurons of substantia nigra pars compacta (SNc), and different lesion experiments have

provided several different explanations of the cause of the disease. At the 1921 meeting

of the Society of Neurology devoted to Parkinsonian symptoms, proponents of each of

these explanations came to a head: the “nigrists”, the “pallidists”, the “rubrists”, and

the “mixed” group. Over the following decades, several of the prominent researchers (in-

cluding the Vogts and Wilson) changed their opinions and came to believe that it was

indeed a pallidal lesion that was responsible for PD. Only in 1971 had the research by

Raymond Escourolle and associates revealed for the first time the dopaminergic nature

of nigro-striatal connection and the effectiveness of the L-Dopa treatment in alleviating

Parkinsonian symptoms (Percheron et al., 1994).

While anatomical studies provided much knowledge about the structure of the basal

ganglia they weren’t able to provide much insight into its function. Nevertheless, their

involvement with motor function was established based on efferent projections from the
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globus pallidus that terminate in the ventral thalamus, which in turn projects to the

motor cortex (DeLong, 1971). With the advent of extracellular single-unit recordings in

1957 (Gusel’nikov, 1957, Hubel, 1957, Ricci et al., 1957) and other more involved tech-

niques later on, studies in both anesthetized (Denny-Brown, 1962, Jung and Hassler,

1960, Adey and Dunlop, 1960) and moving (Travis and Sparks, 1967, DeLong, 1971)

animals paved the way for the first functional maps of the basal ganglia circuitry. Dur-

ing the 1980s, anatomical and physiological studies pointed towards the existence of at

least two separate BG-thalamocortical loops based on the origin of cortical afferents to

different portions of the striatum (Figure 1.4A) (Alexander et al., 1986). By the end of

the decade, with the discovery that striatal medium spiny neurons belonging to stria-

tonigral pathway express D1 dopamine receptor and those belonging to striatopallidal

pathway express D2 dopamine receptor, the full description of the BG circuitry was

almost complete (Figure 1.4B) (Albin et al., 1989). Finally, Alexander and Crutcher

(1990) proposed a schema that for the first time brought forward the notion of “direct”

and “indirect” pathways (Figure 1.4C ). This box-and-arrow plot is, with smaller or

larger modifications, still in use to this day.

The following thirty years of research brought much more detailed knowledge of the

function and dysfunction of the basal ganglia and its main input station, the striatum.

And while we are still discovering new aspects of this circuitry, the focus of modern-day

investigations are on describing the correlates of behavior and functional deficits in the

electrophysiological activity of the BG nuclei.

1.2 Neural correlates of brain function and dysfunction in

the basal ganglia

The functions of the basal ganglia are as varied as they are complex. The BG is primar-

ily known as a motor control processing hub, receiving inputs from sensory and motor

cortices, limbic structures, as well as thalamus (Wall et al., 2013), and being involved

in action selection: choosing an action sequence to perform based on internal state of

the system and external conditions (Balleine et al., 2007, Redgrave et al., 1999). Action

selection has been the subject of many computational studies investigating potential

neural substrates that would support such a mechanism (Bahuguna et al., 2015, Bis-

sonette and Roesch, 2015, Gurney et al., 2001a,b, Guthrie et al., 2009, Morita et al.,

2016, Tomkins et al., 2014), as well as experimental ones examining the role of dopamine

in selecting an appropriate action (Howard et al., 2017, Surmeier et al., 2009, Tai et al.,

2012). Some of these studies were also conducive for practical implementations in robotic

agents (Bahuguna et al., 2019b).
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Fig 1.4. Evolution of functional box-and-arrow maps of the BG. A Probably the first
functional diagram of the BG circuitry, from Alexander et al. (1986). While then-hypothesized
“funnel” structure of BG-thalamocortical connectivity is prominent, here was also the fist
time that the presence of multiple parallel loops within BG was proposed (denoted with A,
B, and C). B A more complete functional map of the BG in healthy brain, taken from Albin
et al. (1989). In this seminal study several different variants of this circuitry were proposed,
depending on which BG pathology was discussed. C The first box-and-arrow plot where direct
and indirect pathways of the BG were directly mentioned, taken from Alexander and Crutcher
(1990). This same configuration of boxes, with some minor modifications, is still in use to this
day.
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The basal ganglia is also a part of the brain’s limbic system, playing a crucial role

in association and reinforcement learning. It is now a well established fact that phasic

striatal dopamine release after a stimulus or an event represents reward prediction error,

with the spike in striatal DA concentration encoding a reward better than the prediction,

maintained levels of DA encoding no prediction error, and a DA concentration dip

encoding omission of a predicted reward (Schultz et al., 1997, Schultz, 2016). The

literature covering different aspects of this mechanism is rich, both in its experimental

(e.g. Cox et al. 2015, Kasanova et al. 2017) and theoretical treatment (e.g. Daw et al.

2005, Frank 2004). Reinforcement learning is also an interesting research topic in the

context of the many disorders of the basal ganglia (Keiflin and Janak, 2015, Maia and

Frank, 2011).

Considering the complexity of the BG system and the functions it performs, it is not

surprising that it finds itself at the center of a multitude of brain disorders (Albin et al.,

1989). The most prominent of these is certainly Parkinson’s disease, the second most

common neurodegenerative disorder after Alzheimer’s disease (McGregor and Nelson,

2019). In PD, the loss of dopaminergic neurons leads to hypoactivity of dMSNs and

hyperactivity of iMSNs, causing a severe disbalance of the direct and indirect pathways

and a host of symptoms such as tremor, bradykinesia, rigidity, etc. (Albin et al., 1989,

DeLong, 1990). The treatment through dopamine precursor L-DOPA, while effective,

also results in its own set of issues for the majority of the PD patients (Carvalho et al.,

2017).

Involvement of the basal ganglia in other disorders also bears a brief mention:

– Tourette’s syndrome: seen specifically as a disorder of the striatum. Although

there are currently several competing hypotheses of the precise mechanism of

Tourette’s, they are all linked with increased binding of the dopamine transporter

and its effect on MSNs (Albin and Mink, 2006, Hienert et al., 2018).

– Huntington’s disease: characterized by the direct loss of iMSNs and the resulting

disbalance of direct and indirect pathways (Andre et al., 2011, Barry et al., 2018).

– Schizophrenia: elevated striatal DA levels and abnormal cortico-striatal reward

processing have been heavily implicated in the pathogenesis of its symptoms (De-

serno et al., 2016, Garofalo et al., 2017).

– Impulsive, compulsive, and addictive behaviors: while the origins of these types of

disorders are complex and can affect multiple brain regions, most of them include

alterations of the mesolimbic dopaminergic system or changes in DA receptor avail-

ability that directly affect the striatum and the balance of the two BG pathways

(Barlow et al., 2018, Yager et al., 2015).
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It is obvious that a common thread through most of these disorders is some form of break-

down of dopaminergic signaling in the striatum and the consequent (electro)physiological

adaptations and aberrant input-output processing of medium spiny neurons. Therefore,

expanding our knowledge of MSNs is paramount for proper understanding of the function

and dysfunction of the basal ganglia as a whole.

1.3 Research questions

Striatal medium spiny neurons have been the focus of much attention over the years,

especially in the context of dopaminergic modulation and its dysfunction during Parkin-

son’s disease (for detailed reviews, see (Silberberg and Bolam, 2015, Tritsch and Sabatini,

2012, Zhai et al., 2018)). Crucially, apart from different dopamine receptors they ex-

press, both anatomical and electrophysiological dichotomies have been found between

direct and indirect pathway MSNs (Gertler et al., 2008). Furthermore, the entire striatal

connectome is asymmetrical, with dMSNs being preferentially targeted by striatal fast-

spiking interneurons (FSIs), and iMSNs forming stronger connections to dMSNs than

vice versa (Planert et al., 2010, Taverna et al., 2008). However, until recently not much

has been known about relative strength of excitatory inputs to the two MSN types. A

series of studies performed in vitro has suggested that afferent synapses differ between

dMSNs and iMSNs (Doig et al., 2010, Lei et al., 2004, Wall et al., 2013), and more

recently, provided more conclusive evidence that dMSNs receive stronger corticostriatal

and thalamostriatal inputs compared to iMSNs. A theoretical study by Bahuguna et al.

(2015) also postulated that, considering the asymmetry in striatal connectivity, in order

for dMSN and iMSN activities to be properly balanced it is required that direct-pathway

neurons receive either more or stronger excitatory input (Figure 1.5). Here I provide

the first evidence from in vivo whole-cell recordings in anesthetized animals that dMSNs

indeed do receive stronger total input, and that this difference is attenuated in 6OHDA

lesioned mice. This work is explained briefly in the section Differential input to MSNs

and then in detail in Chapter 2.

Medium spiny neuron outputs have mostly been considered in the context of direct and

indirect pathway processing, and global changes to their average firing rates triggered by

the loss of midbrain dopamine neurons during PD. By contrast, the question I explore

briefly in Response variability of MSNs and more deeply in Chapter 3 revolves around

the variability of dMSN output firing rates in response to synaptic input. Response

—or trial-by-trial —variability, is a well-established neural property (Faisal et al., 2008,

Shadlen and Newsome, 1998), and its sources have been traced to synaptic noise (Faisal

et al., 2008, Mainen and Sejnowski, 1995), refractory period (Kara et al., 2000), and
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Fig 1.5. Schematic of the striatal connectome. Thickness of the connections denotes
its strength. Note the proposed increased strength of cortico-dMSN connection as opposed to
cortico-iMSN one. Figure taken from Bahuguna et al. (2015).

ongoing neural activity (Arieli et al., 1996). However, to the best of my knowledge,

there has been no study of the influence of input rate correlations and the changes in

excitation-inhibition balance on neural response variability. In combination with these

input modalities, I also examine how dopaminergic modulation specific to dMSNs leads

to changes in their output variability, and thus directly impacts their function in both

health and disease.

Finally, MSNs through their efferents connect and direct the dynamics of the down-

stream BG nuclei. Specifically, indirect pathway MSN projections onto globus pallidus

externa have a direct impact on the STN-GPe network, with an increase of iMSN output

inhibiting GPe neurons and inducing elevated levels of beta-band activity. It has been

suggested in both experimental and theoretical studies that hyperactivity of iMSNs in

dopamine-depleted striatum is directly responsible for generation of pathological beta-

band oscillations that arises during PD (Corbit et al., 2016, Kondabolu et al., 2016,

Kumar et al., 2011). Indeed, a network model from our laboratory captures well this

dynamics (Kumar et al., 2011, Mirzaei et al., 2017); however, it is unable to reproduce

the STN-GPe phase alignment integral to beta-band activities of the two nuclei, as

recorded in human PD patients (Cagnan et al., 2015). In Chapter 4 I propose a modifi-

cation of the STN-GPe network model that enables the system to partially capture this

phase alignment, and quantify the correspondence between the simulated and the ex-

perimentally obtained data. This topic is briefly covered in the section Phase alignment

heterogeneity in STN-GPe network.
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1.4 Methods

In this thesis I used numerical simulations, signal processing methods, and statistical

analyses to explore properties of MSNs and of the STN-GPe network.

Numerical simulations were used in Chapters 3 and 4, but in different capacities. In

Chapter 3 a compartmental biophysically detailed model of a single direct-pathway

MSN was used to explore its output response variability over different trials and various

levels of dopamine for three distinct input modalities: when excitatory and inhibitory

inputs were independent, when their mean rates were correlated over different trials,

and when their balance was modified. We performed a thorough literature search in

order to quantify and properly model the modulatory effects of dopamine on a D1-

receptor expressing MSN. More detailed description of the model and the methodology

underlying its construction can be found in Lindroos et al. (2018).

In Chapter 4 I extended an already existing numerical network model of the STN-

GPe circuit (Kumar et al., 2011, Mirzaei et al., 2017) to study the emergence of phase

heterogeneity of beta-band oscillations in both control and stimulated (Parkinsonian)

conditions. I performed a grid-search over different stimulation configurations to find a

set of parameters that would provide the best match with the data obtained from human

patients (Cagnan et al., 2015), quantified by an error measure derived from residual sum

of squares (RSS).

Signal processing was used in Chapters 2 and 4. In both chapters I used filtering and

power spectral analysis to obtain relevant signals either from in vivo recorded membrane

potentials (Chapter 2), or from population PSTHs (Chapter 4). Additionally, I employed

Hilbert transform in Chapter 4 to obtain envelope and phase data of beta-band signal,

as well as beta-burst thresholding technique described in Tinkhauser et al. (2017a).

For Chapter 2 I have devised an elaborate post-hoc method of estimating the effective

membrane time constant based on combined approach of numerical simulations, spectral

analysis of recorded data, and analysis of the filtering properties of neural membranes.

Finally, in Chapter 2 I have devised and implemented a hard-thresholding algorithm for

detection of up- and down-states in MSN recordings, and implemented a method for

extraction of spike-triggered averages described in Léger et al. (2005).

The compartmental model was implemented in NEURON simulator with PyNN Python

interface (Hines and Carnevale, 1997, Hines, 2009). Network simulations were imple-

mented in NEST simulator (http://nest-initiative.org) (Peyser et al., 2017). For Chapter
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2 data analysis was performed in MATLAB R2016a (Mathworks, Inc.), and for Chap-

ter 3 and 4 in Python 2.7 with various open source libraries, such as NumPy, SciPy,

Matplotlib, etc.

1.5 Summary of the results

1.5.1 Differential input to MSNs

The striatum is the main input structure of the basal ganglia, and its principal cells are

GABAergic medium spiny neurons. MSNs comprise around 95% of striatal neuronal

population, and are divided into two main types depending on whether they express

D1 or D2 dopamine receptors. D1R-expressing MSNs (dMSNs) belong to the direct

pathway of the basal ganglia, projecting directly to globus pallidus interna (GPi), which

releases the thalamus from inhibition and allows movement to initiate. Conversely, D2R-

expressing MSNs (iMSNs) are part of the indirect pathway and project to globus pallidus

externa (GPe), whose inhibition in turn disinhibits subthalamic nucleus (STN), which

then excites GPi, thus finally inhibiting the thalamus and stopping a movement. The

balance of activity of the two basal ganglia pathways is crucial for its proper function

Cui et al. (2013), and one of its determinants is the synaptic input to the striatum. It

is known that both MSN types receive convergent excitatory input from the majority

cortical and some of the thalamic areas (Wall et al., 2013). In the recent years there has

been an attempt to uncover whether there are any differences in the type of input that

dMSNs and iMSNs receive. Numerous conflicting studies tried to answer this question

(Arias-Garćıa et al., 2017, Deng et al., 2015, Doig et al., 2010, Lei et al., 2004, Mallet,

2006, Wall et al., 2013), until Parker et al. (2016) provided strong evidence from in vitro

recordings in mice that both cortical and thalamic inputs are biased to dMSNs.

However, significant differences exist between recordings performed in brain slices and

those obtained from living animals. In vitro research, while essential, has some important

shortcomings: recorded neurons have much reduced connectivity due to the plane of

cutting, and their membrane is mostly hyperpolarized due to lack of synaptic inputs.

As a consequence, synaptic conductances measured in vivo can be very different from

those in vitro (Destexhe et al., 2003). Thus, in Chapter 2 I proceed to analyze whole-cell

MSN membrane voltage recordings obtained from anesthetized mice, and to show for

the first time in vivo that in synaptically-driven up-states dMSNs receive either stronger

or more total input than iMSNs. While it should be noted that, due to the nature of

the recordings, it has been impossible to determine whether this difference is caused by

an increase in excitatory or inhibitory inputs, the end result still provides experimental
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support for the previous theoretical prediction made by Bahuguna et al. (2015). In

addition, I demonstrate that the difference in MSN up-state inputs is attenuated in the

case of dopamine depletion, a find which corresponds to the similar one in a previous

study in MSN down-states (Ketzef et al., 2017). Finally, the analysis in this study

also indicates that MSNs in up-states operate in a synaptically driven high-conductance

regime akin to that seen in pyramidal neurons, which resembles the awake state of an

animal (Destexhe et al., 2003, Haider et al., 2013).

1.5.2 Response variability of MSNs

Noise is omnipresent in the central nervous system (CNS) (Shadlen and Newsome, 1998).

One of its aspects at the neuronal level is trial-by-trial (or response) variability, defined

as differences between responses that are observed when the same experiment is repeated

in the same specimen —or in our case, in the same neuron (Faisal et al., 2008). This type

of variability has two main sources. One arises from deterministic responses to variable

initial conditions: if the initial condition of a neural system differs between trials, the

resulting outputs will also differ. A perfect example for this source of noise was described

by Arieli et al. (1996), who described how response variability in cat local field potentials

(LFP) was the result of superposition of the deterministic evoked signal and the current

state of the ongoing activity. The second source are stochastic fluctuations in the neural

signal itself, exemplified by noise in membrane and synaptic conductances (Faisal et al.,

2008, Mainen and Sejnowski, 1995, Schreiber et al., 2004).

Neural response variability is usually quantified by Fano factor (FF), which scales the

response variance with its mean. A perfectly regular neuron would have Fano factor of

zero, while a highly variable Poissonian neuron would have FF of one. Throughout the

CNS there are examples of highly variable neurons with FFs exceeding one, but also of

others which are closer to zero, sometimes to be found even in the same region (Faisal

et al., 2008).

In Chapter 3 I employ Fano factor to measure how neuronal trial-by-trial variability

is influenced for different synaptic input modalities. For this purpose I am using a

biophysically detailed compartmental model of a direct pathway MSN with realistic

dopaminergic modulation (Lindroos et al., 2018). I test how a dMSN responds over trials

to repeated synaptic stimulation, with E and I input rates drawn either from independent

or correlated distributions, and what are the effects of changes in input E-I balance on

the trial-by-trial variability. I combine these two input modalities with dopaminergic

modulation to further investigate how dMSN behaves in dopamine depleted conditions
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(such as during PD), and how for very high DA concentrations (which can occur during

reinforcement learning).

During the course of this study I find that dopamine generally acts as a significant

diminisher of trial-by-trial variability, but that its efficacy in this respect is dependent

on the properties of synaptic input. Moreover, input rate correlations and changes in

E-I balance prove to have by themselves a significant impact on the response variability,

with an increase in correlations decreasing the variability, and the change in E-I balance

having a more complex effect. Both of these input modalities are further complicated

in the situation where dopamine levels are not fixed but are fluctuating.

1.5.3 Phase alignment heterogeneity in STN-GPe network

During the course of Parkinson’s disease, dopaminergic neurons located in substantia

nigra pars compacta (SNc) gradually die off, severely limiting the supply of dopamine

to the basal ganglia. Dopamine depletion initially results in hyperactivity of iMSNs and

hypoactivity of dMSNs, which in turn leads to the loss of balance between the direct and

indirect BG pathways and the dysfunction of basal ganglia as a whole. On the exterior,

these changes manifest as tremor in extremities, bradykinesia, stooped posture, and

other Parkinsonian symptoms.

One of the effects of PD is an increase in beta-band (15-35Hz) LFP power of BG,

caused by oscillations between STN and GPe (Brown et al., 2001). The source of these

pathological beta oscillations is, however, contested. One hypothesis is the disbalance in

the inputs to the STN-GPe circuitry, through the strengthening of the indirect pathway

and increased inhibition of GPe, or through increased input to the STN (Kumar et al.,

2011). Another suggestion is that the origin of oscillations lies within the STN-GPe

network itself, in the disrupted reciprocal connectivity between the two nuclei (Tachibana

et al., 2011, Mirzaei et al., 2017). Both of these approaches have received theoretical

treatment, and the resulting network model successfully reproduced beta-band activity

in both normal and PD conditions (Kumar et al., 2011, Mirzaei et al., 2017). However,

in Chapter 4 I show that this model is unable to capture the heterogeneity of STN-

GPe beta-band phase alignment that has been observed in recordings from human PD

patients (Cagnan et al., 2015). I proceed to demonstrate that by stimulating only a

certain percentage of STN and/or GPe populations the network model can exhibit the

full heterogeneity of STN-GPe phase difference distributions, and furthermore, that

the choice of the synaptic transmission delays has a significant impact on these beta-

band phase profiles. What is more, I show that the resulting phase profiles show a

not inconsiderable degree of overlap with those recorded in PD patients, for a particular
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choice of model parameters. The major benefit of this modification is that it improves the

model by bringing it more in line with experimental findings, while keeping it tractable

for analysis by tools such as mean field theory (Bahuguna, 2017).

1.6 Key advancements

The overview of the key findings described in this thesis are as follows:

• I provide experimental evidence that dMSNs receive either more or stronger synap-

tic input than iMSNs, and that this difference between the two MSN types is

attenuated in dopamine-depleted animals. While similar claims have been made

for in vitro preparations in the past, this is the first such finding from in vivo

recordings. This result also gives a direct support to the previously established

theoretical prediction, and in combination with it, contributing an important piece

of information for future theoretical and modelling studies. (See Chapter 2).

• I propose an explanation of the response variability of dMSNs for different levels

of dopaminergic modulation. I show how the trial-by-trial variability is affected in

a nonmonotonic way from DA depletion (that is, in a PD-like condition) to very

high DA concentrations (such as during reward learning). Moreover, I show how

different synaptic input paradigms, such as input rate correlations and changes

in excitation-inhibition input balance, can directly influence dMSN variability in

non-trivial manner. I hypothesize that these effects provide additional context to

reinforcement and motor learning. (See Chapter 3)

• I propose a version of the STN-GPe network model that exhibits STN-GPe beta-

band phase alignment heterogeneity similar to that as seen in human Parkinson

patients. The previous versions of the model efficiently explained the generation of

beta-band oscillations in this circuit, but could not capture the interplay of STN

and GPe beta-band phase activity, nor the entire phase spectrum that the currently

proposed model can. I demonstrate that by stimulating only a certain percentage of

both STN and GPe populations, the model can generate SNT-GPe phase difference

profiles that approach those in experimental recordings. Furthermore, I found that

the choice of synaptic delay parameter is one of the major factors of phase difference

heterogeneity. Importantly, these results give support to the notion of the presence

of multiple processing channels in individual BG nuclei. (See Chapter 4)
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2.1 Introduction

The striatum is the largest nucleus in the basal ganglia (BG) and acts as its main input

structure. GABAergic medium spiny neurons (MSNs) are the striatal projection neu-

rons and constitute about 95% of the striatal neuronal population. D1 type dopamine

17
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receptor expressing MSNs (dMSNs) project to the substantia nigra pars reticulata and

globus pallidus interna and constitute the ’direct pathway’, whereas D2 type dopamine

receptor expressing MSNs (iMSNs) project to the globus pallidus externa and consti-

tute the ’indirect pathway’. A balance in the activity of the two pathways is essential

for correct functioning of the BG, and is disrupted in BG-related pathologies such as

Parkinson’s disease (PD). To understand how the direct and indirect pathways shape

BG function, we need to quantify both the upstream excitatory inputs into the striatum

and the recurrent inhibitory connections within and between dMSNs and iMSNs.

The dMSNs and iMSNs differ in their connectivity: iMSN to dMSN connectivity (13%)

is much higher than dMSN to iMSN (4.5%), whereas dMSN to dMSN connectivity (7%)

is much lower than iMSN to iMSN (23%) (Taverna et al., 2008, Planert et al., 2010).

Moreover, GABAergic fast-spiking interneurons (FSIs) connect preferentially to dMSNs

compared to iMSNs (53% vs. 36%) (Gittis et al., 2010). That is, dMSNs receive overall

more inhibition than iMSNs. Despite these differences, both dMSNs and iMSNs exhibit

similar average activity in awake behaving animals (Cui et al., 2013, Sippy et al., 2015).

Using a computational model we recently predicted that dMSNs should receive stronger

excitatory input than iMSNs (either through more synapses, stronger synapses, or

stronger input rates and/or correlations), so that both dMSNs and iMSNs may have

comparable firing rates (Bahuguna et al., 2015). Recent ex vivo recordings suggest that

cortico-striatal synapses on dMSNs may be stronger than those on iMSNs (Parker et al.,

2016) (however, see Lei et al. (2004), Kress et al. (2013), Doig et al. (2010), Deng et al.

(2015)). While this data supports the theoretical predictions, it is well known that in

vivo synaptic conductances can be very different from ex vivo measurements (Destexhe

et al., 2003).

Even though it is hard to estimate the full strength and numbers of individual synapses

impinging on dMSNs and iMSNs experimentally, a relative difference in the total input

to the two neuron types can be estimated by analyzing in vivo intracellular membrane

potential fluctuations. In particular, the variance (or the spectral power) of the mem-

brane potential fluctuations is proportional to the square of the synaptic strength (Kuhn

et al., 2004). That is, by comparing the spectra of sub-threshold membrane potential

in vivo we can test whether dMSNs indeed receive stronger total input than iMSNs, as

was theoretically predicted (Bahuguna et al., 2015).

Therefore, we recorded and analyzed the in vivo membrane potentials of dMSNs and

iMSNs from healthy and dopamine-depleted anaesthetized mice using whole-cell patch

clamp recordings. These neurons exhibited alternating periods of high and low activity

(called up- and down-states, respectively), characteristic of recordings in animals under

ketamine-induced anaesthesia (Wilson and Kawaguchi, 1996). We found that dMSNs
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exhibited higher spectral power in their up-states than iMSNs over a wide range of fre-

quencies in healthy mice. In addition, bilateral whisker stimulation in healthy animals

showed that sensory inputs evoked larger responses in dMSNs than in iMSNs. Despite

these differences, the membrane time constants of the two MSN types were not sig-

nificantly different. Therefore we can conclude that the observed stronger membrane

potential fluctuations are indicative of stronger synaptic inputs and/or higher input cor-

relations. Finally, we found that dopamine depletion abolished the difference in spectral

power of up-state membrane potential fluctuations between dMSNs and iMSNs, high-

lighting the role of dopamine in maintaining the activity balance between the direct and

indirect pathways.

Thus, our study provides the first experimental in vivo evidence of stronger synaptic

input to the direct-pathway of the mouse dorsolateral striatum, and demonstrates that

this difference is attenuated in dopamine-depleted animals.

2.2 Methods

Experimental Methods

Ethics approval. All experiments were performed according to the guidelines of the

Stockholm municipal committee for animal experiments under an ethical permit to G.S.

(N12/15). D1-Cre (EY262 line) or D2-Cre (ER44 line, GENSAT) mouse line were

crossed with the Channelrhodopsin (ChR2)-YFP reporter mouse line (Ai32, Jackson

laboratory) to induce expression of ChR2 in either dMSNs or iMSNs, respectively. Mice

of both sexes were housed under a 12-hour light-dark cycle with food and water ad

libitum. All experiments were carried out during the light phase.

6OHDA lesioning. Mice (12 males and females 8-10 weeks of age) were anesthetized with

isoflurane and mounted in a stereotaxic frame (David Kopf Instruments, Tujunga, Cal-

ifornia). The mice received one unilateral injection of 1 µL of 6OHDA-HCl (3.75 µg/µL

dissolved in 0.02% ascorbic acid) into the medial forebrain bundle (MFB), according

to the following coordinates (Paxinos and Franklin, 2004): antero-posterior −1.2mm,

medio-lateral 1.2mm and dorso-ventral −4.8mm. After surgery, all mice were injected

with Temgesic (0.1mg/kg, Reckitt Benckiser, Berkshire, England) and allowed to re-

cover for at least 2 weeks. Sham and unlesioned mice (n=21 of both sexes) served as

controls, their data were pooled after no differences were found between the groups.

Only 6OHDA injected mice that showed rotational behavior (Santini et al., 2007) were

used in our experiments (see Ketzef et al. 2017 for more details).
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In vivo recordings. Experiments were conducted as described previously (Reig and Sil-

berberg, 2014, Ketzef et al., 2017). Briefly, 2-3 weeks post-lesioning, mice were anes-

thetized by intraperitoneal (IP) injection of ketamine (75mg/kg) and medetomidine

(1mg/kg) diluted in 0.9% NaCl. To maintain mice under anaesthesia, a third of the

dose of ketamine was injected intraperitonally approximately every 2 hours or in case

the mouse showed response to pinching or changes in EcoG patterns. Mice were tra-

cheotomized, placed in a stereotactic frame, and received oxygen enriched air through-

out the recording session. Core temperature was monitored with a feedback-controlled

heating pad (FHC) and kept on 36.5±0.5 ◦C. Patch clamp recordings were performed

in the dorsolateral striatum since the sensory and motor areas project topographically

onto it (McGeorge and Faull, 1989). The skull was exposed and a craniotomy was

drilled (Osada success 40) 3.5-4mm lateral to the bregma, and the dura was removed.

Patch pipettes were pulled with a Flaming/Brown micropipette puller P-1000 (Sutter

Instruments). Pipettes (7-10MΩ, borosilicate, Hilgenberg), back-filled with intracellular

solution, were inserted with a ∼1500mbar positive pressure to a depth of about 2mm

from the surface, after which the pressure was reduced to 30-35mbar. The pipette was

advanced in 1 µm steps in depth (35 degrees angle), in voltage clamp mode. When a cell

was encountered, the pressure was removed to form a Gigaseal, followed by application

of a ramp of increasing negative pressure until a cell opening was evident. Recordings

were performed in current clamp mode. Intracellular solution contained (in mM): 130

K-gluconate, 5 KCl, 10 HEPES, 4 Mg-ATP, 0.3 GTP, 10 Na2-phosphocreatine, and 0.2-

0.3% neurobiotin or biocytin (pH=7.25, osmolarity ∼285mOsm). The exposed brain

was continuously covered by 0.9% NaCl to prevent drying. Signals were amplified using

a MultiClamp 700B amplifier (Molecular Devices) and digitized at 20 kHz with a CED

acquisition board and Spike 2 software (Cambridge Electronic Design).

Optogenetic identification of in vivo recorded neurons. To obtain on line identification

of whole-cell recorded neurons, we used the optopatcher (Katz et al., 2013) (A-M sys-

tems, WA USA). Computer controlled pulses of blue light (7mW LED, 470 nm, Migh-

tex systems) were delivered through an optic fiber inserted into the patch-pipette while

recording the responses in whole-cell configuration (Fig. 2.1A). Light steps (500ms)

were delivered every 2-5 seconds with increasing intensity between 20 to 100% of full

LED power (2.1mW at the tip of the fiber). Positive cells responded to light stimulation

by step-like depolarization with or without firing, whereas negative cells did not show

any response (Fig. 2.1B, and see Ketzef et al. (2017) for full characterization).

Whisker stimulation. Air puffs were delivered by a picospritzer (Picospritzer III, Parker

Hannifin) through plastic tubes (1mm diameter) positioned up to a centimeter from the

mouse’s whiskers. Air puff stimulations (15ms) were delivered at 0.2Hz and at least
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Fig 2.1. MSNs classification using the optopatcher. To facilitate the classification
of MSNs as belonging to either the direct (dMSN) or indirect (iMSN) pathway in vivo, we
utilized an optogenetic approach. In either D1-Cre or D2-Cre animals crossed with ChR2
reporter mouse, we selectively expressed ChR2 in dMSNs or iMSNs, respectively. Using the
optopatcher, we could deliver focal light stimulation to the recorded cell and classify its identity
’online’ during whole cell patch recordings. A Illustration of the experimental approach (left).
In anesthetized mice, the optopatcher is introduced through the craniotomy. The optic fiber
is inserted into the patch pipette and light application is focal. MSNs of both pathways
are intermingled (right), positive cells (green) express ChR2 and YFP, whereas negative cells
(black) do not. B Whole cell patch recording from positive (left) and negative (right) cells in
a D2-ChR2 mouse. When the blue light is activated (470 nm, 0.5 s), positive cells depolarize
immediately, whereas negative cells are not affected. Each example shows 10 repetitions (gray),
overlaid by the average trace (green for positive and black for negative cells).

30 responses were acquired for each stimulation condition. The air pressure was set to

103.4-137.9 kPa (15-20PSI).

2.2.1 Data Analysis

Up- and down-state detection. The detection of up- and down-states was done offline

using an automated algorithm. The data collection was done independent of the up-down

state detection algorithm and its parameters. For each membrane potential recording,

we used a short time window (20-100ms, depending on the noise level in the recording)

to identify sudden transitions in the membrane potential with an amplitude sufficiently

large to cross the cell-specific up-state or down-state thresholds. Upon detection of such

a transition, we classified the following voltage period as an up-state or a down-state (Fig.

2.2A). The next sufficiently large membrane potential transition in the opposite direction

marked the ending of that state. State thresholds were determined by finding the two

main peaks of the bimodal voltage histogram of the entire trace, and by empirically

adjusting these thresholds for the best detection rate (see also Léger et al. (2005) and

Fucke et al. (2011)). In cells where the overall baseline voltage level fluctuated over
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time, we either used only the most stable section of the recording or discarded the entire

recording. All states with a duration shorter than 40ms were discarded from the analysis

(Mukovski et al., 2007).

For the purpose of characterizing the sub-threshold membrane potential dynamics anal-

ysis we excluded all up-states during which spiking occurred (however see the Fig. 2.4

where we considered spikes). Moreover, we also excluded a state from further analysis

if one or more of the following criteria was met: (1) an up-state was interrupted by a

down-state shorter than 25ms (both states were discarded), (2) the mean membrane

potential of a down-state exceeded the global average down-state potential for that cell

by more than 3%, (3) a recording artefact was present, or (4) a whisker stimulation

trigger occurred either during the state or 200ms preceding the state.

Finally, for all remaining states, we removed 5% of the data, from the start of the

state and before the end of the state, to minimize the impact of state transitions on the

measured variables.

Power spectral density (PSD) estimation. The PSD estimate of an up-state membrane

voltage trace was determined by first subtracting the mean potential from the remainder

of the trace, and then by applying the MATLAB periodogram function with Bartlett-

Hann windowing. The minimal detectable frequency in individual up-state PSDs was

set as the inverse of the duration of that state. For each cell, all such up-state PSD

estimates were averaged to obtain a single power spectral density curve (Fig. 2.2B, gray

traces). When comparing PSDs across cell groups (dMSNs vs. iMSNs), we constructed a

grand-average PSD for each group by averaging over PSDs of individual cells (Fig. 2.2B,

color traces). Frequencies below 5Hz were disregarded because we observed only few

up-states longer than 200ms. Additionally, all frequency content between 45 and 55Hz

was removed to avoid power line contamination. We restricted the higher frequency

range to 150Hz, adopting this as the upper limit of the high-gamma band in our study.

Experimental data suggest that in a variety of behavioral conditions, both ongoing and

evoked activity show modulation in specific frequency bands (Buzsáki, 2006). Therefore,

we divided PSD estimates obtained in this manner into five standard frequency bands:

sub-α (5-8Hz), α (8-13Hz), β (13-30Hz), low-γ (30-70Hz), and high-γ (70-150Hz),

to determine whether MSNs are attuned to receive specific frequency inputs from the

cortex. We also analyzed the spectra by splitting it into low and high frequency bands

(i.e. 5-13Hz and 13-150Hz). To calculate the total power within any one frequency

band for each cell, we isolated the section of interest of the PSD estimate and integrated

the area under the curve.



Chapter 2. Synaptic inputs to striatal MSNs 23

Due to very low levels of spectral power during the down-states, the line noise power

precluded any meaningful PSD comparison across the two cell groups.

Effective membrane time constant estimation. We estimated the effective membrane

time constant τm from the in vivo membrane potential fluctuations by the following

method. For a narrow enough voltage range, the membrane of a neuron can be approx-

imated as a linear low-pass filter. Then, for that narrow voltage range, τm is directly

proportional to the membrane capacitance and inversely related to the total membrane

conductance. Thus, to minimize non-linear voltage-dependent effects, to account for

the voltage dependence of τm (Kuhn et al., 2004), and to be able to treat the neuron

membrane as a linear low-pass filter, we first binned the average membrane potentials

of all states in 0.5mV wide bins. Then we estimated the power spectral density of indi-

vidual states belonging to each bin and averaged over the estimates in order to reduce

noise, as explained in the previous section. Further noise reduction was achieved by

smoothing the averaged PSD estimate with a Gaussian kernel, and the resulting curve

was used to extract the cutoff frequency fc, calculated as the point where the maximal

value of the smoothed PSD estimate fell to one half (−3 dB point, Fig. 2.3A). The initial

effective membrane time constant τ inim was then calculated as 1/(2πfc). We repeated

this procedure for a series of narrow voltage ranges across different instances of up-

and down-states within a single cell, in order to avoid non-linearities induced by large

excursions of the effective membrane conductance.

The smoothing of the average PSD estimate introduces a shift of the−3 dB point, leading

to an erroneous estimation of the effective membrane time constant. The magnitude and

sign of the error depend, in a non-linear fashion, on the width of the Gaussian kernel

used for smoothing in the frequency domain, and the duration of the original signal in

the time domain. To account for this error, we numerically determined a correction

term τCm, which we could then add to the initially estimated value τ inim , to obtain the

final MSN membrane time constant estimate τm. This correction term was calculated as

follows. We constructed multiple surrogate “neuronal” time series by filtering Gaussian

white noise signals of different durations through a set of low-pass Butterworth filters

(third order, zero-phase) with predetermined cutoff frequencies. Thus, for each of the

surrogate time series we knew the actual time constant (τactual) of the underlying low-

pass filter. We then proceeded to make an initial estimate of the time constant (τ ini) as

described above, using a single fixed value for the kernel width of the Gaussian smoothing

function (kw = 12). The error term was then defined as τC = τactual − τ ini. Using

this approach, we obtained the correction term τC for signals of different durations and

filters with different time constants. Next, we defined τC as a function of τ ini and signal

duration (Fig. 2.3B) to obtain the correction term τCm for our estimates of the MSN
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membrane time constant. Finally, the effective MSN membrane time constant τm was

determined by adding the corresponding τCm to the initial estimate τ inim .

The main weakness of this method stems from the necessity of averaging the spectral

data over many trials of sufficient duration and power. That is, for the most precise

estimation, the trials (states) should preferably be at least 250ms long, and the input to

the neurons should have rich enough frequency content to uncover the membrane cutoff

frequency (comparable to injecting white noise into the in vitro recorded neuron).

Due to the underlying approximations and limitations of the method, the estimated

values of the membrane time constants should not be treated as actual, precise values of

those neurons’ τm. Nevertheless, our approach does return consistent and comparable

results across different cells when applied to the recorded data. Moreover, our analysis

employing the τm estimation procedure uncovers differences in membrane time constant

of the down-states similar to those previously reported in Ketzef et al. (2017) (Fig. 2.3D).

Spike-triggered average (STA) calculations. For every recorded neuron that spiked we

extracted 12ms of the pre-spike voltage traces. The duration of this particular time

window was chosen as it roughly represents the average membrane integration window for

synaptic input in the up-states, based on the estimations of the effective membrane time

constants across different cell groups (Fig. 2.3D). For every cell, spikes were identified

in the voltage trace, and the intervals from 0.25ms before to 5ms after the spike events

were removed from the trace. The spiking threshold was then determined as the largest

fluctuation of the first derivative of the remaining trace. The times when the derivative

of the full trace crossed the threshold were taken as spike onset times. For the purpose

of calculating the average of these pre-spike voltage traces (STA), we did not include

any spikes occurring during state transitions, that initiated less than 12ms after the

start of an up-state, or which were occurred earlier than 17ms after the previous spike

in the same up-state. The remaining pool of spikes was divided into those that were

the result of spontaneous neuronal activity and those that arose as the consequence of

whisker stimulation. If, after these selections. the pool contained at least three spikes,

the STA was calculated.

The STAs were compared using a permutation test. For each group comparison we

collected all the cell-average traces into a single pool, shuffled their indices, and generated

randomized groups by drawing as many traces from this common shuffled pool as the

original groups had. For each such generated randomized group, we constructed a grand-

average STA. We repeated this process 1,000 times. Significance lines were determined

as the 2.5% and 97.5% of the voltage distributions of the random grand-average traces

for each time point. The range of voltage distributions differed between groups when the

number of traces belonging to randomized groups for a single comparison was different
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(e.g., for the comparison of spontaneous vs. evoked iMSN STAs, we had 11 spontaneous

and 4 evoked cell-average traces). This difference is reflected in the voltage ranges

depicted in the graphs, but it does not affect the validity of the permutation test.

Statistical methods. Unless noted otherwise, the data are presented as mean ± SEM

and were tested for normality using the Shapiro-Wilk test. Normally distributed data

were tested by the unpaired two-sample Student’s t-test, and non-normally distributed

data by the Wilcoxon rank-sum test (ttest2 and ranksum in MATLAB, respectively).

The significance level α was set to 0.05. In the case of PSD comparison over differ-

ent frequency bands (Fig. 2.2D), the results were corrected for multiple testing by the

Holm-Bonferroni correction (Holm, 1979), and both the corrected α-level (αHB) and the

calculated p-value are reported.

All data analyses were performed using custom scripts written in MATLAB R2016a

(Mathworks, Inc.).

2.3 Results

To estimate the relative strength of excitatory synaptic inputs to striatal neurons, we

obtained in vivo whole-cell patch clamp recordings of MSNs from the dorsolateral stria-

tum in control (dMSN n = 26, iMSN n = 18, total n = 44) and 6OHDA lesioned mice

(dMSN n = 16, iMSN n = 12, total n = 28). We used optogenetic stimulation to classify

MSNs online during the recording session as belonging to either the direct or indirect

pathway using the optopatcher (Katz et al., 2013). Both dMSNs and iMSNs showed

slow-wave membrane potential oscillations (up- and down-states), characteristic of neu-

rons recorded in animals under ketamine-induced anesthesia (Wilson and Kawaguchi,

1996) (Fig. 2.2A). During the up-state, MSNs receive barrages of excitatory inputs from

the neocortex and the thalamus. We, therefore, analyzed the variance and spectrum of

the up-state membrane potential traces to assess the respective synaptic inputs to the

two MSN types.

2.3.1 dMSNs have higher spectral power in up-state than iMSNs

If a neuron soma is treated as a simple linear integrator, the mean and variance of

the subthreshold membrane potential fluctuations is primarily determined by the firing

rate, the number of excitatory and inhibitory inputs to a given cell, and their synaptic
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strength (Kuhn et al., 2004):

µv = Ur + λe

∫

EPSP(t)− λi

∫

IPSP(t)dt

σ2
v = λe

∫

EPSP(t)2dt+ λi

∫

IPSP(t)2dt (2.1)

where µv and σ2
v are the voltage-dependent mean and variance of the membrane po-

tential, Ur is the resting membrane potential, λe and λi are the rates of excitatory and

inhibitory inputs, respectively, and EPSP(t) and IPSP(t) describe the temporal shape

of excitatory and inhibitory post-synaptic potentials.

From Eq. 2.1 it is clear that excitatory and inhibitory inputs have an opposite effect on

the mean of the membrane potential of a cell receiving synaptic input. By contrast, be-

cause the calculation of the variance involves the square of the PSPs kernel, an increase

in either excitatory or inhibitory inputs always results in an increase of the variance of

the membrane potential (Eq. 2.1). Against this background, consider two neurons, ns

and nw, receiving inputs via stronger and weaker synapses, respectively. The excitatory

and inhibitory inputs to these two neurons can be tuned such that both ns and nw have

the same mean membrane potential. However, due to the stronger synaptic weights and,

hence, larger post-synaptic potentials, the neuron ns will exhibit a larger membrane po-

tential variance than the neuron nw. This example illustrates that the mean membrane

potential is not an adequate measure for the overall synaptic input, but by compar-

ing the variances it is possible to determine if two neurons receive different amounts of

synaptic inputs. This requires that the two neurons receive uncorrelated synaptic inputs

and that their membrane time constants are similar.

Since the variance in time-domain equals the power spectral density (PSD) in frequency

domain (Parseval’s theorem), the PSD gives an estimate of the variance for every fre-

quency in the signal (Papoulis and Pillai, 2002). Therefore, we measured the PSD of

the membrane potential for every detected up- and down-state of a cell (Fig. 2.2A, see

Methods).

For each MSN type we constructed a grand-average PSD estimate for both control and

6OHDA conditions (Fig. 2.2B). Direct comparison of these grand-averages revealed that

dMSNs had consistently higher PSD than iMSNs over all examined frequency bands

under control conditions. In particular, in three prominent, higher-frequency bands (β:

13-30Hz, Z = 2.47, p = 0.0135, αHB = 0.0167; low-γ: 30-70Hz, t(42) = 2.72, p = 0.0095,

αHB = 0.01; and high-γ: 70-150Hz, Z = 2.57, p = 0.01, αHB = 0.0125) dMSNs

showed significantly higher power than iMSNs (Fig. 2.2C, top left). Because the total

power spectral density of the membrane potential in a selected frequency band equals

the variance of the membrane potential in that frequency band (Papoulis and Pillai,
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2002), the heightened power of dMSN up-state membrane potentials in control animals

is indicative of stronger voltage fluctuations as compared to iMSNs. Unlike under control

conditions, in the DA-depleted striatum we found no difference in the spectral power

of up-state membrane potential fluctuations of dMSNs and iMSNs (across all bands

p > 0.69, Fig. 2.2C, top right). Comparison of the up-state control vs. DA-depleted

conditions revealed a significant difference in dMSN α-band (8-13Hz) power (Z = 2.71,

p = 0.0068, αHB = 0.01). DA depletion did not affect the spectral power of iMSN

(control vs. DA-depleted conditions across all bands had p-values above corrected alpha

levels).

In down-states, there was no significant difference in spectral power of dMSNs and

iMSNs in either condition (the calculated p-values were always above corrected alpha

levels), except in a single case: dMSNs in control vs. DA-depleted conditions expressed

significance in the high-γ band (Z = 2.60, p = 0.0092, αHB = 0.0125).

Finally, to verify that the effect we observed was not just an artefact of dividing the

power spectrum into an arbitrary number of bands, we repeated our statistical analysis

for the low (5-13Hz) and high (13-150Hz) frequencies separately. We found that the

difference between dMSN and iMSN up-states in control condition was preserved in

the high frequencies (Z = 2.66, p = 0.078, αHB = 0.025), while it was non-existent

in the low frequencies (p-value above corrected alpha level). Similarly, dMSN up-state

differences between control and DA-depleted conditions were still present only in the

low frequencies (t(40) = 2.44, p = 0.019, αHB = 0.025). However, in the down-states the

differences between dMSN control and DA-depleted conditions were now visible both in

low (Z = 2.32, p = 0.02, αHB = 0.025) and in high (t(40) = 2.29, p = 0.027, αHB =

0.05) frequencies, presumably because of a more forgiving value of Holms-Bonferroni

correction term.

Given that up-states are thought to be primarily synaptically driven (Wilson and Kawaguchi,

1996, Stern et al., 1997), our results indicate that the increased power of dMSNs, espe-

cially in the higher-frequency bands, compared to iMSNs in the control case stems from

stronger total input to direct pathway striatal neurons. Furthermore, our results suggest

that in dopamine-depleted conditions, the total input to dMSNs is either significantly

reduced and/or is more similar to the input to iMSNs.

2.3.2 MSN membrane time constant does not underlie the differences

in high-frequency power

The difference in high-frequency power between dMSNs and iMSNs may be caused by a

difference in the time constants of the two neuron types. We estimated the effective time
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Fig 2.2. dMSNs carry more power than iMSNs during up-states in control condi-
tions. A Left : Ten seconds of membrane potential recordings for a dMSN in control (upper
trace) and 6OHDA (lower trace) conditions, exhibiting up- and down-states (green and red,
respectively). Dashed lines represent the two cell-specific voltage thresholds used for state
classification (see Methods). Right : Distributions of membrane potential values for the entire
recordings of the two neurons shown at left. Note the characteristic bimodality of the up-
and down-states. B Grand-average PSD estimates of up-states for all dMSNs and iMSNs in
control (top, red and blue, respectively) and 6OHDA (bottom, light red and light blue, re-
spectively) conditions. Grey traces represent average up-state PSD estimates of individual
neurons. Frequencies between 45 and 55Hz were removed to avoid power line contamina-
tion (see Methods). C Comparison of grand-average PSD estimates in different frequency
bands. dMSNs exhibited higher power spectral density than iMSNs in control conditions in
beta (p = 0.0135, αHB = 0.0167), low-gamma (p = 0.0095, αHB = 0.01), and high-gamma
bands (p = 0.0103, αHB = 0.0125; dMSN n = 26, iMSN n = 18 for all three bands), indicating
either stronger or more frequent synaptic input. dMSNs also showed increased PSD in control
versus 6OHDA for the 8-13Hz band (p = 0.0087, αHB = 0.01). Test statistics were corrected
using the Holm-Bonferroni procedure.

constant using the spectrum of the membrane potential fluctuations (see Methods).

We found that the effective time constants for both dMSNs and iMSNs in the up-states

were smaller than in the down-states (Table 2.1, Fig. 2.3C ). On average, the ratio of

down-state to up-state effective membrane time constant across all groups was 1.92
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Fig 2.3. No difference in effective membrane time constant between dMSNs and
iMSNs in up-states. A Example of the effective membrane time constant estimation in
a dMSN, for all up-states with the mean membrane potential falling into a single 0.5mV
voltage bin. PSD estimates of individual up-states (grey) were averaged and smoothed (black
trace), and the initial membrane time constant τ ini

m was estimated as the point where the
maximal power decreased by −3 dB (black dashed line). B Two-dimensional representation
of the matrix used in the τm correction procedure. Depending on the average duration of all
up-states within one voltage level, the initial τ ini

m was corrected by the appropriate value to
obtain the final τm estimate (see Methods). The black dashed line and the marker represent
the data depicted in A. C Up-state vs. down-state τm for all neurons regardless of the cell
type or physiological condition; the dashed line represents equality. It is clear that τm in
the up-states is smaller than in the down-states, indicating a high-conductance regime due
to synaptic bombardment, similar to that in neocortical neurons (Paré et al., 1998, Destexhe
et al., 1999, Léger et al., 2005). D There is no significant difference in up-state τm between
dMSNs and iMSNs, either in control or 6OHDA conditions. This suggests that the differences
in up-state membrane power are not the result of differences in membrane dynamics between
dMSNs and iMSNs. In down-states, 6OHDA dMSNs had higher τm than the control cells
(p = 0.044). Data are shown as mean±SEM. Control dMSNs and iMSNs are in red and blue,
respectively, whereas 6OHDA dMSNs and iMSNs are in light red and light blue, respectively.
*p < 0.05

(Fig. 2.3D, dMSN control 1.76, iMSN control 1.85, dMSN 6OHDA 2.06, iMSN 6OHDA

2.01). This is similar to the case of neocortical neurons, which also show a shorter

time constant in up-states (Paré et al., 1998, Destexhe et al., 1999, Léger et al., 2005).

However, in MSNs this ratio is not as large as has been reported for neocortical neurons

(Reig and Silberberg, 2014), presumably because of the closing of potassium inward

rectifier (Kir) channels in MSNs, happening as the membrane depolarizes (Waters and

Helmchen, 2006, Nisenbaum and Wilson, 1995).
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Table 2.1. Comparison of the effective time constants of dMSNs and iMSNs in the up-states
vs. down-states. For both MSN types, across both healthy and dopamine-depleted conditions,
up-states exhibited significantly faster membrane dynamics than down-states.

τupm (ms) τdown
m (ms)

nr.
samples

statistics p-value

control
dMSN 12.7 ± 0.3 22.4 ± 1.0 26 -6.0 (Z) 1.8× 10−9

iMSN 12.3 ± 0.3 22.8 ± 0.7 18 -13.1 (t34) 7.1× 10−15

6OHDA
dMSN 12.7 ± 0.6 26.1 ± 1.5 16 -8.2 (t30) 3.3× 10−9

iMSN 13.2 ± 0.7 26.7 ± 2.0 12 -6.2 (t22) 2.8× 10−6

Further comparisons showed no significant difference between the up-state effective time

constants of dMSNs and iMSNs in control or 6OHDA conditions (in all cases p > 0.22;

Fig. 2.3D). However, in the down-states, the effective τm of dMSNs was slightly larger

in the 6OHDA condition than in the control (t(40) = −2.08, p = 0.044; control n = 26,

6OHDA n = 16), whereas such difference for the iMSNs was just above the significance

level (p = 0.052; Fig. 2.3D). These results are partially consistent with previously re-

ported measurements of input resistance using standard methods in MSN down-states

(Ketzef et al., 2017).

Taken together, these results clearly suggest that the differences in the power spectra

of up-state sub-threshold membrane potential fluctuations between dMSNs and iMSNs

(Fig. 2.2D) are not the result of different membrane time constants of the two types of

neurons. Moreover, the lower membrane time constant of MSNs in the up-state suggests

that these neurons also operate in a relatively high conductance regime.

2.3.3 dMSNs receive stronger input from mouse sensory cortex than

iMSNs

In the analysis so far we focused on subthreshold membrane potential sections, in which

neurons did not fire action potentials during the up-states. To further test the hy-

pothesis that dMSNs indeed receive stronger inputs than iMSNs, we investigated the

membrane fluctuations leading to action potential discharges. To this end, we obtained

the spike-triggered average (STA) of the membrane potential immediately preceding

action potential discharge for each neuron (Fig. 2.3A-C ). If dMSNs would indeed re-

ceive stronger inputs, we would expect the corresponding STA traces to approach the

spike threshold with a steeper slope, compared to the STA traces of iMSNs. To better

quantify this difference, we sub-divided the spikes of each neuron into those correspond-

ing to spontaneous spiking activity and those evoked by whisker deflections with brief
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air puffs. This STA analysis was only performed for healthy animals, as in our data

MSNs recorded from DA-depleted mice elicited only a very small number of spikes, not

sufficient for STA analysis.

Comparison of the grand-average STAs for the two MSN types upon bilateral whisker

stimulation revealed that dMSNs indeed depolarized to the spike threshold much faster

than iMSNs. For the spontaneously generated spikes, this applied as well, although the

difference was less prominent. Comparing the average membrane potential 12ms before

spike time (the duration of the average up-state integration window shown in Fig. 2.3D),

we found that dMSN membrane potentials were on average 1.3mV more hyperpolar-

ized than those of iMSNs, resulting in steeper depolarization slopes (k) preceding spike

initiation (Fig. 2.4D, t = −12ms; dMSN, −6.27±0.34mV, k = 0.31mV/ms, n = 10;

iMSN, −4.97±0.53mV, k = 0.28mV/ms, n = 10). This difference was even bigger

for whisker stimulation evoked spikes (Fig. 2.4E, t = −12ms; dMSN, −9.95±1.16mV,

k = 0.58mV/ms, n = 5; iMSN, −6.01±0.72mV, k = 0.34mV/ms, n = 4).

We further examined the STA differences between dMSNs and iMSNs by utilizing a

permutation test (see Methods). When a grand-average STA trace would fall above

97.5% or below 2.5% voltage distribution line, we deemed that result significant. We

found that the comparison of spontaneous dMSN and iMSN STAs yielded no significant

difference. However, the evoked STA traces between dMSNs and iMSNs were markedly

different (Fig. 2.4F ). Furthermore, the additional input from the sensory cortex seems

to have specifically targeted dMSNs, as their STA traces varied significantly between

the spontaneous and evoked conditions, whereas no major change was observable for

the same comparison of iMSNs (Fig. 2.4G).

Thus, the results of our STA analysis also support the notion that dMSNs receive

stronger synaptic input than iMSNs in healthy animals.
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Fig 2.4. (preceeding page). dMSNs accelerate faster towards firing threshold than
iMSNs when receiving input from barrel cortex. A Example of the estimation of
the firing threshold and extraction of the pre-spike voltage trace. Top: membrane potential
of a dMSN in the up-state; bottom: its first-order derivative dV/dt. The spiking threshold
was determined as the highest voltage deflection seen in the derivative that didn’t produce
a spike (black dashed line); when the derivative crossed the threshold, this marked the start
of an action potential (red dot). The voltage trace during 12ms preceding the spike onset
is marked in green. B Expanded view of the shaded area in A. C Example of calculating
the spike-triggered average (STA, red curve) for the neuron in A. Gray traces are 12ms pre-
spike intervals from individual up-states producing a spike. D Comparison of grand-average
STAs of dMSNs and iMSNs in control conditions (thick lines in red and blue, respectively)
when action potentials were generated by spontaneous activity. Faint red and blue traces
show STAs for individual neurons of corresponding MSN types. All traces were aligned to
spike onset. Error bars represent SEM. E Same as in D, but the action potentials were
generated by whisker stimulation and synaptic input from the barrel cortex. Note that the
grand-average STA of dMSNs is accelerating faster toward spike onset, indicating stronger
synaptic input to these neurons. F The permutation test shows that evoked dMSN and iMSN
STAs differed significantly, by falling in the bottom and top 2.5% of voltage distributions,
respectively. However, no such difference was observed for spontaneous traces. G While there
was no marked difference between spontaneous and evoked iMSN STAs, dMSN traces differed
significantly across the two conditions.

2.4 Discussion

Here we provided evidence that in vivo dMSNs receive stronger synaptic input than iM-

SNs and that this difference is attenuated in dopamine-depleted animals. These findings

were based on two observations: (1) dMSNs showed significantly higher spectral power

than iMSNs in the up-states, especially in the higher-frequency bands (Fig. 2.2C,D), and

(2) in both spontaneous and stimulus-induced spikes dMSNs membranes depolarized

faster than iMSNs before reaching spike-threshold, as revealed by their STAs (Fig. 2.4).

These results provide support for the theoretical prediction that direct-pathway MSNs

in healthy state animals receive stronger synaptic input than iMSNs (Bahuguna et al.,

2015). In addition, we showed by spectral analysis that the effective membrane time

constant of MSNs during up-states is significantly shorter than in down-states, indi-

cating that synaptic inputs affect the membrane conductance to a larger extent than

hyperpolarization-activated conductances mediated by the Kir channels in MSNs.

Paired recordings in slices revealed that iMSNs form more and stronger synaptic con-

nections onto dMSNs than they receive from them (Taverna et al., 2008, Planert et al.,

2010). In addition, fast spiking interneurons also form more connections onto dMSNs

than onto iMSNs (Planert et al., 2010, Gittis et al., 2010). Given these differences in con-

nectivity, Bahuguna et al. (2015) predicted that dMSNs must receive more or stronger

excitatory inputs if both dMSNs and iMSNs were to be co-activated (Cui et al., 2013)

or have comparable activity levels in both ongoing and stimulus evoked activity (Sippy

et al., 2015), as has been observed experimentally. Consistent with this prediction,
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Parker et al. (2016) showed that, in healthy animals in vitro, dMSNs receive stronger

excitatory input from both thalamo-striatal and cortico-striatal projections. They also

showed that, while in 6OHDA leasioned animals corticostriatal projections remained

largely unchanged, the ratio of dMSNs and iMSN AMPA currents in thalamic input de-

creased, suggesting that in DA-depleted mice thalamostriatal input to dMSNs became

weaker.

Our findings that dMSNs receive stronger/more inputs is also consistent with the anatom-

ical observation that dMSNs not only have larger dendritic area than iMSNs (Gertler

et al., 2008) but also receive higher density of cortical inputs (Huerta-Ocampo et al.,

2014). Therefore, if we combine out results with those of Gertler et al. (2008) and

Huerta-Ocampo et al. (2014), it is plausible that dMSNs receive more synaptic inputs

from the neocortex than iMSNs.

Here, we show that the disparity between the total inputs to dMSNs and iMSNs is also

maintained in vivo in the up-states, which closely resemble the awake state of an animal

(Destexhe et al., 2003, Haider et al., 2013). In our analysis we assumed that larger fluc-

tuations in the membrane potential are a reflection of stronger synaptic weights and/or

correlated inputs. Because both thalamus and cortex are co-activated in the up-states,

we cannot distinguish between thalamo-striatal and cortico-striatal inputs. However, by

selectively silencing thalamic inputs to the striatum (using optogenetic or chemogenetic

approaches) it should be possible to determine the relative contributions of thalamo-

striatal and cortico-striatal inputs in vivo following our approach. A limitation of our

analysis is that we cannot separate excitatory from inhibitory inputs. In fact, an increase

in either type of synaptic inputs can increase the membrane potential variance (Kuhn

et al., 2004). However, our comparison of STAs suggests that dMSNs are more likely

to receive stronger excitatory inputs because during both, spontaneous and stimulus-

evoked activity, dMSNs depolarize faster to the action-potential threshold than iMSNs

(Fig. 2.4).

The size of membrane potential fluctuations is affected by the mean membrane potential

which determines the synaptic driving force and the membrane time constant (Kuhn

et al., 2004). In our data we did not find a significant difference between the mean up-

state membrane potentials of dMSNs and iMSNs in either control or 6OHDA conditions

(in all cases p > 0.138, data not shown), and no significant difference in up-state τm

estimations either (Fig. 2.3D). The latter is contrary to previous findings in vitro, where

measurements of whole-cell capacitances and input resistances of dMSNs and iMSNs

suggest that their membrane time constants are different (Gertler et al., 2008, Fieblinger

et al., 2014). It should be born in mind, however, that under in vivo conditions the

membrane properties are affected by the ongoing synaptic activity (Kuhn et al., 2004)
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and that synaptic inputs can easily overcome the differences in the neuron membrane

properties measured in vitro (Destexhe et al., 2003, 2007).

Furthermore, our data shows that in MSNs the effective membrane time constant in

the up-states is on average 46% smaller than in the down-states (Table 2.1, Fig. 2.3C ),

indicating a high-conductance state in striatal neurons in the presence of synaptic inputs,

similar to that of neocortical neurons (Destexhe et al., 2003, Léger et al., 2005, Destexhe

et al., 2007). That is, in the up-states, the membrane time constant is strongly influenced

by synaptic inputs.

Finally, our results also provide new insights into how dopamine affects the total input to

the MSNs. We found that in dopamine-depleted animals the differences in the inputs to

the two MSN types decreased, so that both dMSNs and iMSNs received similar amounts

of the total input. Such a decrease could be a consequence of reduction in excitatory

and/or inhibitory input to the MSNs. Experimental data indicates that in the absence

of dopamine thalamo-striatal excitatory inputs to dMSNs are weakened (Parker et al.,

2016). However, there is also evidence that following DA depletion striatal fast spiking

interneurons (FSIs, PV-expressing interneurons) undergo morphological changes that

alter their target preference towards iMSNs (Gittis et al., 2010, Mallet, 2006). While the

contribution of PV axonal remodelling is hard to assess, it may be a potential underlying

mechanisms of the effect that we observe in lesioned animals. Although we cannot

differentiate between the contribution of excitatory and inhibitory inputs by spectral

analysis, the STA waveforms suggest that dMSNs and iMSNs receive unequal amount of

excitatory inputs. Moreover, these results are consistent with our previous findings that

in healthy animals dMSNs exhibit stronger response to contralateral sensory stimulation

than iMSNs, and that these differences are diminished in dopamine-depleted mice (Reig

and Silberberg, 2014, Ketzef et al., 2017). Thus, our results and previous findings (Ketzef

et al., 2017) suggest that dopamine is important to maintain the difference in the total

input to dMSNs and iMSNs.

While we have provided evidence for stronger total synaptic input to the dMSNs as

compared to iMSNs, it is still unclear whether the extra input to the dMSNs is due to

stronger excitatory (cortical and/or thalamic) inputs, more intense inhibition, or a com-

bination thereof. Furthermore, it also not clear whether the larger membrane potential

fluctuations in dMSNs are due to stronger synapses or to higher input correlations. More

dedicated experiments involving selective correlated activation of cortical and thalamic

neurons will help resolving these questions.
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3.1 Introduction

The principal cells of the striatum are medium spiny neurons (MSNs). Based on the

dopamine (DA) receptor they express, they are assigned either to D1R-expressing direct-

pathway group (dMSNs), or D2R-expressing indirect-pathway group (iMSNs). As a

neuromodulator, dopamine is known to play a crucial role in the function and dysfunction

37
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of the basal ganglia as a whole, being integral in such mechanisms as reinforcement

learning, action selection, motor control, addictive behavior, etc. For MSNs in particular,

DA modulation is complex and multifaceted, and known to have a direct impact on

neuronal dynamics. Here we focus specifically on dopaminergic modulation of dMSNs,

and will give a brief overview of its effects on dMSN’s intrinsic and synaptic conductances

(Lindroos et al., 2018).

It is a general consensus that elevated concentrations of dopamine will make a dMSN

more excitable, whereas concentrations below normal levels - as occurs for example

during Parkinson’s disease (PD) - will decrease dMSN excitability (Albin et al., 1989,

Mallet, 2006, Planert et al., 2013, Surmeier et al., 2007) (however, in mice models of

late-stage PD, compensatory mechanisms may counter this trend; see Fieblinger et al.

2014, Ketzef et al. 2017). The changes in dMSN excitability occur, to a lesser or greater

degree, through DA modulation of multiple intrinsic and synaptic ion channels. These

modulatory effects have been studied in detail over the past three decades by the neu-

roscience community, with often mismatching and sometimes even directly conflicting

results.

For example, after performing a detailed literature review (Lindroos et al., 2018), we

showed that Naf conductance is reported to be down-regulated by DA in a relatively

wide range of values (˜20-40%, Table 3.1). Likewise, Kas, and CaN/P channels are also

reported to be down-regulated, while CaL is up-regulated. However, we found conflicting

reports on KIR channel, giving a range of values for DA modulation from about −20%

to 25%.

Similarly complex situation could also be found for synaptic conductances. AMPA and

NMDA channels are both up-regulated, though the reported values differ from study

to study, ranging about 20-60% for AMPA and 0-30% for NMDA (Table 3.2). On

the other hand, reports for GABA seem to be in direct disagreement with each other,

claiming values ranging from about −20% to 40%.

There are multiple possible reasons for inconsistencies among studies pertaining to DA

modulation of ion channels. These span from experimental setups that differed from one

laboratory to another, to different types of animals used, different ages of animals, and

crucially, different experimental preparations.

Nevertheless, Lindroos et al. (2018) succeeded in creating a complex, biophysically de-

tailed model of a direct-pathway medium spiny neuron that integrates the effects of

DA modulation, and expresses dynamics that corresponds well to that of experimen-

tally recorded dMSNs. Here, we use this model to ask the following questions: what
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Table 3.1. Summary of the literature study on single channel effect of D1R activation in
striatum. Some values given in the Effect column are estimates when there were no exact
values given. In the Measure column: I stands for current, IV stands for current-voltage
profile, Exc stands for excitability, pd stands for plateau duration, and #APs stands for
number of action potentials. Reproduced from Lindroos et al. (2018).

Chan Measure Effect References Animal Preparation

Naf I −38±5% Schiffmann et al.
(1995)

Rat Culture

Naf I −24±2% Zhang et al. (1998) Rat Dissociated

Naf I −22% Surmeier et al.
(1992)

Rat Dissociated

Kas I −20% Kitai and Surmeier
(1993)

Rat Dissociated

KIR IV + Pacheco-Cano et al.
(1996)

Rat Slice

KIR I 25% Zhao et al. (2016) Mice Slice

KIR I - Podda et al. (2010) Mice Slice

CaN/P I −50% Zhang et al. (2002) Rat Dissociated

CaN/P I - Surmeier et al.
(1995)

Rat Dis./Culture

CaL I + Surmeier et al.
(1995)

Rat Dis./Culture

CaL Exc 20% Galarraga et al.
(1997)

Rat Slice

CaL Exc + Flores-Barrera et al.
(2011)

Mice Slice

CaL pd, #Aps 20%, 34% Hernandez-Lopez
et al. (1997)

Rat Slice

is the impact of DA-driven alterations of dMSN excitability on trial-by-trial variabil-

ity? How do changes in DA concentration affect the neural responses when the cell is

receiving correlated synaptic input? And what are its effects when a change in input

excitation-inhibition (E-I) balance occurs?

3.1.1 Sources of trial-by-trial variability

The spike count variability of neural responses across different trials is a well documented

property of the central nervous system (Faisal et al., 2008, Shadlen and Newsome, 1998).

Interestingly, this trial-by-trial variability does not seem to be of equal magnitude in all

conditions. Probing neural systems with repeated stimuli demonstrated that trial-by-

trial variability is larger in the period before a stimulus is presented, and considerably
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Table 3.2. Summary of the literature study on synaptic effect of D1R activation given
as percentage of control. I stands for current, amp stands for amplitude, dur stands for
duration, Vm stands for membrane potential, and PHOSP stands for phosphorylation. I”

indicates current in adult animals (reduced in juvenile). I∗ indicates tonic current from low
levels in young animals. I∗∗ stands for tonic current following application of D1R antagonist
in adult animals. Some values are estimated from multiple values or graphs. Reproduced from
Lindroos et al. (2018).

Measure Effect References Animal Preparation

NMDA (range 20%→ 60%)

I (amp, dur) 25%, 30% Flores-Hernández et al.
(2002)

Rat and mice Culture

I (amp, dur) 26±7%, 5±2% Cepeda et al. (1998) Rat Slice

I” 45.6±19% Tong and Gibb (2008) Rat Slice

Vm (amp, dur) 39±14%, 22±7% Levine et al. (1996b) Mice Slice

Vm (area) 34±9% Levine et al. (1996a) Rat Slice

AMPA (Non-NMDA) (range 0%→ 30%)

Vm (area) 6±5% Levine et al. (1996a) Rat Slice

I 30% Umemiya and Raymond
(1997)

Rat Slice

I 11±6% Yan et al. (1999) Rat and mice Dissociated

I 21±2.5% Price et al. (1999) Rat Culture

PHOSP + Price et al. (1999) Rat Culture

PHOSP 300% Snyder et al. (2000) Mice Slice

PHOSP 200% Chao et al. (2002) Rat Culture

PHOSP 450% Xue et al. (2017) Rat In vivo

GABA (range −20%→ 40%)

I −20% Flores-Hernandez et al.
(2000)

Rat Dis./culture

I −29.7±3.8% Flores-Hernandez et al.
(2000)

Rat Dissociated

I ± and no change Nieto Mendoza and
Hernández Echeagaray
(2015)

Mice Slice

I∗ 84±34% Janssen et al. (2009) Mice Slice

I∗∗ 44% Janssen et al. (2009) Mice Slice

I −14.5±0.7% Hernández-Echeagaray
et al. (2007)

Mice Slice

reduced following the presentation (Churchland et al., 2010, Hussar and Pasternak, 2010,

Stein et al., 2005). Furthermore, it has been shown in cat visual system that the degree

of response variability depended on the stage of sensory processing, increasing from

periphery (retina) to cortex (Kara et al., 2000).

Some of the sources of trial-by-trial variability can be traced to synaptic noise (Faisal

et al., 2008, Mainen and Sejnowski, 1995), refractory period (Kara et al., 2000), and

ongoing neural activity (Arieli et al., 1996). None of these sources however considers
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the properties of the synaptic input that arise as a consequence of network dynamics:

correlations of synaptic input rates, and the balance between excitatory and inhibitory

inputs (E-I balance).

Correlations of neuronal population activity are widespread throughout CNS, and have

been investigated both for the inputs to populations (Cafaro and Rieke, 2010, Okun

and Lampl, 2008) and for the population outputs (Averbeck et al., 2006, de la Rocha

et al., 2007, Engelhard et al., 2013, Riehle et al., 2000, Schneidman et al., 2006). Several

theoretical studies thus far have tried to elucidate the function of input correlations in

neural processing of information (Bujan et al., 2015, Doiron et al., 2016, Tchumatchenko

et al., 2010). At the same time, the balance of excitatory and inhibitory inputs was

shown to be one of the deciding factors of neuronal network dynamics and has been

the target of much experimental and theoretical research in the previous two decades

(Bhatia et al., 2019, Brunel, 2000, Kremkow et al., 2010, Kumar et al., 2008, Haider

et al., 2006, Shadlen and Newsome, 1998, van Vreeswijk et al., 1996, Vogels and Abbott,

2009).

Here we hypothesize that one of the potential functions of both input rate correlations

and changes in the E-I balance is to regulate the trial-by-trial variability of individual

neurons. We investigate the effects of these input modalities on neuronal variability in a

model of a striatal direct-pathway medium spiny neuron, which allowed us to explore an

additional dimension of response variability issue: that of dopaminergic modulation.

3.2 Methods

3.2.1 dMSN model

In this study we use a biophysically detailed compartmentalized model of a striatal

direct-pathway medium spiny neuron with realistic morphology. The dMSN model has

been described in detail elsewhere (Lindroos et al., 2018), therefore we focus only on the

changes introduced for the purposes of this work.

Intrinsic channels Channel distribution over cell compartments and their parametriza-

tion were updated via a Monte Carlo algorithm to improve the fit to the experimental

data (primarily to current frequency and to the change of calcium levels in backprop-

agating action potentials, Table 3.3). Two new channels were introduced to the axon

initial segment (AIS), the potassium delayed rectifier (Kdr) and the KCNQ channel re-

sponsible for the M-current (Im) (Adams, 1982, Doron et al., 2017). These channels are

both normally expressed in the AIS (Petersen et al., 2017).
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Table 3.3. Channel distribution over cell compartments as a function of somatic distance
(x). Maximal value here stands for permeability (cm/S) for Ca channels, and conductance
(S/cm2) for the rest of the channels. Updated from Lindroos et al. (2018).

Channel Compartment Function type Maximal value (x)

Naf Soma Uniform 12

Dendrite Sigmoidal 0.46 · [0.14 + 0.86/(1 + exp((x− 23.44)/13.11))]

Axon Step if (x < 30): 9.9; else: 9

Kas Soma Uniform 0.016

Dendrite Sigmoidal 0.03 · [0.1 + 0.9/(1 + exp((x− 10)/6.38))]

Axon Uniform 7× 10−3

Kaf Soma Uniform 0.15

Dendrite Sigmoidal 0.11 · [1 + 0.21/(1 + exp(−(x− 42.4)/32.32))

Kir Soma/dend. Uniform 1.2× 10−3

Kdr Soma Uniform 9.4× 10−4

Dendrite Uniform 7× 10−4

Axon Uniform 28.2× 10−4

SK Soma/dend. Uniform 2× 10−5

BK Soma Uniform 1.3× 10−4

Dendrite Uniform 1× 10−4

CaL1.2 Soma Uniform 1.34× 10−5

Dendrite Uniform 1× 10−5

CaL1.3 Soma Uniform 1.34× 10−6

Dendrite Uniform 1× 10−6

CaN Soma Uniform 4× 10−5

Dendrite Sigmoidal 8.14 · [0.15 + 0.85/(1 + exp((x− 36.57)/18.12))]

CaR Soma Uniform 1.34× 10−4

Dendrite Uniform 1× 10−4

CaT3.2 Soma —

Dendrite Sigmoidal 1.23e− 7 · [1/(1 + exp(−(x− 65.54)/18.67))]

CaT3.3 Soma —

Dendrite Sigmoidal 3.81e− 9 · [1/(1 + exp(−(x− 104.16)/23.8))]

KM Axon Uniform 1× 10−3

Synaptic channels Total number of compartments in the model was set to 1010, out of

which 1007 were assigned to the dendritic arbor (of the remaining 3 one belonged to

the soma and two to the AIS). Each separate dendritic compartment was assigned two

synapses: one GABAergic, whose dynamics remained consistent with the previously

published model, and one glutamatergic, which unified the activation of AMPA and

NMDA synaptic channels. In this way, both excitatory and inhibitory synapses were

distributed homogeneously and in equal proportion throughout the dendritic tree.

The excitatory glutamatergic synapse was modified to operate on the base of a sum-

mating mechanism, simulating combined contributions of a number of actual synapses.
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The ratio between AMPA and NMDA maximal conductances was set to 5 (Ketzef et al.,

2017). The remaining synapse model parameters are summarized in Table 3.4.

Each synapse in the model then received an independent and uncorrelated spike train

with Poisson-distributed spike times.

Table 3.4. Glutamate synapse
model parameters.

Parameter Value

τ rise
AMPA

1.9ms

τ fall
AMPA

4.8ms

τ rise
NMDA

5.52ms

τ fall
NMDA

231ms

ḡ
AMPA

/ ḡ
NMDA

5.0

Mg 1mmol

α 0.062

Q factor 2

Table 3.5. Maximal dopaminergic modulation
of intrinsic and synaptic channels in the dMSN
model.

Channel δmax

Naf 0.75

Kaf 0.8

Kas 0.8

KIR 1.2

CaL1.2 1.3

CaL1.3 0.5

CaN 0.5

CaR 1.0

Glut 1.3

GABA 0.8

Dopaminergic modulation The intracellular signaling cascade triggered by fluctuating

DA concentration was removed in this version of the model. Instead, we simulated

a steady-state condition of tonic dopaminergic modulation by changing maximal con-

ductances ḡ (or permeabilities p̄ in the case of calcium channels) of both intrinsic and

synaptic channels by a fixed amount. Each of the affected channels was assigned a max-

imal level of modulation (δmax, Table 3.5), which was then scaled by a fraction (δfrac) in

the range from 0 to 1, to determine the final value of the channel’s maximal conductance

ḡmod:

δmod = 1 + (δmax − 1) · δfrac

ḡmod = ḡ · δmod (3.1)

In our simulations, the DA modulation fraction δfrac was the main determinant of

the degree of a channel’s modulation. Further in the text, the term “dopaminergic

modulation” refers to this fraction of the maximal level of DA modulation. Only those

channels previously demonstrated to be modulated by dopamine were manipulated in

this way, and the values used in the model were determined either as averages of already

published values, or as best fits to currently available experimental data (Table 3.1,
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Table 3.2). This fitting process, as well as exploration of DA modulation of Kaf channels

which was not previously reported in the literature, was investigated in Lindroos et al.

(2018).

Three levels of DA modulation were of particular interest to us: δfrac = 0.0 signifying

no presence of dopamine in the system (e.g. due to the lack of DA neuron activity after

omission of a predicted reward), δfrac = 0.2 representing “baseline” dopamine concentra-

tion, and δfrac = 1.0 as the maximal possible dopaminergic modulation (e.g. peak phasic

DA concentration after an unpredicted reward). These levels were determined based on

the approximate proportions of dopamine phasic and tonic concentrations found in the

literature (Borland et al., 2005, Cheer et al., 2007, Dreyer et al., 2010, Robinson et al.,

2001).

The model was developed in NEURON+Python simulation environment (Hines and

Carnevale, 1997, Hines, 2009) and simulations ran on resources provided by the Swedish

National Infrastructure for Computing (SNIC) at PDC KTH.

3.2.2 Simulation parameters

We performed numerical simulations for a range of input parameters, iterating over

synaptic input rates and levels of DA modulation (Table 3.6). 20 trials were run for

every input parameter combination, with a separate random number generator (RNG)

seed for each trial. RNG seeds were kept constant for the same trial number across

different parameter sets. In other words, trial number e.g. 4 would always have the

same seed no matter which input parameter set was used.

In each simulation run we calculated the output firing rate (OFR) of the dMSN model.

The first 300ms of a recording were considered to be a transitional period (ttrans, Ta-

ble 3.6), and all spikes that occurred during that time were discarded. Recording spike

times during the remaining 2 s of simulation allowed us to reliably detect output firing

rates as low as 0.5Hz. The final output firing rate for each input parameter combination

was obtained as an average across all 20 simulation trials.

3.2.3 Sampling of 2D transfer function

Sampling the 2D transfer function with independent input We sampled the dMSN 2D

transfer function by firstly dividing the whole transfer space into nine equal regions (Fig-

ure 3.2A). In each region, we drew 5000 uncorrelated pairs of excitatory and inhibitory

input rates from Gaussian distributions and calculated the resulting dMSN output firing

rates by using spline interpolation on the underlying 2D transfer function. The standard
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Table 3.6. Simulation parameters.

Parameter Value

General parameters

tsim 2300ms

ttrans 300ms

nr. trials 20

Synaptic parameters

EI
rev 0mV

EI
rev −60mV

JE 0.5 nS

JE 1.5 nS

Input parameters

λin
E range (per synapse) 0.2-0.45Hz

λin
I range (per synapse) 0.2-2.45Hz

δfrac range 0-1

deviations (SDs) of the marginal Gaussian distributions were σin
E = 5.035Hz for λin

E and

σin
I = 50.35Hz for λin

I , and their means were located at the centers of each region. This

process was then repeated for every dopamine level, resulting in a set of independent

OFR distributions for each region.

Each of the sampled E and I pairs represented a single measurement of dMSN’s output

activity, or a single “trial”. Drawing new values for E and I inputs from a distribution

in every trial simulated changes in input rates that a biological neuron might see during

the course of experimental measurement.

Sampling the 2D transfer function with correlated input We use the term “correlated

input” to refer to correlations between excitatory and inhibitory synaptic input rates as

they are drawn from their respective distributions, and not to the timing of individual

spikes in the incoming spike trains.

In order to have a clear comparison of dispersion in OFR distributions that were the

result of correlated synaptic input, we sampled a region of 2D transfer function that was

aligned to the 10Hz OFR contour at baseline DA level (Figure 3.3A, means of marginal

distributions µin
E = 400.15Hz, µin

I = 1522.3Hz). The SDs of marginal distributions

were calculated by starting from the value σin
E = 5.035Hz for excitatory input, and

determining the the value for the inhibitory input according to the slope of the linear fit of
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the 10Hz OFR contour. We correlated the marginal input distributions by constructing

the covariance matrix of the joint distribution as:

cov[λin

E , λin

I ] =

∣

∣

∣

∣

∣

∣

σin
E

2
ρ σin

E σin
I

ρ σin
E σin

I σin
I

2

∣

∣

∣

∣

∣

∣

(3.2)

where ρ was the Pearson’s coefficient of correlation chosen from the values between 0

and 1, with the step of 0.1. Finally, the OFR distributions were constructed by drawing

5000 data points from a bivariate Gaussian distribution with the appropriate covariance

matrix.

Sampling the 2D transfer function while changing the E-I balance Here we define the E-I

balance as the relation between the ranges of available excitatory and inhibitory input

rates, such that one is proportionate to the other. Starting from marginal λin
E and λin

I

distributions chosen such that their joint distribution lies on the 10Hz OFR contour at

baseline DA level as described above, but with an additional input correlation value of

ρ = 0.2 (Figure 3.4A, white dots), we change the E-I balance by multiplying the SD of

one of the marginal distributions with the coefficient cb prior to the construction of the

joint covariance matrix. The values of cb are chosen to be positive rational numbers.

To illustrate, we change the E-I balance with respect to the excitatory input rates by

starting from the fixed value of σin
E , calculate the inhibitory SD so that it matches

the chosen OFR contour level (σcntr
I ), and proceed to multiply the inhibitory standard

deviation with the chosen E-I balance coefficient cEb :

σin
I = cEb · σ

cntr
I . (3.3)

The procedure of changing the E-I balance with respect to the inhibitory input rates is

identical, except we fix the value of σin
I and modify that of the σcntr

E :

σin
E = cIb · σ

cntr
E . (3.4)

Finally, we obtain the covariance matrix by applying Equation 3.2.

All data analyses were performed using custom scripts written in Python 2.7.

3.3 Results

Here we examine the variability of the output of a dMSN model under synaptic bom-

bardment, when the neuron dynamics is modulated by different levels of dopamine. We
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consider the influence of changes in the input correlation, as well as changes in the

balance of excitation (E) and inhibition (I), on the total range of output firing rates

(OFRs) available to our dMSN model. We show that these effects, compounded by the

dopaminergic modulation, can provide an explanation of trial-by-trial rate variability of

dMSNs. Furthermore, we demonstrate how dopamine affects trial-by-trial variability of

spikes in time, by exploring the inter-spike interval (ISI) transfer space of the model.
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Fig 3.1. dMSN excitability increases with increase in DA levels. A An example of
a dMSN 2D transfer function over three discreet dopamine levels. The red line represents a
10Hz output firing rate contour. As the dopamine level increases, the total range of available
output firing rates also increases. At the same time, the span of excitatory input firing rates
needed to maintain the 10Hz OFR contour shrinks. B Evolution of 10Hz OFR contour for
different dopamine levels in the same 2D transfer space. Contour data is given as dots, with
lines representing linear fits to the data. The slopes of the linear fits increase together with
DA levels, indicating a rise of neuronal excitability. C Evolution of OFR contour slopes
across different dopamine levels for four chosen firing rate contours. The overall trend is a
dopamine-driven increase of dMSN excitability, as evidenced by the growth of OFR contour
slopes.
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3.3.1 Dopamine increases excitability of dMSNs

A standard electrophysiological procedure to obtain a neuron’s transfer function is to

measure the cell’s spike frequency for different levels of constant current input (Mc-

Cormick et al., 1985). However, while this approach allows us to know the voltage

needed to elicit a certain output firing rate λout from a neuron, it disregards the possi-

bility of achieving the same level of output firing for various combinations of excitatory

and inhibitory synaptic inputs (Kuhn et al., 2004). This issue is further complicated

by the fact that different combinations of E and I input rates will result in different

values of the total membrane conductance, thus altering the membrane dynamics in

each case while at the same time maintaining the identical output firing rate λout. Since

this effect is not readily apparent from a regular transfer function, here we focus on its

two-dimensional (2D) representation.

We constructed the dMSN model’s 2D transfer function by recording its output firing

rate for every combination of total excitatory and inhibitory synaptic input within our

chosen ranges (Figure 3.1A, Table 3.6). The synaptic input consisted of uncorrelated

and Poisson-distributed spike trains, whose firing rate was independently varied for

excitatory and inhibitory synapses (λin
E and λin

I , respectively). The points of the transfer

function that shared a single output firing rate were designated as “output firing rate

(OFR) contours” (Figure 3.1A, red line shows 10Hz OFR contour). We calculated linear

fits to all OFR contours and employed their slopes of as a proxy measure of neuronal

excitability. Namely, for a contour whose slope had a low value, the range of excitatory

input firing rates λin
E needed to balance the full range of inhibitory input firing rates λin

I

would be wider, indicating low excitability. Correspondingly, high excitability implied

a narrower range of λin
E needed to balance the input inhibition, which was reflected in

the higher value of the slope of the linear fit.

We followed the evolution of the firing rate contours as as the steady-state levels of

dopamine in the system increased (Figure 3.1B). For all OFR contours the general

trend was growth of the slope of the linear fit (Figure 3.1C ), signifying that neuronal

excitability increases together with the dopamine levels. This behavior of our dMSN

model mimics the well-established dynamics of direct-pathway medium spiny neurons,

where an increase in excitability, marked by heightened firing rates, was shown for

elevated DA levels, while the lack of dopamine in the system was followed by the decrease

in output firing (Albin et al., 1989, Mallet, 2006, Planert et al., 2013, Surmeier et al.,

2007).

Thus we demonstrate that our model exhibits similar patterns of behavior as dMSNs

recorded in animals for various steady-state levels of dopamine, that the effects of
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dopaminergic modulations are clearly visible on 2D transfer functions and that they

manifest as shifts of the transfer space. Furthermore, we show that the slope of the

linear fit to output firing rate contours is an adequate representation of the neuronal

excitability.

3.3.2 Synaptic input and DA level determine trial-by-trial variability

In order to explore how trial-by-trial variability of dMSN output changes with respect to

dopamine levels in the system, we repeatedly sampled the 2D transfer function at nine

distinct regions (Figure 3.2A). For each region, every sample point drawn represented a

single “trial”, a measurement of the dMSN output activity for a certain combination of

E and I input firing rates. A collection of all the sampled points in one region formed

an OFR distribution.

OFR distributions showed steady and consistent growth in their mean values with the

rise of DA levels across all regions (Figure 3.2B, blue lines), demonstrating the general

increase of dMSN excitability and output firing as the system saturated with dopamine.

This dependency was quite prominent for all input excitation values past the lowest

range: for mid-range λin
I values, output firing rates were 3.5 - 16.3Hz at mid-range λin

E

(middle row, middle column of Figure 3.2B), and 10.8 - 29Hz at high-range λin
E (middle

row, right column of Figure 3.2B). While weaker for low-range λin
E , it was not negligi-

ble, spanning 0.3 - 4.8Hz across all DA modulation levels (Figure 3.2B middle row, left

column).

However, OFR distribution means did not provide information necessary to investigate

the effects of DA modulation on trial-by-trial variability. For that purpose, we measured

the dispersion of distributions with respect to their average values, exemplified by the

Fano factor (FF) of their spike count: FF = σ2
OFR

/µ
OFR

. We postulated that if dopamine

had a perceptible impact on neuronal variability, it would be reflected in the OFR

distribution dispersion, or in another words, in changes to the range of output firing

rates available to dMSN. Interestingly, the DA effects were not uniform across the nine

regions. For low-range λin
E values we observed a general increase of Fano factor with

increased DA levels across the entire range of inhibitory input (Figure 3.2B left column,

red lines), characteristic of a rise in neuronal variability. However, for high-range λin
E

values, FF-DA profiles were mostly flat. This suggested that the trial-by-trial variability

was insensitive to changes in DA concentration, and that the neuron had reliable output

for high levels of input excitation. The trend of FF-DA profiles for mid-range excitatory

input values was undetermined, and warrants further investigation. The fluctuations

within each profile were presumably caused by a combination of non-linearities of the
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underlying 2D transfer function, and the finite amount of data we generated in our

simulations.



Chapter 3. Dopaminergic effects on dMSN trial-by-trial variability 51

Fig 3.2. (preceding page). Response variability depends on amount of synaptic
input and DA level. A Sampling the output firing rate from nine discreet regions of the
2D transfer function. For each region, 5000 random pairs of λin

E and λin

I are drawn from
uncorrelated Gaussian distributions and their corresponding output firing rates calculated by
spline interpolation from the underlying OFR datasets. The same pairs are then used to
calculate OFRs over every DA level. The result is a set of distributions of output firing rates
across different levels of DA modulation for each of the sampled regions. The 2D transfer
function shown in the panel is for the baseline DA level (δfrac = 0.2), and only every 10th

datapoint has been rendered for the sampled OFR distributions. B Means of sampled OFR
distributions (blue lines) grow steadily with heightened concentrations of dopamine. However,
distribution Fano factors (red lines) over different DA levels exhibits complex behavior. For
low λin

E (left column) FF is growing, indicating larger than expected response variability. For
high λin

E (right column) FF is more stable, indicating regularized model output. Middle levels
of λin

E are a transition region where FF starts decreasing. For every region, Fano factor of
excitatory input distribution is given. The subpanels correspond to the regions sampled in A.
The grid is aligned to the Fano factor data.

3.3.3 Compound effects of input correlations and DA modulation on

trial-by-trial variability

There is significant experimental evidence that neuronal population activity throughout

the nervous system is partly correlated. The issue of input correlations is of particular

interest to the striatum and its medium spiny neurons, as it was shown that the striatum

exhibits active decorrelation properties (Damodaran et al., 2015, Mizrahi-Kliger et al.,

2018, Moran et al., 2012, Wilson, 2013). Therefore, we explored how correlated inputs

are affecting trial-by-trial variability of a single dMSN under different concentrations of

dopamine.

To minimize the contribution of 2D transfer function non-linearities on the range of

available output firing rates, we sampled our OFR distributions from a region aligned to

an output firing rate contour. We constructed input distributions with different degrees

of correlations (see Methods) centered on the 10Hz OFR contour (Figure 3.3A). For

a constant level of dopamine, we observed that the dispersion of OFR distributions

diminished as the degree of input correlations grew (Figure 3.3B). This outcome was

not unexpected given the nature of our setup, as very correlated input would result in an

OFR distribution that closely follows the OFR contour, which in turn denotes the region

of 2D transfer function where the output firing rate was kept constant. Conversely, as

the degree of input correlations decreased so had the trial-by-trial variability of dMSN

increased, since the range of output firing rates available to the neuron extended past

the base contour level. This result persisted across all DA modulation levels, with the

higher DA concentrations producing faster decrease of variability (Figure 3.3B).
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Fig 3.3. (preceding page). Increase in input correlations is followed by a decrease
in trial variability. A OFR distributions for three different degrees of input correlations.
Marginal distributions are shown for the case of uncorrelated (ρ = 0.0) input. The dashed red
line is the 10Hz OFR contour, and the full red line is its linear fit. The 2D transfer function
shown in the panel is for the baseline DA level (δfrac = 0.2), and only every 2nd datapoint
has been rendered for the sampled OFR distributions. B Fano factor of OFR distributions
decreases linearly with increase in correlations between E and I inputs for a fixed dopamine
level. This decrease is faster for lower levels of dopaminergic modulation. C For fixed degrees
of input correlations, OFR distribution FF decreases with an increase in dopamine. However,
this effect is greatly diminished for high degrees of correlation.

The evolution of OFR distributions’ Fano factors over dopamine concentrations for a

fixed degree of input correlations exhibited a general downward trend (Figure 3.3C ),

indicating that increases in DA levels will have an opposite effect on the neuron’s vari-

ability. However, this trend was significantly diminished for higher degrees of input

correlations. We interpreted this once more as a consequence of the increased alignment

of the OFR distribution with the base OFR contour.

Taken together, these results suggest that a change in correlation coefficient between

the excitatory and inhibitory synaptic inputs directly affects dMSN’s trial-by-trial vari-

ability. The neuron will have a more reliable output the higher the degree of correlation

between E and I inputs. Moreover, elevated concentration of dopamine in the system

will also decrease the output variability, thus limiting the range of output firing rates

available to the neuron. An exception to this rule is if the synaptic input to a dMSN is

balanced in such a way as to insure the maintenance of a consistent output firing rate,

i.e. if it is centered on an OFR contour, and the degree of correlation between excitation

and inhibition is very high. In that instance, changes in DA levels will not have an

impact on the trial-by-trial variability of dMSN, and the neuron itself will have a very

narrow OFR range, ensuring extremely reliable output.

3.3.4 Interplay between E-I balance and DA modulation on trial-by-

trial variability

Another source of increased variability in neural outputs is a change in the E-I bal-

ance (Nawrot et al., 2008). Here we consider the case of balance in the context of the

variability of input rates, while assuming that the timing of input spikes is consistently

independent and Poisson distributed.

We start from a baseline OFR distribution that has been aligned to the 10Hz OFR

contour (ρ = 0.2, cb = 1.0), and manipulate the E-I balance by modifying the standard

deviation of one of the input rate distributions in proportion to the other (Figure 3.4A).
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Both in the case of balance change with respect to the excitatory input (cEb , Equa-

tion 3.3) and with respect to the inhibitory input (cIb , Equation 3.4), OFR distribution

FFs were increasing together with the E-I balance coefficient cb (Figure 3.4B). Unlike

in the previous exploration of the effects of input correlations on the Fano factor, this

effect was supra-linear. Additionally, the growth of OFR distribution variance with cb

was faster for the lower DA concentration.

When the E-I balance was fixed (both for cEb and cIb), comparing the lowest DA modu-

lation levels with the highest revealed a general decline of the Fano factor. That is to

say, as the DA levels increased the trial-by-trial variability was decreasing. However, the

effect was not monotonic and for low δfrac values was even reversed. This is presumably

caused by the non-linear changes in the underlying 2D transfer function when exposed

to dopaminergic modulation. Similar to before, the relationship between DA level and

Fano factor was negligible for low values of the balance coefficient.

It is of note that both for fixed DA modulation and fixed E-I balance, there was no

qualitative difference between the cEb and cIb cases (Figure 3.4B, left versus right). Any

quantitative difference came from disparate values of standard deviations of synaptic

input distributions (data not shown).

While excitatory and inhibitory input distributions might not align to an OFR contour in

all situations, our example serves to present a concise argument for the importance of E-I

balance on the neuronal trial-by-trial variability. Whether through adaptation brought

on by synaptic plasticity, reduced membrane integration time due to increased synaptic

input, or some other mechanism (Hennequin et al., 2017, Shadlen and Newsome, 1998),

alterations of the E-I balance will affect the range of the output firing rates available

to a dMSN across different trials. Furthermore, as in the case of input correlations,

dopamine proved to have a crucial role in adjusting the trial-by-trial variability, with

increased DA levels lowering the dispersion of dMSN OFR distributions.

Fig 3.4. (following page). Changes in E-I balance have a direct impact on trial
variability. A OFR distributions for three different cases of E-I balance, with ρ = 0.2.
The balance of the distribution in dark blue has been adjusted while keeping σin

E fixed (see
Methods). Conversely, to generate the light blue distribution σin

I has been kept fixed. Marginal
input distributions are shown for the standard balance (cb = 1.0). The dashed red line is the
10Hz OFR contour, and the full red line is its linear fit. The 2D transfer function shown in
the panel is for the baseline DA level (δfrac = 0.2), and only every 2nd datapoint has been
rendered for the sampled OFR distributions. B Fano factor of OFR distributions grows with
the E-I balance coefficient cb for a fixed dopamine level. The growth is faster for lower levels of
dopaminergic modulation. There is no qualitative difference between the balance with respect
to excitatory input (i.e. for fixed σin

E , left), and the balance with respect to inhibitory input
(i.e. for fixed σin

I , right). C For fixed degrees of E-I balance coefficient, OFR distribution FF
drops with the rise of dopamine. However, the relationship is not monotonic, and for low δfrac
values it is even reversed. Additionally, this effect is greatly diminished for values of cb close
to the original balance.
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3.3.5 Dopamine effect on intra-trial variability depends on the amount

of synaptic input

Together with the general DA-driven decrease of trial-by-trial variability in dMSN’s

output firing rates, we observed that elevated concentrations of dopamine could also

have a regularizing effect on spike times for high λin
E levels. In other words, dopamine

could act as a stabilizer of both output firing rate variability, as well as of output spike

time (“intra-trial”) variability for high levels of excitatory synaptic input. Figure 3.5A

gives examples of the average coefficient of variation (CV) for dMSN inter-spike intervals

(ISIs) in the synaptic input parameter space for three different DA levels. It was evident

that for high synaptic input rates an increase in DA modulation led to a decrease in

spike timing variability.

Interestingly, overlaying OFR contours onto the ISI CV space revealed that each contour

transversed multiple CV values (Figure 3.5B). This meant that it was possible to vary

excitatory and inhibitory synaptic inputs at a fixed DA level in such a way that the

neuron maintained a single output firing rate and at the same time had different values

of ISI CV. This effect was more prominent for low-range OFR contours at high levels of

DA (Figure 3.5B left).

Proceeding to investigate the impact of DA modulation on the ISI CV values lying along

an OFR contour, we observed that spike time variability of low-firing rate contours was

not uniformly distributed over different dopamine levels. This was illustrated by a small

but present increase in mean ISI CV values lying along the 5Hz OFR contour as the

concentration of DA rose (0.67±0.02 at δfrac = 0.2, 0.75±0.04 at δfrac = 1.0, all values

given as mean±SD). However, the effect was not evident for mid- (10Hz, 0.72±0.02

at δfrac = 0.2, 0.74±0.03 at δfrac = 1.0) and high-output firing rate contours (20Hz,

0.64±0.02 at δfrac = 0.2, 0.66±0.02 at δfrac = 1.0). Please note that due to small

number of available data points for 20Hz OFR contour at δfrac = 0.0, we chose the

baseline DA level (δfrac = 0.2) as the starting point for comparison.

Taken together, this result was reminiscent of the effect that dopamine had on Fano fac-

tor of OFR distributions (Figure 3.2), and was consistent with the theoretical approach

of describing single neuron variability via point process theory (Nawrot et al., 2008).

3.4 Discussion

In this work we explored the effects of dopaminergic modulation on trial-by-trial vari-

ability of a dMSN for two conditions: in the presence of correlations of synaptic input
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Fig 3.5. Dopaminergic modulation of spike time variability. A Average CV of inter-
spike intervals over multiple trials for three different levels of dopamine. As DA concentration
increases, dMSN spike times become more regular for regions with high synaptic input levels.
Red curves represent output firing rate contours. The trials where there were less than 5 spikes
were discarded from the calculations of the average ISI CV. B Box-and-whisker plot of ISI
CV for each DA level, for three chosen OFR contours. Red lines represents medians of the
data. Contours shift position on the 2D transfer function due to DA-driven changes in dMSN
excitability, which impacts the ISI CV values they are associated with. For 5Hz output firing
rate DA increases intra-trial variability of dMSNs, reminiscent of the rise of Fano factor for low
λin

E values. The trends for 10Hz and 20Hz OFR contours are, however, inconclusive. There
is a perceptible drop in average intra-trial variability between 5Hz OFR, elicited by low- to
mid-range λin

E , and 20Hz, elicited by high-range λin

E .

rates, and for the changes in the balance of input excitation and inhibition.

We show that an increase in input correlations ρ reduced the response variability for a

fixed DA level, and that this reduction was more prominent for higher DA levels. At the

same time, DA modulation by itself also acted to decrease variability when ρ remained

unchanged, as long as correlations were relatively weak. Higher degrees of correlations

however were mostly insensitive to changes in DA concentration.

The shifts in the E-I balance as well lead to a change in trial-by-trial variability, although

the sign of the change depended on the initial combination of synaptic inputs and the

final value of balance coefficient cb. In our examples we demonstrated consistent increases
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in spike count variability for a fixed DA level as the balance shifted away from an OFR

contour, with lower DA modulation level leading to a higher rate of variability change.

Larger degree of contour disalignment allowed DA to have a more prominent impact

on the variability, while staying aligned to a contour provided stability necessary to

maintain a low range of output firing rates regardless of the DA level.

Given these results we conclude that dopamine is, in general, a significant diminisher

of trial-by-trial variability, but that its efficacy in this respect is also dependent on the

properties of synaptic input. However, we should not disregard that our chosen output

firing rate contour (10Hz) positioned all the examined OFR distributions in the region

of 2D transfer function where we demonstrated dopamine to have either a negative

or minor effect on response variability. The extreme steepness of OFR contour slopes

for very low firing rates precluded a meaningful analysis in that region of 2D transfer

function. That being said, we also found that input rate correlations and changes in E-I

balance had by themselves a significant impact on the response variability, and should

not be disregarded in future studies related to this subject.

It should be noted that, in the E-I balance paradigm that we examined, changes in a

distribution Fano factor were particularly pronounced due to the initial alignment of our

sampled OFR distribution to an OFR contour. If a distribution is aligned to a contour,

the range of output firing rates it covers will be the smallest possible for a given DA

modulation level. Thus, any disalignment with respect to the contour will also result

in the rise of the available output firing rates and in the increase in the distribution

FF. Nevertheless, our conclusions are general enough to also apply to situations where

excitatory and inhibitory synaptic inputs are not aligned to an OFR contour.

A similar line of reasoning can be applied to the case of correlated synaptic input,

where very high degrees of correlation between E and I input rates resulted in an OFR

distribution constricted to a narrow region around the OFR contour in 2D transfer space,

thus severely limiting the range of the model’s output activity. However, this shrinking

effect due to heightened correlations is present whether an OFR distribution is centered

on a contour or not (data not shown).

Another limitation of this study pertains to our implementation of dopaminergic modula-

tion only for the steady-state condition. However, in biological systems phasic dopamine

release happens on relative short time scales and has a prominent role in mechanisms

such as reinforcement learning and motor control (Howe and Dombeck, 2016, Roitman,

2004, Hamid et al., 2015, Schultz et al., 1997, Schultz, 2007). Thus, an interesting av-

enue for future investigation would be the time-evolution of dMSN response variability

during DA transients.
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Finally, we have studied trial-by-trial variability only for direct-pathway MSNs. Canoni-

cally, DA has an opposing effect on indirect-pathway MSN (iMSNs) excitability (Planert

et al., 2013), and it would be therefore of great interest to investigate whether DA would

also have an opposing effect on iMSN trial-by-trial variability.

Experimental verification of our hypothesis presents several problems for future re-

searchers. In an ideal setup, an experimentalist would have a complete control over

synaptic input to an MSN, while simultaneously measuring its membrane voltage po-

tential in vivo. Recording a single striatal MSN even in behaving animals is something

that is possible with today’s methods (Sippy et al., 2015), but control over synaptic

inputs is not easily achievable. Nevertheless, recent advances in methods such as ret-

rograde labeling and optogenetics may provide an opportunity. For example, using a

rabies virus to label all the inputs to a target neural population, and then expressing

channelrhodopsin discriminately to labeled excitatory and inhibitory input populations

to obtain control over their activity (Osakada et al., 2011).

Here we explored the potential sources of trial-by-trial variability, but a question re-

mains: what is its purpose? It is logical to assume that stability in neural responses

is highly desirable for high-fidelity information transfer, and that response variability

itself is just noise in the system. Yet, multiple studies reported that variability in the

execution of movements and in the motor system in general is closely tied to purposeful

exploration of the motor space, and that when coupled with reinforcement it can drive

motor learning (for a review see Dhawale et al. 2017). Initial exploratory phase during

reinforcement learning implies high variability of movement, but as the learning proceeds

this variability decreases until finally the motor system converges on one or more par-

ticular actions associated with the highest reward. Variability reduction then is thought

to be caused by the strengthening of some synaptic inputs and the pruning of others

(Garst-Orozco et al., 2014, Fu et al., 2012, Wang et al., 2011, Xu et al., 2009). Possible

consequences of such synaptic reorganization may be precisely the two mechanisms that

we demonstrate in this study. Namely, a change in the E-I balance which would produce

an alignment in the transfer space to an OFR contour, or an increase in input corre-

lations which would limit the range of output firing rates available to a neuron. The

outcome of both of these effects is regularization of a neuron’s output firing rate over

repeated trials. The benefit of an increase in input rate correlations would additionally

be heightened insensitivity to fluctuations of DA concentrations in the system, which

might then act as a synaptic “stabilizer” and reduce the occurrences of LTP induction

on dMSN synapses (Shen et al., 2008).
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4.1 Introduction

Amplified beta-band oscillations in cortico-basal ganglia system are a staple of Parkin-

son’s disease (PD; Brown 2007, Hammond et al. 2007, Levy et al. 2002). Increased

beta-band activity in PD has been associated with resting state tremor and general is-

sues with movement initiation and execution (Cagnan et al., 2014, Tass et al., 2010).

This aberrant synchronization and the associated symptoms can be treated to some

extent through dopaminergic therapy (Kühn et al., 2006, Ray et al., 2008).
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While the striatum has been implicated in the origin of pathological beta-band oscilla-

tions (Kondabolu et al., 2016, Corbit et al., 2016), there is strong experimental (Bevan,

2002, Tachibana et al., 2011) and computational (Kumar et al., 2011, Mirzaei et al.,

2017, Pavlides et al., 2015) evidence that the interaction between the subthalamic nu-

cleus (STN) and the globus pallidus pars externa (GPe) plays a key role in their gener-

ation. STN and GPe share dense recurrent connections (Shink et al., 1996), with STN

sending excitatory projections to GPe which in turn inhibits STN. It is known that such

an excitatory-inhibitory network can both generate and sustain persistent oscillatory

activity (Brunel, 2000).

In accordance with this hypothesis, the current state-of-the-art model of the STN-

GPe network successfully replicates both persistent and transient beta-band oscillations

through manipulation of the parameters of the two nuclei alone (Kumar et al., 2011,

Mirzaei et al., 2017). It demonstrates that pathological beta-band activity can be in-

duced in several ways: by modifying the strength of synaptic coupling between STN

and GPe (Magill et al., 2001), by introducing additional pallidal inhibition from the

striatum (due to hyperactivity of indirect pathway medium spiny neurons; Liang et al.

2008, Mallet et al. 2008), or by introducing additional subthalamic excitation from the

cortex (Tachibana et al., 2011).

However, the STN-GPe model fails to capture the heterogeneity of the phase alignment

of STN and GPe beta-band activities off and on dopaminergic therapy, as recorded in

human PD patients (Cagnan et al., 2015). Since both propagation and cessation of

beta oscillations have been linked with such phenomena as phase locking and phase slips

(Cagnan et al., 2015, Holt et al., 2019, Hurtado et al., 2005), it is of some importance to

enable the STN-GPe model to successfully replicate this aspect of the network dynamics.

In this work, we investigate an extension of the STN-GPe model in order to account

for the beta-band phase alignment of the two nuclei as recorded in human PD patients.

We perform simulations for healthy (control) and pathological (stimulated) conditions,

focusing primarily on two parameters: the percentage of STN and GPe neurons that

were stimulated, and the synaptic transmission delays between and within the two neu-

ronal populations. By stimulating only a fraction of one of the populations, we observe

an increase in STN-GPe phase difference heterogeneity, and find that it is further aug-

mented for shorter synaptic delays. Overall, our results point to the conclusion that a

simple adjustment of the model may be enough to explain the discrepancy between the

computational approach and the experimental measurements of the phase of beta-band

activity.
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4.2 Methods

4.2.1 Neuron and network models

Both the neuron model and the basic network have been adapted from Mirzaei et al.

(2017) (Table 4.1, Figure 4.1A). Individual STN and GPe cells have been modeled as

leaky integrate-and-fire neurons with conductance-based synapses where synaptic in-

puts produced conductance changes described with an alpha function. Initial membrane

voltages and spiking thresholds were randomized to introduce greater heterogeneity in

model behavior. Total STN neural population consisted of 1000 units, whereas GPe pop-

ulation consisted of 2000 neurons. All neurons received constant uncorrelated Poisson-

distributed background excitatory input in order to bring the average population base-

line activities close to those previously reported (Bergman et al., 1994, Raz et al., 2000).

Synaptic weights for this background input have been randomly drawn from a uniform

distribution.

Connections between all neurons were established randomly while keeping their outde-

grees fixed. STN-to-STN connections were absent (Sato et al., 2000b, Mirzaei et al.,

2017). The base synaptic delays were higher between neural populations than for recur-

rent connections (Mirzaei et al., 2017).

4.2.2 Simulation design

We explored the dynamics of network beta-band activity for two different conditions:

control, i.e. non-stimulated, and stimulated. In non-stimulated condition the network

activity was the result of background input only. For stimulated condition we intro-

duced two additional sources of uncorrelated, constant, and Poisson-distributed input:

an excitatory one that targeted STN neurons, representing cortical afferents, and an

inhibitory one targeting GPe neurons, representing striatal connections. The purpose of

this additional input was to simulate an increase in beta-band activity, as can be seen

e.g. during Parkinson’s disease (Degos et al., 2008, Holgado et al., 2010, Kumar et al.,

2011, Mallet et al., 2008, Sato et al., 2000a, Tachibana et al., 2011). Simulations ran

for 11 s and over 10 trials. Within each trial, over both conditions and regardless of

the input parameters used, random number generator (RNG) seeds were always fixed.

However, RNG seeds were different over the different trials.

For the stimulated condition, stimulus rate was fixed at 500Hz, irrespective of the sign

of stimulation or targeted population. Synaptic weights for this additional input were

randomly drawn from a uniform distribution between 0.5 nS and 1.5 nS for excitatory
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Table 4.1. Neuron and network model parameters.

Parameter Value Description

Neuron parameters

Vth (mV) -54 Spiking threshold

Vreset (mV) -70 Reset voltage

tref (ms) 5 Refractory time

gL (nS) 10 Leak conductance

Cm (pF) 200 Membrane capacitance

Eex (mV) 0 Excitatory reversal potential

Ein (mV) -80 Inhibitory reversal potential

τ synex (ms) 5 Exc. synaptic time constant

τ syninh (ms) 10 Inh. synaptic time constant

Network parameters

NSTN 1000 Number of STN neurons

NGPe 2000 Number of GPe neurons

δ
STN→GPe

0.023 STN-to-GPe outdegree

δ
GPe→STN

0.035 GPe-to-STN outdegree

δ
GPe→GPe

0.02 GPe-to-GPe outdegree

J
STN→GPe

(nS) 1.2 STN-to-GPe syn. weight

J
GPe→STN

(nS) -0.8 GPe-to-STN syn. weight

J
GPe→GPe

(nS) -0.725 GPe-to-GPe syn. weight

t
STN→GPe

∆ (ms) 6.0 STN-to-GPe syn. delay

t
GPe→STN

∆ (ms) 6.0 GPe-to-STN syn. delay

t
GPe→GPe

∆ (ms) 3.0 GPe-to-GPe syn. delay

λ
STN

bgr (kHz) 1.5 STN background input

λ
GPe

bgr (kHz) 1.0 GPe background input

input to STN, and −1.5 nS and −0.5 nS for inhibitory input to GPe. In different sim-

ulation setups, we varied independently the percentage of STN and GPe populations

that were stimulated, for the following values: 0%, 25%, 50%, 75%, and 100%. This

produced 25 stimulation combinations, from those where only a single population was

receiving varying degrees of additional inputs, to the final one where all of the neurons in

both populations were stimulated at the same time (Figure 4.1B). We have disregarded
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Fig 4.1. STN-GPe network setup and beta signal extraction. A A schematic of the
network architecture. STN neurons send excitatory connections to GPe, and in turn receives
inhibitory ones. Recurrent connections are present in GPe but not STN. Both neural popula-
tions receive excitatory background input to bring their activities to baseline levels. Depending
on the stimulation setup, a percentage of either (or both) of STN and GPe populations may
be targeted by additional excitatory (from cortex) or inhibitory (from the striatum) inputs,
respectively (patterned grey areas). B raster plot of 2 s of network activity. Areas shaded
grey have received additional stimulation in order to induce increased beta activity. In this
case, 25% of both STN and GPe populations have been stimulated. Every 20th spike has been
rendered. C 5 s of a PSTH trace belonging to non-stimulated GPe subpopulation from B. D
Extraction of the beta signal from the PSTH in C. The beta signal was obtained by band-
pass filtering the PSTH ±1.5Hz around the peak beta power of the network in stimulated
condition. The envelope of the beta signal (red) and the instantaneous phase are obtained by
Hilbert transform.

the case where neither of STN or GPe nuclei were stimulated (i.e. where 0% of each

population was stimulated), as this was equivalent to the control condition.

We also varied synaptic delays by introducing “delay scale” factor, which scaled the base

delay values up or down by a certain fraction (Table 4.2).

We then performed a parameter search over these two parameter sets: the fraction of

STN or GPe populations that were stimulated, and the delay scale factor.
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Table 4.2. Values for the scaled synaptic delays in the STN-GPe network. The base values
are marked in grey.

Delay scale
STN←→GPe

(ms)
GPe→GPe

(ms)

0.25 1.5 0.75

0.50 3.0 1.5

0.75 4.5 2.25

1.00 6.0 3.0

1.25 7.5 3.75

1.50 9.0 4.5

4.2.3 Beta-band analysis

Envelope and phase extraction Upon the conclusion of simulations, we sampled the

activity of 200 randomly chosen neurons from each of the populations, once for every

trial. The activity sampled in this way was used to construct a post-stimulus time

histograms (PSTH) for STN and GPe. The first 400ms were removed from the start of

each PSTH in order to account for the network transition period. To extract the beta

signal, we band-pass filtered PSTHs ±1.5Hz around the reference peak power in the

beta region (12-35Hz) using zero-phase third order Butterworth filter. The reference

peak beta power was defined as the highest power in the beta region of a stimulated

population, and that value was applied in the analysis of both conditions in a “control-

stimulated” simulation pair. Finally, we employed Hilbert transform in order to estimate

instantaneous envelopes and phases of the band-pass filtered beta signals (Figure 4.1, C

and D).

Envelope-phase dependency We performed the analysis of the difference between STN

and GPe beta-band instantaneous phases as described in Cagnan et al. (2015). Briefly,

the STN-GPe phase difference (further on, just “phase difference”) was calculated for

sampled STN and GPe neurons in each condition separately, wrapped to the interval

[−π, π), and then binned into 20 bins. The final phase difference profiles for each condi-

tion were obtained by averaging over all trials, and normalized to obtain their probability

mass functions.

Information entropy We quantified phase heterogeneity in each normalized profile by

calculating their information (Shannon) entropies:

S = −
∑

i

Pi loge(Pi) (4.1)
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where Pi is the probability mass for each of the 20 bins i, and S is entropy measured in

nats (“natural units”).

Relative error We compared the STN-GPe phase difference profiles from our simulations

to those obtained from human patient recordings, reproduced from Cagnan et al. (2015)

by WebPlotDigitizer (https://automeris.io/WebPlotDigitizer/). To this purpose,

we devised a measure of similarity based on scaled residual sum of squares (RSS) which

we named “relative error” (RE):

RSS =
n
∑

i=1

(yi − xi)
2

RE =
RSS

n
∑n

i=1 |yi|
(4.2)

where yi and xi are probability masses of the ith bin of the phase difference profiles for

human patient data and simulation data, respectively, and n = 20 is the number of bins

in each profile. The final RE value was obtained as an average of RE of the control

condition and RE of the stimulated condition.

All network simulations were written in Python, using PyNN and NEST simulator (ver-

sion 2.14, Peyser et al. (2017)). Analysis of the simulation results were performed using

custom scripts written in Python (version 2.7).

4.3 Results

We explored the dynamics of beta-band activity of an STN-GPe network in two condi-

tions: control, where we recorded the spontaneous network activity (representing non-

pathological state), and stimulated, where a portion of neurons in either of STN and

GPe populations received additional input to promote heightened levels of beta activity

(representing pathological state). Our focus was on investigating factors which would

enable the model network to exhibit as rich beta-band phase heterogeneity as is seen in

human patients. Namely, Cagnan et al. (2015) have shown in LFP data acquired from

PD patients, both OFF and ON dopaminergic medication, that the beta-band phase

difference between STN and GPe nuclei is distributed over all the phases between −π

and π(Figure 4.2A). In contrast, while the best current model of the STN-GPe network

can replicate many of the characteristic features of both healthy and pathological beta-

band activity (Kumar et al., 2011, Mirzaei et al., 2017), its phase difference profile is

very narrow. This is illustrated in Figure 4.2B, where the same methodology described

in Cagnan et al. (2015) was used on sampled PSTH data instead of LFP measurements

in order to construct the phase difference profiles. In these simulations, spontaneous



Chapter 4. STN-GPe network for beta-band phase heterogeneity 68

Fig 4.2. Modified STN-GPe network improves correspondence to the PD patient
data. A Distribution of the phase difference between STN and GPe from LFP recordings
in human PD patients. Black bars correspond to recordings acquired when the patients were
OFF dopaminergic medication, and red bars to those when the patients were receiving L-
DOPA treatment. Reproduced from Cagnan et al. (2015). B STN-GPe phase difference
obtained from the established computational model of the STN-GPe network (Kumar et al.,
2011, Mirzaei et al., 2017). Entire GPe population has been stimulated. Beta-band phases
were derived from PSTHs of sampled populations in both groups of neurons. The “control”
condition corresponds to “ON DA” activity in A, whereas “stimulated” condition was used
to induce pathological beta-band activity analogous to the “OFF dopamine” case. Notice the
different scale of the y-axis. C Phase difference produced from an iteration of the modified
STN-GPe network. This particular result was obtained by decreasing the synaptic delays from
the original network by half, and by stimulating only 50% of GPe population.

activity of the network (“control”) was analogous to ON DA medication state in human

patients, while OFF DA condition was represented through stimulation of the network

(“stimulated”), which promoted heightened levels of beta activity. It can be seen that the

STN-GPe phase difference, especially in the stimulated condition, is mostly constrained

to a very limited range of values.

Through extensive parameter search using the established network model, we have con-

cluded that at least two variables influence phase difference heterogeneity in the STN-

GPe circuit: the percentage of population stimulated, and the synaptic delays within

and between neuronal populations represented through “delay scales” (see Methods).

By examining different combinations of these two variables, we were able to construct

phase difference profiles that were qualitatively closer to those as seen in human pa-

tients (Figure 4.2C ). However, we were unable to fully capture the difference between

control/ON DA and stimulated/OFF DA profiles.
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4.3.1 Higher percentage of population stimulated decreases STN-GPe

phase difference heterogeneity

In order to ascertain the impact of the investigated variables on phase difference het-

erogeneity, we described phase difference profiles through information entropy (Equa-

tion 4.1). High entropy values signified rich information content and were associated

with wider distributions of phase difference (e.g. Figure 4.2C ), whereas low entropy val-

ues were characteristic of phase difference that was concentrated in a smaller number of

available bins (e.g. Figure 4.2B).

We found that for delay scales below 1.0 (i.e. for synaptic delays that were lower or

equal to the base values) there was a perceptible decrease of entropy as the percentage

of stimulated neurons in a population grew (Figure 4.3). This effect didn’t seem to

depend on which of the STN or GPe populations were stimulated. However, it did

appear that the entropy was decreasing faster when both nuclei were stimulated at the

same time. For delay scales above 1.0 entropy of phase difference profiles was uniformly

low regardless of the portion of neural population stimulated, suggesting a significant

impact of larger synaptic delays on beta-band activity.

We postulate that the mechanism behind the dependence of entropy on the percentage

of population stimulated is as follows: as the number of stimulated neurons grows, it

becomes easier to entrain the remaining neural population to the evoked activity and

thus to lock the phases of STN and GPe to an increasingly similar pattern. It follows

that when the entire population of a nuclei is stimulated, phases of beta-band activity

for both STN and GPe become nearly identical and the entropy of their phase difference

profiles becomes minimal.

We also observed that for some combinations of input parameters — large delay scales

and high percentages of population stimulated — the entropy of the network in control

condition grew even though it did not receive any stimulation whatsoever. The most

likely reason for this behavior was a change in frequency of peak beta-band power, which

was always derived solely from the network in stimulated condition for every “control-

stimulated” pair of simulations (see Methods). As the peak beta-band power decreased

in frequency, so did the content of the filtered beta signal change, which then affected

the results of the phase analysis. However, this effect was mostly constrained to the

region of the parameter space that was not biologically relevant, with synaptic delays

between STN and GPe nuclei being over 7ms (Table 4.2).
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Fig 4.3. Increase in percentage of stimulated population reduced phase difference
heterogeneity. For standard or low values of synaptic delays information entropy of phase
difference profiles is reduced as the portion of the total neuronal population stimulated rises.
For high synaptic delays entropy is always close to zero. Rows represent simulation iterations
where only the indicated population (or both of them simultaneously in the third row) has
received additional input. Each column corresponds to a fixed value of delay scale, with three
different scales chosen as representative.

4.3.2 Lower synaptic delays increase STN-GPe phase difference het-

erogeneity

We proceeded to investigate the evolution of the phase difference distribution entropy

across the whole range of synaptic delay scales used in our simulations, for three rep-

resentative percentages of population stimulated. We observed that for each column of

Figure 4.4 the entropy tended to assume lower values as the synaptic delays in STN-

GPe circuit increased. Indeed, this effect was evident for both control and stimulated

conditions, but was more prominent when stimulatory input was applied.

It should be noted that while the maximal entropy in each case was obtained for the

lowest delay scale, for most combinations of stimulation using that delay scale the phase

difference distributions were mostly flat (data not shown). That is to say, while the phase

heterogeneity exemplified through entropy was at the maximum, the phase difference
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Fig 4.4. Decrease in synaptic delays augmented phase difference heterogeneity.
For all examined percentages of population stimulated (three representative values are given
column-wise), entropy of phase difference profiles is at the highest for low delay scales and
decreases as synaptic delays grow. This effect is stronger for the stimulated than for the
control condition.

profiles themselves were distributed over the available bins relatively equally, thus losing

the structure that was evident in human patient recordings (Figure 4.2A).

While we are not explicitly concerned with beta-band oscillations in this study, their

presence and effects on STN-GPe network dynamics are nevertheless crucial, and espe-

cially pertinent to explain the mechanism behind the dependence of entropy on synaptic

delays. Namely, the stronger the oscillations in an excitatory-inhibitory network, the

more neurons are entrained into a synchronous state, thereby reducing the variability

of instantaneous phases they assume. This has a direct effect on the phase difference

between STN and GPe, and therefore on the entropy of phase difference profiles. For in

order for network oscillations to occur, there needs to be an adequate delay between the

individual nuclei in that network Holgado et al. (2010). To illustrate with an example,

there has to be an adequate amount of time for STN to achieve high enough firing rates

to excite large enough portion of GPe neurons, which then likewise need time to build

up their activity and in turn suppress the STN population. The decrease in STN firing

would reduce the excitatory input to GPe, which then disinhibits STN and leads to a
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new cycle of oscillations. However, if the synaptic delay between STN and GPe is too

short, not enough activity can build up in one nucleus to sufficiently affect the other

and thus initiate oscillatory behavior, which would finally result in a network converg-

ing to an equilibrium (Brunel, 2000, Holgado et al., 2010). As discussed above, such a

network would indeed have a very high phase heterogeneity and thus high entropy, but

its phase difference distribution would be flat. Conversely, very long synaptic delays

allow for larger build-up of activity in the nuclei, leading to more intense oscillations,

stronger coupling of activity between the two nuclei, and therefore to a much narrower

distribution of phase differences.

4.3.3 Quantifying similarity of modified network output to human pa-

tient data

Finally, taking into account both the synaptic delay scale and the percentage of popu-

lations stimulated, we performed comparison of the STN-GPe phase difference profiles

generated by our simulations to those obtained from human data patients. To this

end we defined “relative error” (RE, Equation 4.2) that quantified the correspondence

between the simulated profiles and the ones reproduced from Cagnan et al. (2015).

Fig 4.5. Exploring the parameter space to find the best match with human data. A
Color plot of relative error values measuring similarity of simulation-obtained phase difference
profiles to Figure 4.2A for different combinations of synaptic delay scales and percentages
of STN and GPe populations stimulated. Red asterisk denotes the parameter combination
that produced the best match. B STN-GPe phase difference profile corresponding to the red
asterisk in A.

In Figure 4.5A we show how the relative error depends on the fraction of neurons that

were stimulated in STN and GPe populations separately, and how this dependence

changes for different delay scales. Generally, RE was the smallest for low delay scale
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values, in line with the previous consideration about the effect of short synaptic delay

times on phase difference heterogeneity. As the delay scale increased, low REs were

concentrated in the region of the least fractions of population stimulated.

For each delay scale we located the parameter combination that produced the smallest

REs, i.e. the best match with the human patient data, and plotted its corresponding

phase difference profile (Figure 4.5B). It is striking that the best match was obtained

for the values of synaptic delays that were around only 1ms (Table 4.2). What is more,

this particular parameter combination even reproduced the difference in distributions

between control/ON DA and stimulated/OFF DA conditions that was evident in Fig-

ure 4.2A, but which we failed to achieve for higher delay scales. However, the current

physiological evidence points to delays of synaptic transmission between STN and GPe

nuclei to be of higher values (Holgado et al., 2010, Kita and Jaeger, 2016).

For larger delay scales, the best matches were obtained for the simulations in which

only one of the STN or GPe populations were stimulated at the same time, and with the

lowest fraction of neurons at that. Among these simulations, based on the comparison of

entropy, the phase difference heterogeneity was at its maximum for synaptic delays that

were only half of those used in the original iteration of the STN-GPe network (Mirzaei

et al., 2017) (Figure 4.5B, second panel), and whose values lie firmly in the biologically

relevant range (Kita and Jaeger, 2016).

Taken together, these results point to the importance of the way stimulation of STN

and GPe is implemented in simulations of their circuitry, and that imposing additional

input to only a portion of the neural populations may result in phase difference profiles

similar to those as seen in human patients. Furthermore, we conclude that the choice of

synaptic delays is crucial when exploring beta-band activity in the STN-GPe network,

both in the healthy and the pathological state.

4.4 Discussion

Currently the most successful computational interpretation of the STN-GPe network

reproduces in a realistic way both persistent and transient beta-band oscillations in

healthy and Parkinsonian conditions. Nevertheless, it fails to capture the full spectrum

of values of beta-band phase alignments between the two nuclei, as has been observed

in human PD patients. This is especially evident for simulations of the Parkinsonian

state, where one or both of the populations were receiving stimulatory input in order to

promote pathological levels of beta-band activity. Here we address this issue and show

that the heterogeneity of STN-GPe beta-band phase differences can be improved through
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manipulation of two main variables: synaptic transmission delays, and the fraction of

neuronal population that receives stimulation. Our results show that the model can

achieve a greater correspondence with experimental results if not all the neurons in the

target population(s) are stimulated. Indeed, those simulations where only a quarter

of the neurons in a population were targeted by additional input proved to bear the

highest degree of resemblance to the human patient data. This effect becomes even

more prominent for very short synaptic delays, and conversely, disappears if the delays

are overly long.

In this study we have approached the manipulation of synaptic delays by starting from

the base values used in the previous version of the model (Mirzaei et al., 2017) and scal-

ing both the within-population (GPe→GPe only) and between-population (STN↔GPe)

ones by the same factor. This caused the within- and between-population delays to

grow progressively further apart as the delay scale factor increased. To verify that the

results we obtained were not due to this effect, we performed a set of simulations where

both GPe→GPe and STN↔GPe delays were modified simultaneously by addition or

subtraction of a constant value. However, there was no qualitative difference between

the two approaches (data not shown).

It should be noted that the scope and the results of this study are limited in several

aspects. Firstly, only a single value of the stimulus rate was employed, regardless of

the percentage of the population affected or the target nucleus. The strength of the

additional input to the network affects its dynamics directly, as too weak a stimulus

would not be able to elicit significantly higher levels of beta-band activity, whereas too

strong one would result in beta oscillations of unrealistic proportions. Nevertheless, there

is a range of possible stimulus rates between these two extremes that warrant further

investigation. Furthermore, it has been shown in a recent study by Bahuguna et al.

(2019a) that the same network setup, but utilizing a neuron model where the firing rates

and bursting can be independently controlled, responds in a different manner depending

on whether the STN or GPe was stimulated. More precisely, the beta oscillations were

more sensitive to changes in STN firing rates (induced by additional excitatory input),

than to changes in GPe firing rates (induced by inhibitory stimulus). Therefore, it might

be of interest to explore how the STN-GPe network dynamics might change during those

simulations where both of the nuclei are stimulated, when the stimulus rates are different

for each of them.

Secondly, a significant shortcoming of our model is its failure to replicate the character-

istic relation of OFF DA and ON DA phase difference profiles as recorded in humans

(Figure 4.2A). While the model does successfully capture the overall shape of the OFF

DA/stimulated condition profile for several different combinations of input parameters
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investigated in this study, the same cannot be said for the case of ON DA/control con-

dition distribution. A possible reason for this issue lies in our choice of the background

inputs to the STN and GPe neurons. Namely, the excitatory-inhibitory nature of the

STN-GPe network model makes it prone to oscillatory behavior (Brunel, 2000), and one

of the parameters that has a significant impact on the network dynamics is the balance

of rates of the background input that the neurons of the two nuclei receive. We strived

to balance those rates in such a way that the model, in the absence of additional stimu-

lation, did not exhibit excessive beta-band oscillations, while at the same time allowed

the STN and GPe populations to maintain average output levels close to physiologi-

cal ones. Nevertheless, these two conditions could also be met for a different choice of

background rates, and our tuning might not have been optimal enough to allow for the

proper differentiation of phase difference profiles. As part of the future work, we will

perform a detailed parameter search in order to verify this hypothesis.

Additionally, improved representation of STN-GPe phase alignments in our network

allows us to direct future efforts towards further examination of beta-band phase prop-

erties. For example, it is known that beta-band activity is not continuously elevated,

even during PD, but rather fluctuates and gives rise to beta bursts (Feingold et al., 2015,

Tinkhauser et al., 2017b). However, the relationship of the beta bursts and phase-related

phenomena such as phase locking or phase slips (Cagnan et al., 2015, Hurtado et al.,

2005) remains to be explored.

Finally, a question may be asked: what would be the neurological basis for the assump-

tion that only a part of STN or GPe may be stimulated? One answer to this issue might

lie in the somatotopic organization of the basal ganglia in general, which is also reflected

in both STN and GPe (Nambu, 2011). Thus, depending on the source of the input

to the two structures, it is perfectly conceivable for some neurons of one of the nuclei

to be temporarily more active than their neighbors. Another answer could be related

to studies of action selection and neuronal ensembles within the basal ganglia, or more

specifically, within the striatum. One of the functions of the BG is action selection, and

several theoretical studies approached this subject by considering “action channels” —

neural populations within the striatum that process individual upstream inputs (Bo-

gacz and Gurney, 2007, Gurney et al., 2015, Bahuguna et al., 2019b). Moreover, there

are both theoretical and experimental indications of the existence of localized group-

ings of neurons forming ensembles that also map the action space (Barbera et al., 2016,

Humphries et al., 2009, Klaus et al., 2017, Spreizer et al., 2017). If action channels and

localized neuronal ensembles exist also in the downstream BG nuclei, then their effects

could perhaps be seen in subpopulations of different levels of activity in STN or GPe,

similar to our own approach in this work.
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Discussion

As the principal cells of the striatum, GABAergic medium spiny neurons are at the

center of both function and dysfunction of the basal ganglia. The proper balance of

their activity is responsible, through direct and indirect pathways of the BG, for motor

execution, action selection, habit formation, reinforcement learning, and others. When

this balance is disturbed, for example through dopaminergic depletion in the striatum or

increased selective apoptosis of MSNs, the results manifest as pathologies of the entire

basal ganglia system. The goal of this thesis was to further our understanding of MSN

activity through study of their inputs and their outputs. To this purpose, I used signal

processing tools to analyze in vivo recorded MSN membrane potentials and examine

their inputs (Chapter 2), biophysically complex dMSN model to investigate trial-by-

trial output variability of a single neuron (Chapter 3), and a network of point neurons

to observe the effects of pathological striatal activity on phase alignment of subthalamic

nucleus and globus pallidus externa (Chapter 4).

5.1 Increased total input to dMSNs

In Chapter 2 I analyzed sub-threshold and supra-threshold dynamics of recorded MSN

membrane potentials, to verify the presence of increased amounts of total input to one

of the two MSN types.

Previously, Wall et al. (2013) gave a comprehensive overview of MSN afferents from

various cortical and thalamic regions, and showed that limbic and sensory cortices pref-

erentially target dMSNs, while motor cortex preferentially targets iMSNs. Over the past

decade, several research groups were involved in a dispute concerning differential inner-

vation of the two MSN types by intratelencephalic (IT) and pyramidal (PT) cortical
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tracts. One side provided evidence that a higher percentage of IT-type neurons con-

tacted dMSNs than iMSNs, and that iMSNs received more connections from PT-type

than dMSNs (Deng et al., 2015, Lei et al., 2004). Other groups responded with their

own results showing no such difference (Arias-Garćıa et al., 2017, Doig et al., 2010, Wall

et al., 2013). More recently, Parker et al. (2016) demonstrated in vitro that both cortical

and thalamic inputs are biased to dMSNs. Differences in both lateral MSN connectivity,

as well as in the connections from fast spiking interneurons (FSIs) to MSNs, have also

been demonstrated (Taverna et al., 2008, Planert et al., 2010); in both cases dMSNs were

receiving more inhibitory inputs than iMSNs. Summating all the previous research, a

theoretical study by Bahuguna et al. (2015) found that dMSNs have to receive stronger

overall input in order for the activities of the two MSN types to be balanced.

In our own work, we show for the first time in vivo that dMSNs indeed receive stronger

total input in healthy mice, and that this difference is lost for 6OHDA lesioned ani-

mals. Our conclusions rest on two key observations. First, by analyzing power spectral

densities (PSD) of the sub-threshold MSN membrane potential, we demonstrate that

dMSNs exhibit significantly higher spectral power than iMSNs in up-states for a wide

range of high-frequency bands. Comparison of the estimates of the effective membrane

time constant τm indicated that this effect was not the product of different membrane

dynamics. Second, dMSN spike-triggered average (STA) traces clearly showed faster

depolarization toward spiking threshold for stimulus-induced spikes compared to iMSN

STAs.

Furthermore, PSD analysis revealed no difference in spectral power between dMSNs and

iMSNs in 6OHDA lesioned mice, and values of τm that were comparable between the

two groups. Together, these results indicate that in DA-depleted condition dMSNs and

iMSNs receive similar amounts of total input.

Finally, we also found through effective membrane time constant estimation that up-

state τm is significantly shorter than in the down-states, indicating that MSNs in the

up-states operate in a high-conductance regime.

5.2 Dopamine as a modulator of response variability

In Chapter 3 I investigated the effects of dopaminergic modulation on output spike count

variability of a biophysically complex dMSN model. I focused on two main modalities

of synaptic input: when the input excitatory (E) and inhibitory (I) rates are correlated,

and when a change in E-I balance occurs.
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Variability of neuronal responses across different trials is a general characteristic of the

central nervous system, and its sources have been tracked to synaptic noise, refractory

period, and ongoing neural activity (Arieli et al., 1996, Faisal et al., 2008, Kara et al.,

2000, Mainen and Sejnowski, 1995). Here we explored for the first time dMSN trial-by-

trial variability in the context of a 2D transfer function, where excitatory and inhibitory

inputs have been manipulated independently to produce a landscape of dMSN output

firing rates. We found that dopaminergic modulation has a distinctly non-linear effect on

dMSN response variability. In our setup, rise in dopamine levels would increase response

variability when excitatory input rates were low, have a non-monotonic but generally

diminishing effect on variability when excitatory input rates were mid-range, and have

no perceptible effect for high excitatory input rates. Changes in inhibitory input rates

mostly served to modulate the magnitude of these results.

When we restricted the independency of E and I inputs, either through imposing corre-

lations of E and I input rates over different trials or through changes of E-I balance, we

observed a complex interplay of synaptic bombardment and dopaminergic modulation.

If a DA level remained fixed, an increase in input correlations would reduce trial-by-

trial variability; this reduction would be more prominent for higher concentrations of

dopamine. When input correlation value was fixed, dMSN trial-by-trial variability in

the examined region of the 2D transfer function diminished as DA concentration grew.

However, for high degrees of input correlations changes in DA level would have no percep-

tible effect. Shifts in E-I balance were more involved to interpret as our analysis revolved

around so-called output firing rate (OFR) contours (see Chapter 3). Any changes in the

E-I balance that would move sampled OFR distribution away from a contour would

result in an increase in response variability for a fixed level of dopamine, and vice versa.

At the same time, dopamine acted to decrease variability in the examined region of the

2D transfer function, as long as OFR distribution was sufficiently displaced from the

contour; otherwise its effects were negligible.

Taken together, the model predicts that dopaminergic effect on dMSN trial-by-trial vari-

ability depends heavily on the proportion and the covariance of excitatory and inhibitory

synaptic input, and that any changes in the E-I balance will have perceptible impact on

the dispersion of dMSN output firing rates.

As a final note, in this study we sampled 2D dMSN transfer function by drawing samples

from distributions of excitatory and inhibitory input rates. Each E and I rate drawn

would produce a single dMSN output firing rate, which we considered a single trial.

Multiple drawings would then represent multiple trials, and thus would the variance of

MSN output firing rates (scaled by the mean OFR) represent trail-by-trial variability.

However, we could also look at this sampling procedure from a network perspective. In
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this situation, each sample would not represent a single trial, but rather an output firing

rate of a single neuron in a pool of neurons. Thus all the samples taken together would

constitute OFR distribution of a collection of cells recorded from a network, and the

measured variability would be the response variability of the network itself. Of course,

this would be only an approximation, as effects of lateral connectivity between dMSNs

would not be included.

5.3 Partial stimulation of STN-GPe network improves phase

alignment between the nuclei

In Chapter 4 I extended the existing STN-GPe network model in order to obtain an STN

and GPe phase alignment profile more similar to that recorded in human PD patients.

The network model we used is able to successfully reproduce other aspects of STN and

GPe beta band activity, such as transient and persistent beta oscillations in both healthy

and Parkinsonian conditions (Kumar et al., 2011, Mirzaei et al., 2017), but it fails to

fully capture the beta-band phase relationship of the two nuclei (Cagnan et al., 2015).

This was especially true PD state, which we simulated by applying additional inhibitory

input to GPe (representing increased iMSN activity that occurs during PD), and/or

additional excitatory input to STN (representing increased cortical drive) (Degos et al.,

2008, Holgado et al., 2010, Kumar et al., 2011, Mallet et al., 2008, Sato et al., 2000a,

Tachibana et al., 2011). In this condition the STN-GPe phase difference distributions

were very narrow, indicating that the two nuclei were perpetually phase-locked.

We were able to achieve a degree of correspondence of the network model output and

the human patient recordings through manipulation of two model parameters: synaptic

transmission delays, and percentages of populations stimulated. Our model predicts

that a partial stimulation of one of the nuclei is enough to recover a portion of the STN-

GPe phase difference heterogeneity. Indeed, we obtained the greatest correspondence

to patient data when only a quarter of either STN or GPe neurons were stimulated.

Furthermore, we showed that the heterogeneity of STN-GPe beta-band phase alignments

was greatest for short synaptic delays, and that it decreased significantly as synaptic

delay grew. While some of the values that we have used for delays fall outside of confines

of physiology (being either too short or too long), the literature is not fully consistent

on this subject and provides a range of values to choose from (Holgado et al., 2010, Kita

and Jaeger, 2016).
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5.4 Future work

Each of the projects I have described in this thesis lends itself to extensions and im-

provements, and offers multiple opportunities for future studies. Here I describe some

of the possibilities.

5.4.1 Differentiating inputs to MSNs in health and disease

While our analysis of MSN membrane potentials comprises a well-rounded story, there

are aspects of it that could be extended in a future work. The biggest remaining question

is that of the differentiation of excitatory and inhibitory inputs to the MSNs. However, to

the best of my knowledge, there exists no method to discern the type of input activity

from a recorded membrane potential alone, and a more involved experimental setup

would be needed to answer this problem.

Another aspect that is lacking in our work is STA treatment of DA-depleted traces.

Unfortunately, we didn’t have access to enough data from 6OHDA-lesioned animals to

perform this analysis, but it would be of great interest to compare MSN STA traces

between healthy and DA-depleted conditions. In our setup, we were able to follow the

effects of mouse barrel cortex activation on outputs of healthy MSNs and show the

difference between spontaneous and evoked activities, demonstrating increased inputs

to dMSNs. When it comes to dopamine depletion however, there is a complex rewiring

of all connections in the striatum, both afferent and recurrent ones. Namely, it has

been shown that iMSNs suffer a widespread loss of dendritic spines and glutamatergic

synapses in DA-depleted animals, while dMSNs remain relatively unchanged in this

regard (Day et al., 2006, Taverna et al., 2008). Additionally, thalamo-striatal — but not

cortico-striatal — neurons start targeting iMSNs preferentially in Parkinsonian condition

(Parker et al., 2016). Changes in connectivity from FSIs to MSNs driven by the lack

of dopamine are also asymmetrical, with the number of connections to iMSNs nearly

doubling, while at the same time remaining largely unchanged for dMSNs (Gittis et al.,

2011). Finally, lateral MSN connectivity is reported to be profoundly decreased in

6OHDA lesioned mice for both direct- and indirect-pathway neurons (Taverna et al.,

2008). Therefore, it is difficult to estimate the cumulative effect of these changes on

the amount of total input dMSNs and iMSNs receive without direct measurements, and

further investigation in this direction is necessary. Our STA approach is straightforward

to implement once in vivo recordings are obtained, and could provide further valuable

insight into the changes to MSN processing brought about by the lack of dopaminergic

modulation.



Chapter 5. Discussion 82

Lastly, we could also apply our novel approach for estimation of effective membrane time

constant to other electrophysiological data, and measure its effectiveness versus a more

traditional time constant measurement. While our method is relative, in the sense that it

doesn’t return true values for τm but that it can be used to compare all the data obtained

in the same way, it is also fast and simple to apply to a post-processed membrane

potential recording, and works without a need for additional specialized experiments.

5.4.2 Generalizing MSN response variability

The compartmental dMSN model that we have used to investigate the impact dopamine

has on neural trial-by-trial variability is state-of-the-art. It integrates all the known MSN

channel dynamics, and includes dMSN-specific dopaminergic modulation of intrinsic and

synaptic channels. However, it has been constructed and tuned with respect to MSN data

recorded from healthy animals, and thus does not allow for investigations of behavior

under Parkinsonian conditions. It is known that due to adaptations of brain circuits

during PD, both MSN types undergo changes in their intrinsic properties (Ketzef et al.,

2017), as well as their connectivity (described in the previous section). Alterations in DA

levels in the system and the changes of dopaminergic modulation dynamics also need to

be taken into account. Therefore, in order to explore dMSN response variability under

PD conditions, future efforts necessitate the complete re-tuning of all model parameters

and creation of a parallel “PD dMSN”.

Indirect-pathway MSNs should also not be forgotten. Different inputs they receive

(Chapter 2 of this thesis, and Parker et al. 2016) as well as their different electrophys-

iological and anatomical properties compared to dMSNs (Gertler et al., 2008) indicate

that iMSN 2D transfer function will have a distinct landscape. This of course will have

a direct impact on its trial-by-trial variability profiles. Currently, such an iMSN model

is in development and will be available for use in the near future (unpublished personal

correspondence with R. Lindroos).

Ultimately, we have examined only two possible modes of synaptic input, and fairly

limited at that. We can also wonder what would be the effects of input spike train

correlations or a combination of changes in E-I balance and rate correlations on MSN

response variability, and what role would dopamine play in those cases. We have also

only touched the subject of intra-trial variability and regularization of output spike times.

It would be then interesting in the future to consider these questions more thoroughly

in the framework of point process theory (Nawrot et al., 2008).

Finally, while the overall subject of this thesis concerns medium spiny neurons, the

approach that we used in Chapter 3 can be applied also to a more generic neuron
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model. Indeed, we are currently investigating response variability of a large-scale neural

network comprised of a more simple, leaky integrate and fire neuron.

5.4.3 Phase locking of beta bursts in STN-GPe circuit

While we succeeded in improving the correspondence of the network model and the

human patient data for STN-GPe beta-band phase differences, we failed to reproduce

the particular relationship between the OFF dopamine and ON dopamine conditions.

A possible reason for this lies in the specific tuning of the STN-GPe network that we

used, and as the first step in the future work we will address this issue by performing a

thorough search for the optimal network parameters.

Improving the model in this way would open the door to further research on the subject of

beta-band phase properties. Cagnan et al. (2015) has postulated, based on observations

of STN and GPe beta-band phase locking duration, that synchronization of beta activity

of the two nuclei spreads in waves within the populations until a phase slip occurs. While

experimental verification of this hypothesis might demand complex recordings of a large

number of neurons in both STN and GPe, it would be comparatively simple to test it

in a computational environment.

5.5 Implications for the function and dysfunction of the

basal ganglia

The analysis that we have performed in in vivo MSN recordings provides a valuable

insight into how the extrinsic inputs are processed within the striatum, and gives exper-

imental support to the conclusions of a previous computational model (Bahuguna et al.,

2015). Nevertheless, other important aspects of striatal inputs remain to be studied in

a living brain: the relative strengths of total excitatory and inhibitory inputs to MSNs;

their balance, and the degree of correlation between them; spike time correlation within

excitatory and inhibitory inputs separately; the difference in these variables depending

on the MSN type; their evolution in time; and finally, the changes in the properties of

inputs during Parkinson’s disease. Some of these questions have been addressed by var-

ious in vitro studies, but limitations inherent in that approach preclude generalization

of their results to the in vivo case. Ultimately, we are lacking hard values that describe

distributions of input rates to individual MSNs and that discriminate between sources

of that input.
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We have shown here on the example of a dMSN model that properties of synaptic inputs

affect its processing significantly, and that relatively small changes in the balance or in

the correlation between incoming excitation and inhibition, combined with dopaminergic

modulation, can have a large impact on neuronal response variability. These variations

in MSN outputs will in turn reflect on the dynamics of the downstream nuclei, espe-

cially after synaptic rewiring that occurs in the striatum after dopamine depletion. To

illustrate, it has recently been demonstrated in 6OHDA-lesioned rats that iMSNs in

particular tend to lock to cortical beta oscillations, and that cortical beta-band bursts

are closely associated with phase locking between the striatum, the subthalamic nucleus,

the globus pallidus externa, and the cortex (Cagnan et al., 2019, Sharott et al., 2017).

This locking of beta phase activity plays a significant role in propagation of BG-wide

pathological beta oscillations, and further underscores the importance of the research

into striatal medium spiny neurons.

5.6 Importance of collaboration between experimental and

theoretical groups

It bears mentioning that for the study of MSN inputs (Chapter 2) we have used an

archival dataset, that was recorded for the express purpose of a previous, related work

(Ketzef et al., 2017). While in Ketzef et al. (2017) most of the analyses were performed

on MSN down-states, we have complemented its results with our own investigation into

the dynamics of up-states. This is a good illustration of two particular points: (1) even

already used datasets have a lot to offer, and (2) their further examination could serve as

the basis of collaboration between an experimental and a theoretical group, something

that is of crucial importance for the future of neuroscience. Here I would like to very

briefly focus on the second point, with a personal note.

During the course of my PhD I have come to the conclusion that a lot of experimentalists

do not understand what is it that theoretical neuroscientists do, and that theoreticians

do not appreciate the complexities of even the simplest experimental study. On the the-

oreticians’ side, there is often a lack of proper interpretation of experimentally-obtained

results. I have known computational neuroscientists (myself included) to ignore the

differences between experimental setups while browsing through the literature for ap-

propriate parameters to use for tuning of their models. They would not realize that

a variable might vary wildly in its value depending on whether the recording was per-

formed in brain slices or in vivo, or that even for the same type of recording different

chemicals used in the process will have different impact on the results. The most il-

lustrative example of this issue I have come across is that of an established and very
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complex model of a neuron, that evolved and was upgraded over the years, sometimes

used as a benchmark for other theoretical studies. However, after a detailed examina-

tion of the experimental studies that informed construction of the original model, it was

discovered that a few of its parameters — which were also inherited in its newer versions

— had actually wrong values, because the authors didn’t interpret experimental findings

properly.

On the other hand, I have regularly observed experimentalists outright ignoring the-

oretical work. Partly, it is due different levels of abstractions. A large fraction of

computational studies concerns dynamics of neural networks that are larger than what

experimentalists usually work with. They can also employ somewhat abstract mathe-

matical concepts and analyses in order to describe the models and make predictions.

Nevertheless, these computational models do make testable predictions, and it can be

quite frustrating to see an experimental paper come to the same conclusions as a the-

oretical study, only years after the latter has already been published. Another part of

the reason for shunning computation comes from a somewhat puzzling mindset that the

only good model is the one which replicates biology perfectly. An aphorism of George

Box, “all models are wrong, but some are useful”, is often quoted by scientists who share

this mindset. However, they tend to ignore the rest of the quote (Box, 1976):

Since all models are wrong the scientist cannot obtain a ”correct” one by

excessive elaboration. On the contrary following William of Occam he should

seek an economical description of natural phenomena. Just as the ability to

devise simple but evocative models is the signature of the great scientist so

overelaboration and overparameterization is often the mark of mediocrity.

Therefore, scientists who hold to the opinion that every model should strive to be as

biologically precise as possible should dedicate some time to think about the actual

purpose of modeling.

That being said, the cause of these misunderstandings is simple — a lack of communica-

tion between the two groups of researchers. Having said that, I do not believe that any

amount of conferences and seminars is likely to fully bridge the gap between theoreti-

cians and experimentalists. I do believe though, that the most effective way to achieve

this is to force a prolonged co-mingling of the two groups of researchers, and make them

dependent on each other. In other words, something scientific collaborations are known

to do. Similar to our own efforts (see Chapter 2), there is a wealth of data obtained from

different experiments that can be further studied and analyzed, maybe serve as a basis

for a new model explaining an aspect of brain dynamics whose cause is currently un-

known. Conversely, there are many computational models already published that would
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benefit greatly from having their predictions tested experimentally. And the results of

such efforts are certain to provide us all, no matter our approach to neuroscience, with

new knowledge.
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