
Multicomponent Resonant Nanostructures:

Plasmonic and Photothermal Effects

Vadim Zakomirnyi

Department of Theoretical Chemistry and Biology

School of Engineering Sciences in Chemistry, Biotechnology and Health,

Royal Institute of Technology

Stockholm, Sweden 2019



© Vadim Zakomirnyi, 2019

ISBN 978-91-7873-395-8

TRITA-CBH-FOU-2019:69

Printed by Universitetsservice US AB,

Stockholm, Sweden, 2019



Abstract

In recent decades, plasmonic nanoparticles have attracted considerable attention due to

their ability to localize electromagnetic energy at a scale much smaller than the wavelength

of optical radiation. The study of optical plasmon waveguides (OPWs) in the form of chains

of nanoparticles is important for modern photonics. However, the widespread use of OPWs

is limited due to the suppression of the resonance properties of classical plasmon materials

under laser irradiation. The study of the influence of nanoparticle heating on the optical

properties of waveguides and the search for new materials capable of stable functioning at

high temperatures is an important task.

In this thesis, the processes occurring during heating of plasmon nanoparticles and OPWs

are studied. For this purpose, a model was developed that takes into account the heat

transfer between the particles of an OPW and the environment. The calculations used

temperature-dependent optical constants. As one of possible ways to avoid thermal desta-

bilization of plasmon resonanses, new materials for OPWs formed by nanoparticles were

proposed. I show that titanium nitride is a promising thermally stable material, that might

be useful for manufacturing of OPWs and that works in high intensity laser radiation.

Another hot topic at present is the study of periodic structures of resonant nanoparticles.

Periodic arrays of nanoparticles have a unique feature: the manifestation of collective modes,

which are formed due to the hybridization of a localized surface plasmon resonance or a Mie

resonance and the Rayleigh lattice anomaly. Such a pronounced hybridization leads to the

appearance of narrow surface lattice resonances, the quality factor of which is hundreds

of times higher than the quality factor of the localized surface plasmon resonance alone.

Structures that can support not only electric, but also magnetic dipole resonances becomes

extremely important for modern photonics on chip systems. An example of a material of

such particles is silicon. Using the method of generalized coupled dipoles, I studied the

optical response of arrays of silicon nanoparticles. It is shown that under certain conditions,

selective hybridization of only one of the dipole moments with the Rayleigh anomaly occurs.

To analyze optical properties of intermediate sized particles with N = 103 − 105 atoms and

diameter of particle d < 12 nm an atomistic approach, where the polarizabilities can be

obtained from the atoms of the particle, could fill an important gap in the description of

nanoparticle plasmons between the quantum and classical extremes. For this purpose I

introduced an extended discrete interaction model where every atom makes a difference in

the formation optical properties of nanoparticles within this size range. In this range are first

principal approaches not applicable due to the high number of atoms and classical models

based on bulk material dielectric constants are not available due to high influence from
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quantum size effects and corrections to the dielectric constant. To parametrize this semi-

empirical model I proposed a method based on the concept of plasmon length. To evaluate

the accuracy of the model, I performed calculations of optical properties of nanoparticles

with different shapes: regular nanospheres, nanocubes and nanorods. Subsequently, the

model was used to calculate hollow nanoparticles (nano-bubbles).

List of goals of current research:

1. Investigate the influence of limitation caused by thermal effects arising from the ex-

citation of an optical plasmon waveguide in the form of a linear chain of spherical

nanoparticles in high energy laser radiation.

2. Show the effect of heating and subsequent melting of the first irradiated particle in

the chain on the efficiency of the transmission of an optical signal through an optical

plasmon waveguide.

3. Investigate the possibility of using titanium nitride as an alternative material with

high thermal stability for optical plasmonic waveguides from spherical and spheroidal

nanoparticles.

4. Obtain information on the effect of imperfections (various types of defects) that may

appear in two-dimensional arrays of silicon nanoparticles where collective optical effects

associated with the manifestation of high-quality lattice resonances.

5. Develop a model for describing the optical properties of plasmon nanoparticles based

on a discrete atomic interaction model using a plasmon length based parametrization.

6. Demonstrate the size, shape and aspect ratio dependence of surface plasmon resonances

for small (2 − 12 nm in diameter) silver spherical- and cubical-clusters and nanorods.

7. Demonstrate the resonance properties of hollow nanoparticles and compare classic elec-

trodynamics simulations of optical properties of small nanoparticles using Mie theory

with my discrete atomic interaction model.
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Ahlquist and Dr. Victor Kimberg. Special thanks are given to Prof. Faris Gel‘mukhanov

for some nice talks and discussions together, and Prof. Lars Thylèn for his interest in my
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Chapter 1

Introduction

Currently, plasmonics constitutes one of the most interesting areas of development in pho-

tonics. With ”plasmonics”, we, of course, mean the manifestation of the so-called plasmon

resonances which are produced by group oscillations of conduction electrons that lead to an

increase in the absorption of electromagnetic radiation at certain wavelengths. The plas-

mon resonance in small nanoparticles strongly depends on their geometric shape, size, and

material. Homogeneous spherical nanoparticles of silver and gold are well-studied objects

in nanoplasmonics. However, due to technical limitations associated with the complexity of

the experimental manufacturing of silver and gold nanoparticles, attempts have been made

to use alternative plasmon materials. One looks for materials that can have advantages

compared to the classical materials in terms of, for example, increased heat resistance and

chemical stability. Obviously, one can find advantages in combining various materials, for

example, for the manufacturing of nanoparticles with a core-shell structure, where the shell

performs a protective function. In addition to using various materials for nanoparticles, the

influence of the geometry of nanoparticles is of interest. It is well known that the appear-

ance of additional plasmon resonances is observed for nanoparticles in the form of prolate

or oblate spheroids. The nature of such resonances are rather well studied theoretically and

these resonance particles have been repeatedly used in various applications. There are also

studies of more complex geometries of nanoparticles, such as pyramids, cubes, nanostars,

nanorods, nanobubbles.

It is worthwhile to consider the reasons for the interest in plasmonic nanoparticles and

structures of plasmonic nanoparticles from the point of view of possible applications in

modern nanophotonics. The potential applications of plasmonic nanoparticles are based

on their unique feature of supporting plasmon resonances that enhance the local field near

the nanoparticle. An electromagnetic field near a nanoparticle at a plasmon resonance
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wavelength can be two or more orders of magnitude stronger than at other frequencies.

In the simplest case of a single nanoparticle in laser illumination, this inevitably leads to

heating of the nanoparticle and possibly also to a change in their phase state, in other words,

melting. If such a nanoparticle is placed near a living cell, the super hot nanoparticle

can burn the cell membrane and destroy the cell. This technique is known and widely

used in so-called plasmon photothermal therapy of cancer cells. In the case of a pair of

closely spaced nanoparticles, the field between them can be enhanced by more than four

orders of magnitude. By placing the molecule there, and controlling the external radiation,

one can ”highlight” the molecule and obtain an amplified Raman spectrum. Chains of

equidistant nanoparticles of various shapes attract attention of researchers due to the ability

to transmit plasmon excitation, which is nothing but a plasmon waveguide. Despite the

obvious advantages of using such waveguides in modern nanophotonics, there are a number

of effects that limit the widespread use of such waveguides and which is the source of much

current research.

In recent years, two-dimensional arrays of nanoparticles have begun to attract great atten-

tion. Periodic arrays of plasmonic nanoparticles have a unique feature: the manifestation of

collective modes, which are formed due to the hybridization of surface plasmon resonances

and the Wood-Rayleigh lattice anomalies. This hybridization leads to the appearance of a

narrow collective lattice resonance with a quality factor many times higher than the qual-

ity factor of the surface plasmon resonance. Collective lattice resonances have attracted

attention over the past decade, starting with pioneering theoretical research [1–3] and ap-

plied experimental work in vibrational spectroscopy [4], ultra-narrowband absorption [5],

sensors [6, 7], lasers [8], and enhanced fluorescence [9, 10]. Collective lattice resonances

have been studied in a wide range of periodic nanostructures with various types of unit

cells: single [11] or double layers [12] nanodisks, cylinders and nanoshells [13], nanoparticle

dimers [14, 15], complex nanoparticles [16], split ring resonators [17], oligomers [18] and

other complex configurations [19–22]. The position and shape of a collective plasmon reso-

nance is affected not only by the size, material, and shape of the single nanoparticles, but

also by the geometry of the array itself. Thus, an ordered equidistant lattice of nanoparticles

will differ from the structure in which the distances between the particles differ along the

X and Y axis, or from the structure in which the nanoparticles are ordered in something

resembling a honeycomb and other geometries. Currently, attention is focused on lattices

from classical plasmon materials [11, 23–25] (Au and Ag) with an surface plasmon resonance

peak of individual nanoparticles located in the visible or near infrared region.

Although nanoplasmonics since long has constituted a research branch that has received

strong attention as a versatile nanotechnology and by now turned into mature research with

significant applications in areas like bioimaging, photonics and energy harvesting, there is
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still a lag between experiment and theoretical capability to design nanostructures with par-

ticular plasmonic properties. Among a number of classical models, Mie theory has been

instrumental in predicting light scattering and plasmonic resonances in metallic nanoparti-

cles. Since Mie theory relies on the concept of a dielectric constant it is, however, restricted

to a size comprising larger nanoparticles where the classical bulk dielectric constant remains

valid and frequency ranges where experimental results are available. At the other hand, pure

quantum approaches, like time-dependent density functional theory, are applicable only for

the very small particles. This leaves the 1−15 nm size region unattainable by either classical

(n.b. Mie) and quantum theory, which is unfortunate considering the wide applicability of

small plasmonic nanoparticles within that size range, e.g. for cell imaging [26, 27].

The first part of my thesis concerns the study of the interaction of metal nanoparticles with

laser radiation as one of the main directions in nanoplasmonics. My work touches on many

possible applications in fields such as nanosensors, biomedicine [28–45], biotechnology, laser

excitation of plasmon polaritons in waveguides from chains of plasmon nanoparticles, pho-

tochromic reactions induced by laser excitation of resonant domains in disordered colloidal

aggregates of nanoparticles and various nonlinear optical processes. Monographs and re-

views [46–50] cover a large number of recent works and applications. There are a number of

earlier works that form the basis for the research development reported in my thesis: In [51–

53] studies of heating nanoparticles with laser radiation were presented and in [54–56] the

effects of pulsed laser radiation on aggregates of plasmon nanoparticles have been analyzed

taking into account the effects of the melting of nanoparticles. However, the most part of

current research does not take into account the change in optical properties with the change

in temperature of the nanoparticles, and vice versa. Thus, there is interest in developing

thermodynamic models that take into account heat transfer between nanoparticles inside

the optical plasmonic waveguide, the environment, and the substrate, and that also take

into account the temperature dependencies of the optical properties of the nanoparticles.

Also, I thoroughly addressed the problem of diffractive behavior of electric dipole and mag-

netic dipole resonances in imperfect arrays of spherical silicon nanoparticles. A comprehen-

sive analysis of various types of disorder revealed the effect on the hybridization scenario of

the electric dipole and magnetic dipole modes with lattice modes. Among other things, it is

not obvious how collective lattice resonances in arrays of finite sizes of dielectric nanoparti-

cles with strong electric dipole and magnetic dipole resonances differ from collective lattice

resonances in infinite arrays. Thus, due to strong self-interactions between the electric dipole

and magnetic dipole modes, I studied the problem of the validity of the infinite array ap-

proximation when working with collective lattice resonances in arrays of nanoparticles with

electric dipole and magnetic dipole resonances.

Motivated by the wide applicability of small plasmonic nanoparticles and by the need to
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find a ”bridge” in the length gap between classical and quantum theory to describe plasmon

generation, I introduced in the last part of my thesis an extended discrete interaction model

to simulate optical properties of nanoparticles with different geometry in size range between

1 and 15 nm.

Despite years of research efforts in nanoplasmonic, the area remains wide open for further

development of theory and modelling with ramifications for applications in many techno-

logical areas, like biomiaging, photonics, energy harvesting and other current front-edge

technologies. It is my hope that my thesis makes a contribution to that endeavour.



Chapter 2

Thermal and optical effects in

plasmonic nanoparticle waveguides

Changes in the optical properties of the particle material due to melting is an important

factor in the process of interaction of laser radiation with nanoparticles (NPs). This is due

to the fact that with an increase in the temperature of the NPs, the intensity of phonon

vibrations increases. As a result of this, the frequency of electron scattering by phonons

increases, which leads to an increase in the electron relaxation constant (above the Debye

electron relaxation temperature it increases in proportion to the temperature) [57]. Dur-

ing melting, the gradual destruction of the periodic structure in the crystal leads to the

scattering of conduction electrons by lattice defects (mainly vacancies and dislocations) up

to complete amorphization. The melting process is accompanied by a sharp increase in

relaxation constants. In addition to phonons, the contribution to the electronic relaxation

of a metal is determined by the scattering of electrons by point defects, dislocations, par-

ticle boundaries, and electrons [57]. It was shown that heating of nanoparticles and their

subsequent melting significantly affects their resonance properties. A theoretical approach

that describes the heat transfer between nanoparticles and the environment [54, 56, 58] is

also applicable in the case of a single laser pulse with a duration much shorter than the time

to establish a thermodynamic equilibrium. However, such models do not take into account

the effect of the substrate, which can play a crutial role of a cooling device.
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2.1 Model

2.1.1 Dipole approximation

The electrodynamics part of plasmonic model is based on the dipole approximation [59],

which allows us to calculate the electromagnetic interaction between NP and the incident

radiation. Let us consider an NP in a medium with a dielectric constant εh which is irra-

diated by a plane electromagnetic wave E (r) = E0 exp (ik ⋅ r). Here E(r) is electric field at

location r, ∣k∣ = 2π
√
εh/λ is a wave vector, λ is a wavelength, E0 is amplitude of the electric

component of the electromagnetic field. In a general case, the dipole moment d induced at

the NP can be described by the following equation [59]:

d = εhαeE(r), (2.1)

where αe is the electric dipole polarizability of the NP [59, 60]:

1

αe
= 1

α(0)
− i

6π
∣k∣3, (2.2)

where α(0) is a quasistatic polarizability of the NP [61]:

α(0) = 4πR3 ε − εh
ε + 2εh

. (2.3)

Here R is a radius and ε is the dielectric permittivity of the NP.

2.1.2 Optical properties of melted nanoparticles

When the NP absorbs electromagnetic radiation, it heats up until it is completely melted

(liquid). This factor may be accompanied by cyclically repeated rises and drops of temper-

ature of resonantly excited NP. These cycles appear due to the termination of the resonant

interaction between incident optical radiation and liquid of particles. Therefore, it is nec-

essary to take into account the fact that NP also can be in a molten state. In other words,

NP can be represented as layered nanoparticle with a solid core and a liquid shell. In this

case, we can apply the concept of a nanoshell to such NP, the materials of the core and shell

of which are the same, but in different aggregate states. The quasistatic polarizability for

the n-th NPs from eq. (2.3) will be changed in following way [62]:
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α
(0)
n = 4πR3

n

(εln − εh)(εsn + 2εln) + fn(εsn − εln)(εh + 2εln)
(εln + 2εh)(εsn + 2εln) + 2fn(εsn − εln)(εln − εh)

, (2.4)

where εsn and εln are the dielectric constants of the particle material in the solid and liquid

state, respectively. The value fn is the fraction of the solid part of the whole nanoparticle.

Equation (2.4) also takes into account the cases when the NP is a complete liquid (fn = 0)

or a complete solid (fn = 1). Due to high surface tension forces, the NPs will keep their

spherical shape even when they are complete liquids, which makes eq. (2.4) applicable for

any values of fn. The dielectric constants εsn and εln also take into account finite size effects:

εs,ln → εs,ltab +
ω2
p

ω2 + iγbulkω
−

ω2
p

ω2 + iγfinω
, (2.5)

where ω = 2πc/λ is the frequency of incident radiation, εstab and εltab are the tabulated experi-

mental values of the dielectric constant for solid bulk material at temperature 300 K [63] and

dielectric constant for fully melted liquid material [64] respectively, ωp is a plasma frequency,

γbulk and γfin are relaxation constants [65]:

γfin = γbulk +AL
υF

Leff

, (2.6)

where υF is the Fermi velocity; Leff is the electron effective mean free path [66],and AL is a

dimensionless parameter, which is close to 1 in our studied cases [62]. It should be noticed

that γbulk is a parameter depending on the temperature Tion, and can be approximated by

the following expression [57]:

γbulk(Tion) = bT + c, (2.7)

where b and c are coefficients obtained from a linear approximation of experimental data [67].

2.1.3 Thermodynamic properties of nanoparticles

The absorption of laser radiation leads primarily to the heating of conductivity electrons

(electronic subsystem) in nanoparticles and their crystal lattice (ionic subsystem). The

changes in temperature of the electronic subsystem T el
n , caused by the absorption of elec-

tromagnetic energy and heat transfer with the ionic subsystem (with temperature T ion
n ), is

described by the equation [68, 69]:
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Cel
n

dT el
n

dt
= −g[T el

n − T ion
n ] + Wn

Vn
, (2.8)

where Cel
n is the volumetric heat capacity of the electronic subsystems: Cel

n = 68 T ion
n J⋅m−3⋅K−1,

T ion
n is temperature of the ionic subsystem, Vn is particle volume, g = 4 ⋅ 1016 J⋅m−3⋅K−1⋅s−1

is the temperature-independent energy exchange rate between the electron and ion subsys-

tems, that should be higher than the Debye temperature [70–72], Wn is the power of energy

absorbed by the nanoparticle. In the dipole approximation, Wn is defined by the following

expression [56, 73]:

Wn =
ω∣dn∣2

2εh
Im( 1

α∗n
) . (2.9)

where ω is the frequency of incident radiation, dn is a vector of the dipole moment of the

n-th NP, asterisk ∗ means complex conjugate value of the polarizability from eq. (2.2).

The changes in the temperature of the ionic subsystem T ion
n of the NP is mainly determined

by the heat exchange between the electronic subsystem and the environment. Taking into

account the solid-to-liquid phase transition in NPs, we use the equation for the thermal

energy of the NPs lattice Qion
n instead of the T ion:

dQion
n

dt
= gVn[T el

n − T ion
n ] + qlnVn, (2.10)

where qln is a heat flow per unit volume explaining heat losses [68]:

qln = −
3

2Rn

(T ion
n − T0)

√
χmcm0ρm

t
, (2.11)

where χm is thermal conductivity of interparticle medium, cm0 is heat capacity, ρm is density,

t is time of a laser pulse.

The temperature of the ionic subsystem, taking into account the melting process, is ex-

pressed in terms of Qion
n :

T ion
n = Qion

n

CnVn
H(Q(1)n −Qion

n ) + Q
ion
n −Q(2)n
CnVn

H(Qion
n −Q(2)n ) + Tm(Rn)H(Qion

n −Q(1)n ), (2.12)

where Q
(1)
n and Q

(2)
n are the thermal energies of the particle corresponding to the beginning

and to the end of melting process respectively, Cn is the volumetric heat capacity of the
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ionic subsystem of NPs, Tm(Rn) is the melting point depending on particle size [74], H(x)
is the Heaviside function.

The temperature of the ionic subsystem of a nanoparticle during melting might also be

determined as follows [56]:

T ion
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Qion
n

C ion
n Vn

, where Qion
n < Q(1)n

T L
n , where Q

(1)
n ≤ Qion

n ≤ Q(2)n
Qion
n −LVn
C ion
n Vn

, where Qion
n > Q(2)n .

(2.13)

where L is the volumetric heat of fusion, C ion
n is the specific heat of the ion subsystem of the

n-th nanoparticle, T L
n = T L (Rn) is the melting temperature, taking into account the size of

the nanoparticle [74], Q
(1)
n is heat corresponding to the beginning of melting particles:

Q
(1)
n = C ion

n VnT
L
n , (2.14)

and Q
(2)
n corresponds to the heat at the end of the melting of the particle:

Q
(2)
n = Q(1)n +LVn. (2.15)

Thus, it becomes possible to determine the mass fraction fn of the liquid phase from eq. (2.4):

fn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0, where Qion
n < Q(1)n

Qion
n −Q(1)n
C ion
n Vn

, where Q
(1)
n ≤ Qion

n ≤ Q(2)n
1, where Qion

n > Q(2)n

(2.16)

The heat transfer rate between the particle and the environment can be determined from

the following expression [75]:

υn = −κ∫
Sn

∇T (r, t) ⋅ ndS, (2.17)

where κ and T (r, t) are the thermal conductivity coefficient and ambient temperature,

respectively, n is the vector perpendicular to the surface of the NP. Integration of the

expression is performed over the entire surface Sn of the NP. The heat transfer rate due to

radiation is many times lower than the heat transfer rate due to heat conduction, therefore,

in this model, the contribution of the former can be neglected.
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Further, from the heat equation for the environment, we can determine the values T (r, t):

∂T (r, t)
∂t

= adiff∆T (r, t), (2.18)

where adiff is a diffusion coefficient of the environment. We use the following boundary

conditions to solve these equations:

• particle and ambient temperatures were taken equal at the initial time t = 0: T ion
n =

T el
n = T (r, t = 0) = T0 = 300 K;

• ambient temperature on the surface of the substrate does not depend on time: T (rsub, t) =
T0 = 300 K;

• ambient temperature is constantly at a distance infinitely remote from the system

(∣r∣ ≫ max
n

(Rn)): T (x = ±∞, y, z, t) = T (x, y = +∞, z, t) = T (x, y, z = ±∞, t) = 300 K;

• the ambient temperature on the surface of the particles is equivalent to the temperature

of the ionic subsystem of the NP: T (∣r − rn∣ = Rn, t) = T ion
n .

2.1.4 Thermodynamic properties of optical plasmonic waveguides

In this section I apply thermodynamic model for OPW. In general case, OPW is a chain of

NPs with center-to-center distance bigger than diameter if NP. In most experimental setups

the OPW is located on the substrate. The excitation of the OPW can be implemented

in practice, for example, using a probe near-field optical microscope. The external field

En = E(rn) incident on the n-th NP located at the point rn can be described as:

En = E0 exp(ikrn). (2.19)

Often only first (n = 1) nanoparticle of the waveguide is considered to be excited by the

external radiation [76–80], as a result of which En = 0 for n ≠ 1. In this case, the dipole

moment dn induced on the n-th nanoparticle can be found by solving the equations of

coupled dipoles (2.1), which will take the following form when taking into account the

influence from the substrate and the interaction between all the particles:

dn = εhαen [Enδn1 +
N

∑
m=1

Ĝ(ω; rn, rm)dm] , (2.20)
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δn1 is the Kronecker symbol, Ĝ(ω; rn, rm) is a 3 × 3 the interparticle interaction tensor

(Green’s tensor) which describes the electromagnetic field at the point rn induced by an

electric dipole located at the point rm and oscillating with a frequency of ω. In the general

case, the Green’s tensor has the following form:

Ĝ(ω; rn, rm) = Ĝfree(ω; rn, rm) + Ĝrefl(ω; rn, rm), (2.21)

where Ĝfree(ω; rn, rm) and Ĝrefl(ω; rn, rm) are Green’s tensors describing the electric field

in a homogeneous medium and the electric field reflected from the substrate, respectively.

Expressions for Ĝfree(ω; rn, rm) and Ĝrefl(ω; rn, rm) are shown explicitly the in articles [81–

83]. It should be noted that the summation in the expression (2.20) is performed over all

indices. However, Ĝfree(ω; rn, rn) = 0, which means that each NP does not interact with

itself.

2.1.5 Transmission and dispersion properties of optical plasmonic

waveguides

Dispersion relations are one of the most important concepts that quantitatively determine

the ability of a linear chain of plasmonic nanoparticles to support SPPs. There are various

approaches to estimate dispersion relations of finite [84–87] and infinite [88–95] chains of

NPs. In my thesis I use the eigendecomposition method of Ref. [96].

In the general case, according to the Bloch theorem, the dipole moment and the incident

field can be described as dn = d ⋅ exp(iqnh) and Eext
n = Eext ⋅ exp(iqnh), where q is the Bloch

eigenvector. So, it is possible to rewrite (2.20) for a infinite chain of particles:

[ 1

α
Î −

∞

∑
n=−∞

Ĝnme
iqnh]d = Eext. (2.22)

One can note that the expression in square brackets has the same dimension as the inverse

dipole polarizability of the NP. Thus, according to the method of eigenvector decomposition,

it is convenient to characterize the electromagnetic response of the OPW with the so-called

effective polarizability α̃ [96] such that 1/α̃ is an eigenvalue of the following equation:

[ 1

α
Î −

∞

∑
n=−∞

Ĝnme
iqnh] . (2.23)

The maxima of Im[α̃] = F (ω, q) correspond to the resonances of the OPW, which represent

the passband of the OPW, or, in other words, its dispersion relation. A significant advantage
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Figure 2.1: Schematic representation of the OPW from NPs of spherical shape (a), prolate

spheroids (b) and oblate spheroids (c). Here we consider an OPW located along the X axis

with a center-to-center distance h. The radius of the spherical particles is b as well as for

the minor semiaxis for spheroids, while for the major semiaxis it is a. Image taken from

Paper II. Copyright 2017 Elsevier.

of the eigenvector expansion method is the possibility to simultaneously estimate the eigen-

modes of the OPW and their Q-factor [96, 97]. Thus, the function Im[α̃] = F (ω, q) provides

a complete physical representation of the dispersion relations for the OPW, which, generally

speaking, is impossible to obtain using other methods considered in literature [84, 86, 88–90].

The calculation of the transmission spectrum of OPW is the most effective way to obtain

actual damping of the SPP at the end of the waveguide. Suppose that the external field Eext

excites only the first nanoparticle in the OPW in the form of a linear chain of N identical

NPs fig. 2.1. The solution of eq. (2.20) on the right side provides the dipole moments dn
induced on each nanoparticle in the OPW. Experimentally, the electric field strength at the

end of the OPW is IN ∝ ∥dN∥2
which characterizes the SPP attenuation. Therefore, the

SPPs propagation efficiency can be described by the following quantity [79]:

Qtr =
∥dN∥2

∥d1∥2
. (2.24)

Thus, one can refer the spectral dependence of Qtr as the transmission spectrum of the

OPW.

Three different shapes of NPs are considered in my thesis: spheres, oblate and prolate

spheroids. The quasistatic polarizability eq. (2.3) of NPs with such shapes is determined by

the following expression:

α
(0)
n = V

4π

ε − εh
εh +Dstat (ε − εh)

, (2.25)

where V is the volume of the NP, Dstat is the static depolarization coefficient [62].

For NPs with dimensions much smaller than the wavelength of the incident light, retarda-



2.2 Results 13

Figure 2.2: Extinction spectra of a single

Ag NP with radius R = 8 nm for various

values of temperature: 1 – room temper-

ature; 2 – melting point, solid state; 3 –

melting point, liquid state. Image taken

from my article [100]. Copyright 2017 El-

sevier.

Figure 2.3: Transmission spectra of OPW

for various polarizations of exciting laser

radiation (see legend) at the initial mo-

ment of time t = 0 and room temperature

T = 300 K. Image taken from my arti-

cle [100]. Copyright 2017 Elsevier.

tion effects should be taken into account [60, 98]. Therefore, to adequately describe the

electromagnetic properties, it is necessary to introduce the so-called dynamic correction [99]

of the polarizability of spheroidal NPs. The polarizability αn of the n-th NP in the OPW

then takes the form:

αn = α(0)n [1 − k
2

lE
Ddynα0 − i

2k3

3
α0]

−1

, (2.26)

where α
(0)
n is defined by eq. (2.25), Ddyn is the dynamic geometric factor [99], lE is the length

of the NP semiaxis along which the electric field is directed. The static Dstat and dynamic

Ddyn depolarization factors for oblate and prolate spheroids can be found using well-known

expressions [62, 99]. For spherical NPs: Dstat = 1/3 and Ddyn = 1.

2.2 Results

2.2.1 Thermal and optical properties of optical plasmonic waveg-

uides from silver nanoparticles

In my thesis I consider single Ag NPs in water and its extinction efficiency Qext as shown

in eq. (2.27). Extinction efficiency is determined by extinction cross section σext, which is a
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sum of the cross sections due to absorption and scattering.

Qext =
σext

πR2
,

σext =
4π∣k∣
∣E0∣2

Im(d ⋅E(r)).
(2.27)

From fig. 2.2 it can be seen that the extinction efficiency of single spherical Ag NP with radius

R = 8 nm decreases by 1.5 times for various temperatures and state of aggregation when

the temperature of NP reaches the melting temperature (T ≈ 1080 K for Ag). In addition,

the maximum of the extinction spectrum is strongly shifted to the short-wavelength region

at the end of melting, when the nanoparticle completely passes into the liquid state. In

this case, the value of Qext decreases by half compared with a solid nanoparticle at room

temperature. Thus, it becomes obvious that temperature effects will significantly affect the

transmission properties of OPWs, especially if only the n = 1 nanoparticle is excited by the

external radiation.

Figure 2.3 represents the frequency-dependent transmission (eq. (2.24)) for three different

polarizations of the external field, which coincide with the Cartesian coordinate axes, at the

initial moment of time t = 0, when temperature is equal to room temperature (T = 300 K)

for the OPW from N = 11 Ag particles with the geometry described in fig. 2.1(a). The

maximum value of Qtr is reached at a wavelength of λ = 402 nm with the polarization

directed along the X axis (see fig. 2.1(a)). Thus, only X polarization is of interest for

the cases studied in my thesis, while for other polarizations I do not see any promising

applications.

Next, I turn to the discussion of temperature kinetics in OPWs. Obviously, thermal effects

directly depend on the intensity of the exciting laser radiation. For small values of intensity

of the laser pulse, none of the nanoparticles reach the melting temperature. However, in

this case it will be practically impossible to register an optical signal at the end of the

chain due to the strong attenuation of the SPP. As can be seen from fig. 2.3 the amplitude

of the SPP at the end of the waveguide decreases very much (here by 70 times), even in

the case of the best transmission. For high values of intensity of the laser pulse, substantial

heating of the nanoparticles will be observed. In this case, their resonance properties will be

almost completely suppressed. Thus, I consider exciting laser radiation with an intermediate

intensity located between these two cases. The results of numerical simulations show that

for the intensity of a laser pulse being I = 1.57 × 108 W/cm2, only the first nanoparticle

reaches the melting temperature. In this case, the transmission properties of the OPW will

not decrease significantly. This value of the laser pulse intensity is standard for many lasers.
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Figure 2.4: The temperature of the ionic subsystem T ion
n of the first, second, and third

particles in an OPW (with geometry from fig. 2.1(a)) after t = 1 ns excitation of a laser

pulse with λ = 402 nm and I = 1.57×108 W/cm2 intensity. The inset shows the temperature

T ion
2 in the time interval from t = 250 ps to t = 1000 ps. Image taken from my article [100].

Copyright 2017 Elsevier.

Figure 2.4 shows the time dependence of the temperature of the ionic subsystem for the

first three NPs in an OPW, when the first nanoparticle is excited by a laser pulse at a

wavelength of λ = 402 nm. It can be seen that the n = 1 nanoparticle reaches the melting

temperature at t = 37 ps. Moreover, the maximum temperature reached by n = 2 and

n = 3 nanoparticles at the same time: T ion
2 ≈ 480 K and T ion

3 ≈ 350 K, respectively. After

t = 37 ps, the melting process of the n = 1 nanoparticle continues for about 134 ps and

then its temperature increases slightly. After t = 200 ps, the temperature of the first three

nanoparticles becomes constant: T ion
1 ≈ 1140 K, T ion

2 ≈ 375 K and T ion
3 ≈ 310 K. However,

the heat from n = 1 nanoparticles reaches n = 2 nanoparticles at t ≈ 420 ps moment in time

and T ion
2 slightly increases during the second half of the pulse (see insert in fig. 2.4). From

fig. 2.4 it can be seen that the temperature of the second nanoparticle increases slightly over

an extended period of time. The temperature T ion
n of the n ≥ 4 NPs also remains unchanged

for the chosen parameters of laser radiation.

Figure 2.5 shows the transmission spectra (eq. (2.24)) of the OPW from spherical NP for

various stages of melting of n = 1 nanoparticle. The transmission spectra of the OPW

slightly changes when the n = 1 nanoparticle reaches its melting temperature (t = 37 ps,

T ≈ 1080 K - dashed red line). hanges in the transmission spectra are induced by changes

in the dielectric constant of the particle. It should be noted that the NP is still in the solid

state at t = 37 ps. However, a substantial suppression of the resonance properties of the

n = 1 nanoparticle occurs at t = 171 ps, when its become completely liquid (right after the

end of melting process). It is seen that the efficiency of the transmission of OPW decreases

three times in this case (dash-dotted green line). As a result, the transmitted energy also
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Figure 2.5: Transmission spectra of an

OPW (with geometry from fig. 2.1(a)) ex-

cited by laser radiation with an intensity

of I = 1.57×108 W/cm2 at different points

in time: initial time point t = 0 (solid

line); start of melting of n = 1 nanoparti-

cle, t = 37 ps (dashed line); end of melting

of n = 1 nanoparticle, t = 171 ps (dash-

dotted line). Image taken from Paper I.

Copyright 2017 Optical Society of Amer-

ica.

Figure 2.6: The temperature distribution

T at time t = 1 ns for the first three

nanoparticles (plane XOY , z = 0) in the

OPW (with geometry from fig. 2.1(a)).

The first nanoparticle is excited by a laser

pulse with intensity I = 1.57×108 W/cm2.

We draw the attention of readers that the

color scale is presented in a non-linear

scale for clarity. Image taken from Pa-

per I. Copyright 2017 Optical Society of

America.
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decreases. In turn, this leads to a decrease in the temperature of the second and subsequent

particles (see fig. 2.4). A further increase in the temperature of the nanoparticles in the

chain occurs due to heat exchange between them (see the inset in fig. 2.4).

I plot the temperature distribution in the XOY plane (at Z = 0) for the OPW at t = 576 ps

on fig. 2.6. The technological substrate is depicted schematically (grey color). Clearly,

the temperature substantially increases for only the first three NPs. Despite the fact that

the temperature of the n = 1 NP reaches the melting point (according to fig. 2.4), heat

transfer from more heated ones nanoparticles to less heated occurs through the interparticle

environment.

2.2.2 Optical properties of optical plasmonic waveguides from ti-

tanium nitride nanoparticles

Refractory materials are often considered to be effective in avoiding the negative influence of

thermal effects on the OPW functionality. It is important to mention that even though TiN

does not melt, its permittivity is temperature-dependent, which is taken into account in my

work. Therefore, in this section, I will consider the dispersion and transmission properties

of OPWs from TiN nanoparticles. I assumed that the chain of nanoparticles is located in a

homogeneous medium and only the first (n = 1) nanoparticle is excited. In this section, the

discussion will be based on the fact that TiN NPs do not heat up to the melting temperature

and do not reach a phase transition. So, I will move directly to the dispersion properties of

OPW from TiN NPs.

Figures 2.7 and 2.8 represent values of log[Im(α̃)] from eq. (2.23) as a function of the

frequency of SPP ω and eigenmodes of the wave vector q. According to the eigenvector

expansion method, high values of Im(α̃) correspond to high values of the Q eigenmode

factor. While the summation in the eq. (2.23) occurs at infinity, we consider the OPW

with a finite but sufficiently large number of particles, namely, N = 1000 NPs. I start with

the OPW from spherical NPs whose dispersion relations are shown in the first column of

figs. 2.7 and 2.8. It can be seen that SPPs efficiently propagate both for longitudinal (X)

and transverse (Y ) polarizations at frequencies ω ≈ 2.5 − 3.5 rad/fsec. However, the branch

corresponding to the highest values of Im(α̃) has a rather slight slope, which corresponds

to a low group SPP velocity in this spectral range.

It was previously shown that the use of non-spherical NPs in OPWs significantly increases

the group SPP velocity [86, 89] and at the same time minimizes the SPP suppression [101].

Thus, it is of interest to consider the dispersion relations in the OPW from prolate and

oblate spheroids with different values of the semiaxes ratio b/a. From fig. 2.7 and 2.8 it
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Figure 2.7: Dispersion relations for an OPW from spherical and spheroidal particles at

various temperatures for the longitudinal (X) polarization of the SPP. White dashed line

represents light line ω = q/c. Image taken from Paper II. Copyright 2017 Elsevier.

can be seen that in the case of longitudinal polarization, the general shape of the dispersion

curve is almost the same as for the OPW from spherical NPs. This behavior is explained by

an insignificant difference in the depolarization coefficients L for different geometries of the

NPs with the same values of the short semi-axis b parallel to the polarization of the SPP.

However, for oblate spheroids with b/a = 0.4, the values of Q near the light line ω = q/c are

significantly larger.

In the case of transverse polarization, the values of log[Im(α̃)] increase significantly, espe-

cially for the spectral range ω ≈ 1.5−2.5 rad/fsec for OPWs from prolate and oblate spheroids

with b/a = 0.4. The dispersion dependencies for OPWs from oblate spheroids have an even

greater slope compared to OPWs from prolate spheroids with the same values of b/a. In

addition, the frequency of the eigenmodes decreases to ω ≈ 1−2 rad/fsec, which corresponds

to the telecommunication wavelength range. In addition, the throughput of an OPW is

increased in this case. Finally, the dispersion branch acquires a significant negative slope,

which leads to an increase in the group velocity of the SPP and antiparallel propagation of

the group and phase velocities of the SPP. The propagation of transversely polarized SPP

with antiparallel group and phase velocities is described in detail in [89, 97, 102]. However,

it should be noticed that the negative slope of the dispersion curve is not a direct evidence

that OPWs are negative refractive metamaterials.
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Figure 2.8: Dispersion relations for OPW from spherical and spheroidal particles at various

temperatures for longitudinal (Y ) polarization of the SPP. White dashed line denotes the

light line ω = q/c. Image taken from Paper II. Copyright 2017 Elsevier.

Despite the fact that TiN is thermally stable material [103], suppression of an SPP due to

overheating of the OPW [100, 104] was describe in Section 2.1.3 is a crucial factor. From

figs. 2.7 and 2.8 it can be seen that the dispersion relations of the OPW from TiN NPs

remain almost unchanged even at T = 800○C. The magnitude of the eigenmodes inevitably

decreases at high temperature, but the suppression of the SPP is much lower than might be

expected for ordinary plasmonic materials. Note that in my work the heating of the OPW is

uniform, which is the most extreme case of overheating. In practice, only three neighboring

NPs experience the highest heating in the case of local excitation of the SPP [100].

One of the interesting features that can be observed with a careful analysis of figs. 2.7 and 2.8

is that the SPP band (the spectral range corresponding to high-Q proper modes) varies sig-

nificantly from longitudinal to transverse polarization for OPWs made from spheroids with

b/a = 0.4. For longitudinal polarization, the frequency bandwidth of the OPW corresponds

to the visible wavelength range, while for transverse polarization it lies in the telecommu-

nication wavelength range. Thus, OPWs from prolate or oblate NPs can simultaneously

operate in these two important wavelength ranges, which allows the use of such waveguides

as hybrid photonic interconnectors.

Next, I turn to the transmission properties of OPW, considering the propagation of an

SPP in short chains from N = 20 NPs. From fig. 2.9 it can be seen that the bandpass
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of the OPW can be adjusted by switching the polarization of the SPP from longitudinal

to transverse. Moreover, Qtr slightly decreases at high temperatures, which is crucial for

waveguide applications of OPWs. As expected, the most effective SPP propagation occurs

in OPWs from oblate spheroids with small aspect ratios (here b/a = 0.4), which is consistent

with the results presented in [86, 101].

Finally, another attractive property of OPWs is their ability to confine electromagnetic

energy at scales much shorter than the wavelength of the propagating excitation. This fea-

ture distinguishes OPWs from the classical [105] strip waveguides, whose transverse dimen-

sions are usually comparable or several times larger then the wavelength of the propagating

signal. Localization of the electromagnetic field near the OPW allows to locate several

OPWs in close proximity to each other without the risk of an overlapping SPP propagating

in a neighboring OPW, something which cannot be achieved in strip waveguides.

Figure 2.10 shows the temperature-dependent intensity distribution of ∣E∣2/∣E0∣2 for an OPW

from TiN NPs at a distance 10 nm from the upper surface of the NPs. The frequencies ω

were chosen to correspond to the maximum values of Qtr for Y -polarization of the SPP

from fig. 2.9 (d-f). It is shown that in the case of spherical NPs, the electric field is densely

localized near the first excited NP and rapidly decays along the OPW. The most effective

localization of the electric field is observed in the case of prolate spheroids. Distribution

of ∣E∣2/∣E0∣2 looks completely different for OPWs from the oblate spheroids due to the

high local field at the tips of oblate spheroids. Finally, due to the refractory behavior, the
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ization of SPP at different temperatures. The frequencies were taken in accordance with

the maximum values of Qtr from the fig. 2.9. In all cases, the first particle on the left is

excited. Image taken from Paper II. Copyright 2017 Elsevier.

confinement of the electric field for OPWs from TiN NPs remains almost unchanged at high

temperatures.

2.3 Conclusions for Chapter 2

In this chapter, an original theoretical model of my thesis was reviewed and summarized. It

describes light-induced dipole interaction between nanoparticles and environment in high-

intensity optical fields, taking into account thermal effects. The proposed model includes

taking into account the temperature dependence of the dielectric constant of the particle

material, as well as the heat exchange of nanoparticles with the environment. The model

developed in this thesis was used to study the thermal effects that occur during the propaga-

tion of surface plasmon polaritons excited by pulsed laser radiation in an optical plasmonic

waveguide (OPW). It was shown that thermal effects significantly decrease the efficiency of

OPW transmission due to the suppression of the plasmon resonance of the nanoparticles. In

this work, the optimal conditions for transmitting information with the optical waveguide

were determined.

It was shown that TiN is a promising alternative material that can be used in OPWs in

the form of chains of nanoparticles (NPs) that can support the effective propagation of



22 Chapter 2 Thermal and optical effects in plasmonic nanoparticle waveguides

SPPs [106]. The bandwidth of linear periodic chains of titanium nitride (TiN) NPs can be

adapted to both the visible range and the telecommunication wavelength range by changing

the shape of the nanoparticles and polarization of the surface plasmon polariton (SPP).

Despite the inevitable ohmic losses and overheating of nanoparticles, the SPP attenuation

remains almost unchanged even at extremely high temperatures due to the pronounced

refractory properties of TiN. Along with cheap methods of large-scale production of TiN

nanoparticles, all these features make it a promising plasmonic material for waveguide ap-

plications using linear periodic chains of NPs.

The results obtained allow me to offer new applications of OPWs associated with their high

sensitivity to the intensity of exciting radiation. Further development of the proposed model

and the study of thermal effects in OPWs or other periodic nanostructures is promising and

will open up new practical applications of plasmonic nanosystems [107].



Chapter 3

Collective effects in structures of

resonant nanoparticles

Dielectric nanoparticles have attracted an increased interest in photonics due to their ability

to preserve not only electric, but also magnetic dipole moments. In this chapter, based on the

extended coupled dipole approximation, I review three types of defects in two-dimensional

arrays of spherical Si nanoparticles that are studied in my thesis: disorder in the positions

of Si nanospheres of the same size; size disorder of nanospheres located in an ordered two-

dimensional lattice; and quasi-ordered two-dimensional arrays of nanospheres with the same

size. A comprehensive analysis in my thesis of these scenarios reveals various effects of

disorder on the coupling of electric dipole and magnetic dipole resonances with lattice modes.

Next, I have demonstrated ED ↔ MD cross-interactions in sufficiently large NPs arrays,

where such interactions are usually considered to be negligible.

3.1 Model

3.1.1 Extended coupled dipole approximation

Lets consider an array of N spherical NPs embedded in vacuum which is irradiated by

electromagnetic plane waves with electric E0 and magnetic H0 components. The n-th

particle located at rn acquires electric dn and magnetic mi dipole moments which are

coupled to other dipoles and to an external electromagnetic filed via the extended coupled

dipole equations [108–110]:
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dn = αe (Einc(rn) +
Ntot

∑
j≠n

Gnjdj −
Ntot

∑
j≠n

gnj ×mj) , (3.1)

mn = αm (Hinc(rn) +
Ntot

∑
j≠n

Gnjmj +
Ntot

∑
j≠n

gnj × dj) , (3.2)

where αen and αmn are electric and magnetic dipole polarizabilities [110] of the n-th particle,

respectively, ε0 and µ0 are the dielectric constant and magnetic permeability of vacuum,

E0
n = E0(rn), H0

n = H0(rn), and

Ĝnj = Anj Î +Bnj (
rnj ⊗ rnj
r2
nj

) , Ĉnj =Dnj

rnj
rnj

× , (3.3)

where Î is a 3×3 unit tensor, ⊗ denotes a tensor product, and Anj, Bnj and Dnj are defined

as follows:

Anj =
exp(ikrnj)

rnj
(k2 − 1

r2
nj

+ ik

rnj
) , (3.4)

Bnj =
exp(ikrnj)

rnj
(−k2 + 3

r2
nj

− 3ik

rnj
) , (3.5)

Dnj =
exp(ikrnj)

rnj
(k2 + ik

rnj
) , (3.6)

Electric and magnetic dipole polarizabilities are explicitly defined as [62]:

αen =
3i

2k3

mψ1(mkRn)ψ′1(kRn) − ψ1(kRn)ψ′1(mkRn)
mψ1(mkRn)ξ′1(kRn) − ξ1(kRn)ψ′1(mkRn)

, (3.7)

αmn = 3i

2k3

ψ1(mkRn)ψ′1(kRn) −mψ1(kRn)ψ′1(mkRn)
ψ1(mkRn)ξ′1(kRn) −mξ1(kRn)ψ′1(mkRn)

, (3.8)

where m is the refractive index of the NP material, Rn is the radius of the n-th particle,

ψ1(x) and ξ1(x) are Riccati-Bessel functions, and prime denotes the derivation with respect

to the argument in parentheses.

The essence of CLRs can be understood from a closed-form analytical solution of eq. (3.1)

and eq. (3.2) obtained for an infinite array [3, 110]. In this case, dn = d ∥ E0 and mn =
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m ∥ H0 for each NP [110], therefore, the last terms in eq. (3.1) and eq. (3.2) vanish, since

E0 ⊥ H0. Thus, for a special case of a regular 2D lattice illuminated with a normally

impinging wave with ∣E0∣ = E0x and ∣H0∣ =H0y, the non-zero components of d and m are

dx =
E0x

1/αe −G0
xx

, my =
H0y

1/αm −G0
yy

, (3.9)

where G0
xx and G0

yy are diagonal elements of the 3 × 3 tensor G0 = ∑∞
j=2G1j, and (1/αe,m −

G0
xx,yy)−1 are effective electric and magnetic polarizabilities which capture the features of

the NP’s surrounding [110–112].

The electric dn and magnetic mn dipoles induced on each NP can be found from the solution

of eq. (3.1). In this work, I describe the optical response of a finite array of NPs with the

extinction efficiency:

Qe =
4k

I0NR2
Im

N

∑
n=1

(dn ⋅E0∗
n +mn ⋅H0∗

j ) , (3.10)

where I0 is the intensity of the incident field, and the ∗ denotes a complex conjugate. In

the general case of polydisperse array with Rn ≠ R, the average radius ⟨R⟩ = ∑Nn=1Rn/N is

used to define Qe. For an infinite array, after substituting eq. (3.9) in eq. (3.10), one gets:

Qinf
e = 4k

R2
Im [(1/αe −G0

xx)−1 + (1/αm −G0
yy)−1] . (3.11)

Though, higher-order multipoles in all-dielectric NPs are pronounced, for example, in large [113–

115] and nonspherical [116] single Si NPs, or in structures of closely packed Si NPs [117],

full-wave simulations and mode analysis [118] show that ED and MD are predominant

in arrays of spherical Si NPs with R = 65 nm, and high order electric and magnetic field

oscillations can be ignored in this case. Thus, the extended coupled dipole approximation

accurately describes optical properties of arrays from relatively small Si NPs.

3.1.2 Types of imperfections in arrays on silicon nanoparticles

From eq. (3.1) and eq. (3.2) I can conclude that two types of disorder can be achieved [76]:

off-diagonal and diagonal. These types affect either off-diagonal or diagonal elements of the

interaction matrix in eq. (3.1) and eq. (3.2). The first type of disorder (off-diagonal) affects

only tensors Ĝnj and Ĉnj which are the functions of the NPs positions, while the second

type of disorder (diagonal) affects only αe,mn which are functions of the shape and size of the

NPs.
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Figure 3.1: Schematic representation of di-

fferent types of disorder considered in this

work: (a) x-disorder, (b) y-disorder, (c) size

disorder, and (d) quasi-random array. Im-

age taken from Paper III. Copyright 2019

Optical Society of America.

Figure 3.2: (a) Refractive index m of Si

from Ref. [119]; (b) Extinction spectra for

a single Si NP of various radii R taking into

account high-order multipoles. Spectral

positions of electric and magnetic dipole

resonances are denoted as ’ed’ and ’md’,

respectively. Image taken from Paper III.

Copyright 2019 Optical Society of America.

For ordered arrays of NPs it is shown in fig. 3.3 that two types of couplings can be dis-

tinguished. For fixed wavelengths, the optical response of the lattices strongly depends on

variations of either hx and hy. Thus, to get more insight, I introduce an off-diagonal dis-

order in the following manner. I study the positional disorder along the x axis keeping the

y coordinates constant, and vice versa, as shown in fig. 3.1(a) and 3.1(b), respectively. I

refer to these two types of positional disorders as x-disorder and y-disorder, correspondingly.

For both cases, I introduce the deviation σx,y which characterizes the degree of disorder.

For each n-th particle with initial (xn, yn) coordinates, I randomly set new coordinates as

(xdis
n , yn) for x-disorder and (xn, ydis

n ) for y-disorder within the following limits:

xn − σx ≤ xdis
n ≤ xn + σx , and yn − σy ≤ ydis

n ≤ yn + σy . (3.12)

Both xdis
n and ydis

n are randomly generated using a uniform distribution for each n-th NP and

for each lattice with given (hx, hy). Thus, the effects of positional disorder are uncorrelated.

The schematics of the lattice with diagonal (size) disorder is shown in fig. 3.1(c). In this

specific case, I keep the original coordinates of each NP, and randomly change the radius

Rn of each n-th NP within the following limits using a uniform distribution:
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Rn − σR ≤ Rdis
n ≤ Rn + σR . (3.13)

Again, as in the case of off-diagonal disorder, Rdis
n is introduced randomly for each NP

and for each lattice configuration, which provides uncorrelated results. Finally, fig. 3.1(d)

shows the last type of considered defects - a special combination of diagonal and off-diagonal

disorders, which attract specific interest [120, 121]. It is a well-known fact that the coupling

between a SPR of single NP and lattice modes strongly depends on the number of NPs

in the array [112, 122]. Nevertheless, periodic lattices of strictly spaced NPs are usually

considered studies of this effect of finite size. In this thesis, I fix the initial coordinates

and NP sizes in the array and randomly remove the NP from the initial lattice, leaving the

other NPs untouched. This type of imperfections is somewhat similar to vacancies in crystal

structures. I refer to lattices shown in fig. 3.1(d) as quasi-random arrays. I emphasize that

each lattice configuration for each type of disorder with given σx, σy and σR or number of

NPs removed from the lattice in the case of quasi-random arrays reviewed here, has been

simulated only once, without computing ensemble averages. The closeness to a statistical

average has been guaranteed by simulating a reasonably large number of NPs.

3.2 Results

3.2.1 Periodic arrays of silicon nanoparticles

I start to shortly review the optical properties of a single Si nanosphere. Figure 3.2(a)

shows the refractive index of Si used in my calculations [119], while fig. 3.2(b) shows the

extinction efficiency Qe for a single Si nanosphere of various radii R. For a single sphere, and

only in this case, I calculate Qe taking into account high-order harmonics [62] required for

the convergence of the electromagnetic light scattering problem [123]. It can be seen from

fig. 3.2(b) that indeed, for given sizes, the Si nanospheres have distinct and predominant

ED and MD resonances in the visible wavelength range. This is a general reason to consider

arrays from Si nanospheres with R = 65 nm radius. However, in the special case of a

size disorder, all possible radii of NPs will fall into the range shown in fig. 3.2(b), i.e.

50 nm ≤ Rn ≤ 80 nm. Therefore, the coupled dipole approximation can be used with strong

confidence.

Next, it is insightful to discuss optical properties of ordered Si nanostructures. Figures 3.3(a)

and 3.3(b) show two different types of lattices which have been studied in this thesis: with

fixed period along the x axis, hx, and varying period along the y axis, hy, and with fixed

hy and varying hx. Such variations of interparticle distances make it possible to get ED or
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Figure 3.3: (a) and (b) Schematic representation, and (c) and (d) extinction spectra Qe

of ordered 2D lattices from N = 20 × 20 Si NPs with R = 65 nm. Two configurations are

considered: (left) fixed hx = 540 nm and varying hy, and (right) fixed hy = 450 nm and

varying hx. Spectral positions of ED and MD resonances are denoted as ’ed’ and ’md’,

respectively. Dashed RAx and RAy lines denote Rayleigh anomalies λ = hx and λ = hy,
correspondingly. Image taken from Paper III. Copyright 2019 Optical Society of America.

MD coupling with lattice modes [124]. In both cases, the incident electric E0 and magnetic

H0 fields are aligned along the x and y axes, correspondingly. Lattices from N = 20 × 20 Si

NPs have been considered here.

In the first case, as it is clearly seen from fig. 3.3(c), ED strongly couples to lattice modes

which leads to the emergence of quite sharp collective lattice resonances. The position of

the MD resonance slightly shifts to shorter wavelengths for large hy. Note that Qe for MD

increases near the Rayleigh anomaly λ = hy. In the second case, according to fig. 3.3(d), the

same strong coupling with lattice modes occurs for MD, while the position of ED gradually

shifts to shorter wavelengths and the corresponding Qe decreases with increasing hx. Thus,

the coupling occurs for the incident field (electric or magnetic) perpendicular to the axis

along which the interparticle distance changes. In other words, for the particular case

considered, EDs (E0 is parallel to x axis) couple to RAy, and vice versa, MDs (H0 is

parallel to y axis) couple to RAx.
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Figure 3.4: Extinction spectra Qe for

various degrees of positional disorder σx
along the x axis, as shown in Fig 3.1(a).

Image taken from Paper III. Copyright

2019 Optical Society of America.

Figure 3.5: Extinction spectra Qe for

various degrees of positional disorder σy
along the y axis, as shown in Fig 3.1(b).

Image taken from Paper III. Copyright

2019 Optical Society of America.

3.2.2 Arrays of silicon nanoparticles with imperfections

Figures 3.4 and 3.5 show extinction spectra for arrays of NPs with different degrees of x-

and y-disorders. It can be seen that these two types of positional disorders affect the optical

properties of the NPs in a different way, depending on the coupling regime.

As it might be expected from the analysis of Fig. 3.3(d), the x-disorder significantly affects

the MD, since the latter strongly couples to the Rayleigh anomaly RAx. Clearly, from

Fig. 3.4, one may observe slight suppression of the MD with the increasing of the degree

of disorder, σx, both for ED and MD coupling scenarios. It can also be noticed that the

coupling of MD and RAx remains observable even for sufficiently large σx in Fig. 3.4(f),

where MD is suppressed. ED remains almost the same for each case shown in Fig. 3.4.

Figure 3.5 shows an expected trend: since ED couples to RAy, y-disorder affects only the

former, keeping MD almost the same for various σy. However, Figs. 3.5(e)-3.5(f) show

almost total suppression of ED for σy = 150 nm, while in the case of strong x-disorder shown

in Figs. 3.4(e)-3.4(f), MD is quite pronounced. It might be explained by the fact that the
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Figure 3.6: Extinction spectra Qe of NPs arrays with ED coupling (left), and MD cou-

pling (right) for various degrees of positional disorder σx (c,d), σy (e,f), and σxy (g,h).

Corresponding values of hx and hy are shown in legends. Dashed vertical lines denote po-

sitions of Rayleigh anomalies RAy at λ = 500 nm (left), and RAx at λ = 540 nm (right).

Image taken from Paper III. Copyright 2019 Optical Society of America.

MD response is stronger than the ED resonance in Si NPs of the considered sizes, according

to Fig. 3.2(b). Thus, it is easier to suppress ED than MD for the same degree of positional

disorders σy and σx, respectively.

Figure 3.6 shows the detailed comparison of the extinction spectra for arrays with ED or

MD couplings. Indeed, x-disorder strongly suppresses the MD, while y-disorder suppresses

the ED resonance. Since the ED is generally weaker than the MD, the former is almost

completely disappears for high degrees of y-disorder. For the completeness, Figs. 3.6(g)-

3.6(h) show the spectra for arrays with xy-disorder, which has been introduced in the same

way as the x- and y-disorders, but with simultaneous randomization of both xn and yn
coordinates of each NP. It can be seen that in the general case, such a combined disorder

gives a superposition of both x - and y -disorders, which suppresses both ED and MD

resonances.

Next, I move to the diagonal type of disordering. Figure 3.7 shows extinction spectra for

arrays with various degrees of size disorder, σR. It is clearly seen that random variations of

NP sizes strongly suppress both ED and MD resonances. However, MD remains observable

only for σR = 5 nm, while for larger σR it almost completely disappears. Contrary, the

ED resonance is preserved in all cases, and, of note, EDs strongly couple with Rayleigh

anomalies, RAy, even for high degrees of diagonal disorder, as shown in Fig. 3.7(e). This
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Figure 3.7: Extinction spectra Qe for

the same 2D lattices as in Figs. 3.3(c)

and 3.3(d), but for various degrees of size

disorder σR, as shown in Fig 3.1(c). Im-

age taken from Paper III. Copyright 2019

Optical Society of America.

Figure 3.8: Extinction spectra Qe of NPs

arrays with ED coupling (left), and MD

coupling (right) for various degrees of size

disorder σR. Corresponding values of hx
and hy are shown in legends. Dashed

vertical lines denote positions of Rayleigh

anomalies RAy at λ = 500 nm (left), and

RAx at λ = 540 nm (right). Image taken

from Paper III. Copyright 2019 Optical So-

ciety of America.

effect might be explained by the different behavior of polarizabilities αei and αmi [110] which

yields different impact of size disorder on ED and MD resonances.

To get a deeper insight, I plot Qe for arrays with fixed hx and hy, as shown in Fig. 3.8.

Indeed, Figs. 3.8(c), 3.8(e), 3.8(g) show that size disorder has a surprisingly weak effect

on the ED resonance of arrays with strong ED coupling. It can be seen from Fig. 3.8(g)

that the maximum Qe for the ED resonance drops by no more than 10% for σR = 15 nm

compared to the ordered array shown in Fig. 3.8(a). For arrays with MD coupling, Qe for

ED resonance drops stronger, by the factor of 2 for σR = 15 nm, as shown in Fig. 3.8(h).

As for the MD resonance, in both the ED and MD coupling cases, the extinction efficiency

for MD sharply drops for σR = 5 nm. For larger σR, the MD resonance becomes almost

indistinguishable.

Based on the previous discussion of diagonal and off-diagonal types of disorders, I can
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conclude that the simultaneous use of positional and dimensional disorders can lead to

a superposition of effects as shown in Figs. 3.4, 3.5 and 3.7. Thus, I do not consider

arrays of randomly located NPs of different size. Instead, I introduce a specific combination

of positional and size disorders as shown in Fig. 3.1(d). These quasi-random arrays are

fundamentally different from the ones shown in Figs. 3.1(a)-3.1(c) since random elements

of the interaction matrix in (3.1) are strictly set to zero in the case of quasi-random arrays,

while in the previously considered scenarios, off-diagonal or diagonal elements have acquired

random deviations according to σx, σy or σR.

Figure 3.9: Extinction spectra Qe for quasi-

random 2D lattices, as shown in Fig 3.1(d),

for different number of NPs: (a)-(b) 81% =
729, (c)-(d) 49% = 441, and (e)-(f) 16% =
144 kept untouched in N = 30 × 30 arrays

of NPs with R = 65 nm. Note the different

color scale in the last row (e)-(f). Image

taken from Paper III. Copyright 2019 Op-

tical Society of America.

Figure 3.10: Extinction spectra Qe of NPs

arrays with ED coupling (left), and MD

coupling (right) for (a)-(b) N = 30 × 30 ar-

ray, and for its various quasi-random mod-

ifications (solid lines): (c)-(d) 81% = 729,

(e)-(f) 49% = 441, and (g)-(h) 16% = 144

NPs kept untouched. For comparison, Qe

of strictly periodic (dashed lines) arrays of

the same number of NPs are shown: (c)-

(d) N = 27 × 27 = 729, (e)-(f) N = 21 × 21 =
441, and (g)-(h) N = 12 × 12 = 144, grey

dash-dot lines show Qe of a single Si NP

with R = 65 nm. Image taken from Pa-

per III. Copyright 2019 Optical Society of

America.

Next, I review NPs with the same size, R = 65 nm, but increase their number to N = 30×30

(while previously discussed arrays had N = 20 × 20 NPs). Here, I randomly remove NPs,
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leaving the rest (here 81%, 49% or 16%) of NPs untouched. I note that the consideration

of larger arrays is preferable for this type of disorder, since coupling effects may be totally

suppressed in arrays from a small number of NPs left in the lattice [112]. Nevertheless, in the

smallest array considered here, I keep 144 quasi-randomly located NPs, which is sufficient

for coupling effects to occur. Intuitively, one can expect suppression of the ED and MD

resonances with an increase in the number of NPs removed from the ordered array. Indeed,

Fig. 3.9 confirms such an expectation. However, it can be seen that lattices which contains

81% of the initial NPs have almost the same optical properties as the original periodic arrays.

Moreover, Figs. 3.9(e)-3.9(f) show that ED and MD are coupled to Rayleigh anomalies

(though quite weakly) in the arrays with only 16% NPs left, and extinction spectra of such

arrays tend to become closer to the Qe of a single NP.

For comparison, Fig. 3.10 shows spectra of ordered arrays (as in Figs. 3.3(a)-3.3(b)) from

exactly the same number of NPs as in the quasi-random arrays, i.e. 27 × 27, 21 × 21, and

12 × 12, and with the same hx and hy. It can be seen from Figs. 3.10(c)-3.10(d) that Qe of

the quasi-random array from 729 NPs is also almost the same as Qe for the periodic 27× 27

array. Moreover, even with the increasing number of NPs removed from the array, Qe of

the quasi-random lattices is quite close to strictly ordered arrays with the same number of

NPs. However, in the most extreme cases of quasi-random arrays shown in Fig. 3.10(g)-

3.10(h), the collective ED resonances are almost suppressed, while the MD coupling remains

observable, though, the corresponding peak of the MD resonance is blue-shifted compared

with the ordered arrays.

3.2.3 Finite size effects in arrays of silicon nanoparticles

From the analysis of (3.9), one could expect to observe resonances if Re (1/αe,m −G0
xx,yy)

vanishes for either ED or MD resonances. Indeed, Fig. 3.11(a) shows that the dimensionless

representation of the above parameter becomes zero near λ ≈ hy and λ ≈ hx for dx and

my, respectively, which corresponds to (0,±1) and (±1,0) Wood-Rayleigh anomalies. Note

that in the general case of hx ≠ hy considered here, a simple rotation of the incident field

polarization, e.g. (E0x,0,0) → (0,E0y,0), does not yield the interchange between ED and

MD CLRs spectral positions, since it only implies the interchange G0
xx↔ G0

yy in (3.9), which

will likely violate the Re (1/αe,m −G0
xx,yy) = 0 condition due to G0

xx ≠ G0
yy and non-trivial

wavelength dependence of polarizabilities αe,m(λ) (Fig.(4) [110]).

Figure 3.11(b) shows that extinction spectra for finite-size arrays gradually approach the

spectrum for the infinite lattice as N increases, which is consistent with reported trends

for arrays of plasmonic NPs [112, 122]. Indeed, the ED CLR at λ ≈ 490 nm for arrays

with Ntot > 50 × 50 becomes almost indistinguishable from one for the infinite array, as it
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Figure 3.11: (a) Real parts of normalized

denominators of (3.9) which correspond to

dx (ED) and my (MD); (b) Extinction effi-

ciency for infinite (∞) and for N ×N finite-

size arrays; (c) and (d) zoomed-in spec-

tra for ED and MD CLRs, respectively.

Dashed vertical lines indicate the position

of the CLR peak for the infinite array. Im-

age taken from Paper VI. Copyright 2019

Optical Society of America.

Figure 3.12: Normalized intensities of elec-

tric field induced by MDs (left) and of mag-

netic field induced by EDs (right) for N×N
arrays at wavelengths: (a) 493 nm, (b)

588 nm, (c) 490 nm, (d) 586.5 nm. Each

dot represents the NP, and the actual sizes

of arrays vary for different N ×N . Image

taken from Paper VI. Copyright 2019 Op-

tical Society of America.

is clearly seen from Fig. 3.11(c). Of note, for plasmonic NPs arrays, the corresponding

threshold, when Qext becomes almost the same for finite and infinite lattices is ≈ 20 × 20

NPs [112]. Analogously, Qext for an MD CLR at λ ≈ 586 nm in finite-size arrays becomes

similar to the infinite case if N grows, as it is shown in Fig. 3.11(d). However, what is really

surprising and unexpected is that Qext of finite-size arrays is noticeably different even for

the Ntot = 100 × 100 case.

Figure 3.12 shows the corresponding intensities, i.e. ∣Emag∣2 and ∣Hel∣2, for each NP in the

array. It can be seen that the normalized intensity of the electric field induced by MDs

is quite small compared to the incident field, and increases only at the boundaries of the

array, which again agrees well with results for plasmonic NPs [122]. The maximum value

of ∣Emag∣2 / ∣E0∣2, which is already quite small for 30 × 30 arrays in Fig. 3.12(a), gradually

decreases for larger arrays, and almost vanishes for the 70 × 70 array in Fig. 3.12(c), thus
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providing negligible difference for ED CLRs of infinite and sufficiently large finite-size arrays

in Fig. 3.11(c). On the contrary, the maximum intensity of the magnetic field induced by

electric dipoles, i.e. ∣Hel∣2 / ∣H0∣2, increases for larger arrays, and again a divergence takes

places near the boundaries of the array. Although the overall contribution of the cross-

interaction between EDs and MDs to Qfin
ext gradually decreases as N grows, the “boundary

effect” is pronounced even for sufficiently large arrays, and thus can not be completely

ignored in this case.

3.2.4 Optical filters based on arrays of plasmonic nanoparticles

In the previous section I showed that geometric parameters of an array of NPs, such as the

interparticle distance, size and shape of the nanoparticles, significantly affect the position of

electric and magnetic dipole resonances and may lead to suppression of the MD resonance, as

well as the ED resonances. However, with proper parameters of the array it is also possible to

prevent the appearance of several close lines in the spectrum instead of one line, which might

be important for selective narrow-band filters in the tunable spectral range. To illustrate

this I consider 2D arrays of nanodisks with height H and radius R arranged in a regular

square lattice with period h. The arrays are embedded in a homogeneous environment with

refractive index nm = 1.45, which corresponds to quartz in the spectral range under study.

Such structures can be fabricated using a lithography technique on a quartz substrate and

subsequent sputtering a layer of quartz on top of the array. A homogeneous environment

is an important factor in the model, because the Q-factor of the CLR drops dramatically

in the case of a half-space geometry, where the substrate and the superstrate have different

refractive indices [125]. The reflection spectra of such structures are calculated with a

commercial FDTD method software. FDTD is a widely used computational method of

electrodynamics, which in general shows excellent agreement with experimental results for

CLRs [11, 24, 126–128]. The optical response of the infinite array is simulated by considering

a single particle unit cell with periodic boundary conditions applied at the lateral boundaries

of the simulation box and perfectly matched layers used at the remaining top and bottom

sides. Arrays are illuminated from the top by plane waves with normal incidence. The

reflection has been calculated at the top of the simulation box using a discrete Fourier

transform monitor which is placed above the plane-wave source. An adaptive mesh has

been used to accurately reproduce the nanodisk shape. Finally, extensive convergence tests

for each set of parameters have been performed to avoid undesired reflections on the perfectly

matched layers.

The suppression of surface plasmon resonances under extreme conditions was studied in the

papers [104, 129, 130] in my thesis. It was shown that heating of nanoparticles by pulsed
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Figure 3.13: Reflection spectra for TiN (left) and Au (right) nanodisks arrays with: (a)

fixed h = 1100 nm, and for different R = H as shown in legend; (b) fixed h = 650 nm, and

for different R = H as shown in legend; (c) and (d) corresponding quality factors of CLRs;

(e) fixed R = H = 90 nm and for different h as shown in legend; (f) fixed R = H = 55 nm

and for different h as shown in legend; (g) and (h) corresponding quality factors of CLRs.

Image taken from Paper IV. Copyright 2019 Optical Society of America.
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laser radiation results in a reduction of the Q-factor and CLR amplitude. In particular, for

the CLR at λ = 1100 nm in Fig 3.13, the Q-factor is 1.5 ⋅ 103 at T = 23○C, Q = 1.1 ⋅ 103 at

T = 400○C, and Q = 0.7 ⋅ 103 at T = 900○C. Thus, the high radiation resistance of TiN can

be an additional advantage when using arrays exhibiting CLRs at high temperatures [131].

The use of TiN as a plasmonic material with high radiation resistance provides an extreme

stability at high temperatures compared to conventional plasmonic materials (Au and Ag).

Au nanodisks arrays (Fig. 3.13) demonstrate CLRs in the long-wavelength part of the visible

and near IR ranges.

3.3 Conclusions for Chapter 3

The effect of various types of disordering on the optical response of 2D arrays of spherical

Si nanoparticles was theoretically analyzed in my thesis. Electric and magnetic dipole

resonances dominate in spherical Si nanoparticles (NPs) in the considered range of 50 nm ≤
R ≤ 80 nm, so I used the extended coupled dipole approximation, which adequately describes

the electromagnetic properties of arrays of Si NPs [118, 132].

First, I showed the existence of two types of collective resonances in 2D arrays arising

from the strong coupling of electrical or magnetic dipole resonances of one NP with the

lattice modes (Rayleigh anomalies) of the 2D array. Such a connection arises when the

corresponding component of the incident field (electric or magnetic) is orthogonal to the

variable period (hy or hx) of the lattice, and the other period (hx or hy) is constant [124].

Second, I showed that the electric and magnetic response is affected by positional disorder

only when the low frequencies are displaced along an axis orthogonal to the corresponding

component of the incident electromagnetic illumination. In my case, for E0 ∥ x and H0 ∥
y, the electric and magnetic dipole resonances are strongly suppressed only for y or x

disordering, respectively. Obviously, both resonances change when the nanoparticles are

shifted along the x and y axes at the same time.

Next, I showed that the collective magnetic dipole response almost completely disappears

in the case of diagonal (dimensional) disordering with σR > 5 nm. However, the electric

dipole moment remains quite stable, especially in the case of strong collective coupling

between the electric dipole resonance and lattice modes, even for strongly polydisperse

arrays with σR = 15 nm. I considered quasi-random arrays as a special combination of

diagonal and diagonal disorders. Instead of simultaneously displacing the nanoparticles and

changing their sizes, I arbitrarily removed the nanoparticles from the lattice, leaving other

nanoparticles at the starting points with the original sizes. It was noted that in the lattice

where only 16% of the nanoparticles remained, collective electric and magnetic resonances
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are observed. However, the extinction spectra of such arrays are, as a rule, similar to the

spectra of a single nanoparticle. Furthermore, I have shown that the finite size of arrays of

dielectric NPs plays an important role for the emergence of both electric dipole (ED) and

magnetic dipole (MD) collective lattice resonances (CLR). While ED CLRs in finite-size

arrays converge to the infinite-array model for ≈ 50×50 NPs, MD CLRs in finite-size arrays

are quite different from the ones of infinite arrays even for 100× 100 NPs, thus the common

use of numerical and theoretical models for infinite arrays should be handled with great

caution.

The reviewed results provide a comprehensive analysis and understanding of the effect that

disordering has on collective resonances as well as effect of finite size in 2D arrays of di-

electric nanoparticles. Although I examined the special case of spherical nanoparticles of Si

embedded in vacuum, similar trends can be expected for dielectric arrays of other forms or

materials, see [133], if higher-order multipoles can be neglected.

In this section I showed that the geometric parameters of arrays of dielectric nanoparticles,

such as the period, size and shape of nanoparticles, significantly affect the position of the

electric dipole resonance in the spectrum and can suppress the magnetic dipole resonance.

A clever choice of geometric parameters can also prevent the appearance of several close

lines or their splitting in the reflection spectrum instead of one line, which is unacceptable

for selective narrow-band filters in the tunable spectral range. Arrays of nanoparticles in

the reflection mode demonstrate the effect of optical filtering with fine tuning of the spectral

position of the resonance line to the required wavelength by tilting the grating with respect

to the incident radiation.



Chapter 4

Extended discrete interaction model

for calculating optical properties of

plasmonic nanoparticles

Finally, I present a new atomistic model for plasmonic excitations and optical properties

of metallic nanoparticles (NPs). This model collectively describes the atomic complete

response in terms of fluctuating dipoles and charges that depend on the local environment

and on the morphology of NPs. This could be single element metal NPs as well as composite

or alloy structure. Being atomic dependent, the model describes the total optical properties,

the complex polarizability and the plasmonic excitation of a cluster and can refer these

properties to a detailed level where geometric characteristics of the cluster plays a role,

making it possible to explore the role of material, alloy mixing, size, form shape, aspect

ratios, and other geometric factors, down to the atomic level. My conviction is that it will

be useful for the design of plasmonic NPs with particular strength and field distributions,

and can have wide ramifications in bioimaging, where small plasmonic particles often are

desired. The model is parameterized from experimental data and is at present practically

implementable for NPs up to more than 12 nm, for nanorods even more, thus covering

a significant part of the gap between the scales where quantum calculations and classical

models based on the bulk dielectric constant. I have applied the method to both spherical

and cubical clusters along with nanorods and hollow NPs and have demonstrated the size

and shape dependence of the plasmonic excitations and connected this to the geometry of

the NPs using the plasmon length.
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4.1 Model

4.1.1 Extended discrete interaction model

Similarly to the original DIM suggested by Jensen et al. [134, 135] the ex-DIM [136] aims to

describe the polarizability and optical properties of metallic nanoparticles by representing

the nanoparticle as a collection of interacting atomistic charges and dipoles. The starting

point of both models is a Lagrangian with an energy expression for interacting fluctuating

charges and dipoles in an external electric field subject to a charge equilibration constraint:

L[{µ, q}, λ] =E[{µ, q}] − λ(qtot −
N

∑
i

qi)

=1

2

N

∑
i

qic
−1
ii qi +

1

2
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∑
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∑
j≠i

qiT
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ij qj +

1

2

N

∑
i

µiα
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ij qj +
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qiV
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∑
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µiE
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N

∑
i

qi).

(4.1)

In Eq. (4.1) the first term is the self-interaction energy of fluctuating charges, the second term

is the interaction energy between fluctuating charges, the third term is the self-interaction

energy of fluctuating dipoles, the fourth term is the interaction energy between fluctuating

charges and dipoles, the fifth term is the interaction energy between fluctuating dipoles, the

sixth term is the interaction energy between fluctuating charges and the external potential,

the sixth term is the interaction energy between fluctuating dipoles and the external field,

and the last term is a charge equilibration condition expressed via the Lagrangian multiplier

λ. Here, the qi is the fluctuating charge assigned to the i-th atom, µi is the fluctuating dipole

assigned to the i-th atom, the cii is the i-th charge self-interaction tensor, the αii is the

i-th dipole self-interaction tensor, the T
(0)
ij , T

(1)
ij , and T

(2)
ij are the electrostatic interaction

tensors, the Vext is the external potential, the Eext is the external electric field, qtot is the

total charge of the NP, and N is the total number of atoms in a NP. Similarly to DIM and

cd-DIM, our ex-DIM uses Gaussian electrostatics to describe the interaction of fluctuating

charges and dipoles. However, in our model normalized Gaussian charge distributions are

explicitly dependent on the coordination number of the atom with which it is associated

(see Eq. (4.10)), and thus the electrostatic interaction tensors, T
(0)
ij , T

(1)
ij , and T

(2)
ij , have

more complex form compared to the ones used in DIM or cd-DIM. Assuming we have two

Gaussian charge distributions, G(r; fcn,C) and G(r′; f ′cn,D) centred on the i-th and j-th
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atoms with position vectors C and D, the electrostatic interaction tensor T
(0)
ij between these

charges can be computed as

T
(0)
ij = ∫ ∫

G(r; fcn,C)G(r′; f ′cn,D)
∣r − r′∣ dr′dr = erf(γrij)

rij

γ =
√

acna′cn
acn + a′cn

and rij = ∣C −D∣.
(4.2)

Following A. Mayer [137] the higher order electrostatic interaction tensors, T
(1)
ij , and T

(2)
ij ,

can be obtained by taking the derivatives of T
(0)
ij with respect to i-th atom coordinates i.e.

T
(1)
ij = −∇riT

(0)
ij = rij

r3
ij

[erf(γrij) −
2γrij√
π
exp(−γ2r2

ij)] , (4.3)

T
(2)
ij = −∇ri ⊗∇rjT

(0)
ij =

rij ⊗ rij − r2
ijI

r5
ij

[erf(γrij) −
2γrij√
π
exp(−γ2r2

ij)] (4.4)

− 4γ3rij ⊗ rij√
πr2

ij

exp(−γ2r2
ij) .

Above given expressions for interaction tensors can be easily reduced to the ones used in

DIM if one replaces coordination number dependent Gaussian exponents, acn and a′cn, with

appropriate effective radii (see Eqs. (11) − (13) in Jensens work [135]). The fluctuating

charges and dipoles are determined by minimizing the energy E[{µ, q}]. According to

Jensen et al. [135] this minimization problem can be recast into a problem of solving a set

of linear equations:

⎛
⎜⎜
⎝

A −M 0

−MT −C 1

0 1 0

⎞
⎟⎟
⎠

⎛
⎜⎜
⎝

µ

q

λ

⎞
⎟⎟
⎠
=
⎛
⎜⎜
⎝

Eext

Vext

qtot

⎞
⎟⎟
⎠
, (4.5)

where the column vector µ is the collection of µi dipoles, the column vector q is the collection

of qi charges, λ is a Lagrangian multiplier associated with charge equilibration condition.

The matrix elements of A, C, and M matrices are defined as

Aij = δijα−1
ij − (1 − δij)T(2)ij ,

Cij = δijc−1
ii + (1 − δij)T(0)ij ,

Mij = (1 − δij)T(1)ij .

(4.6)
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Equation (4.5) can be solved by inversion of the left-hand side matrix for small- and medium-

size nanoparticles or by the iterative approach, like the conjugate gradient method for large

size nanoparticles in an external field and potential. In the calculations presented here I

solve the linear equations by inversion for each frequency since I do not apply an external

field. After that the fluctuating charges and dipoles are determined the polarizability of the

NP can be directly obtained by computing the second derivative of E[{µ, q}] with respect

to external field Eext. According to Jensen et al. [135, 138] the polarizability of a NP can

be defined as

αnp =
N

∑
i

∂µi

∂Eext
. (4.7)

The above described scheme for determination of the polarizability of a nanoparticle is

generic and has been employed in the original, coordination dependent and extended dis-

crete interaction models [134, 139–143]. The differences between these models originate

from the functional form used to describe the fluctuating charges and dipoles and from

the parameterization of the self-interaction and electrostatic interaction tensors. To lay the

foundation for our extended discrete interaction model I first consider the parameterization

of DIM and cd-DIM. In the original DIM model the self-interaction tensors (cii and αii) are

parameterized using atomistic capacitance and polarizability derived from bulk material

properties, and the electrostatic interaction tensors (T
(0)
ij , T

(1)
ij , and T

(2)
ij ) are computed

using normalized Gaussian charges and dipoles with parametrization using TDDFT. In the

cd-DIM, the fluctuating charges are excluded from the energy expression E[{µ, q}], the

self-interaction tensor (αii) between dipoles is parameterized using a coordination number

dependent atomistic polarizability derived via the Clausius-Mossotti relation [144], and the

electrostatic interaction tensor (T
(2)
ij ) is computed the same way as in DIM. In order to ex-

tend these models and achieve a description of more complex surface topologies, I spatially

spread in our model the Gaussian dipoles and charges in a way that they explicitly depend

on their local chemical environment. Here, I use the scheme of Grimme [145], originally

proposed for the computation of dispersion corrections in DFT calculations, for evaluating

atomic coordination numbers. The atomic coordination number f icn is then computed as

f icn =
N

∑
i

N

∑
j≠i

[1 + e−k1(k2(Rcov
i +Rcov

j )/rij−1)]−1
, (4.8)

where Rcov
i and Rcov

j are the scaled covalent radius of the i-th and j-th atoms, respectively,

rij is the distance between the i-th and j-th atoms, k1 and k2 are empirical parameters equal

to 16.0 and 4.0/3.0, respectively [146].
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In the case of fluctuating charges and dipoles, the normalized Gaussian charge distribution

G(r;C) = (a
π
)

3/2

exp[−a(r −C)2] (4.9)

used in the DIM and cd-DIM models can be replaced with the coordination number depen-

dent Gaussian charge distribution

G(r; fcn,C) = (acn
π

)
3/2

exp[−acn(r −C)2] with acn = a(1 + bfcn) . (4.10)

The coordination number dependent dipoles are obtained from coordination dependent

Gaussian charges by taking its gradient i.e. µ(r; fcn,C) = −∇rG(r; fcn,C). Here, a is the

fixed exponent of Gaussian charge distribution centred on atom with position vector C, b is

the coordination number scaling factor, which defines the coordination number dependent

spread of the Gaussian charge distribution.

4.1.2 Parametrization of extended discrete interaction model for

silver

In paper V, I adopt a scheme based on the concept of plasmon length [147]. The parame-

terization of the self-interaction tensors, cii and αii, in ex-DIM is central since these tensors

play the dominant role in defining the behavior of the polarizability of the NPs. Further-

more, in the case of dynamic polarizabilities, the frequency dependence is solely defined by

these tensors. Similarly to DIM and cd-DIM, I use in ex-DIM a diagonal isotropic form

for the self-interaction tensors, i.e. cii,kl = δklc and αii,kl = δklα for k, l = x, y, z. Here, I

employed a different strategy based on the plasmon length [147] to parametrize the cii and

αii tensors. Starting from the self-interaction tensor via the Clausius-Mossotti relationship

for a spherical NP:

αii,kl(ω) = δklfα with fα =
6

π
R3
i

ε(ω) − ε0

ε(ω) + 2ε0

, (4.11)

where Ri is the radius of the i-th atom, ε(ω) is the frequency dependent dielectric constant

of the material, and ε0 is the dielectric constant of the environment. In DIM [148] Eq. (4.11)

is approximated as
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αii,kl(ω = 0) = αi,s,kl, (4.12)

αii,kl(ω > 0) = αi,s,kl(L1(ω) +L2(ω,N)), (4.13)

where αi,s,kl is the static polarizability and L1(ω) and L2(ω,N) are two separately nor-

malized frequency dependent Lorentzians. The resonance frequency ωi,2(N) in L2(ω,N) is

size-dependent

ωi,2(N) = ωi,2(1 +A/N1/3), (4.14)

where N is the total number of atoms and ωi,2 and A two fitted parameters. In this way

the size-dependent frequency is inversely proportional to the radius for a spherical NP.

The problems here are the discontinuity going from the static to the dynamic case due to

the separately normalized Lorentzians and that the size dependent resonance frequency in

L2(ω,N) does not take into account the geometry of the NP. The cd-DIM [138] modifies

the radius of Eq. (4.11) to a coordination number dependent radius Ri(fcn) and dielectric

constant ε(ω, fcn, r)

αii,kl(ω) = δklfα with fα =
6

π
R3
i (fcn)

ε(ω, fcn, r) − ε0

ε(ω, fcn, r) + 2ε0

. (4.15)

Here ε(ω, fcn, r) is described by the sum of a the experimental dielectric constant εexp, a

size-dependent Drude equation minus the Drude function for spherical NP:

ε(ω, fcn, r) = εexp + εsizeDrude(ω, fcn, r) − εDrude(ω), (4.16)

where the the plasma frequency in the size dependent Drude function is modified by the

coordination number. By using an effective coordination number there is a smooth transition

from the inside to the outside of the coordination sphere. Both the DIM and cd-DIM

should be able to describe the size dependence of spherical and spherical-like NP if properly

parametrized. For shapes far from spherical symmetry, like nanorods with a large aspect

ratio, the functional shape in the DIM and cd-DIM does not appear to be appropriate. This

motivated me to develop a method which can take into account both the surface effects and

geometry effects of nano clusters. In Ex-DIM

αii,kl(ω) = (Ri(fcn)
Ri,bulk

)
3

αi,s,klL(ω,P) (4.17)
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is the static polarizabilty αi,s,kl [149] multiplied by a normalized Lorentzian L(ω,P) and

the relative shift in radius from the bulk radius is determined by the coordination number.

In this parameterization scheme, the chemical environment enters the definition of the αii

tensor via Ri(fcn) defined as

Ri(fcn) = r1 (1 − fcn
12

) + r2
fcn
12
, (4.18)

which regulates the radii of the atom depending on the coordination number. For Ag I use

r1 = 1.65 Å and r2 = Ri,bulk = 1.56 Å which are the surface and bulk radii, respectively [138].

L(ω,P) regulates the geometric dependence via the size dependent resonance frequencies

of three size-dependent Lorentzian oscillators

L(ω,P) = N(Lx(ω,Px) +Ly(ω,Py) +Lz(ω,Pz)), (4.19)

where each Li(ω,Pi) depends on the plasmon length Pi in the i-th direction and the fre-

quency ω with the common normalization factor N ensures that the Lorentzian oscillators

are normalized in the static limit of ω = 0. With a size-dependent Lorentzian oscillator in

each direction it is possible to describe more complicated geometric structures with multiple

plasmon resonances without having a new functional dependence for each distinct geometry

and thereby make the ex-DIM more universal. The Lorentzian oscillator is chosen as

Li =
1

ω2
i (Pi) − ω2 − iγω , (4.20)

where γ describes the broadening of the spectra and ωi(Pi) is the size-dependent resonance

frequency which enables the geometric description of the plasmon excitations. With the

choice of Lorentzian oscillator in Eq. (4.20) the normalization constant becomes

N = ( 1

ω2
x(Px)

+ 1

ω2
y(Py)

+ 1

ω2
z(Pz)

)
−1

. (4.21)

The choice of Lorentzian oscillator in Eq. (4.20) and the common normalization in Eq. (4.21)

will in this way give the higher peak for the lower incident frequency which, for nanorods,

corresponds to the long side. The size-dependent resonance frequency ωi(Pi) can be written

as

ωi(Pi) = ωa(1 +A ⋅ f(N, i)), (4.22)
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where ωa andA are atom specific fitted parameters for the bulk resonance and size-dependence

while f(N, i) is a function of the number of atoms and dimension along the i-th direction

measured in units of atom i. f(N, i) must then in the bulk and atomic limits fulfil

lim
N,i→∞

f(N, i)) = 0 lim
N,i→1

f(N, i)) = 1, (4.23)

which can easily be accomplished using a single parameter namely the the plasmon length

Pi

f(N, i) = 1

Pi
, (4.24)

where the plasmon length Pi is defined as the maximum distance between any atoms along

the i-th direction plus the radius of each of the end point atoms. This use of the plasmon

length is consistent with the experimental work from Tiggesbäumker et al. [150]. One can

notice that the SPR cannot be directly proportional to the plasmon length as defined by

Ringe et al. [147] since in the bulk limit the SPR would tend to minus infinity. Performing

a Taylor expansion of Eq. (4.24) the first order is linear in the plasmon length and therefore

the linear dependence on the plasmon length as observed by Ringe et al. [147] is consistent

with a sample of clusters of a limited size range. For spherical clusters Eq. (4.24) reduces

to the usual size dependence for classical models, also seen in the DIM and cd-DIM, but

for rods, discs and other shapes far from spherical there is a distinct difference where the

ex-DIM can have up to three distinct plasmon resonances.

The cii tensor responsible for the self interaction energy in charge transfer processes is in

the DIM modelled as

ci(ω) = ci,sL1(ω) (4.25)

using the same size-independent Lorentzian as in Eq. (4.13) for the polarizability in the DIM

and a fitted parameter ci,s for the ”static atomic capacitance”. In the cd-DIM the charges

and hence charge transfer and capacitance is completely removed. In the ex-DIM model I

adopt a simplified two parameter scheme:

cii,kl = δklfc with fc = ci,s [1 + dRi(fcn)
Ri(12) ]L(ω,P) , (4.26)

where c is the ”static atomic capacitance” parameter, similar by its physical origin to the

capacitance used in DIM, d is a scaling factor for the coordination number dependence of
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the capacitance, set to 0.1, and L(ω,P) is the Lorentzian oscillator defined in Eq. (4.19).

Here, I stress that in our parameterization of the cii tensor the frequency dependence is

exactly the same as for the polarizability.

To reduce the number of parameters needed to be fitted and make the method easier to

extend to other elements I make use of experimental or theoretical literature values or

make argumented choices for parameters which affect the peak position of the SPRs. The

polarizabilities α are taken from the Schwerdtfeger and Nagle collection [149] which for

silver is 55 au. The value of the capacitance parameter c, as I will show later, has very

little influence on the overall polarizability and peak position as long as c is outside areas of

numerical instability. For the optimization of spherical like clusters I have fixed the value

at 0.0001 au since all systems appear to be numerically stable with this choice.

The Lorentzian broadenings γ should be small compared to the incident frequency and,

not surprisingly, they show no significant influence on the position of the SPR. During the

optimization γ has been fixed at 0.016 au which gives a reasonable broadening of the peak(s)

with an full width at half maximum compared to that extrapolated from the Ringe et al.

data. [147] While the SPR(s) does not shift with γ, except when two close lying double peaks

merge, the width and height of the SPR(s) are significantly influenced thereby making it

difficult to get a good set of parameters when optimized together with α for a small set

of small clusters. Despite being optimized with γ = 0.016 it is no problem to adjust this

parameter later or to make γ size dependent to obtain different peak heights since the

placement of the SPR(s) is not affected by small changes in γ.

The only parameters that need to be fitted are therefore the size-dependent resonance

frequency ωa and the the size-dependence factor A. Systematic investigations, like the

one performed by Scholl et al. [151], are therefore essential for an accurate fit of ωa and

A. By plotting the energy of the SPR as a function of the inverse plasmon length I can fit

the a simple linear function as shown in Fig. 4.1. From the fit in Fig. 4.1 the bulk limit

for the SPR for Ag will be 3.25eV in our model and show a slow variation of the SPR

as a function of the inverse plasmon length. With the definition of the plasmon length in

Eq. (4.24) the inverse plasmon length cannot exceed the inverse diameter of an atom and

the SPR is therefore finite.

By choosing a representative set of spherical clusters with a plasmon length of 1.4− 3.8 nm

an optimal resonance frequency, ωi(Pi) in Eq. (4.22), which exactly reproduces the SPR

from the fit in Fig. 4.1 for every cluster can be found. The optimal resonance frequency

is here reproduced with a deviation of 10−6 − 10−5 of the SPR compared to experiment.

Here I use several spherical cluster with the same plasmon length but with different surface

topology to simulate slightly different surfaces. So while the radius in the N = 459, 555 and
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Figure 4.1: Linear fit (a ⋅ x + b) of experimental data with error bars from Scholl et al.

[151]. The purple points are the pruned data and green line the fit of the pruned data

with coefficients a = 0.671 ± 0.059 and b = 0.119 ± 0.001. The blue points are data excluded

from the pruning and the orange line a fit of all data with coefficients a = 0.822 ± 0.106 and

b = 0.119 ± 0.001. Image taken from Paper V. Copyright 2019 American Chemical Society.

603 atoms clusters are the same the number of atoms and the surface topology are not. I

find ωa = 0.0794 au and A = 9.41 au.

Inserting the fitted ωa- and A-values and recalculating the clusters from the fit along with

a test set of larger clusters with 276 − 11849 atoms and 2 − 7 nm radius make it possible to

reproduce the SPR from the fit of the experimental values as seen in Fig. 4.3.

As seen from Fig. 4.3 I can reproduce the SPR of any spherical like cluster irrespectively of

size with an error limited by the experimental error. To ensure that the behaviour of the

polarizabilty is correct for all frequencies I calculated the polarizability dependent frequency

for 200 points in the 3.0 − 4.6 eV region.

4.2 Results

4.2.1 Polarizability of spherical silver nanoparticles

Since DIM, cd-DIM ad ex-DIM models have been applied to bare spherical-like silver clusters

it would be natural to compare them to the experimental data since cd-DIM has been

compared to the same data before [138] and ex-DIM is parameterized from the experimental

data. The extracted data from the DIM and cd-DIM models have therefore been plotted
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Figure 4.2: The optimum (ωi(Pi)) which

reproduces the plasmon peak at the fit-

ted experimental values from Fig. 4.1

for a given cluster. Fitting the opti-

mum (ωi(Pi)) to Eq. (4.22) I find ωa =
0.0794 au and A = 9.41 au. The 1409

and 1433 atom clusters, also included in

the fit, are located between or underneath

the 1481 and 1505 atom clusters. Im-

age taken from Paper V. Copyright 2019

American Chemical Society.

Figure 4.3: The plasmon peak as as func-

tion of the inverse plasmon length for the

clusters used for the fit in Fig. 4.2 and

a test set with larger clusters calculated

with the fitted ωa- and A-values com-

pared to the experimental fit and pruned

data. The 1481 and 1505 atoms recalcu-

lated clusters are located between or un-

derneath the 1401 and 1433 atoms clus-

ters. Image taken from Paper V. Copy-

right 2019 American Chemical Society.
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Figure 4.4: Comparison between the ex-DIM, DIM [148], cd-DIM [138] models and Mie

theory and experiment for bare silver clusters[151]. For the DIM the TO clusters are trun-

cated octahedrons and the Ih are icosahedral clusters. The diameter for the DIM clusters

are estimated from the clusters used in the ex-DIM. The 1481 and 1505 atom recalculated

clusters are located between or underneath the 1401 and 1433 atom clusters. Image taken

from Paper V. Copyright 2019 American Chemical Society.

against experimental data and ex-DIM calculations as shown in Fig. 4.4. From the plotted

data it is evident that for the truncated octahedrons the DIM model shows no discernible

trend while for the icosahedra there is a red shift of around 0.2 eV with size but only for the

range 147 − 1415 atoms (1.8 − 3.4 nm) thereafter there is no shift. The cd-DIM model does

show a red shift in the plasmon length with increasing size but only by around 0.097 eV

for the 2 − 10 nm clusters while the experimental data gives a red shift of 0.38 eV in that

region. The limit of cd-DIM therefore deviates significantly from the experimental results

and the results of ex-DIM. While Chen et al. [138] gives an arbitrary shift of 0.2 eV to the

experimental data to compensate for solvent effects this does not change the fact that the

shift in the SPR in the cd-DIM is only around a quarter of what it should be according to

experiment [151].

The poor performance of the DIM and cd-DIM for spherical-like clusters is probably not due

to methodological issues but rather due to the parameterization. This can be understood

since ex-DIM and DIM in the spherical cases are very similar, except for the surface atoms,

and a better fit of parameters should therefore be possible.

Mie theory [152] is known to be in good agreement with experiment for medium and large

NPs, but not so for small NPs. As seen in Fig. 4.4 Mie theory underestimates the size
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Figure 4.5: The scheme of longitudinal and transverse plasmon length and coordination

numbers for the Ag nanorod with N = 8743 atoms which is 12.09 nm x 4.20 nm. Image

taken from Paper V. Copyright 2019 American Chemical Society.

dependence of small silver clusters when compared to experiment even when Mie theory is

size corrected based on the electron effective mean free path [66].

4.2.2 Polarizability of silver nanoparticles with complicated ge-

ometry: nanocubes and nanorods

As seen from Fig. 4.6 ex-DIM predict that the more acute size-dependence translate into

a larger shape-dependence of the SPR as the Ag cubes are red shifted around 0.6 eV in

comparison to the Ag spheres, in the region examined here, which is in line with the findings

of González et al. [153]. The size-dependence of the cubes and spheres are here shown to

be reasonably similar.

While a small red shift in the SPR with increasing cluster size is seen for spherical-like NP

very significant red shifts can be observed for nanorods depending on the aspect ratio. This

very large red shift can be used to tune the SPR to a given region, thereby making nanorods

versatile sensors. The SPR for nanorods is, however, split into two due to the cylindrical

symmetry and excitation of collective oscillations of conduction electrons of nanorods and

two peaks are seen in the UV−vis spectrum. The TLSPR is typically very slightly blue

shifted in comparison to the a spherical cluster with the same plasmon length while the

LLSPR can be red shifted much below what can be done by increasing the size of a spherical

cluster. Furthermore, the polarizability for the red shifted peak is also greatly enhanced

with increasing aspect ratio, here defined as the ratio between the plasmon length in the

longitudinal and transverse directions.

Since tunable nanorods are of great application interest I have examined a series of nanorods
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Figure 4.6: Comparison of the SPR for sphere and cubes with different plasmon lengths. The

very red and blue shift seen for the 665 and 1687 atoms cubical clusters are due to double

peaks where the most red and blue shifted peak, respectively has the highest polarizability.

With a larger γ-value both outliers will be shifted more in line with the rest of the cubes.

The 1481 and 1505 atom recalculated clusters are located between or underneath the 1401

and 1433 atom clusters. Image taken from Paper V. Copyright 2019 American Chemical

Society.
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to elucidate the interplay between the aspect ratio and diameter with respect to the SPR. I

have constructed a series of nanorods where each end is a half sphere connected by a cylinder.

The nanorods are designated as Ag(x, y) where x is the plasmon length of the longitudinal

axis and y is the plasmon length of the transverse axis in nm as shown in Fig. 4.5. Ag(y, y)
is, with this definition, a sphere with an effective diameter of y. Here I use nanorods with a

diameter from 2.23 − 6.18 nm, a length up 14.06 nm, aspect ratio up to 5.4 and containing

up to 16567 atoms. For all figures I calculate the polarizabilty at 400 different frequencies.

In Fig. 4.5 it is clearly that only the top layer of atoms has a coordination number below

11 − 12 and, as expected, the atoms with the lowest coordination number are on the edges.

This means that only the surface atoms are directly affected by the changes introduced by

the coordination numbers. The red shift of the LLSPRs is clearly visible from Fig. 4.7 and

furthermore the shift is directly proportional to the aspect ratio. The dependence on the

diameter of the nanorod can also be seen. The increasing slope of the LLSPR with diameter

is also observed for gold nanorods [154]. The slight blue shift of the TLSPR is observed

as approximately linear. The experimental results et al. [155], in which the average width

of the nanorods varies from 55 − 59 nm, indicate that the red shift is directly proportional

to the aspect ratio and with a slight increase in slope compared to our results, which may

be assigned to the refractive index in the surrounding medium. Here our results refers to

nanorods on an ultra thin carbon film [151] while the experimental results were obtained in

a 0.1M KNO 3 aqueous solution.

The relative polarizability and peak width between the LLSPR and TLSPR in Fig. 4.7 is

seen to increase significantly with increasing aspect ratio. The polarizability per atom will

also increase linearly with the aspect ratio. Both the LLSPR and the absorbance can in this

way be controlled by the aspect ratio and the diameter of the nanorods. The polarizability

thus depends substantially on the geometry of NP.

4.2.3 Plasmon resonances of hollow nanoparticles

I have applied the derived ex-DIM model also to hollow metallic nanospheres or nanoshells.

These support plasmon resonances with frequencies that are sensitive functions of both

the inner and outer radius of the metallic shell. For the specific case of nanoshells, the

highly geometry-dependent plasmonic response can be seen as an interaction between the

essentially fixed-frequency plasmon response of a nanosphere and that of a nanocavity. The

sphere and cavity plasmons are electromagnetic excitations that induce surface charges at

the inner and outer interfaces of the metal shell as shown on Fig. 4.9. Because of the finite

thickness of the shell layer, the sphere and cavity plasmons interact with each other.

This interaction results in a splitting of the plasmon resonances into two new resonances:
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Figure 4.9: Scheme of existing modes in

nanobubbles: symmetrical ω− and anti-

symmetrical ω+ bondings. Image taken

from Paper VII.

Figure 4.10: Logarithm of imaginary part

of polarizability for set of nano-bubbles

with fixed thickness of the shell (0.8 nm)

and various total radius from 0.8 nm up

to 8.6 nm. Image taken from Paper VII.
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the lower energy symmetric or bonding plasmon and the higher energy antisymmetric or

antibonding plasmon. The position of splitted plasmon modes with frequencies ω− and ω+
can be defined by following equation using the Drude model [156]:

ω2
± =

ω2
B

2

⎡⎢⎢⎢⎢⎢⎣
1 ± 1

2l + 1

¿
ÁÁÀ1 + 4l(l + 1)( rcore

rtotal
)

2l+1⎤⎥⎥⎥⎥⎥⎦
, (4.27)

where rcore and rtotal are radius of core and total radius of particle, ωsphere = ωB√
3

correspond

to position of resonance for solid spherical particle with same total radius, l is is order of

spherical harmonics (l = 1 in our case).

4.2.4 Polarizability of hollow nanoparticles

The studied nano-bubbles are presented as core-shell nanoparticles with an empty core

inside. According to eq. (4.27) I can observe splitting of plasmon resonance into the two

above mentioned resonances - the symmetrical bonding with ω− and anti-symmetrical with

ω+ and can be expected to show red- and blue shifts correspondingly. The shift is dependent

on both the total radius of the particle and the radius of the hole.

On Fig. 4.10 I show the spectral dependence for the imaginary part of the polarizability for

the nano-bubbles with fixed thickness of the shell (1.6 nm) and different total radius rtotal.

Starting from solid (with rhole = 0) spherical NP with rtotal = 0.8 , I increase the total size

and size of hole simultaneously but keeping the shell thickness fixed at ≈ 0.8 nm, which

corresponds to 3 atomic layers. When the size of the hole in the NP becomes bigger, the

SPR of the solid NP becomes split into two resonances. One resonance shows a significant

red shift with increasing rtotal - from λ = 400 nm for rtotal = 2.5 nm up to λ = 900 nm for

rtotal = 8.4 nm. This resonance corresponds to symmetrical ”bonding”, and its frequency is

well described in eq. (4.27) as ω−. It is clear that with increasing rtotal I can see almost linear

dependence for the position of the symmetric resonance vs. rtotal. At the same time, as it was

predicted in eq. (4.27), I‘m able to show the second resonance at λ = 218 nm, corresponding

to the anti-symmetrical mode with frequency ω+ from eq. (4.27). This second resonance

starts to appear at rtotal ≈ 2.5 nm. In contrast to the symmetrically bonded resonance, the

anti-symmetrical one shows a very weak blue shift with increasing rtotal.
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4.3 Conclusions for Chapter 4

In this chapter I reviewed the extended discrete interaction model (ex-DIM) presented in my

thesis, and demonstrated some simulations of the geometric and environmental dependence

of plasmon nanoparticles (NPs). The frequency dependent dielectric function in this model

is obtained from the Clausius-Mossotti relation as a sum of three Lorentzian oscillators

and with Gaussian charge distributions and atomic radii that vary with the coordination

number.The three frequency dependent Lorentzian oscillators depend on the plasmon length

in the x, y, z− directions, with the so-called plasmon length[147].

I show both theoretically and numerically that the surface plasmon resonance (SPR) is in-

versely proportional to the plasmon length. I also show that the model can be parameterized

from experiment with numerical accuracy of the same order as the experimental accuracy.

In addition, I show that some parameters, such as broadening and capacitance, do not affect

the position of the SPR peak to any noticeable extent, and that acceptable values for these

parameters can be selected without adjustment.

Having parameterized the model for a set of spherical clusters, I used the model to predict

the position of the plasmon resonance for a set of spherical clusters. To further demonstrate

the capabilities of the ex-DIM model, I also performed a series of calculations on cubic

and nanorod nanoparticles. For cubes, the SPRs turn up with a red shift compared to

a spherical cluster with the same plasmon length. Nanorods show a significant red shift

for the longitudinal resonance and a very weak blue shift for the transverse resonance with

increasing aspect ratio. Having calculated several series of nanorods with different diameters

and aspect radii, I could show that the red shift is directly proportional to the aspect ratio.

Next, I considered core-shell nanoparticles with an empty hole inside. I could demonstrate

that our model can not only predict the shift of SPRs in such kind of particles, but also

make it possible to get the correct positions of resonances in spectral ranges that are beyond

the region where the model has been parametrized.
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Summary

The first part of the dissertation is devoted to the study of thermodynamic properties of

plasmon nanostructures. The importance of taking into account the influence of temperature

and the state of aggregation of a nanoparticle on its optical characteristics and vice versa was

demonstrated. Subsequently, the method was used to model the optical and thermodynamic

properties of chains of plasmon nanoparticles that can act as waveguides. It was shown that

taking into account the thermal effects leads to a significant suppression in the waveguiding

properties of such chains. One effective way to avoid the limitations associated with the

deterioration of the waveguide properties of nanoparticles is to use heat-resistant materials.

Titanium nitride was proposed as a refractory material. However, alternative plasmonic

materials such as AZO, GZO and ITO can also be considered as promising materials for

optical plasmon waveguides. Another possible way to prevent the negative influence of

thermal suppression of plasmon resonances in chains of nanoparticles is to use a technological

substrate that removes heat from the waveguide and save the nanoparticles from melting.

These and many other technological solutions indicate that waveguides made of plasmonic

nanoparticles are excellent candidates as a new generation of elements for integrated circuits.

In addition to the interest in microelectronics, plasmonics has great potential in many other

fields. So, two-dimensional structures in the form of arrays of resonant nanoparticles are

successfully used as filters and sensors with high sensitivity in biology and chemistry. The

next part of the dissertation was devoted to the study of the optical properties of such

two-dimensional structures from silicon nanoparticles. As being one of the most accessible

and well-studied materials we have available, silicon opens up prospects for the produc-

tion of high-tech devices with good reproducibility. However, defects in such devices can

significantly reduce their versatility and increase the manufacturing costs. In this work, I

simulated defects arising in two-dimensional structures from resonant silicon nanoparticles.
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From the obtained results I was able to make the conclusion that two-dimensional struc-

tures might have high resistance to defects. In addition, such structures can be used as

variable ultra-narrow-band filters. Theoretical research in this area is currently focused on

using evolutionary mechanisms to create structures with predicted properties. Defects in

two-dimensional structures can be used, if controlled, as a flexible way to create devices with

completely new properties, such as focusing light. As highlighted in the previous chapter,

new materials are one of the potentially interesting directions in the development of this

area.

I consider all above reviewed applications to have a great technological value. However,

research in these areas is limited to the methods used sometimes. In addition to the re-

quirements for computing resources, most methods have a great fundamental limitation -

the limited size and/or geometry of the structure. Here we are talking about the traditional

difficulties of accurate modeling of properties of nanoparticles with sizes less than 10 nm

and/or nanoparticles with an exotic (non-spherical) shape. In addition, most models rely

on experimental data of the optical properties of nanoparticles and cannot predict their

optical properties outside of existing experimental data. In this thesis, the model of discrete

atomic interaction was expanded to remedy this situation. This model takes into account

the contribution to the optical properties of nanoparticles from each atom. The obtained

results for spherical nanoparticles, nanocubes and nanorods are in good general agreement

with some theoretical predictions on larger particles made by other methods, for example,

from the Mie theory. However, for the precise predictions of small nanoparticles can only

be made by atomic discrete interaction models, of which our extended model constitutes

the present state-of-art. Calculations were also performed for hollow nanoparticles. Since

the model takes into account the contribution of each atom, it might be useful in studies of

atomically thin nanostructures. Universal miniaturization invariably leads to the growing

interest in modeling of nanoparticles with a certain number of atomic layers. The classical

electrodynamics models do not allow to describe the optical properties of such structures.

Also, the development of a discrete interaction model should consider new materials. Thus I

believe the future is wide open both for applications of the current model and for its further

development, with wide ramifications for applications already reviewed in this thesis, and

for much more.
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[125] B. Auguié, X. M. Bendaña, W. L. Barnes, and F. J. Garćıa de Abajo, “Diffractive
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[146] P. Pyykkö and M. Atsumi, “Molecular single-bond covalent radii for elements 1-118,”

Chem. - A Eur. J., vol. 15, no. 1, pp. 186–197, 2009.

[147] E. Ringe, M. R. Langille, K. Sohn, J. Zhang, J. Huang, C. A. Mirkin, R. P. Van Duyne,

and L. D. Marks, “Plasmon length: A universal parameter to describe size effects

in gold nanoparticles,” The Journal of Physical Chemistry Letters, vol. 3, no. 11,

pp. 1479–1483, 2012.

[148] L. L. Jensen and L. Jensen, “Atomistic electrodynamics model for optical properties of

silver nanoclusters,” The Journal of Physical Chemistry C, vol. 113, no. 34, pp. 15182–

15190, 2009.

[149] P. Schwerdtfeger and J. K. Nagle, “2018 table of static dipole polarizabilities of the

neutral elements in the periodic table,” Molecular Physics, vol. 117, no. 9-12, pp. 1200–

1225, 2019.
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