INTRODUCTION TO CELLULAR CLASSES IN THE DERIVED
CATEGORY OF A RING

JONAS KIESSLING

1. PRELIMINARY REMARKS

The purpose of this thesis is to discuss various aspects of the groving area of
cellular classes, or more particularly cellular classes of chain complexes. The original
setting of cellular classes was topological spaces and spectra. The standard reference
is the book of Dror-Farjoun [|. Dror-Farjoun and others have used cellular classes to
set up a framework for doing unstable homotopy theory in which many traditional
theorems have a common generalisation and explanation. A nice example is the
paper [?] in which the author generalizes a well known theorem of Blakers and
Massey.

The basic way to understand a topological space is by comparing it to more
familiar spaces, such as the spheres. By studying maps from spheres we obtain
the homotopy groups, the most fundamental of topological invariants. If we maps
into Eilenberg-Maclane spaces we obtain cohomology, an other important invariant.
The idea of cellular classes is the following: Suppose that we have a space A. We
then study which other spaces that can be constructed out of A using only sums
and homotopy push-outs. This class is called the class of A-cellular spaces. If
X is A-cellular then we know that any invariant of A that is preserved by sums
and homotopy push-outs (such as connectivity, as in the theorem of Blakers and
Massey) will also be an invariant of X. The point is the statement “X is A-cellular”
contains more information then say “X is at least as highly connected as A”.

Given any space A there is a funtor CW4 which assigns to any space X the
“universal” A-approximation of X (see [?]) in the sense that CW4 X is A-cellular
and there is a map CW4 — X which, from the point of view of A, is an equivalence.
As the name suggests, we should think of CW4 X as a generalization of the classical
construction of a C'W-approximation using A instead of S°. Cellular classes form a
lattice ([?]) however a complete characterization of this lattice has so far been out
of reach.

While cellular classes of topological spaces have been around for over 15 years,
it is only recently that people have started to study cellular classes in different
settings. In this thesis we focus on cellular classes of chain complexes of modules
over a commutative ring. The hope is that by focusing on cellular classes one can
shed some light on classical homological invariants and contructions. An indication
that this might indeed be a fruitful idea is the paper [?]. In this paper the author
construcs a complete invariant of ¢-structures using a special kind of cellular classes
called “acyclic classes” (see section ?? for a fuller discussion). Acyclic classes are
a special kind of cellular classes that appear naturally when studying invariants
closed under extensions.

The rest of this introduction is divided into several sections. First we fix notation.
Then we introduce the notion of cellular classes and derive some properties. Next
we discuss the algebraic verison of the CW4-functor mentioned above. We then
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turn to the much better understood notions of “acyclic classes” and “localizaing
subcategories”. Localizing subcategories are the stable version of cellular classes
and were (in the Noetherian case) classified already in 1992 be Neeman in his paper
[?7]. We close the introduction with a brief discussion of the two papers that make
up the rest of this thesis.

2. NOTATION

In this introduction (and in paper 1) a chain complez (or simply a complex) is a
non-negatively graded chain complex of R-modules with the homological grading,
i.e. the differential lowers the degree by one. A weak equivalence is a morphism
of chain complexes f that induces isomorphism on homology (sometimes called
quasi-isomorphism). We denote a weak equivalence from X to Y by X =Y.

We say that a map f: X — Y is a cofibration if f is injective and the cokernel
of f is a chain complex of projective modules. A chain complex is called cofibrant if
the canonical map 0 — X is a cofibration, or explicitly, that X is a chain complex
of projective modules. Recall that any map f : X — Y can be factored into a
cofibration followed by a weak equivalence, i.e. there exist f/ and f” such that
f=7f"f" and f’is a cofibration and f” a weak equivalence (see [?] section 7).

The suspension functor is denoted by ¥: (XX); = X;—1 (= 0if ¢ = 0) and
Osx = (—1)0x. Since we are working with non-negative chain complexes the
suspension functor is not an equivalence. It does however posses a left inverse: we
let © denote the functor that takes X to QX, where (QX); = X, for ¢ > 0 and
(QX)o = ker 9;. The differential becomes dqox = (—1)0x. It follows directly that
O3 =2 1. As the notation suggests one should think of ¥ and Q) as analogs of the
topological suspension and loop functors.

We let Hom denote the hom-complex. It is defined as follows: if X, Y € Ch>o(R)
then Hom(X,Y), = [[i>qhom(Xy,Y,4k). The differential takes {fy : X —
Yiin} to {0fi + (=1)"fisn}. An important property of the Hom-complex is that
if A is cofibrant then Hom(A,e) preserves weak equivalences (this follows from
Brown’s lemma, see [?] Lemma 9.9). We also note that Hy(Hom(X,Y')) is the set
of homotopy classes of maps from X to Y.

For two complexes X and Y we let X ® Y denote their tensor product. It
is a chain complex defined by: (X ® Y),, = @pyeq=nX, ® Y;. The differential is
determined by the usual sign convention. It is a standard exercise to verify the
following adjoint relation:

Hom(X ®Y,Z) = Hom(X, Hom(Y, Z))

The cone of amap f : X — Y of chain complexes if a chain complex C(f) defined
by: (C(f))n =Y, ® X,,—1. The differential maps (y,z) to (9y(y) — f(x),0x(z)).
There is a natural inclusion Y — C(f) and the cokernel of this map is isomorphic
to X X.

3. MODEL CATEGORIES AND TRIANGULATED CATEGORIES
4. CELLULAR CLASSES

The main topic of this thesis is the study of collections of objects called cellular
classes. In particular we are intrested in cellular classes generated by a given object
A, the A-cellular objects. In this section we give an axiomatic definition of cellular
classes and deduce some formal properties. In the next section we show that the
A-cellular complexes can be thought of as those complexes that can be constructed
out of A.
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We say that a collection C of chain complexes is closed under cones if given a
map f: X — Y of chain complexes such that X and Y belongs to C, then also the
cone of f belongs to C.

Analagously we say that C is closed under sums if given a family {X;} of chain
complexes in C then its sum @;X; also belongs to C. The collection C is closed
under weak equivalences if whenever there is a weak equivalence X = X’ then
either X and X’ belong to C or neither.

A collection C satisfying all these properties is called a cellular class:

Definition 4.1. A non-empty class of objects C C Chxo(R) is called a cellular
class if it is closed under cones, weak equivalences and sums.

Here are some examples of cellular classes:

Proposition 4.2. (1) The collection of all chain complezes is a cellular class.
(2) Fiz an integer k > 0. The collection of all chain complexes X such that
H; X =0 fori <k is a cellular class.
(8) The collection of all complexes weakly equivalent to zero is a cellular class.
(4) Fiz an R-module M. The collection of all chain complezes X such that
HoX is a quotient of a sum of M is a cellular class.

Any cellular class contains the zero and is closed under suspensions. To see
this note that the cone of the identity map 1 : X — X is weakly equivalent to 0.
Moreover the complex XX is isomorphic to the cone of the unique map X — 0.

Cellular classes are closed under cokernels of monomorphisms: If

0—-X—-Y—-2-0

is an exact sequence then the cone of the map X — Y is weakly equivalent to Z.
So if X and Y belong to C then also Z € C. In fact this argument shows that
being a cellular class is equivalent to being closed under weak equivalences, sums
and cokernels of monomorphisms. It follows that cellular classes are closed under
directed colimits: Given a (possibly transfinite) system of chain complexes:

Xo—Xi—...—> Xy — ...
Its colimit is the cokernel of the injective map:

1—shift

Hi Xi —> Hz X;
Hence if for every i, X; € C then the colimit colim;X; € C. This last observation will
be used in the next section when we construct the cellular approximation functor.
We also note that cellular classes are closed under retracts: If X is a retract of
Y, i.e. there are mapsi: X — Y and p: Y — X such that pi = 1x, then X is
isomorphic to the colimit of the system:

y Py
so if Y € C, then also X € C.

We are also intereted in how cellular classes behave under push-outs:

Lemma 4.3. Let C be a cellular class. Suppose that we are given a push-out
diagram:

X1<—X2—>X3

such that X; € C, i = 1,2,3. If one of the two maps is a monomorphism then the
push-out also belongs to C.
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Proof. We let X denote the push-out. It is clear that if one of the maps is a
monomorphism then we associate to the push-out square an exact sequence of the
form:

0—-Xo—- X106 X35—-X—0

The statement now follows from the discussion preceding the lemma. O

If we fix a chain complex A then we can regard the collection of all complexes
X such that whenever A belongs to a cellular class, so does X. This collection is
also a cellular class, in fact it is the smallest cellular class containing A. We call
members of this collection the A-cellular complexes:

Definition 4.4. Fix a chain complex A. We let C(A) denote the smallest cellular
class containing A. Objects in C(A) are called A-cellular. If X is A-cellular then
we write that X > A.

This definition introduces a relation between chain complexes and it is the main
objective of this thesis to understand this relation. We first make some trivial
remarks.

If I is any set then @®;A € C(A) because cellular classes are closed under sums.
Moreover A is a retract of @74 so A € C(®1A). Hence there is an equality C(A) =
C(®rA).

The relation > is transitive: If X > Y and Y > Z then X > Z. It also behaves
well with respect to the derived tensor product:

Lemma 4.5. Suppose that X is cofibrant and thatY > A. Then XY > X ® A.

Proof. Let C be the collection of all chain complexes Y such that X @ Y is X ® A-
cellular. Of course A € C. Moreover since X is cofibrant it presereves exact
sequences and weak equivalences. The tensor product always preserves sums. Hence
C is a cellular class containing A. Be definition it follows that C(A) C C and we are
done. O

5. THE A-CELLULAR APPROXIMATION

In topology we can construct C'W-approximations and in algebra cofibrant re-
placements (or projective resolutions). These are funtorial approximations of a
given object by something that we construct out of spheres and disks. In this sec-
tion we show how a similar approximation can be obtained using other objects then
spheres. It turns out that the A-cellular objects of the last section are precisely the
objects that can be reconstructed (up to weak equivalence) out of A.

Definition 5.1. Fix a cofibrant replacement A’ = A. A morphism f: X — Y
is called an A-equivalence if Hom(A’, f) : Hom(A', X) — Hom(A',Y) is a weak
equivalence.

Note that this does not depend on the choice of cofibrant replacement A’ = A.

We think of A-equivalences as morphisms that from the point of view of A is a
weak equivalence. It is easy to show that being an A-equivalences automatically
translates to being an X-equivalence, for all A-cellular chain complexes X:

Lemma 5.2. If X is A-cellular and f is an A-equivalence then f is an X -equivalance.

Proof. Fix an A-equivalence f. Let C denote the collection of all complexes Y such
that f is a Y-equivalence. By assumption A € C. Moreover C is closed under
arbitrary sums, cones and weak equivalences. Togehter this yields C(A) cC. O
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Later we show that in fact X is A-cellular if and only if all A-equivalences are
also X-equivalences.

We can now define what we mean by an A-cellular approxiamtion of a complex
X:

Definition 5.3. Fix a chain complex X. A pair (X', f), where X’ is a cofibrant
complex and f : X’ — X is a morphism, is called an A-cellular approzimation if
X' is A-cellular and f is an A-equivalence.

An A-approximation is terminal among maps from A-cellular complexes and
initial among A-equivalences.

Lemma 5.4. Suppose that (X', f) is an A-approzimation of X and that g : Y —
X is a map from a cofibrant complex Y. If Y is A-cellular then there is a map
h:Y — X' making the following diagram commute up to homotopy:

Xl

yal
y —Lsx

If g is an A-equivalence then there is a map h : X' — Y making the following
diagram commute up to homotopy:

X/

Val
y —2sx

Proof. Suppose first that Y is A-cellular. By Lemma 5.2 f is Y-equivalence, i.e.
Hom(Y, f) is a weak equivalence. In particular Ho(Hom(Y, f)) is an isomorphism
from the set of homotopy classes of maps from Y to X’ to the set of homotopy
classes of maps from Y to X. Hence we can find the desired h.

If g is an A-equivalence then Hy(Hom(X', g)) is an isomorphism and again we
can find h. O

Remark 5.5. A consequence of this lemma is that A-cellular approximations are
unique up to homotopy.

We now show a construction that given any two complexes A and X will produce
a pair (CW4X,cx) such that when A is cofibrant, this is an A-cellular approxima-
tion . We will closely mimick the construction in [?].

We let v denote some limit ordinal such that the cofinality of v is bigger then
the cardinality of the underlying set of A (i.e. the underlying set of ®A;). We
also let v denote the category of all ordinal numbers smaller then v with a unique
map i — j if ¢ < j. The assumption on v means that given any functor indexed
by v: F : v — Ch>o(R) and map A — colim,F, then there is an i < v and a
factorization of the map f into: A — F; — colim,F. See [?] chapter 5.3 for the
existence of such an ordinal ~.

Let F': v — Ch>o(R) denote the functor defined inductively by:

(1) For i =0 we let:
Fy = H »kA
hom(X*A,X),0<k<oco

There is an induced map pg : Fy — X. It is clear that Fy is A-cellular.
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(2) If i = j + 1 then let I;;; be the set of all commutative squares:

kA — I
Iit = ! !
A® DML X

The complex Fjj;; is defined as the push-out of
[[A®DF — J] 2*A— F

Iji1 I
Moreover there are maps p;y1 : Fj41 — X and ¢; : F; — Fj4 such that
Pj = Pj+145-
From Lemma 4.3 it follows that Fj4; is A-cellular.
(3) Finally if ¢ is a limit ordinal then F; = colim;,F;. We let p; : F; — X be
the induced map. We in section 4 that cellularity is presereved by directed
colimits, hence F; is A-cellular.

Definition 5.6. We define the pair (CWaX,cx) by letting CWaX = colimF
and cx : CW4X — X be the map induced map.

Remark 5.7. If A is cofibrant then inductively all the maps ¢; : F; — Fj41 are
cofibrations and all complexes F; are A-cellular. Hence CW4X is also A-cellular.

Remark 5.8. It is clear from the construction that CW4X and cx are natural in
X, i.e. that we have in fact constructed a functor CWy : Ch>o(R) — Ch>o(R)
and a natural transformation ¢ : CW, — Id. The value of this funtor depends on
the choice of ordinal v, however, as we will see, its homotopy type does not.

Theorem 5.9. If A is cofibrant then the pair (CWaX,c,) constructed above is an
A-cellular approzimation of X.

Proof. By definition CW4X = colim.F; and each F; is A-cellular, so CW4X is
A-cellular. To see that cx is an A-equivalence we note that by the adjoint of 77 it
is enough to find a lift in diagrams on the form:

vk A CWaX

L

A®Dk+1—>X

We assumed that A was y-small, so there is some j such that the map Z¥A —
CW 4 X factors as:

ZkA — Fj — Fj+1 — CWAX

The definition of F;;1 implies directly that there is a map h : A® D*1 — F; 4
such that the following commutes:

YA —— Xjt1
-
A®Dk+1 — s X

The composition of h with the natural map X; — X yields the required lift.
O

Corollary 5.10. Let A and X be chain complexes. Then X is A-cellular if and
only if every A-equivalence is an X -equivalence.
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Proof. Necessity was shown in Lemma 5.2. Suppose that X has the property that
any A-equivalence is also an X-equivalence. We can assume that A is cofibrant. Let
(CWaX,cx) the A-cellular approximation constructed above. The map cx is an
A-equivalence, hence also an X-equivalence. It follows from 5.4 that cx is a weak
equivalence. The complex CW X is A-cellular, hence X is also A-celllular. (]

We close this section by deducing some consequences of the above theorem.

Proposition 5.11. (1) All chain complezes are S°-cellular.
(2) EX>TAX>A

Proof. To prove (1) note that since Hom/(S°, f) = f, a map is an S°-equivalence
if and only if it is a weak equivalence. If X is cofibrant and f a weak equivalence
then Hom(X, f) is also a weak equivalence and the statement follows.

We now prove (2). Assume that X > A and let f be a Y A-equivalence. As
always we may assume that X and A are cofibrant. We need to show that f is an
Y X-equivalence. But Hom(XZA, f) & Hom(A,Qf) so Qf is an A- and therefore
also an X-equivalence. This is enough since Hom(X,Qf) = Hom(XX, f). One
show the converse in the same fashion using the fact that Qg = f. (]

6. AcycLic CLASSES AND LOCALIZAING SUBCATEGORIES

We say that a collection of chain comeplexes C is closed under eztensions if given
amap f: X — Y such that X and the cone C(f) belong to C then so does Y.
Among all cellular classes there are those which are also closed under extensions.
These are important enough to deserve a name of there own:

Definition 6.1. A cellular class A is called an acyclic class if A is closed under
extensions.

If we fix a chain complex A then the intersection of all acyclic classes containing
A is an acyclic class. This is the collection of all A-acyclic complexes:

Definition 6.2. Let A € Ch>(R) be a chain complex. We let A(A) denote the
smallest acyclic class containing A. The elements of A(A) are called the A-acyclic
complexes. If X is A-acyclic then we write that X > A.

As an acylic class by definition is cellular, we have by definition that C(A) C
A(A). This inclusion is in general strict as we will see shortly. Hence > provides a
coarser invariant then >>. Hence it should be easier to classify >. This is indeed the
case. Th classification of acyclic classes of finite suspension spaces by Bousfield in [?]
was considered an important acievement in topology. Acyclic classes of finite chain
complexes of modules over a Noetherian ring have also been classified by Stanley
in [?] and the author in paper two of this thesis (see section 7 of paper two). The
classification is in terms of the support of the homology of the chain complexes: if
A and X are finite (i.e. the R-modules @;H; A and @; H; X are finitely generated)
then X > A if and only if for every i:

Supp H; X C Supp @< H;A

As for C(A) there is an alternative description of A(A) in terms of the Hom-
complex.

Definition 6.3. Fix a chain complex A. We say that a complex N is A-trivial if
Hom(A, N) is acyclic (its homology is trivial).

We can regard the collection of all complexes X such that if Y is A-trivial then
Y is X-trivial. It is straightforeward to verify that this is an acyclic class. In fact,
as we show below, these are precisely the A-acylclic complexes.
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Definition 6.4. Fix a chain complex A and a map f: X — Y. We say that f is
A-local it Hom(f, N) is a weak equivalence for all A-trivial complexes A.

Definition 6.5. A pair (X', cx), where X’ is a complex and cy : X — X’ a map,
is called an A-localization if X' is A-trivial and cx is A-local.

Remark 6.6. An A-localization is unique up to homotopy in the sense that if
(X',cx) and (X", dx) are A-localizations then X’ and X" are homotopic under X.

Given A we can construct a functor P4 : Chx>o(R) — Ch>¢(R) and a natural
transformation ¢ : 1 — P4 such that for every X the pair (P4X, cx) is an A-
localization of X . The construction of the pair (P4, ¢) is similar to the construction
of (CW 4, c) in section 5 so we omit the details (the interested reader can find more
details in [?]).

With the aid of (Pa,¢) it is now not hard to prove:

Theorem 6.7. Let A and X be chain complexes. Then X is A-acyclic if and only
if all A-trivial complexes are X -trivial.
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