
Understanding when spatial transformer networks
do not support invariance, and what to do about it

Lukas Finnveden∗, Ylva Jansson∗ and Tony Lindeberg
Computational Brain Science Lab, Division of Computational Science and Technology

KTH Royal Institute of Technology, Stockholm, Sweden

Abstract—Spatial transformer networks (STNs) were designed
to enable convolutional neural networks (CNNs) to learn invari-
ance to image transformations. STNs were originally proposed
to transform CNN feature maps as well as input images. This
enables the use of more complex features when predicting
transformation parameters. However, since STNs perform a
purely spatial transformation, they do not, in the general case,
have the ability to align the feature maps of a transformed image
with those of its original. STNs are therefore unable to support
invariance when transforming CNN feature maps. We present
a simple proof for this and study the practical implications,
showing that this inability is coupled with decreased classification
accuracy. We therefore investigate alternative STN architectures
that make use of complex features. We find that while deeper
localization networks are difficult to train, localization networks
that share parameters with the classification network remain
stable as they grow deeper, which allows for higher classification
accuracy on difficult datasets. Finally, we explore the interaction
between localization network complexity and iterative image
alignment.

I. INTRODUCTION

Spatial transformer networks (STNs) [1] constitute a widely
used end-to-end trainable solution for CNNs to learn in-
variance to image transformations. This makes it part of a
growing body of work concerned with developing CNNs that
are invariant or robust to image transformations. The key
idea behind STNs is to introduce a trainable module – the
spatial transformer (ST) – that applies a data dependent spatial
transformation of input images or CNN feature maps before
further processing. If such a module successfully learns to
align images to a canonical pose, it can enable invariant
recognition. However, when transforming CNN feature maps,
such alignment is, in general, not possible, and STNs can
therefore not enable invariant recognition. The reasons for
this are that: (i) STs perform a purely spatial transformation,
whereas transforming an image typically also results in a shift
in the channel dimension of the feature activations (Figure 1),
(ii) The shapes of the receptive fields of the individual neurons
are not invariant. (Figure 2). These problems have, to our
knowledge, not been discussed in the STN literature. In the
original paper and a number of subsequent works, STNs are
presented as an option for achieving invariance also when
applied to intermediate feature maps [1]–[5].

*The first and second authors contributed equally to this work.
Shortened version in International Conference on Pattern Recognition

(ICPR 2020), pages 3427–3434. Jan 2021. The support from the Swedish
Research Council (contract 2018-03586) is gratefully acknowledged.

Fig. 1. A spatial transformation of a CNN feature map cannot, in general,
align the feature maps of a transformed image with those of its original. Here,
the network Γ has two feature channels ”W” and ”M”, and Tg corresponds to
a 180◦ rotation. Since different feature channels respond to the rotated image
as compared to the original image, it is not possible to align the respective
feature maps by applying the inverse spatial rotation to the feature maps.
This implies that spatially transforming feature maps cannot enable invariant
recognition by the means of aligning a set of feature maps to a common pose.

Our first contribution is to present a simple proof that STNs
do not enable invariant recognition when transforming CNN
feature maps. We do not claim mathematical novelty of this
fact, which is in some sense intuitive and can be inferred from
more general results (see e.g. [6]), but we present a simple
alternative proof directly applicable to STNs and accessible
with knowledge about basic analysis and some group theory.
We believe this is important since the idea that transforming
feature maps can achieve invariant recognition is often either
proposed explicitly or the question about the ability for invari-
ance is ignored for a range of different methods transforming
CNN feature maps or filters although often misunderstood
or not taken into account, Our second contribution is to
explore the practical implications of this result. Is there a
point in transforming intermediate feature maps if this cannot
enable invariant recognition? To investigate this, we compare
different STN architectures on the MNIST [7], SVHN [8] and
Plankton [9] datasets. We show that STNs that transform the
feature maps are, indeed, worse at compensating for rotations
and scaling transformations, while they – in accordance with
theory – handle pure translations well. We also show that
the inability of STNs to fully align CNN feature maps is
coupled with decreased classification performance. Our third
contribution is to explore alternative STN architectures that
make use of more complex features when predicting im-
age transformations. We show that: (i) Using more complex
features can significantly improve performance, but most of

ar
X

iv
:2

00
4.

11
67

8v
5

 [
cs

.C
V

]
 1

8
M

ay
 2

02
1

this advantage is lost if transforming CNN feature maps,
(ii) sharing parameters between the localization network and
the classification network makes training of deeper localization
networks more stable and (iii) iterative image alignment can
be complimentary to, but is no replacement for, using more
complex features.

In summary, this work clarifies the role and functioning
of STNs that transform input images vs. CNN feature maps
and illustrates important tradeoffs between different STN
architectures that make use of deeper features.

A. Related work

Successful image alignment can considerably simplify a
range of computer vision tasks by reducing variability related
to differences in object pose. In classical computer vision,
Lukas and Kanade [10] developed a methodology for image
alignment, which estimates translations iteratively. This ap-
proach was later generalized to more general parameterized
deformation models [11]. Affine shape adaptation of affine
Gaussian kernels to local image structures – or equivalently,
normalizing image structures to canonical affine invariant ref-
erence frames [12] – has been an integrated part in frameworks
for invariant image-based matching and recognition [13]–[15].
Such classical approaches always align the input images.

Lately, the idea to combine structure and learning has
given rise to the subfield of invariant neural networks, which
add structural constraints to deep neural networks to enable
e.g. scale or rotation invariant recognition [16]–[19]. Spa-
tial transformer networks [1] are based on a similar idea
of combining the knowledge about the structure of image
transformations with learning. An STN, however, does not
hard code invariance to any specific transformation group
but learns input dependent image alignment from data. The
original work [1] simultaneously claims the ability to learn
invariance from data and that ST modules can be inserted
at “any depth”. This seems to have left some confusion
about whether STNs can enable invariance when transforming
CNN feature maps. A number of subsequent works advocate
to perform image alignment by transforming CNN feature
maps [2]–[5] including e.g. pose alignment of pedestrians [5]
and to use a spatial transformer to mimic the kind of patch
normalization done in SIFT [2]. Additional works transform
CNN feature maps without giving any specific motivation
[20], [21]. As we will show, transforming CNN feature maps
is not equivalent to extracting features from a transformed
input image. Other approaches dealing with pose variability
by transforming neural network feature maps or filters are e.g.
spatial pyramid pooling [22] and dilated [23] or deformable
convolutions [24]. Our results imply that these approaches
have limited ability to enable e.g. scale invariance.

Weight sharing between the classification and the localiza-
tion network has previously been considered in [25], primarily
as a way of regularizing CNNs. Here, we are instead interested
in it as a way to make use of deeper features when predicting
image transformations. [26] combines STNs with iterative

image alignment. In this paper, we investigate whether such
iterative alignment is complimentary to using deeper features.

Previous theoretical work [6] characterizes all equivariant
(covariant) maps between homogeneous spaces using the
theory of fibers and fields. We, here, aim for a different
perspective on the same theory. We present a simple proof
for the special case of purely spatial transformations of CNN
feature maps together with an experimental evaluation of
different STN architectures. A practical study [27] indicated
that approximate alignment of CNN feature maps can be
possible if allowing for a full transformation, as opposed to the
purely spatial transformations that we analyze in this paper.

II. THEORETICAL ANALYSIS OF INVARIANCE PROPERTIES

Spatial transformer networks [1] were introduced as an
option for CNNs to learn invariance to image transformations
by transforming input images or convolutional feature maps
before further processing. A spatial transformer (ST) module
is composed of a localization network that predicts transfor-
mation parameters and a transformer that transforms an image
or a feature map using these parameters. An STN is a CNN
with one or several ST modules inserted at arbitrary depths.

A. How STNs can enable invariance

We will here work with a continuous model of the image
space. We model an image as a measurable function f : Rn →
R and denote this space of images as V . Let {Th}h∈H be a
family of image transformations corresponding to a group H .
Th transforms an image by acting on the underlying space

(Thf)(x) = f(T−1h x) (1)

where Th : Rn → Rn is a linear map. We here consider
affine image transformations, but the general argument is also
valid for non-linear invertible transformations such as e.g.
diffeomorphisms. Let Γ : V → V k be a (possibly non-linear)
translation covariant feature extractor with k feature channels.
Γ could e.g. correspond to a sequence of convolutions and
pointwise non-linearities. Γ is invariant to Th if the feature
response for a transformed image is equal to that of its original

(ΓThf)c(x) = (Γf)c(x), (2)

where c ∈ [1, 2, · · · k] corresponds to the feature channel. An
ST module can support invariance by learning to transform
input images to a canonical pose, before feature extraction, by
applying the inverse transformation

(Γ ST(Thf))c(x) = (ΓT −1h Thf)c(x) = (Γf)c(x). (3)

We will in the following assume such a perfect ST that always
manages to predict the correct pose of an object.1 We now
show that even a perfect ST cannot support invariance if
instead applied to CNN feature maps.

1There is no hard-coding of invariance in an STN and no guarantee that the
predicted object pose is correct or itself invariant. We here assume the ideal
case where the localization network does learn to predict the transformations
that would align a relevant subset of all images (e.g. all images of the same
class) to a common pose.

2

Fig. 2. For any transformation that includes a scaling component, the field
of view of a feature extractor with respect to an object will differ between an
original and a rescaled image. Consider a simple linear model that performs
template matching with a single filter. When applied to the original image,
the filter matches the size of the object that it has been trained to recognize
and thus responds strongly. When applied to a rescaled image, the filter never
covers the full object of interest. Thus, the response cannot be guaranteed to
take even the same set of values for a rescaled image and its original.

B. The problems of transforming CNN feature maps

An advantage of inserting an ST deeper into the network is
that the ST can make use of more complex features shared with
the classification network. When using STNs that transform
feature maps, as opposed to input images, the key question is
whether it is possible to undo a transformation of an image
after feature extraction. Is there a Tg dependent on Th such
that (applying the same transformation in each feature channel)

(TgΓThf)c(x) = (ΓThf)c(T
−1
g x)

?
= (Γf)c(x) (4)

holds for all f,Γ and h? If this is possible, we refer to it as
feature map alignment. An ST that transforms CNN feature
maps could then support invariance by the same mechanism
as for input images. We here present the key intuitions and
the outline of a proof that this is, in the general case, not
possible. We refer to [28] for a mathematically rigorous proof.
Note that for any translation covariant feature extractor, such
as a continuous or discrete CNN, feature map alignment for
translated images is, however, possible by means of a simple
translation of the feature maps.

1) Using Tg = T −1h is a necessary condition to align CNN
feature maps with an ST: The natural way to align the feature
maps of a transformed image to those of its original would
be to apply the inverse spatial transformation to the feature
maps of the transformed image i.e.

T −1h (ΓThf)c(x) = (ΓThf)c(Thx). (5)

For example, to align the feature maps of an original and a
rescaled image, we would, after feature extraction, apply the
inverse scaling to the feature maps. Using T −1h is, in fact,
a necessary condition for (4) to hold [28]. To see this, note
that the value for each spatial position x must be computed
from the same region in the original image for the right hand
and left hand side. Clearly, features extracted from different
image regions cannot be guaranteed to be equal. Assume that
(Γf)c(x) is computed from a region Ω centered at x in the
original image. Using the definition of Th and the fact that Γ

is translation covariant, we get that (TgΓThf)(x) is computed
from a region Ω′ centered at T−1g T−1h x. Now,

Ω = Ω′ =⇒ T−1g T−1h x = x =⇒ Tg = T −1h (6)

and thus the only candidate transformation to align CNN
feature maps with an ST is Tg = T −1h . We, next, show that
using Tg = T −1h is, however, not a sufficient condition to
enable feature map alignment for two key reasons.

2) Transforming an image typically implies a shift in the
channel dimension of the feature map: When transforming
an input image, this typically causes not only a spatial shift
in its feature representation but also a shift in the channel
dimension. This problem is illustrated in Figure 1. Since an
ST performs a purely spatial transformation, it cannot correct
for this. A similar reasoning is applicable to a wide range of
image transformations. An exception would be if the features
extracted at a specific layer are themselves invariant to H .
An example of this would be a network built from rotation
invariant filters λ, where λ(x) = λ(Thx) for all λ. For
such a network, or a network with more complex (learned or
hardcoded) rotation invariant features at a certain layer, feature
map alignment of rotated images would be possible.

It should be noted, however, that to have invariant features in
intermediate layers is in many cases not desirable (especially
not early in the network), since they discard too much informa-
tion about the object pose. For example, rotation invariant edge
detectors would lose information about the edge orientations
which tend to be important for subsequent tasks.

3) Receptive field shapes of neural networks are not in-
variant: A second problem which in most cases prevents
feature map alignment also by means of learning invariant
features is that the receptive fields of neural networks are
typically not invariant to the relevant transformation group.
Consider e.g. a filter of finite support together with a scaling
transformation. In that case, T −1h (Γ Thf)c(x) will not only
differ from (Γf)c(x) because it might be computed from
differently oriented image patches, but also because the scaling
implies it will be computed from not fully overlapping image
patches. This problem is illustrated in Figure 2. For a scaling
transformation, a convolutional filter, adapted to detecting a
certain feature at one scale, will for a larger scale never fully
cover the relevant object. Since a non-trivial CNN feature
extractor can not be guaranteed to take the same output for
different inputs, this implies that the set of values in the two
feature maps can not be guaranteed to be equal. Naturally if
two feature maps do not contain the same values they can not
be aligned.

It is not hard to show that invariant receptive fields of
finite support only exist for transformations that correspond
to reflections or rotations in some basis [28]. Intuitively this
can be understood by considering how a scaling or shear
transformation will always change the area covered by any
finite sized template. Thus there are no non-trivial affine-,

3

Fig. 3. Depiction of four different ways to build STNs. LOC denotes the
localization network, which predicts the parameters of a transformation. ST
denotes the spatial transformer, which takes these parameters and transforms
an image or feature map according to them. In STN-C0, the ST transforms the
input image. In STN-CX, the ST transforms a feature map, which prevents
proper invariance. STN-DLX transforms the input image, but makes use of
deeper features by including copies of the first X convolutional layers in the
localization network. This is not fundamentally different from (1) but acts
as a useful comparison point. STN-SLX is similar to STN-DLX, but shares
parameters between the classification and localization networks.

scale- or shear-invariant filters with compact support2.
4) Conclusion: Our arguments show that a purely spatial

transformation cannot align the feature maps of a transformed
image with those of its original for general affine transfor-
mations. This implies that while an STN transforming feature
maps will support invariance to translations, it will not enable
invariant recognition for more general affine transformations.
The exception is if the features in the specific network layer
are themselves invariant to the relevant transformation group.

III. STN ARCHITECTURES

We test four different ways to structure STNs, all depicted
in Figure 3. By comparing these four architectures, we can
separate out the effects of (i) whether it is good or bad to
transform feature maps, (ii) whether it is useful for localization
networks to use deep features when predicting transformation
parameters, and (iii) whether it is better for a localization
network to make use of representations from the classification
network, or to train a large localization network from scratch.

1) ST transforming the input: The localization network
and the ST are placed in the beginning of the network
and transform the input image. This approach is denoted by
STN-C0.

2) ST transforming a feature map: The localization net-
work takes a CNN feature map from the classification network

2A CNN might under certain conditions learn features approximately
invariant over a limited transformation rate, e.g. by average pooling over a set
of filters with effectively covariant receptive fields (e.g. learning zero weights
outside an effective receptive field of varying size/shape)

as input, and the ST transforms the feature map. This archi-
tecture does not support invariance. A network with the ST
after X convolutional layers is denoted by STN-CX.

3) Deeper localization: The localization network is placed
in the beginning, but it is made deeper by including copies of
some layers from the classification network. In particular, an
STN where the localization network includes copies of the first
X convolutional layers is denoted by STN-DLX. STN-DLX is
not fundamentally different from STN-C0, since both architec-
tures place the ST before any other transformations, but it acts
as a useful comparison point to STN-CX: Both networks can
make use of equally deep representations, but STN-DLX does
not suffer any problems with achieving invariance. In addi-
tion, the deep representations of STN-DLX are independently
trained from the classification network. This is beneficial if
different filters are useful to find transformation parameters
than to classify the image, but requires more parameters. If the
training signal becomes less clear when propagated through
the ST, it could also make the network harder to train. These
differences motivate our fourth architecture.

4) Shared localization: As with STN-DLX, we place a
deeper localization network in the beginning. However, for
each of the copied layers, we share parameters between
the classification network and the localization network. An
STN where the first X layers are shared will be denoted
by STN-SLX. STN-SLX solves the theoretical problem, uses
no more parameters than STN-CX, and like STN-CX, the
localization network makes use of layers trained directly on
the classification loss.

A. Iterative methods

An iterative version of STNs known as IC-STN was pro-
posed in [26]. It starts from an architecture that has multiple
successive STs in the beginning of the network, and develops
it in two crucial ways: (i) Instead of letting subsequent STs
transform an already-transformed image, all predicted transfor-
mation parameters are remembered and composed, after which
the composition is used to transform the original image. Note
that each localization network still uses the transformed image
when predicting transformation parameters: the composition is
only done to preserve image quality and to remove artefacts at
the edges of the image. (ii) All STs use localization networks
that share parameters with each other.

Both of these improvements can be generalized to work
with STN-SLX. The simplest extension is to use several STs
at the same depth, where all STs share localization network
parameters with each other in addition to sharing parameters
with the classification network. Moreover, the first improve-
ment can be used with STN-SLX even when there are multiple
STs at different depths, since all of them will transform the
input image, regardless. In this case, the final layers of their
localization networks remain separate, but whenever they pre-
dict transformation parameters, the parameters are composed
with the previously predicted transformations, and used to
transform the input image. This is illustrated in Figure 4.

4

Fig. 4. Depiction of how an STN transforming CNN feature maps at different depths can be transformed into an iterative STN with shared layers. STN-C0123
transforms feature maps by placing STs at multiple depths [1]. STN-SL0123 instead iteratively transforms the input image and, in addition, shares parameters
between the localisation networks and the classification network. The image is fed multiple times through the first layers of the network, each time producing
an update to the transformation parameters. Thus, the transformation is, similarly to STN-C0123, iteratively finetuned based on more and more complex
features but, at the same time, the ability to support invariant recognition is preserved.

IV. EXPERIMENTS

A. MNIST
1) Datasets: MNIST is a simple dataset containing

grayscale, handwritten digits of size 28x28 [7]. To see how
different STN architectures compensate for different transfor-
mations, we compare them on 3 different variations of MNIST
(the first two constructed as in [1]): In Rotation (R), the digits
are rotated a random amount between ±90◦. In Translation
(T), each digit is placed at a random location on a 60x60-pixel
background; to make the task more difficult, the background
contains clutter generated from random fragments of other
MNIST-images. In Scale (S), the digits are scaled a random
amount between 0.5x and 4x, and placed in the middle of
a 112x112-pixel background cluttered in a similar way to
(T). Additional details about the experiments, networks and
datasets are given in the Appendix.

2) Networks: We use network architectures similar to those
in [1]. On all three datasets, the baseline classification network
is a CNN that comprises two convolutional layers with max
pooling. On (R), the localization network is a FCN with 3
layers. Since the images in (T) and (S) are much larger,
their localization networks instead comprise two convolutional
layers with max pooling and a single fully connected layer.
Like in [1], the ST used with (T) produces an image with half
the pixel width of its input. This is done because a perfect
localization network should be able to locate the digit and
scale it 2x, so all 60x60 pixels would not be needed.

MNIST is an easy dataset, so there is a risk that strong net-
works could learn the variations without using the ST. To make
the classification accuracy dependent on the ST’s performance,
we intentionally use quite small networks. The networks of
(R) and (T) have 50 000-70 000 learnable parameters in total,
while those of (S) have around 135 000. All networks are
trained using SGD, with cross-entropy loss. Networks trained
on the same dataset have approximately the same number of
parameters and use the same hyperparameters.

The tested architectures are STN-C0, STN-C1 (which places
the ST after the first convolutional layer and max pooling),
STN-DL1, and STN-SL1. A baseline CNN is also tested. Note
that because of the transformations present in the training

dataset, this equals a standard CNN trained with data aug-
mentation. All networks are trained with 10 different random
seeds, and each architecture is evaluated on 100 000 images
generated by random transformations of the MNIST test set.

3) Results: As a first investigation of the different architec-
tures, we study how well the STs learn to transform the digits
to a canonical pose, when the networks are trained to predict
the MNIST labels.

Figure 5 shows examples of how STN-C1 and STN-SL1
perform on (R), (T), and (S). As predicted by theory, STN-C1
can successfully localize a translated digit, but STN-SL1 is
better at compensating for differences in rotation and scale.
The difference between the networks’ abilities to compensate
for rotations is especially striking. Figure 6 shows that STN-
SL1 compensates for rotations well, while STN-C1 barely
rotates the images at all. The reason for this is that a rotation
is not enough to align deeper layer feature maps.

To quantify the STs’ abilities to find a canonical pose, we
measure the standard deviation of the digits’ final poses after
they have been perturbed and the ST has transformed them.
For the rotated, translated, and scaled dataset, the final pose is
measured in units of degrees, pixels translated, and logarithm
of the scaling factor, respectively.3 Table I displays this value
for each network.

TABLE I
AVERAGE STANDARD DEVIATION OF THE FINAL ANGLE (R), FINAL

DISTANCE (T), AND FINAL SCALING (S).

Network R (degrees) T (pixels) S (log2(det))
STN-C0 23.2 1.16 0.319
STN-C1 47.2 1.15 0.508

STN-DL1 26.8 1.08 0.291
STN-SL1 18.7 1.32 0.330

As can be seen, STN-SL1 is the best network on (R)

3As measure of the rotation of an affine transformation matrix, we compute
arctan((a21 − a12)/(a11 + a22)) determined from a least-squares fit to a
similarity transformation. a13 and a23 are used to measure the translation. As
a measure of the scaling factor, we use the log2 of the determinant a11a22−
a12a21. The standard deviation (or in the case of (T), the standard distance
deviation) of the final pose is measured separately for each label, with Table I
reporting the average across all labels and across 10 different random seeds.

5

and STN-DL1 is the best network on (T) and (S). Both
these architectures use deeper localization networks, which
gives them the potential to predict transformations better than
STN-C0. As opposed to STN-C1, which also uses deeper
representations for predicting transformation parameters, STN-
SL1, STN-DL1, and STN-C0 all transform the input. This
allows them to perform better on (R) and (S), as predicted by
theory. However, STN-C1 performs adequately on (T).

STN-SL1 performing well on (R) can be explained by
it sharing parameters between the localization network and
classification network. The localization network processes
images before the ST transforms them, and the classification
network processes them after the transformation. Thus, we
should expect parameter sharing to be helpful if the filters
needed before and after the transformation are similar. This
is true for (R), since edge- and corner-detectors of multiple
different orientations are likely to be helpful for classifying
MNIST-digits independently of digit orientation. In contrast,
on both (T) and (S), the scale and resolution of the digits
vary significantly before and after transformation. On (T), this
is partly because the ST zooms in on the identified digit,
and partly because the transformation produces an image with
lower resolution, as described in Section IV-A2.4 On (S), the
scale is intentionally varied widely. Since the images contain
scales and resolutions before the transformation that are not
present after the transformation, the localization network re-
quires filters that the classification network does not need.
STN-DL1 allows for the networks to use different filters, and
consequently, it does better than STN-SL1 on (T) and (S).

Do these differences in ST-performance affect the classifi-
cation performance? Table II shows that they do. STN-SL1
remains the best network on (R), while STN-DL1 remains
best on (T) and (S). The architectures that transform the input
remain better than STN-C1 on (R) and (S). One difference
is that STN-SL1 is better than STN-C1 on (T), which is the
opposite from their relation in Table I. Since the differences
in both Table I and Table II are small, this could be caused by
STN-SL1 being better at compensating for rotation and scale
differences inherent in the original MNIST dataset.

It is notable that all STs do improve performance. STN-
C1 significantly improves on the CNN baseline even for (R),
despite not compensating for rotations at all, as shown in
Figure 6. So what is STN-C1 doing? One noticeably fact
about its transformation matrices is that it typically scales
down the image, as can be seen in Figure 5. On average,
transformation matrices from STN-C1 have a determinant of
0.74 (which corresponds to scaling down the image), while the
determinant of all other STNs are greater than 1. We do not
have an explanation of why this should improve performance,
but it is an example of how networks that spatially transform

4Ideally, these effects would cancel out, since a zoomed-in image with
fewer pixels could have the same resolution as the original. In practice, the
STN learns to scale the image by less than 2x, which means that the digits are
lower resolution after transformation. In addition, since the STN only learns
to zoom in after a while, the network unavoidably processes digits at two
different resolutions in the beginning.

Fig. 5. Illustration of how STN-C1 and STN-SL1 compensate for different
perturbations. The top row shows three digits rotated (first image), translated
(second image), or scaled (third image) in three different ways. The middle
row and bottom row show how STN-C1 and STN-SL1 transform the digits
in the top row. STN-C1 does not compensate for rotations at all, but it
successfully localizes and zooms in on translated digits. It only compensates
somewhat for scaling. STN-SL1 finds a canonical pose for all perturbations.
Note that STN-C1 does not transform the input image, so the middle row is
just an illustration of the transformation parameters that are normally used to
transform its CNN feature map.

CNN feature maps may behave in unpredictable ways.

TABLE II
AVERAGE CLASSIFICATION ERROR AND STANDARD DEVIATION ON THE

MNIST TEST-SET, ACROSS 10 DIFFERENT RUNS.

Network R (std) T (std) S (std)
CNN 1.71%(0.07) 1.61%(0.06) 1.38%(0.04)
STN-C0 1.08%(0.05) 1.10%(0.11) 0.85%(0.06)
STN-C1 1.32%(0.04) 1.16%(0.03) 0.96%(0.04)
STN-DL1 1.05%(0.02) 1.08%(0.07) 0.77%(0.04)
STN-SL1 0.98%(0.06) 1.13%(0.04) 0.82%(0.06)

4) Concluding remarks: As predicted by theory, it is signif-
icantly better to transform the input image when compensating
for differences in rotation and scale, while transforming inter-
mediate feature maps works reasonably well when compen-
sating for differences in translation. STN-SL1 benefits from
sharing parameters on the rotation task, but in the presence of
large scale variations, it is better for the localization and the
classification network to be independent of each other.

B. Street View House Numbers

1) Dataset: In order to learn how the different STN archi-
tectures perform on a more challenging dataset, we evaluate
them on the Street View House Numbers (SVHN) [8]. The
photographed house numbers contain 1-5 digits each, and we
preprocess them by taking 64x64 pixel crops around each
sequence, as done in [1]. This allows us to compare our results
with [1], who achieved good results on SVHN with an iterative
ST that transforms feature maps. Since the dataset benefits
from the use of a deeper network, it also allows us to test
how the architectures’ performance varies with their depth.

2) Comparison with [1]: We use the same baseline CNN
as [1]. The classification network comprises 8 convolutional
layers followed by 3 fully connected layers. Since the images
can contain up to 5 digits, the output consists of 5 parallel
softmax layers. Each predicts the label of a single digit.

As variations of the baseline CNN, [1] considers STNs
with two different localization networks: One with a large

6

Fig. 6. The rotation angle predicted by the ST module (y-axis) as a function
of the rotation angle applied to the input image (x-axis). The black points
constitute a heatmap of 100 000 datapoints generated by random rotations of
the MNIST test set, and reports the rotations done by a single ST. The red
line corresponds to the best fit with orthogonal regression. STN-C1 cannot
compensate for the rotations in a useful way, since it transforms CNN feature
maps, while STN-SL1 directly counteracts the rotations by rotating the input.

localization network in the beginning, here denoted by STN-
C0-large, and one with a small localization network before
each of the first 4 convolutional layers, here denoted by STN-
C0123. The large localization network uses two convolutional
layers and two fully connected layers, while each of STN-
C0123’s localization networks uses two fully connected layers.
As a further variation, we consider the network STN-SL0123,
which is similar to STN-C0123 but always transforms the
input, as described in Section III-A. STN-C0123 and STN-
SL0123 are illustrated in Figure 4.

The average classification errors of these networks are
shown in Table III. STN-SL0123 achieves the lowest error,
which shows that it is better to transform the input than to
transform CNN feature maps, also on the SVHN dataset.

TABLE III
CLASSIFICATION ERRORS ON THE SVHN DATASET, AVERAGED OVER 3

RUNS, COMPARING OUR IMPLEMENTATION WITH [1]

Network Error [1] Error (ours)
CNN 4.0% 3.88%

STN-C0-large 3.7% 3.69%
STN-C0123 3.6% 3.61%

STN-SL0123 - 3.49%

3) Comparing STs at different depths: If an ST is placed
deeper into the network, it can use deeper features to pre-
dict transformation parameters, but the problem with spatial
transformations of CNN feature maps may get worse. STN-
DLX and STN-SLX would not suffer from the latter, but might
benefit from the former. We test this by placing STs at depths
0, 3, 6, or 8 in our base classification network, using the small
localization network from the previous section.

The results are shown in Table IV. STN-C3, STN-DL3, and
STN-SL3 perform better than STN-C0, indicating that STN-
C0’s inability to find the correct transformation parameters
causes more problems than STN-C3 causes by transforming
the feature map at depth 3. However, at depths 6 and 8, STN-
CX becomes worse than not using any ST at all (see Table III)

and STN-DLX performs worse than at depth 3. This stands
in sharp contrast to STN-SLX, where the classification error
keeps decreasing, reaching 3.26% for STN-SL8.

TABLE IV
MEAN SVHN CLASSIFICATION ERROR OF STN-CX, STN-DLX AND

STN-SLX AT 4 DIFFERENT DEPTHS, ACROSS 3 RUNS.

Depth STN-CX STN-DLX STN-SLX
X = 0 3.81% - -
X = 3 3.70% 3.48% 3.54%
X = 6 3.91% 3.75% 3.29%
X = 8 4.00%* 3.76% 3.26%

∗ One run diverged to > 99% classification error. The error is the average of three
runs where that did not happen.

This shows that localization networks benefit from using
deep representations, if they use filters from the classifica-
tion network, while still transforming the input. It is not
achievable by spatially transforming CNN feature maps, since
transforming deep feature maps causes too much distortion.
Just using deeper localization networks does not always work,
either, as these results show that they fail to find appropriate
transformation parameters at greater depths.

Note that the larger localization networks of STN-DLX and
STN-SLX take more time to train. STN-SL0123 takes 1.8
times as long to train as STN-C0123, while STN-SL8 takes
1.6 times as long as STN-C0123.

4) Comparing iterative STNs: Given that the use of deeper
localization networks helps performance, and that [26] showed
that iterative methods improve performance, a natural ques-
tion is whether using iterative methods is a replacement for
using deeper features or if iterations and deeper features are
complimentary. To answer this, we train STN-C0, STN-DL3,
STN-SL3, STN-SL6, and STN-SL8 with two iterations.

The second iteration does not change STN-C0’s perfor-
mance (mean error 3.80%). However, STN-SL3 improves
significantly (mean error 3.38%), and STN-SL6 improves
slightly (mean error 3.26%). STN-SL8 and STN-DL3 both
perform worse with a second iteration. If a third iteration is
added to STN-SL3 and STN-SL6 during testing, the errors
further decrease to 3.33% and 3.18%, respectively.

This shows that multiple iterations do not improve perfor-
mance when the localization network is too weak (as with
STN-C0). Thus, multiple iterations is not a replacement for
using deeper features, but can confer additional advantages.
Here, parameter-shared networks are the only ones that benefit.

C. Plankton

1) Dataset: Finally, we test the STN architectures on Plank-
tonSet [9]. This dataset is challenging, because it contains 121
classes and only about 30 000 training samples.

2) Networks: We use network architectures inspired by
[29]. As base classification network, we use a CNN consisting
of 10 convolutional layers with maxpooling after layers 2, 4,
7, and 10; followed by two fully connected layers before the
final softmax output. As base localization network, two fully
connected layers are used. All hyperparameters were chosen
through experiments on the validation set.

7

Fig. 7. A rotated plankton transformed by various networks. The top row
contains the input images, the middle row contains the top images transformed
by STN-C2, STN-DL2, and STN-SL2, and the bottom row contains the top
images transformed by STN-C7, STN-DL7, and STN-SL7. In the middle row,
all networks find a canonical angle. However, in the bottom row, only STN-
SL7 finds a canonical angle, while STN-C7 suffer from not being able to
transform the input directly, and STN-DL7’s localization network is too deep.

3) Results: Table V displays the results, evaluated on the
test set. The best architectures are STN-SL2 and STN-SL4.
As on SVHN and MNIST, networks that transform the input
are better than STN-CX. Also similar to the results on SVHN
is that STN-DLX is significantly better for low values of X.

TABLE V
MEAN PLANKTONSET CLASSIFICATION ERROR OF STN-CX, STN-DLX,

AND STN-SLX AT 5 DIFFERENT DEPTHS, ACROSS 4 RUNS.

Depth STN-CX STN-DLX STN-SLX
X = 0 22.1% - -
X = 2 22.3% 21.6% 21.5%
X = 4 22.5% 21.7% 21.5%
X = 7 22.9% 22.7% 21.6%
X = 10 22.7% 22.7% 21.9%

Increasing the depth of STN-SLX does not decrease per-
formance as much as it does for STN-DLX, but neither does
it increase performance, as it does on SVHN. This is likely
caused by differences between the datasets. Identifying the
interesting objects in SVHN is not a trivial task, because
the digits must be distinguished from the background. Since
the classification network must be able to identify the digits,
the localization network can be expected to benefit from
sharing more layers. However, on PlanktonSet, the interesting
objects are easily identifiable against the black background,
which makes fewer layers sufficient. In addition, the easy
separability of planktons and background allows for large-
scale data augmentation on PlanktonSet, which makes the STs
task both easier and less important for classification accuracy.

4) Rotational invariance: Figure 7 shows how the archi-
tectures transform a plankton rotated in different ways. In
contrast to STN-C1 on MNIST (see Figure 5 and Figure 6),
STN-C2 has learned to transform the example image to a
canonical angle. Despite this, STN-C0, STN-DL2 and STN-
SL2 perform substantially better in Table V. This shows
that STN-CX’s problem is not that it is difficult to find
correct transformation parameters; it is the problem that even
a “correct” transformation does not yield proper invariance.
In this case, it is nonetheless beneficial for STN-C2 to rotate
the plankton to a canonical angle, while transformations made

by the deeper STN-C7 introduce enough distortions that it is
better to do nothing.

5) Comparing iterative STNs: Training STN-C0 with a
second iteration improves it somewhat, yielding mean error
21.8%, but training it with a third iteration decreases perfor-
mance. STN-SL2, STN-SL7, and STN-DL2 are all slightly
improved by a second iteration (mean error 21.4%, 21.5%,
and 21.5%), while the performance of STN-SL4 and STN-
DL4 decreases.

We, again, observe that multiple iterations is not a substitute
for deeper features when predicting transformations, as the
deeper networks remain better than STN-C0.

We also observed that the training error decreases much
more than the test error, when a second iteration is added.
For example, STN-SL2, STN-DL4, and STN-SL7 all reduce
their training error with 1.7% or more. This suggests that the
second iterations make the STs substantially more effective,
but that this mostly leads to overfitting.

V. SUMMARY AND CONCLUSIONS

We have presented a theoretical argument why STNs cannot
transform CNN feature maps in a way that enables invariant
recognition for other image transformations than translations.
Investigating the practical implications of this result, we have
shown that this inability is clearly visible in experiments and
negatively impacts classification performance. In particular,
while STs transforming feature maps perform adequately when
compensating for differences in translation, STs transforming
the input perform better when compensating for differences
in rotation and scale. Our results also have implications for
other approaches that spatially transform CNN feature maps,
pooling regions, or filters. We do not argue that such methods
cannot be beneficial, but we do show that these approaches
have limited ability to achieve invariance.

Furthermore, we have shown that STs benefit from using
deep representations when predicting transformation param-
eters, but that localization networks become harder to train
as they grow deeper. In order to use representations from
the classification network, while still transforming the input,
we have investigated the benefits of sharing parameters be-
tween the localization and the classification network. Our
experiments show that parameter-shared localization networks
remain stable better as they grow deeper, which has significant
benefits on complex datasets. Finally, we find that iterative
image alignment is not a substitute for using deeper features,
but that it can serve a complimentary role.

REFERENCES

[1] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu,
“Spatial transformer networks,” in Advances in Neural Information
Processing Systems (NIPS), 2015, pp. 2017–2025.

[2] C. B. Choy, J. Gwak, S. Savarese, and M. Chandraker, “Universal
correspondence network,” in Advances in Neural Information Processing
Systems (NIPS), 2016, pp. 2414–2422.

[3] J. Li, Y. Chen, L. Cai, I. Davidson, and S. Ji, “Dense transformer
networks,” arXiv preprint arXiv:1705.08881, 2017.

[4] S. Kim, S. Lin, S. R. JEON, D. Min, and K. Sohn, “Recurrent
transformer networks for semantic correspondence,” in Advances in
Neural Information Processing Systems (NIPS), 2018, pp. 6126–6136.

8

[5] Z. Zheng, L. Zheng, and Y. Yang, “Pedestrian alignment network for
large-scale person re-identification,” IEEE Transactions on Circuits and
Systems for Video Technology, 2018.

[6] T. S. Cohen, M. Geiger, and M. Weiler, “A general theory of equivariant
CNNs on homogeneous spaces,” in Advances in Neural Information
Processing Systems (NIPS), 2019, pp. 9142–9153.

[7] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.
[Online]. Available: http://yann.lecun.com/exdb/mnist/

[8] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,” in
NIPS Workshop on Deep Learning and Unsupervised Feature Learning
2011, 2011.

[9] R. K. Cowen, S. Sponaugle, K. Robinson, J. Luo, O. S. University,
and H. M. S. Center, “PlanktonSet 1.0: Plankton imagery data
collected from F.G. Walton Smith in Straits of Florida from
2014-06-03 to 2014-06-06 and used in the 2015 National Data
Science Bowl (NCEI accession 0127422).” [Online]. Available:
https://accession.nodc.noaa.gov/0127422

[10] B. D. Lukas and T. Kanade, “An iterative image registration technique
with an application to stereo vision,” in Image Understanding Workshop,
1981.

[11] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani, “Hierarchical
model-based motion estimation,” in European Conference on Computer
Vision (ECCV). Springer, 1992, pp. 237–252.

[12] T. Lindeberg and J. Gårding, “Shape-adapted smoothing in estimation
of 3-D depth cues from affine distortions of local 2-D structure,” Image
and Vision Computing, vol. 15, pp. 415–434, 1997.

[13] A. Baumberg, “Reliable feature matching across widely separated
views,” in Proc. Computer Vision and Pattern Recognition (CVPR),
Hilton Head, SC, 2000, pp. I:1774–1781.

[14] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” International Journal of Computer Vision, vol. 60, no. 1, pp.
63–86, 2004.

[15] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. van Gool, “A comparison of affine
region detectors,” International Journal of Computer Vision, vol. 65,
no. 1–2, pp. 43–72, 2005.

[16] L. Sifre and S. Mallat, “Rotation, scaling and deformation invariant
scattering for texture discrimination,” in Proc. Conference on Computer
Vision and Pattern Recognition (CVPR), 2013, pp. 1233–1240.

[17] T. Cohen and M. Welling, “Group equivariant convolutional networks,”
in International Conference on Machine Learning (ICML), 2016, pp.
2990–2999.

[18] R. Kondor and S. Trivedi, “On the generalization of equivariance and
convolution in neural networks to the action of compact groups,” in
International Conference on Machine Learning (ICML), 2018, pp. 2752–
2760.

[19] T. Lindeberg, “Provably scale-covariant continuous hierarchical net-
works based on scale-normalized differential expressions coupled in
cascade,” Journal of Mathematical Imaging and Vision, vol. 62, no. 1,
pp. 120–148, 2020.

[20] Á. Arcos-Garcı́a, J. A. Alvarez-Garcia, and L. M. Soria-Morillo, “Deep
neural network for traffic sign recognition systems: An analysis of spatial
transformers and stochastic optimisation methods,” Neural Networks,
vol. 99, pp. 158–165, 2018.

[21] T. V. Souza and C. Zanchettin, “Improving deep image clustering with
spatial transformer layers,” in International Conference on Artificial
Neural Networks (ICANN). Springer, 2019, pp. 641–654.

[22] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep
convolutional networks for visual recognition,” in European Conference
on Computer Vision (ECCV). Springer, 2014, pp. 346–361.

[23] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated
convolutions,” in Int. Conf. on Learning Representations (ICLR), 2016.

[24] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei, “Deformable
convolutional networks,” in Proc. International Conference on Computer
Vision (ICCV), 2017, pp. 764–773.

[25] B.-I. Cı̂rstea and L. Likforman-Sulem, “Tied spatial transformer net-
works for digit recognition,” in 2016 15th International Conference on
Frontiers in Handwriting Recognition (ICFHR). IEEE, 2016, pp. 524–
529.

[26] C.-H. Lin and S. Lucey, “Inverse compositional spatial transformer
networks,” in Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 2568–2576.

[27] K. Lenc and A. Vedaldi, “Understanding image representations by
measuring their equivariance and equivalence,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 991–999.

[28] Y. Jansson, M. Maydanskiy, L. Finnveden, and T. Lindeberg, “Inability
of spatial transformations of CNN feature maps to support invariant
recognition,” arXiv preprint:2004.14716, 2020.

[29] J. Burms, P. Buteneers, J. Degrave, S. Dieleman, I. Korshunova,
A. van den Oord, and L. Pigou. Classifying plankton with deep
neural networks. [Online]. Available: https://benanne.github.io/2015/03/
17/plankton.html

APPENDIX

A.1 DETAILS OF MNIST EXPERIMENTS

Perturbed variants

The rotated variant (R) is generated by random rotations of
the MNIST training set, uniformly chosen between -90◦ and
90◦. Bilinear interpolation is used for resampling.

The translated variant (T) is generated by placing a digit
from the MNIST training set at a random location in a 60x60
image. In addition, noise is added by choosing 6 random
images from the MNIST training set, choosing a random 6x6
square in each of them, and adding those squares to random
locations in the 60x60 image.

The scaled variant (S) is generated by scaling images from
the MNIST training set with a random scaling factor between
0.5 and 4, uniformly sampled on a logarithmic scale. The
resulting image is placed at the center of a 112x112 image. In
addition, noise is added by choosing 6 random images from
the MNIST training set, choosing a random 6x6 square in
each of them, scaling the square a random amount between
0.5 and 4 (again uniformly sampled on a logarithmic scale),
and adding those squares to random locations in the 112x112
image. Bilinear interpolation is used for resampling.

All variants are normalized to mean 0 and standard deviation
1 after perturbation.

Architectures

We use the same classification network for (R), (T), and
(S), but vary the localization network. In addition, we vary
the number of filters and neurons in the classification and
localization networks, to keep the number of learnable param-
eters approximately constant. The network architectures and
the number of learnable parameters are presented in Table VI.
C(N) denotes a convolutional layer with N filters, and F(N)
denotes a fully connected layer with N neurons. Note that
the first layers in STN-SL1’s localization and classification
networks shares parameters, so STN-SL1 uses somewhat fewer
parameters than STN-DL1.

The final layer in the classification-architecture (not in-
cluded in the table) is a 10-neuron softmax output layer, while
the final layer in the localization network is a 6-neuron output
describing an affine transformation. All layers use ReLU as
activation function. The classification network’s first convolu-
tional layer has filter-size 9x9, and the second has filter-size
7x7. Convolutional layers in localization networks use filter-
size 5x5. Each convolutional layer is followed by a 2x2 max-
pooling with stride 2, except for the last convolutional layer in

9

http://yann.lecun.com/exdb/mnist/
https://accession.nodc.noaa.gov/0127422
https://benanne.github.io/2015/03/17/plankton.html
https://benanne.github.io/2015/03/17/plankton.html

TABLE VI
THE TYPES OF LAYERS AND NUMBER OF PARAMETERS IN EACH OF THE NETWORKS USED ON MNIST. C(N) DENOTES A CONVOLUTIONAL LAYER WITH

N FILTERS, AND F(N) DENOTES A FULLY CONNECTED LAYER WITH N NEURONS.

Dataset Rotation Translation Scale
Network Classification Localization Params Classification Localization Params Classification Localization Params

CNN C(32),C(32) - 54122 C(21),C(32) - 66692 C(23),C(21) - 136674
STN-C0 C(16),C(32) F(32),F(16)x2 53744 C(16),C(32) C(20)x2,F(10) 67138 C(16),C(16) C(16)x2,F(16) 136448
STN-C1 C(16),C(32) F(16)x3 53984 C(16),C(32) C(20)x2,F(20) 67088 C(16),C(16) C(16)x2,F(16) 137072

STN-DL1 C(16),C(32) C(16),F(16)x3 55296 C(16),C(32) C(16),C(20)x2,F(20) 66800 C(16),C(16) C(16)x3,F(16) 138384
STN-SL1 C(16),C(32) C(16),F(16)x3 53984 C(16),C(32) C(16),C(20)x2,F(20) 65488 C(16),C(16) C(16)x3,F(16) 137072

the localization network of STN-C1, STN-DL1, and STN-SL1
on (T).

For STN-C1, the ST is placed after the first convolution’s
max-pooling layer, while STN-DL1 and STN-SL1 includes a
copy of the max-pooling layer in their localization networks.
In order to keep the number of parameters similar across all
networks, the 112x112 image is downsampled by 2x before it
is processed by STN-C0’s localization network, on (S).

The ST on (T) produces an image with half the pixel width
of its input, as is done in [1]. This leads to STN-C1 having
slightly more parameters than STN-DL1 and STN-SL1, as the
image becomes downsampled further into the classification
network.

On all variants, the ST uses bilinear interpolation. When the
ST samples values outside the image, the value of the closest
pixel is used.

Training process

The bias of the localization network’s final layer is initial-
ized to predict the identity transformation, while the weights
are initialized to 0. All other learnable parameters are initial-
ized uniformly, with the default bounds in Pytorch 1.3.0.

During training, we use a batch size of 256. All networks
are trained for 50 000 iterations with the initial learning
rate, before lowering it 10x and training for another 20 000
iterations. We use initial learning rate 0.02 on (R) and (S),
and initial learning rate 0.01 on (T). During training, we
continuously generate new, random transformations of the
60 000 MNIST training images. During testing, we randomly
generate 10 different transformations of each of the 10 000
MNIST test images, and report the percentage error across all
of them.

A.2 QUANTIFYING ST PERFORMANCE

To measure the ST’s ability to align perturbed images to
a common pose, we need a measure of how consistent the
pose of a set of perturbed digits are after alignment. We
measure this using the standard deviation of the digits’ final
pose (i.e. final orientation, scale or translation) for each label,
using some measure of the initial perturbation, θ and the
ST’s compensation, θ′. The compensation is extracted from
the affine transformation matrix a11 a12 a13

a21 a22 a23
0 0 1

 (7)

output by the localization network. The standard deviation is
measured for each label separately, since each class might
have a unique canonical pose. Since the translation data is
2-dimensional, we use the standard distance deviation on (T).
All reported results are the average standard deviation, across
all 10 class labels and across 10 networks trained with different
random seeds.

Estimating rotations from affine transformation matrix

First, we describe a general method of estimating rotations
from affine transformation matrices. Given a predicted affine
transformation matrix (excluding translations)

A =

(
a11 a12
a21 a22

)
(8)

we want to find the combined rotation and scaling transfor-
mation

R =

(
S cosϕ −S sinϕ
S sinϕ S cosϕ

)
(9)

that minimises the Frobenius norm of the difference between
the model and the data

min
S,ϕ
‖A−R‖F . (10)

Introducing the variables u = S cosϕ and v = S sinϕ, this
condition can be written

min
u,v

(a11−u)2 + (a12 + v)2 + (a21− v)2 + (a22−u)2. (11)

Differentiating with respect to u and v and solving the
resulting equations gives

S =
√
u2 + v2

=
1

2

√
a211 + a212 + a221 + a222 + 2(a11a22 − a12a21),

(12)

tanϕ =
v

u
=
a21 − a12
a11 + a22

. (13)

Thus, we can estimate the amount of rotation from an affine
transformation matrix in a least-squares sense from

ϕ = arctan

(
a21 − a12
a11 + a22

)
+ nπ. (14)

10

Measuring rotations on (R)

On (R), the perturbation θ is the angle with which the digit
is initially rotated. To estimate the rotation θ′ made by the
ST, we apply the method described in the previous section.
Choosing the sign of θ and θ′ so that a positive rotation is in
the same direction, the final pose (rotation) is defined to be
θ + θ′.

Note that, in Figure 6, the x-axis is θ and the y-axis
−θ′. These graphs were generated from the median models
(specifically, the 5th best) among the 10 trained models, as
measured by the standard deviation of the final pose.

Measuring translation on (T)

On (T), the perturbation θ = (x, y) is the distance in
pixels between the middle of the 28x28 MNIST image and the
middle of the 60x60 image that it is inserted in, horizontally
and vertically. The ST’s horizontal and vertical translation is
extracted as θ′ = (x′, y′) = m(a13, a23), where the sign of
m is chosen so that θ and θ′ define a positive translation
in the same direction. In order to have θ′ measure distance
in pixels (in the original image), we choose |m| = 29.5 for
STN-C0, STN-DL1, and STN-SL1, and |m| = 25 for STN-C1
(see next paragraph for a more detailed explanation). Since θ
and θ′ are 2-dimensional, we measure the standard distance
deviation of the final pose θ+ θ′, as follows: For a dataset of
n images of a particular label, with perturbations (θi)1≤i≤n
and ST transformations (θ′i)1≤i≤n, the mean translation is
θ̄ = (x̄, ȳ) = Σn

i=1(θi + θ′i). Then, the standard distance
deviation of the final pose is√

Σn
i=1((xi + x′i − x̄)2 + (yi + y′i − ȳ)2)

As mentioned, the matrix’s translational elements are mul-
tiplied by 29.5 for networks that translate the input image,
and 25 for STN-C1. This is because we want to measure
the distance in units of pixels. Pytorch’s spatial transformer
module interprets a translation parameter of 1 as a translation
of half the image-width. Since the image is 60x60 pixels wide,
and pixels on the edge are assumed to be at the very end of the
image,5 the image-width is 60 − 1 = 59. Thus, a translation
parameter of 1 corresponds to 29.5 pixels, for networks that
transform the input. However, STN-C1 transforms an image
that has been processed by a 9x9 convolutional layer and a
max pooling layer. Since the 9x9 convolution is done without
padding, it shrinks the image to be 52x52, after which the
max pooling shrinks it to be 26x26. Thus, the image-width
is 26− 1 = 25, and a translation parameter of 1 corresponds
to a translation of 12.5 feature-map neurons. However, two
adjacent neurons after max pooling are on average computed
from regions that are twice as distant from each other as
two adjacent pixels in the original image. Thus, a translation
parameter of 1 applied after the max pooling corresponds to
a translation of 2 · 12.5 = 25 pixels in the input image.

5This description applies to the behavior in Pytorch 1.3.0 and earlier.
From version 1.4.0, the default behavior is changed such that edge-pixels
are considered to be half a pixel away from the end of the image.

This adjustment needs to be applied whenever STN-C1’s
transformations are compared with transformations of the in-
put image. In particular, in Figure 5, the translational elements
of STN-C1’s predicted matrix was multiplied by 25

29.5 before
transforming the input image.

Measuring scaling on (S)

On (S), the perturbation θ is measured as the log2 of the
scaling factor squared. The ST’s transformation is measured
as θ′ = log2(|A|) = log2(a11a22−a12a21). Choosing the sign
of θ and θ′ so that a positive value scales up the image, for
both, the final pose (scale) is measured as θ + θ′.

Note on the predicted transformation matrix

When using spatial transformer networks, the transforma-
tion predicted by the localization network is used to transform
the points from which the image is resampled. This corre-
sponds to the inverse transformation of the image itself.

For the methods used to extract the rotation and scaling, this
changes the sign of θ′, which must be accounted for before
summing θ and θ′. For the translation, it does not only change
the sign, but it also allows us to directly extract the translation
as m(a13, a23). For the inverse transformation matrix, that
transforms the image directly, a11 a12 a13

a21 a22 a23
0 0 1

−1 =

 b11 b12 b13
b21 b22 b23
0 0 1

 (15)

the correct translation parameters would be

θ′ = −m
(
b11 b12
b21 b22

)−1(
b13
b23

)
. (16)

This is because (b13, b23) corresponds to a translation after the
purely linear transformation has been applied, which means
that it may act on a different scale and in a different direction
than the original perturbation θ. This is accounted for by first
applying the inverse transformation in (16). In addition, the
same factor m must be applied to convert to units of pixels,
but with the reverse sign.

A.3 DETAILS OF SVHN EXPERIMENTS

The SVHN data set contains 235 754 training images and
13 068 test images, where each image contains a digit se-
quence obtained from house numbers in natural scene images.
We follow [1] in how we generate the dataset, using 64x64
crops around each digit sequence. Each color channel is
normalized to mean 0 and standard deviation 1.

Architectures

The CNN, STN-C0-large, and STN-C0123 architectures
exactly correspond to the CNN, STN-Single, and STN-Multi
architectures, respectively, in [1]. Using C(N) to denote a
convolutional layer with N filters of size 5x5, MP to denote
2x2 max pooling layer with stride 2, and F(N) to denote a fully
connected layer with N neurons, the classification network
is C(48)-MP- C(64)-C(128)-MP- C(160)-C(192)-MP- C(192)-
C(192)-MP- C(192)-F(3072)-F(3072)-F(3072), followed by 5

11

parallel F(11) softmax output layers. STN-C0-large uses a
localization network with architecture C(32)-MP-C(32)-F(32)-
F(32). STN-C0123 and all architectures in Section IV-B3
use localization networks with architecture F(32)-F(32). Each
layer in the classification network except for the first uses
dropout with probability 0.5. Localization networks do not use
dropout, except for the layers that STN-DLX and STN-SLX
copy from the classification network. All layers use ReLU as
activation function.

The ST uses bilinear interpolation. When the ST samples
values from outside the image, (0, 0, 0) is used. When inserting
STs at depth X, they are placed after the first X convolutional
layers and after any max pooling or dropout layers that follow
the last of those convolutional layers (i.e., we always place
the ST right before the next convolutional or fully connected
layer).

Initialization
The last layer of the localization network is initialized to

predict the identity transformation. We do this by setting both
weights and biases to zero, but when transforming images, we
calculate the affine transformation matrix from the 6 output
parameters o1, ..., o6 aso1 + 1 o2 o3

o4 o5 + 1 o6
0 0 1

 . (17)

By letting o1, ..., o6 = 0, ..., 0 represent the identity transform,
L2-regularization pushes the localization network towards the
identity transformation, which improves classification perfor-
mance.

All other learnable parameters are initialized uniformly, with
the default bounds in Pytorch 1.3.0.

Training process
Our training process differs somewhat from [1]. We train

all networks for 120 000 iterations with learning rate 0.03,
120 000 iterations with learning rate 0.003, and finally 60 000
iterations with learning rate 0.0003. We use batch size 128.
The localization learning rate is always 0.01 times the base
learning rate, except for STN-DLX, which significantly benefit
from a higher learning rate multiplier. STN-DL3 uses multi-
plier 0.3, while STN-DL6 and STN-DL8 uses 0.1. In SL-STN,
the shared layers use the classification network’s learning rate.
We use L2-regularization 0.0002 to regularize all layers.

When training the networks with two iterations, we reduce
the localization networks’ learning rate by factors of approxi-
mately 3 until further reductions do not increase performance.
On STN-C0, the localization network’s learning rate is 0.001
of the classification network’s; on STN-SL3 it is 0.01; on
STN-SL6 it is 0.003. On STN-SL8 and STN-DL3, the best
results (mean error 3.39% and 3.57%) are achieved when the
localization network’s learning rate multipliers are 0.0003 and
0.03, respectively, but this is worse than what the networks
achieve with a single iteration.

All reported results are the mean classification error across
3 networks trained with different random seeds.

A.4 DETAILS OF PLANKTONSET EXPERIMENTS

PlanktonSet was originally used in a competition on the
website Kaggle.6 In the competition, 30% of the test set was
used for public leaderboards, and 70% was used for final
evaluation. With the same split, we use the first 30% of the test
set as a validation set, while all reported results are evaluated
on the final 70%. All such results are mean classification error
across 4 models trained with different random seeds.

Architectures

The classification network architecture and the training
process are inspired by those used in [29], but they are not
identical. For example, we do not use ensemble learning, since
this would not give any additional insight into the questions
we investigate in this study.

Using C(N) to denote a convolutional layer with N
filters of size 3x3, MP to denote a 3x3 max pooling
layer with stride 2, and F(N) to denote a fully con-
nected layer with N neurons, the classification network
is C(32)-C(32)-MP-C(64)-C(64)-MP-C(128)-C(128)-C(128)-
MP-C(256)-C(256)-C(256)-MP-F(512)-F(512) followed by a
F(121) softmax output layer. Dropout layers with dropout
probability 0.5 are placed before each of the final 3 fully
connected layers. The base localization network is F(64)-
F(64). All layers use leaky ReLUs with negative slope 1

3 as
activation functions, except for the base localization network,
which uses non-leaky ReLUs.

The ST uses bilinear interpolation. When the ST samples
values from outside the image, the value of the closest pixel
is used. When inserting STs at depth X, they are placed after
any max-pooling layer at depth X.

Training process

The networks are initialized as on SVHN (Section A.3).
All networks are trained for 215 000 iterations using a batch
size of 64. The initial learning rate of 0.003 is divided by
10 after iteration 180 000, and divided by 10 again after
iteration 205 000. All networks use L2-regularization 0.0002,
and Nesterov momentum 0.8.

During training, each image is rescaled so that its longest
side is 192 pixels, and placed in a 192x192 image without
changing its aspect ratio. We apply data augmentation with
rotations ±180◦, translation ±20 pixels, shear ±20◦, and scale
factor [1

1.3 , 1.3]. Each amount is sampled uniformly, except for
scaling, which is sampled uniformly from a logarithmic scale.
Finally, the image has a 50% chance of being horizontally
flipped, before it is rescaled to 95x95 pixels. The images were
not normalized.

For all STN architectures, we searched for localization
learning rate multipliers between 0.01 and 1, with factors
of approximately 3 between tested multipliers. For each ar-
chitecture, we chose the learning rate multiplier with the
smallest validation error, and evaluated the models trained
with that multiplier on the test set (i.e., we did not retrain

6The competition website is at https://kaggle.com/c/datasciencebowl

12

https://kaggle.com/c/datasciencebowl

the models). STN-C0, STN-C2, and STN-C4 were all trained
with multiplier 0.3, while STN-C7 was trained with 0.03 and
STN-C10 used 0.1. STN-SL2 and STN-SL4 were trained with
0.1, while STN-SL7 and STN-SL10 were trained with 0.03.
STN-DL2 was trained with 0.3, while STN-DL4, STN-DL7,
and STN-DL10 used 1, i.e. used the same learning rate in the
localization network and classification network.

We used a similar process when choosing multipliers for
the iterative STN architectures. For each architecture, we
reduced the localization learning rate multiplier by factors
of approximately 3 until further reductions did not decrease
validation error. The models that were trained with the best
multiplier were then evaluated on the test-set. This was 0.3 for
STN-DL2, 0.01 for STN-SL2, and 0.003 for STN-SL7. STN-
DL4 and STN-SL4 performed best when trained with 0.1 and
0.03, respectively, but the mean test errors (21.8% and 21.6%)
were higher than when trained with a single iteration. When
training STN-C0 with two iterations, the best multiplier was
0.1; when training it with three iterations, the best multiplier
was 0.03, although the mean test error (22.1%) was higher
than for 2 iterations.

13

	I Introduction
	I-A Related work

	II Theoretical analysis of invariance properties
	II-A How STNs can enable invariance
	II-B The problems of transforming CNN feature maps
	II-B1 Using Tg=Th-1 is a necessary condition to align CNN feature maps with an ST
	II-B2 Transforming an image typically implies a shift in the channel dimension of the feature map
	II-B3 Receptive field shapes of neural networks are not invariant
	II-B4 Conclusion

	III STN architectures
	III-1 ST transforming the input
	III-2 ST transforming a feature map
	III-3 Deeper localization
	III-4 Shared localization

	III-A Iterative methods

	IV Experiments
	IV-A MNIST
	IV-A1 Datasets
	IV-A2 Networks
	IV-A3 Results
	IV-A4 Concluding remarks

	IV-B Street View House Numbers
	IV-B1 Dataset
	IV-B2 Comparison with [1]
	IV-B3 Comparing STs at different depths
	IV-B4 Comparing iterative STNs

	IV-C Plankton
	IV-C1 Dataset
	IV-C2 Networks
	IV-C3 Results
	IV-C4 Rotational invariance
	IV-C5 Comparing iterative STNs

	V Summary and conclusions
	References
	Appendix

