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Abstract. A large number of deep learning architectures use spatial
transformations of CNN feature maps or filters to better deal with vari-
ability in object appearance caused by natural image transformations. In
this paper, we prove that spatial transformations of CNN feature maps
cannot align the feature maps of a transformed image to match those of
its original, for general affine transformations, unless the extracted fea-
tures are themselves invariant. Our proof is based on elementary analy-
sis for both the single- and multi-layer network case. The results imply
that methods based on spatial transformations of CNN feature maps
or filters cannot replace image alignment of the input and cannot en-
able invariant recognition for general affine transformations, specifically
not for scaling transformations or shear transformations. For rotations
and reflections, spatially transforming feature maps or filters can enable
invariance but only for networks with learnt or hardcoded rotation- or
reflection-invariant features.

1 Introduction

Convolutional neural networks (CNNs) that are invariant to certain groups of
image transformations have fewer parameters, can learn from smaller datasets
and enable generalization outside the training distribution. A number of current
methods use spatial transformations of CNN feature maps or filters to enhance
the ability of CNNs to handle different types of image transformations [1–8]. For
example, spatial transformer networks (STNs) [8] were designed to enable CNNs
to learn invariance to image transformations by transforming CNN feature maps
as well as input images. Clearly, if a network learns to align transformed input
images to a common pose, this can enable invariant recognition. The original
work [8], however, simultaneously claims the ability of STNs to learn invariance
from data and that the spatial transformer layers (STs) can be inserted into the
network “anywhere” (i.e. at any depth). There is no mention of whether the key
motivation for the framework - the ability to learn invariance - is still supported
when transforming feature maps deeper in the network.

This seems to have left some confusion about whether spatially transforming
CNN feature maps can support invariant recognition. A number of subsequent
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works advocate image alignment by transforming feature maps [1–4], includ-
ing e.g. pose alignment of pedestrians [4] and use of a spatial transformer to
mimic the kind of patch normalization done in SIFT [1]. Other commonly used
methods that are based on transforming CNN feature maps or filters are spatial
pyramid pooling [5], dilated convolutions [6] and deformable convolutions [7].
Such methods are often motivated by the need for CNNs to better deal with
variability in object pose. There is, however, no discussion about the difference
between pose normalizing the input image and spatially transforming feature
maps, or the implications this choice has for the ability to achieve e.g. affine or
scale invariance [5–8].

Here, we elucidate under what conditions it is possible to achieve invari-
ance to affine image transformations by means of purely spatial transformations
of CNN feature maps. These conditions turn out to be very restrictive, imply-
ing network filters or features that are already invariant to the relevant image
transformations. This implies that spatial transformations of CNN feature maps
cannot, in general, align the feature maps of a transformed image with those
of an original and thus not enable affine-invariant recognition. The exception is
translations, where the translation covariance of CNNs does imply that transla-
tions and feature extraction do commute.

We do not claim much mathematical novelty of these facts, which are in some
sense intuitive, and, in the single-layer case, have some parallels with the work
in [9] and [10]. Our contribution is to present an alternative proof based on el-
ementary analysis for the special case of purely spatial transformations of CNN
feature maps (as opposed to more general transformations that might mix infor-
mation between the different feature channels). Since we only consider spatial
transformations, we can give a more direct proof. We also provide an analysis
of the general multi-layer case, without relying on any covariance assumptions
about the individual layers.

Our results have straightforward implications for STNs and other methods
that perform spatial transformations of CNN feature maps or filters. An exper-
imental evaluation of the practical consequences of our result in the context of
spatial transformer networks, together with a short intuitive version of the proof
presented here, has been presented in [11].

2 Preliminaries

2.1 Images and image transformations

We work with a continuous model of the image space. We consider both an
image f and a convolutional filter λ to be a map from RN to R. We use
notation V for the function space to which the images f belong, and V k for the
space of maps that have each of their k components in V . We are somewhat lax
about specifically what class of functions λ and f should belong to. We need
that the convolution operator

Λλf(x) := (f ? λ)(x) =

∫
RN

f(y)λ(x− y)dy =

∫
RN

λ(y)f(x− y)dy (1)
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is defined and has output that lies in the same space, and that applying a Lipshitz
continuous point-wise non-linearity σ to an image also produces an image in the
same space. This will hold for example if λ are integrable and compactly sup-
ported (we’ll write λ ∈ L1

comp) and the images f are locally integrable (f ∈ L1
loc).

Hence, when necessary we will assume V to be the space of locally integrable
functions (with the corresponding L1

loc topology). To avoid possible confusion,
we denote the zero function by 0 and the point 0 ∈ RN by 0.

2.2 Continuous model of a CNN

Let Λ : V → VMk denote a continuous CNN with k layers and Mk feature
channels in the final layer and let θ(i) represent the transformation between
layers i− 1 and i such that

(Λf)c(x) = (θ(k)θ(k−1) · · · θ(2)θ(1)f)c(x), (2)

where c ∈ {1, 2, . . .Mk} denotes the feature channel. Let further Λ(i)f refer to
the output from layer i (with Mi feature channels and Λ(0)f = f)

Λ(i)f = θ(i)θ(i−1) · · · θ(2)θ(1)f. (3)

We model the transformation θ(i) between two adjancent layers Λ(i−1)f and
Λ(i)f as a convolution followed by the addition of a bias term bi,c ∈ R and the
application of a pointwise non-linearity σi : R→ R:

(Λ(i)f)c(x) = σi

Mi−1∑
m=1

∫
y∈RN

(Λ(i−1)f)m(x− y)λ(i)m,c(y) dy + bi,c

 , (4)

where λ
(i)
m,c ∈ L1

comp denotes the convolution kernel that propagates information
from feature channel m in layer i − 1 to output feature channel c in layer i.
A final fully connected classification layer with compact support can also be
modelled as a convolution combined with a non-linearity σk that represents a
softmax operation over the feature channels.

We note that since a convolution with λ ∈ L1
comp is a continuous operator

from V to V (recall that we are using L1
loc topology, so the continuity follows

from the L1 norm inequality for convolutions, see [12], Chapter 2, Exercise 21 d),
we conclude that when the σis are Lipschitz continuous functions the resulting
Λ : V → VMk is a continuous operator.

2.3 Transformations of images and feature maps

We will consider the group of affine image transformations, which here corre-
spond to a collection of linear maps1 Th : RN → RN . For each such map, we
have a corresponding operator T kh : V k → V k, defined by the “contragradient”
representation, that is by precomposing with T−1h , as follows:

1 We are thus not interested in translations.
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Definition 2.1. We define T kh : V k → V k, first for input images, by setting

(T 1
h f)(x) = f(T−1h x) (5)

and then on feature maps as

(T kh Λf)c(x) = (Λf)c(T
−1
h x), (6)

where k denotes the number of feature channels.

Note how this definition implies purely spatial transformations of feature
maps. Although the T kh ’s are, technically, different operators for different values
of k we often refer to all these operators as Th to simplify the notation.

Definition 2.2. We define the translation operator Dδ, with δ ∈ RN for
input images by

(Dδf)(x) = f(x− δ) (7)

and then for feature maps by

(DkδΛf)(x) = (Λf)(x− δ). (8)

We will again use single notation Dδ for all operators Dkδ : V k → V k.

2.4 Invariance and covariance

Consider a general (possibly non-linear) feature extractor Λ : V → V k such as
e.g. the continuous analog of a CNN described in Section 2.2.

Definition 2.3. We define an operator Λ to be covariant to an operator O
if there exists an input independent operator O′ such that we can express a
communative relation over Λ of the form (see also Figure 1)

ΛOf = O′Λf. (9)

If such an operator exists and is in addition invertible, then it is possible to
“undo” the action of O after feature extraction. (In the invariant neural networks
literature, covariance is also often referred to as equivariance.)

Λf
O′−−−−−→ ΛOfxΛ

xΛ

f
O−−−−−→ Of

Fig. 1. Commutative diagram for a covariant feature extractor Λ.
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We here consider operators T kh corresponding to affine transformations of the
spatial image domain that do not mix information between the feature channels
(Definition 2.1), which leads us to study (restricted) covariance relations of the
form:

ΛThf = (T kg )−1Λf. (10)

We ask the question if and under what conditions such (restricted) covariance
relations exist for CNNs.

Definition 2.4. We define an operator Λ to be translation covariant if for
every δ we have

ΛDδ = DδΛ. (11)

Definition 2.5. We define an operator Λ to be invariant to an operator Th if
the feature representation of a transformed image is equal to the feature repre-
sentation of the original image

ΛThf = Λf (12)

for all f ∈ V . If this is true for all h in a transformation group H, we say that
Λ is invariant to H.

Lemma 2.6. The convolution operator is translation covariant

DδΛλ = ΛλDδ = ΛDδλ. (13)

The proof is given in Appendix A.1.

Proposition 2.7. A CNN as defined in Section 2.2 is a translation-covariant
operator.

Proof (Sketch). Since each convolution operation is translation covariant by
Lemma 2.6 and the nonlinearities act on the values returned as output from
the convolutions, all the operators Λ(i) are translation covariant. Formal proof
is by induction on i (see Appendix A.2).

Lemma 2.8. Translation and general linear operators (c.f. (5)) have the fol-
lowing commutation relation:

ThDδ = D(Thδ)Th (14)

or equivalently
DδTh = ThD(T−1

h δ). (15)

Proof. Applying both sides to f we compute

(ThDδf)(x) = (Dδf)(T−1h (x)) = f(T−1h (x)− δ), (16)

(D(Thδ)Thf)(x) = (Thf)(x− Thδ) = f(T−1h (x− Thδ)) = f(T−1h (x)− δ). (17)
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Fig. 2. An inverse spatial transformation of a CNN feature map cannot, in
general, align the feature maps of a transformed image with those of its original.
Here, the network Λ has two feature channels “W” and “M”, and Tg corresponds
to a 180◦ rotation. Since different feature channels respond to the rotated image
as compared to the original image, it is not possible to align the respective feature
maps with a spatial rotation. In fact, spatially transforming feature maps can,
in most cases, not eliminate differences related to object pose and can thus not
enable invariant recognition.

Fig. 3. For any transformation that includes a scaling component, the field of
view of a feature extractor with respect to an object will differ between an original
and rescaled image. Consider e.g. a simple linear model that performs template
matching with a single filter. When applied to the original image, the filter
matches the size of the object that it has been trained to recognize and thus
responds strongly. When applied to a rescaled image, the filter never covers the
full object of interest, and thus the response cannot be guaranteed to take even
the same set of values for a rescaled image and its original.
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3 Intuition and outline of proof

A spatial transformation of an input image can clearly support invariant recog-
nition by applying the inverse transformation to a transformed input:

Λ T −1h Thf = Λf. (18)

The key question is whether it is possible to in a similar way undo a transforma-
tion of an input image after feature extraction. Is there a spatial transformation
T kg dependent on Th such that at a certain depth in the network

T kg Λ(i)Thf
?
= Λ(i)f (19)

holds for all f . Note that this would imply that Λ(i) is (restricted) covariant to
Th. Remember that, since we consider spatial transformations of feature maps,
the same transformation is applied in each feature channel

(T kg Λ(i)Thf)c(x) = (Λ(i)Thf)c(T
−1
g x). (20)

Clearly, if (19) holds then transformations of feature maps could enable invariant
recognition in a similar way as for input images. The feature maps of transformed
images could be aligned at a certain depth, and the rest of the network could
work on data without any variability stemming from differences in object pose.

Note that the question of how to know which transformation to apply for
each image, something which is e.g. learned from data for STNs, is not the topic
here. We simply show that even with perfect information about the pose of the
input image, invariance cannot be achieved by a spatial transformation of the
feature map.

3.1 Intuition

The key intuitions why a spatial transformation of CNN feature maps cannot,
in the general case, align feature maps of a transformed image with those of an
original image, and thus not enable invariant recognition, are as follows:

(i) The natural way to align the feature maps of a transformed image with
those of its original would be to apply the inverse spatial transformation
to the feature maps of the transformed image i.e.

T −1h (Λ(i)Thf)c(x) = (Λ(i)Thf)c(Thx). (21)

For example, to align the feature maps of an original and a rescaled image,
we would, after feature extraction, apply the inverse scaling to the feature
maps. We will show that using T −1h is, in fact, a necessary condition for
(19) to hold. The reason for this is that the features for corresponding
spatial positions after alignment will otherwise be computed from not fully
overlapping image regions in the original image, in which case the output
can clearly not be guaranteed to be equal.
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(ii) When transforming an input image, this typically causes not only a spatial
shift in its feature map representation but also a shift in the channel di-
mension of the feature maps. This is illustrated in Figure 2 for the case of
rotations, but a similar reasoning holds for a large range of spatial trans-
formations. A purely spatial transformation of the feature maps cannot
correct for a change in e.g. which channels respond most strongly at a spe-
cific spatial position. Thus, a spatial transformation is not enough to align
the feature maps of a transformed image with those of its original.

(iii) The receptive fields, i.e. the region in the input that influence the response,
of the features extracted in a neural network (for a single layer, this corre-
sponds to the support of the convolutional filters) are typically not invari-
ant to the relevant transformation group. Indeed, any finite support region
will not be invariant to shears or transformations that contain a uniform or
non-uniform scaling component. For example, for a scaling transformation,
a filter applied to a rescaled image, might never cover the full object of in-
terest, and thus the feature response cannot be guaranteed to take even the
same set of values for a rescaled image and its original. This is illustrated
in Figure 3.

Since a purely spatial transformation cannot align the feature maps of a trans-
formed image with those of its original, spatially transforming feature maps will
not enable invariant recognition. The exception is if the features in the specific
network layer are themselves invariant to the relevant transformation. An ex-
ample of this would be a network built from rotation invariant filters λ, where
λ(x) = λ(Thx) for all λ. For such a network, or a network with more complex
(learned or hardcoded) rotation invariant features in a certain layer, invariant
recognition could be enabled by spatial transformations of the feature maps.

One might, however, note that such invariant features in intermediate layers
are in many cases not desirable (especially not early in the network), since they
discard too much information about object pose. For example, rotation invariant
edge detectors would lose information about the edge orientations which tend to
be important for subsequent tasks.

3.2 Outline of proof

Single-layer case We first consider the case of a single convolutional layer
and show that the requirement that it should be possible to align feature maps
implies very strict conditions on the filters. Lemma 4.1 shows that inversely
transforming the feature maps of a transformed image is equivalent to applying
transformed filters to the original image:

T −1h ΛλThf = Λ(detTh)T −1
h (λ)f.

Lemma 4.2 is the key to seeing that T −1h is the only possible candidate to align
the feature maps of a transformed image with those of its original, since otherwise
features at corresponding spatial positions are computed from different parts of
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the original image. Finally, we discuss the conditions on the filters under which
invariance is possible, where Lemma 4.3 implies that we can give quite detailed
conditions on the filters and transformations, since it says that if two single-layer
networks compute the same function they must have the same filter/filters.

Multi-layer case We then consider a more general non-linear feature extractor
such as the multi-layer convolutional network defined in Section 2.2 and show
that similar strict conditions hold in this case. We first isolate two key features
shared by single convolution operators and CNNs: translation covariance and
semi-locality. These features underpin most of the proofs for the single-layer
case and allow these proofs to be extended to the multi-layer case. Semi-locality
(Definition 5.3) is an extension of the concept of an operator with compact
support. The reason to define the concept of semi-locality, instead of considering
operators with compact support, is that we wish to include operators that output
a constant for the input f = 0, such as CNNs with non-zero biases or non-
linearities that do not take zero to zero (or both) would do. We then show that
the multi-layer continuous neural network (4) is a translation-covariant, semi-
local operator.

Since it is not possible to give explicit conditions for individual filters (e.g.
symmetries implies that the same function can be implemented by more than
one set of filters), we will instead consider conditions that need to hold for the
non-linear features extracted in a specific network layer Λ(i), to enable aligning
CNN feature maps of a transformed image with those of an original image at
depth i.

A key step in our proof is to note that any translation-covariant operator Λ
is captured by a map µΛ : V → R defined by (equation (32))

µΛ(f) := (Λf)(0),

which we refer to as the generator. The generator can be seen as a non-linear
analog of a convolutional filter (evaluated at the origin for a single-layer network).
Lemma 5.2 and Lemma 5.8 then establish the relationship between the inversely
transformed feature maps of a transformed image and the feature maps of the
original image, showing that

T −1h ΛTh = Λf

implies that µΛ(Thf) = µΛ(f). That is, the network features must themselves
already be invariant to the relevant image transformation. Lemma 5.10 shows
that, as for the single-layer case, T −1h is the only possible candidate to align the
feature maps of a transformed image with those of its original.

4 Covariance and invariance in the single-layer case

Consider a single channel convolutional neural network with the filter λ

Λλf(x) := (f ? λ)(x) =

∫
RN

f(y)λ(x− y)dy =

∫
RN

λ(y)f(x− y)dy. (22)
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Can precomposing with Th be undone after the convolution step by postcom-
posing with some other Tg:

TgΛλTh
?
= Λλ. (23)

We will see that this is not possible. Note that since a spatial transformation of
feature maps never mixes information between different channels, it is enough
to show this for a network with a single feature channel.

4.1 Covariance relations of convolution operators

We begin by showing the following lemma, expressing naturality of convolution.

Lemma 4.1.
T −1h ΛλTh = Λ(detTh)T −1

h (λ) (24)

Proof. We compute using change of variables u = T−1h y, du = (detT−1h ) dy

(ΛλThf)(x) =

∫
RN

f(T−1h y)λ((x− y))dy

=

∫
RN

f(u)λ(Th(T−1h x− T−1h y)) detThdu

=

∫
RN

f(u)λ(Th(T−1h x− u)) detThdu

= (Λ(detTh)T −1
h λf)(T−1h x)

= (ThΛ(detTh)T −1
h λf)(x) (25)

Applying T −1h to both sides yields the lemma.

Thus, inversely transforming the feature maps of a transformed image will not
yield the same feature maps as for the original image. Instead, this is equivalent
to extracting features from the original image with transformed filters.

4.2 Using Tg = T −1
h is a necessary condition to align feature maps

The following lemma will be the key to seeing that a necessary condition for
being able to align the feature maps of a transformed image with those of its
original is using T −1h .

Lemma 4.2. If for two compactly supported filters λ1 6= 0 and λ2 6= 0 we have
Λλ1 = ThΛλ2 then Th = Id.

Proof. Since λ1 6= 0, we can pick a compactly supported f such that (Λλ1
f)(0) 6=

0 (pick any f with Λλ1
f 6= 0, translate it to make Λλ1

f(0) 6= 0, and, if needed,
multiply by a bump function of sufficiently large ball to make it compactly
supported). Suppose f is supported on a ball of radius r(f) around the origin
and λ2 on a ball of radius r(λ2) around the origin. If Th 6= Id we can pick p such
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that |T−1h (p)− p| > r(f) + r(λ2) + 1. Let f̂(x) = f(x+ p) i.e. f̂ = D−pf . Then
using Lemma 2.6 we have

(DpΛλ1 f̂)(0) = (Λλ1Dpf̂)(0) = (Λλ1f)(0) 6= 0 (26)

but

(DpThΛλ2
f̂)(0) = (ThDT−1

h pΛλ2
f̂)(0) = (ThΛλ2

DT−1
h p−pf)(0)

= (Λλ2
DT−1

h p−pf)(T−1h (0)) = (Λλ2
DT−1

h p−pf)(0) = 0, (27)

where the first equality follows from Lemma 2.8, the second from Lemma 2.6,
and the last from the fact that f̃ = DT−1

h p−pf is supported on a ball of radius

r(f) around T−1h p − p, which is disjoint from the ball of radius r(λ2) around
the origin on which λ2 is supported; this means that in the convolution integral
(Λλ2 f̃)(0) =

∫
f̃(y)λ(−y)dy the integrand is zero at every point y, thus yielding

the zero result, as wanted.

4.3 Convolution determines the filter

We now show that if two single-layer networks compute the same function, their
filters must be equal.

Lemma 4.3. If Λλ1
= Λλ2

then λ1 = λ2.

Proof. Letting λ = λ1 − λ2, we just need to show that Λλ = 0 implies λ = 0.
Let fn be a sequence of mollifiers converging to the delta function at the

origin (that is a sequence of non-negative smooth functions each with integral
equal to 1 and with their supports on balls of radii converging to 0). Then (see
for example [12], Chapter 3, Theorem 2.3) we have Λλfn → λ (in L1), so that if
Λλ is the zero functional, then λ is zero.

This lemma implies that we can give more specific conditions on the filters in
a single-layer network for which it is possible to achieve invariance by aligning
CNN feature maps.

4.4 Conclusions in the single-layer case

We can now conclude that the only admissible operator to align CNN feature
maps is T −1h and that alignment is only possible if the convolutional filters are
themselves invariant to the relevant transformation:

Proposition 4.4. If TgΛλTh = Λλ, this implies that Tg = T −1h and that λ =
(detTh)T −1h (λ)

Proof. Writing Tg = TH(Th)−1 and λh = (detTh)T −1h (λ), we see that

TgΛλTh = TH(Th)−1ΛλTh = THΛλh . (28)
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Thus, if (23) holds, by Lemma 4.2 we must have TH = Id and Tg = T −1h .
Then, by Lemma 4.1 and Lemma 4.3 we must have

λ = (detTh)T −1h (λ). (29)

This means that up to rescaling by detTh, the filter λ is invariant under the
linear transformations Th. Observe that this implies that λ is invariant under
all integer powers of Th. If we further wish to have a network invariant to all
transformations in a group H, then this also needs to hold for all h ∈ H.

Proposition 4.5. The equality (29) is impossible for bounded non-zero λ unless
|detTh| = 1.

Proof. We have | sup(detTh)T −1h (λ)| = |detTh|| supλ|, so if | supλ| 6= 0, | supλ| 6=
∞ and (29) holds then we must have |detTh| = 1.

One may be prepared to ignore intensity (aka rescaling), instead considering

λ = CT −1h (λ) (30)

for some C ∈ R. Even with this relaxation, this invariance can only hold for
severely limited kinds of filters and transformations:

Proposition 4.6. The equality (30) is impossible for λ with support on a set of
finite but non-zero measure, unless |detTh| = 1.

Proof. If λ has support of measure m, then T −1h (λ) has support of measure
|detT−1h |m. If (30) holds then |detT−1h |m = m and so if m is finite and non-
zero we must have |detT−1h | = 1, i.e. |detTh| = 1.

More strongly, in the case when the image domain is R2, one can use the
classification of 2D real matrices by Jordan canonical form to study the behavior
of iterations of Th, as done, for example, in Chapter 3.1 of [13] (a very similar
analysis is possible in higher dimensions). Using this, we can analyze further
even the cases where |detTh| = 1, as follows.

Proposition 4.7. The equality (30) can hold for λ with support on a set of
finite but non-zero measure only if Th is conjugate to some rotation or, if Th is
orientation reversing, a reflection matrix; and in those cases only if (i) Tnh = Id
for some n and λ is symmetric with respect to this finite set of transforms, or
(ii) if λ is constant on a collection of concentric ellipses along which Th rotates
things.

Proof. There are special cases when all the eigenvalues of Th are real and have
absolute value 1. Then, either T 2

h = Id, in which case λ simply has to have a
2-fold symmetry (this includes the cases when Th is the reflection around the

origin or a reflection through a line); or Th has Jordan form

(
1 1
0 1

)
or

(
−1 1
0 −1

)
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and Tnh = B−1
(

1 n
0 1

)
B or Tnh = B−1

(
(−1)n n

0 (−1)n

)
B, respectively, for some

fixed basis change matrix B. We see that the eigenspace of eigenvalue 1 is fixed,
but everything else moves out to infinity, so an invariant λ would have to be
supported on this (1D) eigenspace (which would imply that the only possible
invariant filter corresponds to a Λλ which is zero).

Similarly, if |detTh| = 1 but Th has distinct real eigenvalues d1, d2 (this
happens precisely when tr2 Th − 4 detTh > 0), of size not equal to 1, |d1| > 1 >

|d2|, then Th has Jordan form

(
d1 0
0 d2

)
and Tnh = B−1

(
dn1 0
0 dn2

)
B for some fixed

basis change matrix B; everything not in the d2 eigenspace moves out to infinity
under positive iterations and everything not in d1 eigenspace under negative
ones (in the new coordinates the motion is along hyperbolas y = 1/x, and this is
why such Th is called hyperbolic), so an invariant λ would have to be supported
only at the origin.

Further, the only remaining case |detTh| = 1 but tr2 Th−4 detTh < 0 (a.k.a.
detTh = 1, but | trTh| < 2), gives, up to a change of basis, a rotation matrix. In
the new basis, concentric circles around the origin are preserved by the rotation;
in the original basis these are “concentric” ellipses (this is the reason Th is
called elliptic in this case). If the rotation is by an irrational multiple of π, the
orbit of any point is dense in the corresponding ellipse (see, for example, [13],
Proposition 4.1.1) and equality (30) would still imply that λ is constant on each
of these ellipses. On the other hand, the Ths where rotation is by a rational
multiple of π are precisely ones with Tnh = Id for some n.

Thus, we conclude that for a single-layer network, aligning the feature maps of
a transformed image with those of its original is only possible for transformations
that correspond to rotations or reflections in some basis, and in that case only if
the filters are themselves rotation/reflection invariant. Notably, such alignment is
not possible for general affine transformations, scaling transformations or shears
since there do not exist any non-trivial affine-, scale- or shear-invariant filters
with compact support.

5 Covariance and invariance in the multi-layer case

We now give an equivalent proof for a more general non-linear, semi-local,
translation-covariant feature extractor Λ (semi-locality is defined below). We
are specifically interested in continuous multi-layer CNNs (Section 2.2) but the
proof is valid for any such operator. We ask whether equation (23)

T kg ΛTh
?
= Λ

could be true for such operators and if so under what conditions. Note that for
the case of a multi-layer convolutional neural network, it is enough to consider
a single feature channel at a certain depth, since a spatial transformation never
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mixes information between the channels. For simplicity, we will refer to a feature
map at depth i (Λ(i)f)c as Λf .

Two key features are shared by single convolution operators and CNNs: trans-
lation covariance and semi-locality. These features underpin most of the proofs
for the single-layer case and allow these proofs to be extended to the multi-layer
case.

5.1 Commutators and conjugation of translation-covariant
operators

Recall that by Proposition 2.7 the multi-layer CNN is a translation-covariant op-
erator. We further note that translation covariance holds also when one changes
coordinates on both input and output using Th, i.e. when conjugating Λ with
the operator Th.

Lemma 5.1. If Λ is translation covariant, then so is T −1h ΛTh.

Proof. Using Lemma 2.8 and Definition 2.4 we compute:

DxT −1h ΛTh =

=T −1h DThxΛTh = T −1h ΛDThxTh = T −1h ΛThDT−1
h (Thx)

=

= T −1h ΛThDx (31)

5.2 Generators of translation-covariant operators

A key step in the multi-layer proof is to note that any translation-covariant
operator Λ : V → V is captured by a map µΛ : V → R defined by

µΛ(f) := (Λf)(0). (32)

We call this µΛ the generator of Λ (sometimes denoted simply by µ when the
relevant Λ is clear from the context). Since we have

(Λf)(x) = (D−xΛf)(0) = (ΛD−xf)(0) = µ(D−xf), (33)

we can, conversely, given µ define a translation-covariant operator Λµ by

(Λµf)(x) := µ(D−xf). (34)

Clearly the operations in (32) and (34) are inverses of each other. The generator
µΛ can be seen as a non-linear analog of a convolutional filter in the single-layer
case.

The following Lemma is the equivalent to Lemma 4.1 in the single-layer case.

Lemma 5.2. The generator of T −1h ΛµTh is µh := µ(Thf).
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Proof.

(T −1h ΛµThf)(0) = {definition of Th (5)}
= (ΛµThf)(Th0)

= (ΛµThf)(0) = {definition of Λµ (34) }
= µ(Thf) (35)

Thus, also in the case of a non-linear, translation-covariant feature extractor,
inversely transforming the feature maps of a transformed image will not yield
the same feature maps as for the original image. Instead, it is corresponds to
extracting features from transformed image patches.

5.3 Semi-locality

To enable considering operators that output a constant for the input f = 0,
we define the concept of semi-locality. A semi-local operator is an extension of
the concept of an operator with compact support. It similarly implies that the
output will only be affected by the values in a bounded region of the input image.
However, that output does not necessarily have to be 0 for the input f = 0 (but
translation covariance implies that it must output a constant).

Definition 5.3. We will say that Λ is semi-local if there exists a radius r(Λ)
such that for any point p and any two functions f1 and f2 which agree on the
ball of radius r(Λ) around a point p we have Λf1(p) = Λf2(p).

Semi-locality interacts well with translation covariance.

Lemma 5.4. If Λ is translation covariant and semi-local with radius r(Λ) and
f1 and f2 agree on a ball of radius r + r(Λ) around p, then Λf1 and Λf2 agree
on a ball of radius r around p.

Proof. For any x a in ball of radius r around the origin, the functions Dxf1 and
Dxf2 agree on a ball of radius r(Λ) around p; by definition of semi-locality, this
means (ΛDxf1)(p) = (ΛDxf2)(p), or (Λf1)(p−x) = (Λf2)(p−x), which is what
we wanted.

Semi-locality is unaffected by conjugation with Th.

Lemma 5.5. If Λ is semi-local, then so is T −1h ΛTh.

Proof. Let k = max|v|=1 |T−1h (v)| be the operator norm of T−1h . Set r = kr(Λ).

We claim T −1h ΛTh is semilocal with radius r. Indeed, if f1 and f2 agree on a ball
of radius r around p, then Thf1 and Thf2 agree on ball of radius r(Λ) around
Thp, and so do the values (ΛThf1)(Thp) and (ΛThf2)(Thp) agree. This means
T −1h (ΛThf1)(p) = T −1h (ΛThf2)(p) as wanted.

Convolutions with compactly-supported λ are semi-local.
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Lemma 5.6. If λ is supported on a ball of radius r(λ) around the origin, then
Λλ is semi-local with radius r(λ).

Proof. If λ is supported on a ball B of radius r(λ) then we have

Λf(p) =

∫
f(p− y)λ(y)dy =

∫
B

f(p− y)λ(y)dy.

Thus, if f1 and f2 agree on the ball of radius r(λ) around p, then the integrals
for f1 and f2 agree, i.e. Λf1(p) = Λf2(p).

This simple Lemma 5.6 is the basis of the following proposition.

Proposition 5.7. A CNN as defined in Section 2.2 is a semi-local operator.

Proof (Sketch). Observe that if two functions agree on a ball of radius R, then
after convolution with a kernel supported on a ball of radius r the results agree
at least on a ball of radius R − r. Applying a pointwise non-linearity σ to each
of the values does not affect this equality. Thus, if the radius R is large enough,
then after multiple convolution layers, the results are guaranteed to agree on
some non-empty ball, which is what we wanted to prove. A more detailed proof
(using induction and Lemmas 5.4 and 5.6) is given in Appendix A.2.

5.4 Covariance of the operator in the non-linear case

We, now consider the conditions on µ or f that are required for it to be possible
to undo a precomposing with Th after feature extraction by postcomposing with
T −1h .

Lemma 5.8. Recall from Lemma 5.2 that µh(f) = µ(Thf). Then, for a general
non-linear translation-covariant feature extractor Λµ generated by µ (34)

(T −1h ΛµThf) = (Λµf) (36)

implies
µ = µh, (37)

i.e. that µ must be invariant to Th.

Proof. This is immediate from Lemma 5.2.

Thus, for an inverse spatial transformation of the feature maps of a trans-
formed image to render the same feature maps as for the original image, either f
must be invariant to Th around every image point (which implies f is constant)
or the feature extractor (i.e. the generator) must be invariant to the relevant
transformation group.

Definition 5.9. We say that a functional Λ is non-constant if there exists an
f such that Λ(f) 6= Λ(0).

Observe that if the functional is semi-local, we can take f to be compactly
supported. A translation-covariant Λ is non-constant precisely when its generator
µ is non-constant, i.e. there exists f such that µ(f) 6= µ(0) (Proof: take f given
by non-constancy of Λ; then there is some x such that (Λf)(x) 6= (Λ0)(x), and

f̂ = Dxf has µ(f̂) 6= µ(0)).
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5.5 Using Tg = T −1
h is still a necessary condition to align feature

maps

The following lemma is the key to seeing that also in the non-linear case, a
necessary condition for being able to align the feature maps of a transformed
image with those of it’s original is using T −1h . It is equivalent to Lemma 4.2 in
the single-layer case.

Lemma 5.10. If for two semi-local translation-covariant non-constant opera-
tors we have Λµ1

= ThΛµ2
then Th = Id.

Proof. This is a more abstract version of the proof of Lemma 4.2. First of all,
applying Λµ1

= ThΛµ2
to the zero function we get Λµ1

0 = ThΛµ2
0 = Λµ2

0, and
evaluating at location 0 obtain µ1(0) = µ2(0).

Now, take compactly supported f with µ1(f) 6= µ1(0). Suppose f is sup-
ported in a ball of radius r(f).

If Th 6= Id, we can pick p such that |T−1h (p)− p| > r(Λµ2
) + r(f) + 1 (where

r(Λµ2) is as in Definition 5.3).
Then, by (34) we have

(DpΛµ1
D−pf(x))(0) = (Λµ1

DpD−pf(x))(0)

= (Λµ1
f(x))(0) = µ1(f(x)) 6= µ1(0) (38)

but

(DpThΛµ2
D−pf(x))(0) =

=(ThDT−1
h (p)Λµ2

D−pf(x))(0) =

=(ThΛµ2DT−1
h (p)−pf(x))(0) =

=(Λµ2DT−1
h (p)−pf)((T−1h (0)) =

=(Λµ2
DT−1

h (p)−pf)(0) =

= (Λµ20)(0) = µ2(0) = µ1(0), (39)

where the third-to-last equality (to (Λµ2
0)(0)) holds for the following reason:

since f(x) is supported on ball of radius r(f) around the origin, DT−1
h (p)−pf(x) is

supported on a ball of radius r(f) around T−1h (p)−p which is entirely outside the
ball of radius r(Λµ2) around the origin. This means Λµ2 applied toDT−1

h (p)−pf(x)

evaluated at the origin is equal to Λµ2
0 evaluated at the origin by Definition 5.3

of semi-locality.

5.6 Conclusions in the multi-layer case

We can now conclude also for the non-linear case that the only admissible oper-
ator to align feature maps is T −1h and for alignment to be possible the extracted
non-linear features must themselves be invariant to the relevant transformation.

17



Proposition 5.11. If TgΛµTh = Λµ, this implies that Tg = T −1h and that
µ(Thf) = µ(f).

Proof. Writing Tg = TH(Th)−1 and µh = µ(Thf), we, as for the single-layer case,
see that

TgΛµTh = TH(Th)−1ΛµTh = THΛµh . (40)

Suppose we do have

TgΛµTh = Λµ. (41)

Then, by Lemma 5.10 (which is applicable because of Lemma 5.5) we must have
TH = Id and Tg = T −1h . Further, by Lemma 5.8 we must have

µ(Thf) = µ(f) (42)

if the equality (5) should hold for all f .

Thus, the combined non-linear transformation must be computed from transfor-
mation invariant non-linear operators µ. Since it is not possible to give explicit
conditions for individual filters (e.g. symmetries implies that the same function
can be implemented by more than one set of filters), we will instead investigate
under which conditions invariant non-linear features µΛ (32) exist.

Proposition 5.12. If not all eigenvalues (real or complex) of Th have absolute
value equal to 1, then for a continuous, semi-local, translation-covariant operator
Λ, equation (42) implies µ(f) = µ(0) i.e. that Λ is the trivial operator that
outputs the same constant signal for all inputs.

Proof. We consider the case in which Th has at least one eigenvalue of absolute
value bigger than 1 (i.e. T−1h has at least one eigenvalue of absolute value less
than 1). The case in which Th has at least one eigenvalue of absolute value
less than 1 follows by noting that invariance with respect to Th is the same as
invariance with respect to T −1h .

First, observe that for a translation-covariant operator, continuity of Λ im-
plies continuity of µ. Now, let Λ be semi-local with radius r(Λ). Let χ be the
characteristic function of the ball of radius r(Λ). Then

µ(g) = µ(χg) (43)

for any g in V = L1
loc.

We now decompose Rn into generalized eigenspaces of T−1h , Rn = E+⊕E0⊕
E− as in Section 3.3.3 in [13]. The condition that at least one eigenvalue of T−1h

have absolute value less than 1 means that E− is non-trivial. By Corollary 3.3.7
in [13], when restricted to a non-trivial subspace E− ⊆ Rn the operator T−1h is
eventually contracting (see Definition 2.6.11 ibid.), so that by Corollary 2.6.13
and Lemma 3.3.6 ibid. under the iterates of T−1h all points of E− converge to
the origin with exponential speed. This implies that the points of Rn converge
to points in the proper subspace S = E+ ⊕ E0.
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Now starting with any f in L1
loc, and denoting by B the ball of radius r(Λ)

around the origin, the functions fn = χT nh (χf) will eventually have supports
lying in arbitrarily small neigbourhood of S ∩B, i.e. on a set of arbitrarily small
measure. If χf is bounded, this implies that fn converge to the zero function in
L1
loc. Then, by continuity of µ, the values µ(fn) converge to µ(0). On the other

hand, by semi-locality (43) and invariance (42) we get

µ(fn) = µ(χT nh (χf)) = µ(T nh (χf)) = µ(χf) = µ(f). (44)

We conclude µ(f) = µ(0) for any f in L1
loc with bounded χf . Since any f

in L1
loc can be approximated arbitrarily well by functions gi with bounded χgi,

and µ is continuous, we conclude that µ(f) = limµ(gi) = µ(0) for all f .

In the 2D case we can enhance this further to give conclusions similar to
those of Proposition 4.7.

Proposition 5.13. The equality (42) can hold for a continuous, semi-local,
translation-covariant operator Λ only if Th is conjugate to some rotation or,
if Th is orientation reversing, a reflection matrix.

Proof. As in the proof of Proposition 4.7, studying the Jordan form of Th shows
that the only cases not covered by Proposition 5.12 are ones when Th is conjugate

to

(
1 1
0 1

)
or

(
−1 1
0 −1

)
(this is the case of shear transformations). In this case Th

does not have iterates that contract R2 to a proper subspace, but the intersection
of images of B under Th with B still lie arbitrarily close to a 1-D subspace. Then
the same proof as in Proposition 5.12 yields the result.

Remark 5.14. In the higher dimensional case, one can perform very similar
analysis based on Jordan form of Th and extend the proof of Proposition 5.13 to
conclude that invariance with respect to Th can only be obtained if Th is conjugate
to an orthogonal matrix.

Thus, we reach a very similar conclusion as for the single-layer case. To en-
able aligning feature maps of a transformed image with those of its original,
the non-linear features µΛ (32) must be invariant to the relevant transforma-
tion. Furthermore, Propositions 5.12 and 5.13 show that there does not exist
any such invariant non-linear features µΛ unless Th corresponds to a rotation
or a reflection (or in higher dimensions an orthogonal) matrix in some coordi-
nate system. In other words, there does not exist any such features invariant
to affine transformations, scaling transformations or shears. Since the restricted
covariance relation (10) cannot hold for these transformations, purely spatial
transformations of feature maps cannot enable affine- scale- or shear-invariant
recognition. These conclusions hold for any continuous, semi-local, translation-
covariant operator, which in particular includes Λ given by a CNN (4) with
Lipschitz continuous non-linearities σi.
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6 Summary and conclusions

Using elementary analysis, we have presented a proof that spatial transforma-
tions cannot, in general, align CNN feature maps of a transformed image to
match those of its original. We have showed that, in order for feature extraction
and spatial transformations to commute for translation-covariant, semi-local op-
erators (such as CNNs), the features computed by the network must themselves
be invariant to the relevant image transformation. Since this is not generally
the case, applying the inverse spatial transformation to a feature map extracted
from a transformed image will typically not render the same feature map as for
the original image. This can be contrasted with the case of pure translations,
where the translation covariance of a CNN implies that a translation of the input
indeed corresponds to a translation of the feature maps.

Furthermore, we have shown that features computed with convolutional fil-
ters of compact support and Lipschitz continuous non-linearities (such as would
be the case for a standard CNN) can only be made invariant to transforma-
tions that correspond to reflections or rotations in some basis. In other words,
there does not exist any such features invariant to affine transformations, scaling
transformations or shear transformations. Thus, spatial transformations of fea-
ture maps cannot enable affine-, scale-, or shear-invariant recognition for CNNs
or indeed any continuous, semi-local, translation-covariant feature extractor.

Our results imply that methods based on spatial transformations of CNN
feature maps or filters (e.g. [5–8]) is not a replacement for image alignment
of the input. In particular, transforming feature maps cannot enable invariant
recognition for general affine transformations, scaling transformations or shear
transformations, and it will only enable rotation-invariant recognition for net-
works with learnt or hardcoded rotation-invariant filters/features.

A Appendix

A.1 Proof that a single convolutional layer is translation covariant

Proposition A.1. A single-layer continuous CNN (22) is translation covariant:

DδΛλ = ΛλDδ = ΛDδλ. (45)

Proof. We compute

(DδΛλf)(x) = (Λλf)(x− δ) =

∫
RN

f(y)λ(x− δ − y)dy = (ΛDδλf)(x) (46)

and using the change of variables u = y − δ

(ΛλDδf)(x) =

∫
RN

f(y − δ)λ(x− y)dy =

∫
RN

f(u)λ(x− δ − u)du =

= (ΛDδλf)(x). (47)
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A.2 Proof that CNNs are semi-local and translation covariant

Recall Propositions 2.7 and 5.7:

Proposition A.2. A multi-layer continuous CNN, as defined in Section 2.2, is
a translation-covariant semi-local operator.

Proof. The proof is inductive and is based on (4) which we copy here for conve-
nience:

(Λ(i)f)c(x) = σi

Mi−1∑
m=1

∫
y∈RN

(Λ(i−1)f)m(x− y)λ(i)m,c(y) dy + bi,c

 (48)

We will prove that (Λ(i)f)c in (48) are translation covariant and semi-local
by induction on i. The base case when i = 0 and Λ(i)f = f is immediate. The
induction step for translation covariance is immediate from the formula (48) and
the fact that a single convolution is translation covariant (Lemma 2.6).

For semi-locality, denoting, as before, for any convolution kernel λ by r(λ)
radius such that λ is supported on a ball of radius r(λ), we pick

r(Λic) = max
m

[r(Λ(i−1)
m ) + r(λ(i)m,c)]. (49)

Observe that since by the induction hypothesis, Λ
(i−1)
m is semi-local with radius

r(Λ
(i−1)
m ), if f1 and f2 agree on a ball of radius [r(Λ

(i−1)
m ) + r(λ

(i)
m,c)] around

some p, then by Lemma 5.4 the functions (Λ(i−1)f1)m(x) and (Λ(i−1)f2)m(x)

agree over the ball B of radius r(λ
(i−1)
m,c ) around p, and we denote this common

function on the ball by f i−1m . By Lemma 5.6 the convolution integrals for the
specific m in formula (4) for f1 and f2 evaluated at p are equal. Therefore, if
f1 and f2 agree on a ball of radius r(Λic) around p then the overall expressions
computed by formula (4) for f1 and f2 at p will be equal, which is exactly what
we set out to prove.

Finally, the non-linearity σi applies the same function to values at all loca-
tions so does not affect either translation covariance, nor semilocality (the equal-
ity (Λf1)(p) = (Λf2)(p) is preserved when applying a pointwise non-linearity).
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