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The Gaussian MLE versus the Optimally

Weighted LSE

Mohamed R.-H. Abdalmoaty H̊akan Hjalmarsson Bo Wahlberg

Postprint (August 21st, 2020)

In this lecture note, we derive and compare the asymptotic covariance matrices of two

parametric estimators: the Gaussian Maximum Likelihood Estimator (MLE), and the

optimally weighted Least-Squares Estimator (LSE). We assume a general model param-

eterization where the model’s mean and variance are jointly parameterized, and consider

Gaussian and non-Gaussian data distributions.

1 Relevance

In system identification and estimation theory, asymptotic covariance matrices are usu-

ally used to compare the accuracy of consistent and asymptotically normal parametric

estimators for sufficiently large data records. If the data distribution is Gaussian and

its mean and variance are independently parameterized, a well-known result is that the

asymptotic covariance matrices of the Gaussian MLE and the optimally weighted LSE

are equal and coincide with the asymptotic Cramér-Rao lower bound (CRLB). In the

non-Gaussian case however, as we show in this note, the accuracy of these two estimators

may differ. They depend on the parameterization and the shape of the data distribution

in terms of the first four moments. The results are particularly useful when estimating

parameters in general semiparametric models.
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2 Prerequisites

This lecture note can be used in courses on system identification, statistical signal pro-

cessing, or estimation theory. The necessary background that has been assumed is similar

to the intersection of the prerequisites of those courses. In particular, an exposure to

basic probability, stochastic process and linear algebra is required.

3 Problem Statement and Solution

The problem is to analyze and compare the asymptotic covariance matrices of the Gaus-

sian MLE and the optimally weighted LSE for general semiparametric models.

The model

Suppose that the model is given by

yt = µt(θ) + et(θ), t = 1, 2, . . . , N,

where {yt} ⊂ R is a sequence of observed data, N denotes the number of available data

samples, θ ∈ Rd, with a finite positive integer d, is the unknown parameter vector to

be estimated, {µt(θ)} is a sequence of known real-valued functions of θ, and {et(θ)}

is an unobserved sequence of zero mean independent real-valued random variables with

known parameter-dependent variances denoted as λt(θ); i.e., for all θ and t it holds that

E[et(θ)] = 0, and E[e2t (θ)] = λt(θ). Notice that the model does not specify the full

distribution of the data. Therefore, the model is semiparametric where the parameter

vector θ jointly parameterizes the mean and the variance of the data. Let us denote the

true parameter as θ◦.

Two estimators

We now consider two parameter estimation methods, given as special cases of the general

framework described in [1, Chapter 7]. The Gaussian MLE, denoted as θ̂1, is defined as

θ̂1 = arg min
θ

V1(θ), (1)
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where

V1(θ) =
1

N

N∑
t=1

(yt − µt(θ))2

2λt(θ)
+

1

2
log λt(θ). (2)

The optimally weighted LSE, denoted as θ̂2, is defined as

θ̂2 = arg min
θ

V2(θ), (3)

where

V2(θ) =
1

N

N∑
t=1

(yt − µt(θ))2

2λt(θ◦)
. (4)

These two estimators are instances of the general family of prediction error method esti-

mators (see [1, Section 7.2]), defined as minimizers of criterion functions

V (θ) =
1

N

N∑
t=1

`(εt(θ),θ, t)

where εt(θ) := yt−µt(θ) is the prediction error, and ` is a general scalar-valued function.

In the Gaussian MLE case,

`(ε,θ, t) = `1(ε,θ, t) =
ε2

2λt(θ)
+

1

2
log λt(θ)

which is both time- and parameter-dependent. In the optimally weighted LSE case,

`(ε,θ, t) = `2(ε, t) =
ε2

2λt(θ◦)

which is independent of the parameter; however, it depends on the true value θ◦. In

practice, the unknown θ◦ in the definition of `2 can be replaced by a consistent estimator

of θ, without affecting the asymptotic covariance of the estimator. For instance, an

unweighted LSE, defined using `(ε,θ, t) = 1
2
ε2, may be used; an alternative is the Gaussian

MLE defined above. Although different substitutions lead to estimators with different

finite sample properties, their asymptotic covariance matrices coincide with that of the

optimally weighted LSE (see for example [2]).

Asymptotic Covariance

When the scalar-valued function ` is both time- and parameter-independent, i.e., when

`(ε,θ, t) = `(ε), its form only acts as a scaling of the asymptotic covariance matrix, as

explained in [1, page 286], and in [3] when ` corresponds to a probability density function.
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In some cases, this also holds when ` is time-dependent (see problem 9T.1 in [1]). However,

if ` is parameter-dependent, this property does not hold.

Notation: In what follows, we will use a prime symbol to indicate differentiation with

respect to the parameter vector θ. For any real-valued function V (θ), the symbol V ′(θ)

denotes the gradient, defined as a d-dimensional column vector. The symbol V ′′(θ) de-

notes the derivative of the gradient vector V ′(θ) with respect to θ, which is a d × d

matrix.

Suppose that the minimizers in (1) and (3) are sought over a closed and bounded subset

Θ ⊂ Rd such that θ◦ ∈ Θ. Furthermore, for i = 1, 2, assume that E[Vi(θ)] converges as

N →∞, uniformly over Θ, to a deterministic matrix V i(θ) such that
√
N V

′
i(θ◦)→ 0 as

N → ∞. Then, under some mild regularity conditions on the model (see [1, Chapter 9]

or [4, Chapter 7]), it holds that
√
N(θ̂i− θ◦) is asymptotically normally distributed with

mean zero and covariance matrix

Pi =
[
V
′′
i (θ◦)

]−1 [
lim
N→∞

NE
[
V ′i (θ◦)[V

′
i (θ◦)]

>]] [V ′′i (θ◦)]−1 ,
where it is assumed that the limits and the matrix inverse exist. In the following, we will

assume, under the same regularity conditions from above, that the interchange of limits

and expectation is possible.

The Gaussian case

Although the computations in the case of Gaussian data distributions are known and

may be found in classical textbooks (see for example [5, Appendix 3C]), we include them

here to highlight the role of the third- and fourth-order moments of the data distribution

when the mean and variance are jointly parameterized. We will also refer back to these

computations when considering the non-Gaussian case.

Suppose that the true data distribution is Gaussian, and let us first consider the compu-

tations of P1. From (2), using the chain rule, it holds that

NV ′1(θ) =
N∑
t=1

−(yt − µt(θ))

λt(θ)
µ′t(θ)− (yt − µt(θ))2

2λ2t (θ)
λ′t(θ) +

1

2λt(θ)
λ′t(θ).
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Differentiating one more time, we get

NV ′′1 (θ) =
N∑
t=1

− (yt − µt(θ))

λt(θ)
µ′′t (θ) +

1

λt(θ)
µ′t(θ)[µ′t(θ)]> +

(yt − µt(θ))

λ2t (θ)
µ′t(θ)[λ′t(θ)]>

− (yt − µt(θ))2

2λ2t (θ)
λ′′t (θ) +

(yt − µt(θ))

λ2t (θ)
λ′t(θ)[µ′t(θ)]> +

(yt − µt(θ))

λ3t (θ)
λ′t(θ)[λ′t(θ)]>

+
1

2λt(θ)
λ′′t (θ)− 1

2λ2t (θ)
λ′t(θ)[λ′t(θ)]>.

Then, it holds that

E[V ′′1 (θ◦)] =
1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> +
1

2λ2t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

>. (5)

Moreover,

N2V ′1(θ)[V ′1(θ)]> =
N∑
t=1

N∑
s=1

(yt − µt(θ))(ys − µs(θ))

λt(θ)λs(θ)
µ′t(θ)[µ′s(θ)]> − (yt − µt(θ))

λt(θ)λs(θ)
µ′t(θ)[λ′s(θ)]>

+
1

4λt(θ)λs(θ)
λ′t(θ)[λ′s(θ)]> +

(yt − µt(θ))(ys − µs(θ))2

λt(θ)λ2s(θ)
µ′t(θ)[λ′s(θ)]>

+
(yt − µt(θ))2(ys − µs(θ))2

4λ2t (θ)λ2s(θ)
λ′t(θ)[λ′s(θ)]> − (yt − µt(θ))2

2λ2t (θ)λs(θ)
λ′t(θ)[λ′s(θ)]>.

Taking the expectation on both sides and using the independence assumption of the

model, we get that

N2E[V ′1(θ◦)[V
′
1(θ◦)]

>] =
N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> +
N∑
t=1

N∑
s=1

1

4λt(θ◦)λs(θ◦)
λ′t(θ◦)[λ

′
s(θ◦)]

>

+
N∑
t=1

αt(θ◦)

λ3t (θ◦)
µ′t(θ◦)[λ

′
t(θ◦)]

>

+
N∑
t=1

βt(θ◦)

4λ4t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

> +
N∑
t=1

N∑
s=1
s 6=t

1

4λt(θ◦)λs(θ◦)
λ′t(θ◦)[λ

′
s(θ◦)]

>

−
N∑
t=1

N∑
s=1

1

2λt(θ◦)λs(θ◦)
λ′t(θ◦)[λ

′
s(θ◦)]

>

where

αt(θ◦) = E[(yt − µt(θ◦))3],

βt(θ◦) = E[(yt − µt(θ◦))4]

are the third- and fourth-order moments of the model when θ = θ◦, receptively. Further-
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more, the sum of the three double sums evaluates to − 1
4λ2t (θ◦)

λ′t(θ◦)[λ
′
t(θ◦)]

> and therefore

N2E[V ′1(θ◦)[V
′
1(θ◦)]

>] =
N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> − 1

4λ2t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

>

+
N∑
t=1

αt(θ◦)

λ3t (θ◦)
µ′t(θ◦)[λ

′
t(θ◦)]

> +
N∑
t=1

βt(θ◦)

4λ4t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

>.

(6)

We now use the assumption that the data distribution is Gaussian. Under this assumption,

the third- and fourth-order moments are αt(θ◦) = 0 and βt(θ◦) = 3λ2t (θ◦), respectively.

Then, it is straightforward to see that in such a case the expression in (6) reduces to

NE[V ′1(θ◦)[V
′
1(θ◦)]

>] =
1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> +
1

2λ2t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

>, (7)

which is equal to E[V ′′1 (θ◦)]. We conclude that

P1 =
[
V
′′
1(θ◦)

]−1
=

[
lim
N→∞

(
1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> +
1

2λ2t (θ◦)
λ′t(θ◦)[λ

′
t(θ◦)]

>

)]−1
(8)

which is equal to the asymptotic Gaussian CRLB. Notice that here V
′′
1(θ◦) is the per

sample Fisher information matrix, and that it is given as the sum of two terms: the first

corresponds to the information from the mean, while the second is due to that from the

variance.

Next, we compute P2. From (4), using the chain rule, it holds that

NV ′2(θ) =
N∑
t=1

−(yt − µt(θ))

λt(θ◦)
µ′t(θ),

and

NV ′′2 (θ) =
N∑
t=1

1

λt(θ◦)
µ′t(θ)[µ′t(θ)]> − (yt − µt(θ))

λt(θ◦)
µ′′t (θ). (9)

Moreover,

N2V ′2(θ)[V ′2(θ)]> =
N∑
t=1

N∑
s=1

(yt − µt(θ))(ys − µs(θ))

λt(θ◦)λs(θ◦)
µ′t(θ)[µ′s(θ)]>.

Taking the expectation on both sides and using the independence assumption of the

model,

NE[V ′2(θ◦)[V
′
2(θ◦)]

>] =
1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

>.
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Now, using (9), it holds that

E[V ′′2 (θ◦)] =
1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

> = NE[V ′2(θ◦)[V
′
2(θ◦)]

>],

and hence we conclude that

P2 =
[
V
′′
2(θ◦)

]−1
=

[
lim
N→∞

1

N

N∑
t=1

1

λt(θ◦)
µ′t(θ◦)[µ

′
t(θ◦)]

>

]−1
. (10)

By comparing (8) and (10), and noting that the term 1
2λ2t (θ◦)

λ′t(θ◦)[λ
′
t(θ◦)]

> is positive,

we see that P2 � P1 for Gaussian data distributions; in other words P2 − P1 is a positive

semidefinite matrix. This result is due to the joint parameterization of the mean and

variance.

Conclusion 1: For Gaussian data distributions, where the mean and vari-

ance are jointly parameterized, the Gaussian MLE achieves the CRLB and is

therefore asymptotically efficient. The optimally weighted LSE, on the other

hand, may not be asymptotically efficient.

The non-Gaussian case

Now suppose that the true data distribution is non-Gaussian and let us first consider the

computations of P1. Referring back to the computations leading to P1 in the Gaussian

case, we see that the expression in (5) is valid in the non-Gaussian case as well. This is

because only the independence assumption of the model was required in the computations,

and not the form of the data distribution. On the other hand, the expression in (7) is

valid only for Gaussian data distributions, due to the specific substitutions used for the

third- and fourth-order moments. Therefore, in the non-Gaussian case (7) is not valid.

Instead, (6) has to be used.

Consequently, in the non-Gaussian case E[V ′′1 (θ◦)] 6= NE[V ′1(θ◦)[V
′
1(θ◦)]

>], and the asymp-

totic covariance matrix of the Gaussian MLE is given by

P1 =
[

lim
N→∞

E[V ′′1 (θ◦)]
]−1 [

lim
N→∞

NE
[
V ′1(θ◦)[V

′
1(θ◦)]

>]] [ lim
N→∞

E[V ′′1 (θ◦)]
]−1

(11)

where E[V ′′1 (θ◦)] is as in (5) and NE[V ′1(θ◦)[V
′
1(θ◦)]

>] is as in (6), where the third- and

fourth-order moments appear.
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Next, we compute P2. Referring back to the computations leading to P2 in the Gaussian

case, we see that the expression in (10) is valid in the non-Gaussian case as well. This

is because higher order moments were not used when evaluating the expression, and no

assumption was made on the shape of the data distribution.

The scalar parameter case

A direct comparison between P1 and P2 in the non-Gaussian case is generally not possible.

In order to get some insight regarding the effect of the third- and fourth-order moments

on P1 in the non-Gaussian case, we will assume in this part that θ ∈ R, and that the

model is fourth-order stationary; i.e., the first four moments do not depend on t (and

therefore we may drop the subscript t from the notations).

Notice that using (11) and (10) it holds that

P1 =
A+ C

(A+B)2
and P2 =

1

A
(12)

where

A =
(µ′(θ◦))

2

λ(θ◦)
, B =

1

2

(
λ′(θ◦)

λ(θ◦)

)2

, C = D + E − 1

2
B,

and

D =
β(θ◦)(λ

′(θ◦))
2

4λ4(θ◦)
, E =

α(θ◦)µ
′(θ◦)λ

′(θ◦)

λ3(θ◦)
.

Then, P1 ≤ P2 if and only if

A ≤ (A+B)2

A+ C
⇐⇒ C ≤ B2

A
+ 2B ⇐⇒ D + E ≤ B2

A
+

5

2
B, (13)

or equivalently ([6])

κ(θ◦) ≤

[
(λ′(θ◦))

2

λ(θ◦) (µ′(θ◦))
2 −

4

λ(θ◦)

µ′(θ◦)

λ′(θ◦)
α(θ◦) + 5

]
(14)

where κ(θ◦) = β(θ◦)
λ2(θ◦)

is the kurtosis. Otherwise, P2 < P1 and the optimal LSE will have a

smaller asymptotic variance. For symmetric data distributions, the third-order moment

α(θ◦) = 0 and the condition (14) giving P1 ≤ P2 reduces to

κ(θ◦) ≤

[
(λ′(θ◦))

2

λ(θ◦) (µ′(θ◦))
2 + 5

]
.
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This shows that in the non-Gaussian case, the Gaussian MLE is not always better than

the optimally weighted LSE; this will depend on the model parameterization and the

shape of the data distribution in terms of symmetry and kurtosis.

Conclusion 2: For non-Gaussian data distributions where the mean and

variance are jointly parameterized, the Gaussian MLE is not necessarily better

than the optimally weighted LSE. In order to decide which estimator is better,

the knowledge of the third- and fourth-order moments (as functions of θ) is

required.

4 Illustrative Example

The following example, taken from [6, Sections 10.2 and 10.3], is used to illustrate the

results. It is specifically chosen as it provides a case where the optimally weighted LSE

coincides with the (correctly specified) asymptotically efficient MLE, while the Gaussian

MLE is inefficient.

Suppose that the model is given by

yt = θu2t +
√

2θu2t εt, t = 1, 2, . . . , N,

where {ut} is a known realization of independent standard Gaussian random variables,

and {εt} is a sequence of independent random variables with zero mean and unit variance.

In this case,

µt(θ) = θu2t , λt(θ) = 2θ2u4t . (15)

Now consider the following two data distributions

Gaussian: yt ∼ N
(
θu2t , 2θ

2u4t
)
,

Non-Gaussian (Gamma): yt ∼ Γ

(
1

2
, 2θu2t

)
,

(16)

and notice that in both cases, the mean and variance of yt are given by (15).

Suppose that the true parameter θ◦ = 1, and notice that µ′(θ◦) = u2t , and λ′t(θ◦) = 4u4t .

Then, in the Gaussian case, by using (8) and (10), it holds that

P1 = 0.4 (= asymptotic Gaussian CRLB), P2 = 2.
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Now, notice that the third- and fourth-order moments of the Gamma distribution in (16)

when θ = θ◦ are 8u6t and 60u8t , respectively. Then, in the Gamma case, by using (11) and

(10), it holds that

P1 = 2.96, P2 = 2 (= asymptotic Gamma CRLB),

where the variance P2 coincides with the asymptotic Gamma CRLB. To see this, recall

that, by definition, the one sample log-likelihood function of the Gamma model in (16) is

log p(yt; θ) = − log

(
Γ

(
1

2

))
− 1

2
log(2θu2t )−

1

2
log(yt)−

yt
2θu2t

,

and its second derivative with respect to θ is

(log p(yt; θ))
′′ =

1

2θ2
− yt
θ3u2t

.

Consequently, the per sample Fisher information is E
[
− (log p(yt; θ))

′′ |θ=θ◦
]

= 0.5, and

the asymptotic Gamma CRLB is 2.

Therefore, we have a case where the optimally weighted LSE coincides with the MLE and

is (asymptotically) more accurate than the Gaussian MLE. Furthermore, by comparing the

CRLB in both cases, we notice that the bound associated with the Gaussian assumption

is smaller than that of the Gamma assumption. This is due to the joint parameterization

of the mean and variance.

Conclusion 3: The min-max optimality property of the Gaussian distribution

(see [3]) may not hold when the mean and variance are jointly parameterized.

5 What we have learned

The results provided in the previous sections show that for non-Gaussian data distribu-

tions, with jointly parameterized mean and variance, the Gaussian MLE is not necessarily

better than the optimally weighted LSE. We derived the expressions of the asymptotic

covariance matrices, and established a condition, when θ ∈ R, under which one of the

estimators may be preferred. Finally, using an example, we saw that when the mean and

variance are jointly parameterized, the min-max property of the Gaussian distribution

may not hold.
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