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Abstract—This paper addresses the problem of distributed
training of a machine learning model over the nodes of a wireless
communication network. Existing distributed training methods
are not explicitly designed for these networks, which usually have
physical limitations on bandwidth, delay, or computation, thus
hindering or even blocking the training tasks. To address such
a problem, we consider a general class of algorithms where the
training is performed by iterative distributed computations across
the nodes. We assume that the nodes have some background
traffic and communicate using the slotted-ALOHA protocol.
We propose an iteration-termination criterion to investigate
the trade-off between achievable training performance and the
overall cost of running the algorithms. We show that, given a
total running budget, the training performance becomes worse
as either the background communication traffic or the dimension
of the training problem increases. We conclude that a co-
design of distributed optimization algorithms and communication
protocols is essential for the success of machine learning over
wireless networks and edge computing.

Index Terms—Distributed optimization, efficient algorithm,
latency, convergence, machine learning.

I. INTRODUCTION

The recent success of artificial intelligence (AI) and large-

scale machine learning (ML), are largely based on the ad-

vancements of distributed optimization algorithms [1]. The

main objective of such algorithms is better training/test perfor-

mance. However, the distributed optimizations do not include

by design the costs of running the solution algorithms. The

state-of-the-art of such algorithms requires powerful com-

puting platforms with vast amounts of computational and

communication resources. Although such resources are avail-

able in modern data centers, there is an emerging need to

extend machine learning tasks where such powerful computing

platforms are not available due to communication and energy

resource constraints. Use cases include machine leaning over

Internet-of-Things, edge computing, vehicular networks, mo-

bile communications, or general networks with background

traffic [2], [3].

In this paper, we address the problem of distributed op-

timization for ML over a wireless communication network,

where the computations and communications must necessarily

be efficient. We call such a problem “ML over networks”

(MLoNs). Specifically, our MLoN is defined as follows: We

have a star network topology where a master node owns the

ML model and a set of distributed worker nodes [N ] owns

the data. The ML problem consists in optimizing a finite

sum of N differentiable functions fi, i ∈ [N ], which take

inputs from R
d for some positive d and give their outputs in

R, i.e., {fi : R
d 7→ R}i∈[N ] with corresponding gradients

{∇fi : R
d 7→ R

d}i∈[N ]. This problem is predominant in

ML training [4]. The common solution to such problems

involves an iterative procedure wherein at iteration k, worker

nodes have to find the gradients {∇fi(wk)}i at parameter

wk, send them back to a central controller (master node).

Then, the master node updates the model parameters to wk+1

and broadcasts it to all the nodes so they can start the next

iteration [5]. However, every iteration of these algorithms

imposes some costs (e.g., computation, privacy, latency, or

energy). Although distributed optimization algorithms alleviate

computation and privacy by parallel computations at worker

nodes using their local private data [5], [6], they introduce a

communication cost: parameter and gradient vectors should

be exchanged among the master and the worker nodes to

run a new iteration. As we show throughout this paper, the

communication cost can be orders of magnitude larger than

the computational costs, thus making the iterative procedure

much inefficient.

There have been numerous studies on communication-

efficient optimization and distributed ML. These studies can

be grouped into three main approaches:

• Regret minimization provides a framework for charac-

terizing cost-efficient iterative algorithms, when the cost

is defined as the optimality penalty,
∑

i∈[N ] fi(wk) −∑

i∈[N ] fi(w
⋆), where w

⋆ is the optimal solution [7].

An important weakness of regret minimization framework

is the decreasing additional penalty over time. Namely,

as we get closer to the minimizer,
∑

i∈[N ] fi(wk) −
∑

i∈[N ] fi(w
⋆) reduces. However, in the presence of a

real communication network, the iteration costs may be

actually increasing (not decreasing) function of the iter-

ations. Consequently, the regret minimization framework

may lead to a huge number of iterations and thus of

communications, as we shall see in Section IV-A.

• Compression is an approach to reduce the amount of

information exchange (bits) among distributed nodes, and

thereby save communication resources [8], [9]. This can

be realized through the quantization of the parameter and

gradient vectors by fewer bits or sending only the most

important values (the ones with higher magnitudes).



• Model averaging describes an alternative approach

wherein worker nodes update their local models, and

these models are averaged across nodes after some it-

erations. The nodes then start their local updates using

this new global parameter and continue this process until

convergence [10]. Reference [10] showed that these ap-

proaches can substantially reduce the number of commu-

nication rounds needed to solve an optimization problem.

Unfortunately, the aforementioned approaches fail to cap-

ture the actual cost of running a distributed optimization

algorithm and its adaptation to the underlying communication

protocol. The same compression or model averaging algorithm

may correspond to completely different values for latency or

energy consumption in various communication settings. The

main problem is that the three existing approaches mentioned

above assume that the complexity of a distributed MLoN is

given by the number of bits per communication round, or

the number of communication rounds. However, they neglect

other more important costs involved in MLoNs: overall latency

and energy consumption for solving a ML problem. These

factors become of paramount importance when we implement

machine learning on bandwidth or battery-limited wireless

networks, where latency (e.g., in remote surgery application)

and energy consumption (e.g., in low power Internet-of-

Things) may render the ultimate solution and consequently the

distributed algorithm useless. This paper address this important

research gap.

In this paper, we characterize the overall latency cost of

solving an MLoN problem where the worker nodes have some

background traffics and follow a slotted-ALOHA medium

access control protocol for uplink. The simple protocol re-

quires no coordination among the worker nodes and provides

a reasonable lower bound on the convergence rate of the

distributed optimization algorithm [11]. Moreover, in the pres-

ence of directional communication, slotted-ALOHA provides

a better latency performance than many other contention-

based medium access control algorithms [12]. We propose

to optimize the trade-off between achievable objective value

and the overall cost of running the distributed ML algorithm.

We then propose a non-causal solution algorithm to such an

optimization problem as a means to characterize the minimum.

Afterward, we develop a simple causal solution algorithm that

can find a point very close to the non-causal minimum. Our

extensive results show that, given a total budget to run the

iterations, the ML training performance gets worse as either

the background communication traffic or the dimension of the

optimization problem increases. We observe similar patterns in

both batch and mini-batch updates of our proposed algorithm.

We conclude that a co-design of distributed optimization

algorithms and communication protocols are essential for the

success of MLoN, including its applications to edge comput-

ing, Internet-of-Things, or intelligent transportation systems.

The rest of this paper is organized as follows. Section II

and Section III describe the general system model and some

following results. In Section IV, we analyze the proposed

batch and mini-batch updates with some numerical results and

concluding remarks are presented in Section V.

Notation: Normal font w, bold font small-case w, bold-

font capital letter W , and calligraphic font W denote scalar,

vector, matrix, and set, respectively. We define the index set

[N ] = {1, 2, . . . , N} for any integer N . We denote by ‖ · ‖p
the lp norm for p ∈ N ∪ {∞}, by ‖ · ‖ the l2 norm, by [w]i
entry i of vector w, and by w

T the transpose of w.

II. SYSTEM MODEL

Consider a network of M computational (worker) nodes

that cooperatively solve a distributed computational problem

involving an objective function f(w). Let tuple (xij , yij)
denote data sample i of worker node j and w denote the model

parameter at the master node, with dimension d. Assuming
∑

j∈[M ] Nj = N , our optimization problem is

w
⋆ ∈ min

w∈Rd
f(w) =

1

M

∑

j∈[M ]

1

Nj

∑

i∈[Nj ]

f(w;xij , yij)

︸ ︷︷ ︸

:= fj(w)

. (1)

We assume that our objective function f , is convex and L-

smooth and we use a gradient descent solver for obtaining

the optimal solution of f . We need these assumptions for

the analysis, though our approach is applicable to multi-

convex [13] structures (such as a deep neural network training

optimization problem) after some minor modifications.

A. Gradient Descent

Gradient descent is a prominent family of algorithms to

solve (1) by distributed computations among worker nodes.

The master node sends wk to the worker nodes at iteration

k and then each worker node j computes in parallel its

gradient term ∇j
k := {

∑

i∈[Nj ]
∇wf(wk;xij , yij)/Nj} over

its private dataset of Nj samples. Afterward, they send the

gradient vectors to the master node, who updates the parameter

according to

wk+1 = wk − αk

∑

j∈[M ] ∇
j
k

M
,

for a sequence of positive step-sizes (αk)k=0,1,...,K . The

master node runs these iterations until a convergence crite-

ria is met. These steps are summarized in the well-known

Algorithm 1. Let k̄ shows the iteration at which the stopping

criteria is met for the first time, namely

k̄ = min






k |

∥
∥
∥
∥
∥
∥

1

M

∑

j∈[M ]

∇j
k

∥
∥
∥
∥
∥
∥

< εk






, (2)

where εk > 0 is the decision threshold for terminating the

algorithm at iteration k. Let ck denote the cost of iteration k.

Running Algorithm 1 costs
∑k̄

k=1 ck.

We assume that the sequence (ck)k=1,2,... is independent

of objective function f , the decision threshold (εk), and

parameter (wk). A mission-critical use case has, for example,

ck → ∞ when k > K for some positive integer K (decision

deadline). This means that after a decision deadline, the cost



Algorithm 1: Generic gradient descent algorithm model.

1: Inputs: w0, f , (xij , yij)i,j , αk, K, M , {Nj}j∈[M ]

2: for k = 1, 2, . . . ,K do
3: Each node j ∈ [M ] does in parallel
4: Obtain ∇j

k := {
∑

i∈[Nj ]
∇wf(wk;xij , yij)/Nj}

5: Send ∇j

k to the master node
6: Master node collects {∇j

k}j and runs

wk+1 ← wk − αk

∑
j∈[M ]∇

j

k

M

7: Master node broadcasts wk+1 to the worker nodes
8: end for
9: Return wK+1

to further run the algorithm diverges to infinity. In the next

sections, we characterize (ck)k for two specific use cases when

we consider the latency cost of every iteration.

B. Problem Formulation

We wish to solve problem (1) with the gradient descent

method, but where we explicitly consider the cost associated

with the iterations. Specifically, we define the general cost as

a convex combination of the iteration-cost function
∑k̄

k=1 ck
and the loss function f(wk̄). Note that such a cost is general in

the sense that, depending on the values of ck, it can naturally

model many cases including constant charge per computation

and mission-critical application, among others. Assuming a

sufficiently large integer K, we have:

minimize
ε1,ε2,...,εK

β
K∑

k=1

ck1k≤k̄ + (1− β)f(wk̄), (3)

where 1x is an indicator function taking 1 iff x is true, and

k̄ shows the index at which we stop the iterations of the

distributed gradient algorithm.

Optimization problem (3) addresses the tradeoff between the

iteration-cost function
∑k̄

k=1 ck and the loss function f(wk̄).
First, the “descent” property of Algorithm 1 implies that

‖
∑

j∈[M ] ∇
j
k/M‖ is a non-increasing (usually decreasing)

function of k. Consequently, equation (5) yields that k̄ is

a non-increasing function of εk. On one hand, increasing k̄
(equivalently reducing εk) requires additional transmissions

of parameter and gradient and vectors among the worker

nodes and the master node, and consequently an increase of

the cost of running gradient descent. On the other hand, the

gradient descent iterations ensure that f(wk̄) decreases with

k̄. Optimization problem (1) addressed this tradeoff by finding

the optimal sequence of termination thresholds (εk)k. Once the

optimal sequence is known after solving optimization problem

(3), we can achieve an efficient distributed gradient descent

algorithm to solve (1). We give a concrete definition for this

efficiency in the following subsection.

C. Slotted-ALOHA example

Although our framework is applicable to a general cost

model, we focus on the end-to-end latency as the iteration-

cost function
∑

k ck. To have a concrete model of latency, we

consider the following wireless communication scenario. We

consider a broadcast channel in the downlink (from the master

node to the worker nodes) and a contention-based multiple

access channel in the uplink (from the worker nodes to the

master node). We assume that the uplink transmissions are

regulated by slotted-ALOHA protocol [11]. Every node has

an infinite buffer to keep their information packets, including

gradient vectors, and send them by the first-in-first-out policy.

Upon receiving wk, each worker node j(∈ [M ]) computes

its average gradient term ∇j and puts it in its transmission

queue as shown in Fig. 1. Once a packet is at the queue head,

it follows slotted-ALOHA with a binary exponential backoff

retransmission policy [14]. In particular, the transmission starts

only at the beginning of the slots and upon every collision, one

retransmission is scheduled after a random backoff delay taken

uniformly at random from window [1, b] for some integer b that

is doubled by every collision event.

Running every iteration of Algorithm 1 entails four latency

components:

ℓ1: latency in broadcasting parameters by master node,

ℓ2: latency in computing ∇j
k for every worker node j,

ℓ3: latency in sending ∇j
k to master node in a multiple access

channel, and

ℓ4: latency in updating parameters at the master node.

For ℓ1, we consider a broadcast channel with data rate C
bits/sec and parameter size of b bits (which includes the pay-

load and headers), leading to a constant latency of ℓ1 = b/C
seconds. It is natural to assume that ℓ2 and ℓ4 are constant and

given. These values can be easily estimated by the clock speed

of the processors and the workload of computing gradients

at the worker nodes or updating parameters at the master

node [15]. The third term, ℓ3, is usually the largest because it is

determined by the channel capacity, resource allocation policy,

and the network traffic. In the next sections, we characterize

this term for two cases:

• Batch update, where the master node updates wk only

after receiving all the gradients {∇j
k}j∈[M ]; and

• Mini-batch update, where the master node receives gra-

dients that arrive within window of Ts time slots and

updates wk afterward with the received gradients.

The batch update is normal gradient descent, and the mini-

batch update is similar to a mini-batch gradient descent where

a worker node j at iteration k computes the gradient ∇j
k with

a (usually randomly selected) subset of its private dataset [4].

In many cases with big datasets, this sub-sampling process

substantially reduces computational complexity. The main

difference of this approach to our mini-batch gradient version

is that the wireless communication network is the main reason

for updating wk without some gradient terms. In that case,

all the computations done for some ∇k
j may be a waste if

a poor communication channel or heavy background traffic

of node j prohibits the master node to receive ∇k
j within Ts

slots. In Section IV-B, we characterize the impact of Ts and

the background traffic on the convergence performance of our

solution algorithms to (3).
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Fig. 1: General architecture of Machine Learning over Networks (MLoNs)
problem. The BS is the master node and the various terminals are the worker
nodes. They all wish to solve problem (1). The queues at the worker nodes
have background traffics (red items) and gradient vectors (blue items), required
the distributed gradient descent algorithm using our proposed thresholds
obtained by (6).

III. SOLUTION ALGORITHMS

In this section, we derive some useful properties of opti-

mization problem (3). Then, based on those properties, we

propose a non-causal and a causal solution algorithms for this

optimization problem.

A. Results

In this part, we aim to discuss about some technically useful

results obtained from (3). First we consider the following

assumption:

Assumption 1. The iteration-cost function
∑k̄

k=1 ck is a

discrete convex function of k̄.

For notation simplicity, define Ck̄ :=
∑k̄

k=1 ck. Assump-

tion 1 implies that the sequence (Ck̄)k̄ satisfies 2Ck̄ ≤
Ck̄−1 + Ck̄+1 for all k̄ ∈ N [16, Definition 1]. Defining

∆Ck̄ = Ck̄ − Ck̄+1 and ∆2Ck̄ = ∆Ck̄ − ∆Ck̄+1, Assump-

tion 1 implies ∆2Ck̄ ≥ 0 for all k̄ ∈ N. Now, we can pose

the following proposition.

Proposition 1. Given a descent-class of algorithms, optimiza-

tion problem (3) is identical to

minimize
ε

β
∞∑

k=1

ck1k≤k̄ + (1− β)f(wk̄) , (4)

where

k̄(ε) := min






k |

∥
∥
∥
∥
∥
∥

1

M

∑

j∈[M ]

∇j
k

∥
∥
∥
∥
∥
∥

< ε






. (5)

Proposition 1 implies that the termination time and the

objective value of (3) when utilizing Algorithm 1 are the

same for both constant optimal ε and optimal sequence (εk)k.

Therefore, we focus only on (4) with the purpose of deriving

the stopping time of Algorithm 1.

Lemma 1. Consider ε⋆ as a minimizer of optimization prob-

lem (4). Let k⋆ be the solution to the following optimization

problem by defining G(k̄(ε)) := β
∑∞

k=1 ck1k≤k̄ + (1 −
β)f(wk̄).

k⋆ ∈ argmin
k̄∈N

G(k̄(ε)) (6)

Then G(k̄(ε⋆)) = G(k⋆), namely the solution to (6) gives the

optimal number of iterations that solves (5).

Proof: Define the pre-image of k̄(ε) at any integer k0
as E(k0) :=

{
ε | k̄(ε) = k0

}
. Now, let ε⋆ be a solution to

optimization problem (4). By definition, k̄(ε⋆) minimizes G,

and therefore G(k̄(ε⋆)) ≤ G(k⋆). Now, if k̄(ε⋆) 6= k⋆ and that

G(k̄(ε⋆)) 6= G(k⋆), there exists a k⋆ from (6) that achieves a

smaller G which cannot be true due to the optimality of ε⋆.

Conversely, if k⋆ is a solution to (6), G(k⋆) ≤ G(k̄(ε)) for

any ε. Therefore, any ε ∈ E(k⋆) is a solution to optimization

problem (4), leading to G(k̄(ε⋆)) = G(k⋆).
Lemma 1 indicates that instead of optimizing over ε, we

can directly find the optimal stopping iteration by solving

optimization problem (5) and achieve the same objective value

of (5) by solving optimization problem (6). In the following,

we focus on optimization problem (6). Now, we consider

two illustrative extreme examples in which there is no trade-

off between two terms of the objective function of (6). The

purpose of these examples is to show the importance of cost-

aware distributed optimization in MLoN.

Example 1. Consider β = 0 and β = 1 special cases:

• When β = 0, optimization problem (6) reduces to

k⋆ ∈ argmin
k̄∈N

f(wk̄), (7)

in which the iteration cost ck does not play any role in

optimization problem, and consequently k⋆ → ∞ would

be the solution of (6). In other words, due to lack of

any penalty in running iterations and convexity of the

objective function, the algorithm iterates until f(wk) →
f(w⋆) = f⋆. However, finding this solution may entail

a very large iteration cost, ignored in (7). It follows for

every ε ≥ 0 that G(ε⋆;β = 0,wK , ck) ≤ G(ε;β =
0,wK , ck).

• When β = 1, optimization problem (6) reduces to

k⋆ ∈ argmin
k̄∈N

∞∑

i=1

ck1k≤k̄, (8)

in which the objective function f(wk) of (1) plays no role

in optimization problem (6). Consequently, (8) minimizes

only the iterating cost, with a trivial solution of k⋆ =
0 (stop without any iteration) due to the positively of

sequence (ck > 0)k.

The examples above teach us that we need to co-design com-

munication protocol (to reduce
∑

k ck) and the optimization

algorithm that solves the machine learning problem (to reduce

f or stop iterations at the right time without incurring in

extra costs). Now we can turn to showing a useful property of

optimization problem (6).

Lemma 2. Optimization problem (6) is discrete convex.

Proof: It follows from the definition of discrete convex-

ity [17] and that both terms of the objective function are

discrete convex. We use this convexity property in the next

subsection to solve (6).



Lemma 2 plays an important role in order to develop the

solution algorithms we present in the next part.

B. Non-causal and Causal Solution Algorithms

Here, using the results of Subsection III-A, we propose two

algorithms to solve optimization problem (6).

1) Non-causal Setting: One of the simplest approaches

to solve (6) is an exhaustive search over the discrete set

[0,K]. To this end, we should have in advance, namely at

time k = 0, the sequence of (f(wk))k and (ck)k for all

k ∈ [0,K]. Although (ck)k may be known a priory in some

use cases, the sequence of parameters (wk)k and consequently

the sequence of (f(wk))k are not available in advance. Our

non-causal setting assumes that all these values are available

at k = 0 so it finds k⋆ of optimization problem (6). Clearly,

it is an impractical approach, because obtaining the values of

(f(wk))k requires following each iteration k in the gradient

descent algorithm while we are supposed to find the optimal

termination iteration. However, it gives the true minimizer k⋆,

which we can use later in Section IV to assess the performance

of the following causal solution algorithm.

2) Causal Setting: since we cannot construct the non-causal

setting to solve (6) in real world, it is critical to develop a

practical causal way for solving this important optimization

problem. Consider G(k̄) := β
∑k̄

k=1 ck + (1 − β)f(wk̄)
as the cost function at iteration k̄ ≤ k⋆. Since G(k̄) is a

convex combination of the loss function f and the iteration-

cost function
∑

k ck, it is a discrete convex function; see

Lemma 2. Therefore, the optimal point is achievable by

tracking the sign of derivative of G(k̄), which corresponds to

the sign of difference of two consecutive G. In particular, in

the causal setting, we terminate the gradient descent iterations

once G(k̄ + 1) ≥ G(k̄). Algorithms 2 and 3 illustrate batch

and mini-batch implementations of the distributed gradient

descent with our causal termination approach. Notice that

the implicit sub-sampling (from set {∇j
k}j) in the mini-batch

updates, which can be interpreted as the stochastic noise [4]

leads to approximations of f(wk), denoted by f̂(wk), and

therefore approximation of cost function, denoted by Ĝ(k̄).
This stochastic noise may lead to an improper early stop from

Ĝ(k̄ + 1) ≥ Ĝ(k̄). To address this, Algorithm 3 may wait

for some more time slots to get more gradients and have an

update with a smaller gradient noise. Once the objective is not

reduced for nt consecutive iterations, we stop the mini-batch

updates.

Proposition 2. Let k⋆ and k⋆c denote the solutions to opti-

mization problem (6), obtained in the non-causal and causal

settings, respectively. We have

k⋆ ≤ k⋆c ≤ k⋆ + 1 , (9a)

f(k⋆c ) ≤ f(k⋆) , and (9b)

G(wk⋆
c
) ≥ G(wk⋆) . (9c)

Proof: In the beginning, the solver sets ε = +∞ in order

to ensure running of the iterations. Inequality G(k̄+1) < G(k̄)
implies that the objective function is still in the decreasing

Algorithm 2: Batch update with causal setting.

1: Inputs: w0, (xij , yij)i,j , αk, K, M , {Nj}j∈[M ], (ck)k.
2: Initialize: k⋆

c = K
3: for k ≤ k⋆

c do
4: Each node j ∈ [M ] does in parallel
5: Obtain f j

k :=
∑

i∈[Nj ]
f(wk;xij , yij)/Nj and ∇j

k :=

∇wf
j

k

6: Send f j

k and ∇j

k to the master node
7: Wait until master node collects all {∇j

k}j and runs

wk+1 ← wk − αk

∑
j∈[M ]∇

j

k

M

8: Calculate f(wk) :=
∑

j∈[M ] f
j

k/|M | and G(k)
9: if G(k) < G(k − 1) then

10: Master node broadcasts wk+1 to the worker nodes
11: else
12: Set k⋆

c = k, Break and go to line 15
13: end if
14: Set k ← k + 1
15: end for
16: Return wk⋆

c
, k⋆

c , G

Algorithm 3: Mini-batch update with causal setting.

1: Inputs: w0, (xij , yij)i,j , αk, K, M , {Nj}j∈[M ], Ts, (ck)k, nt

2: Initialize: k⋆
c = K, and Gmin =∞.

3: for k ≤ k⋆
c do

4: Ma = {}
5: while |Ma| < M do
6: for next time slot = 1, 2, . . . , Ts do
7: Each node j ∈ [M ], j /∈Ma does in parallel
8: Obtain f j

k :=
∑

i∈[Nj ]
f(wk;xij , yij)/Nj and

∇j

k := ∇wf
j

k

9: Send f j

k and ∇j

k to the master node
10: Ma ←Ma ∪ {nodes with received gradients}
11: end for
12: Assuming 0/0 = 0, the master node runs

wk+1 ← wk − αk

∑
j∈Ma

∇j

k

|Ma|

13: Calculate f̂(wk) :=
∑

j∈[Ma]
f j

k/|Ma| and Ĝ(k)

14: if Ĝ(k + 1) < Gmin then
15: Master node broadcasts wk+1 to worker nodes
16: Set Gmin ← Ĝ(k) and n← 0
17: Break and go to line 24
18: else if n ≥ nt then
19: Set k⋆

c = k, Break and go to line 25
20: end if
21: n← n+ 1
22: end while
23: Set k ← k + 1
24: end for
25: Return: wk⋆

c
, k⋆

c , ˆG(k)

region and we have not found the minimum yet. As soon as

the sign changes, the algorithm would terminate by setting

the value of ε = 0, set the current k as k⋆c , and then

solver reports the corresponding values for G(k⋆c ) and f(wk⋆
c
).

Clearly, the penalty is up to one additional iteration when

we observe increase in G and terminate the process, leading

to inequality (9a). Given (9a), the discrete convexity of the

optimization problem (6) and the “descent property” of the



gradient descent algorithm [4] yields (9b). Inequality (9c) is a

direct consequence of the definition of k⋆ in (6).

Proposition 2, as a central result of our paper, shows

that we can develop a simple yet close-to-optimal algorithm

for optimization problem (6), and therefore of optimization

problem (4) thanks to Lemma 1. In other words, it takes just

one iteration more to the causal setting compared to the non-

causal.

IV. NUMERICAL RESULTS

In this section, we illustrate our results from the previous

sections and we numerically characterize the latency (cost)

of running distributed optimization to solve an ML problem

over a wireless network. We use a network simulation to

implement slotted-ALOHA with binary exponential backoff

and M worker nodes in the network. We consider a capacity

of one packet per slot and a slot duration of 1 µs and assume

that every worker node generates a new background traffic

packet at every time slot with probability pb

M
. A higher pb

values correspond to intensive traffics, like video streaming,

while a lower pb corresponds to lighter traffics, like browsing.

We consider solving a regression problem over a wireless

network using a real-world dataset. To this end, we extract a

binary dataset from MNIST (hand-written digits) by keeping

only samples of digits 0 and 1 and then setting their labels to

-1 and +1, respectively. We then randomly split the resulting

dataset of 12600 samples among M worker nodes, each having

{(xij , yij)}, where xij ∈ R
784 is a vectorized image at node

j ∈ [M ] with corresponding digit label yij ∈ {−1,+1}.

Without loss of generality, we consider a convex loss function

f(w) =
1

M

∑

j∈[M ]

1

Nj

∑

i∈[Nj ]

log
(

1 + e−w
Txijyij

)

(10)

where we consider that each worker node j ∈ [M ] has the

same number of samples, namely Nj = Nl, ∀j, l ∈ [M ].
In our experiments, we consider heavy (pb = 0.2) and light

(pb = 0.02) traffics, and dense (M = 10) and sparse (M = 5)

networks. We run the network for 103 times and define ck as

the latency (in seconds) required to receive the gradient vectors

by master node and run iteration k. This latency corresponds

to receiving all the gradients batch update and Ts time slots

for mini-batch update. We also set β = 0.5.

A. Batch Updates

Here, we evaluate the impact of batch gradient updates on

the performance of networked AI solving (1). Then, we use

our Algorithms 3 and 2 to solve (6) as means to find cost-

efficient solutions for (1).

Fig. 2 illustrates f ,
∑

k ck, and G against k̄. Fig. 2(a) con-

firms Proposition 2 and shows that our simple casual algorithm

can almost recover the optimal stopping criteria, obtained

by the non-causal setting. Unless otherwise mentioned, the

following figures, including Figs. 2(b) and 2(c), show the

results for the causal setting. Fig. 2(b) illustrates the cost of

running distributed gradient descent for various background

traffics and network densities. Adding more worker nodes,
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Fig. 2: Illustration of the batch update Algorithm 2.

while reducing the computational loads of every worker node,

may lead to a substantial penalty in the latency cost for running

every iteration due to higher network congestion. Moreover,

heavier background traffics, if not handled properly by the

medium access control layer, would increase the latency of

running every iteration.

B. Mini-batch Update

In the mini-batch update, we wait for Ts time slots. The

master node then updates the parameter using the gradients it

received during this period. We also set nt = 15, computed by

cross-validation, to reduce the effect of noise in the gradient

estimates and stopping criteria.

Fig. 3 characterizes the number or received gradients and

mean queue length of the worker nodes against iteration num-

ber k̄. From this figure, network congestion (M = 10, pb =
0.2) drastically increases the queue length of the worker nodes

and therefore sending ∇j
k for higher k may involve a higher

latency. Consequently, it is likely that after some iterations, the

huge backlogged queue would not allow for getting enough

gradient vectors during Ts slots. In that case, although we are

paying the cost of running iterations (exchanging parameters

and gradients), there is almost no progress in the optimization,

and the gradient descent can converge only to a ball around

the minimizer w⋆, whose radius is determined by the missing

gradient vectors [4]. This can be addressed by increasing Ts (to

collect more gradients) at the expense of higher per-iteration

latency. Such extra latency may not be necessary for light

background traffics, e.g., (M = 5, pb = 0.2). These results

highlight the importance of the co-design of machine learning

algorithms and wireless networking protocol.
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Fig. 3: Illustration of the mini-batch update Algorithm 3.
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Fig. 4: Comparison between batch and mini-batch updates of Algorithm 2
and 3, respectively, with M = 10 and pb = 0.1.

Fig. 4 compares the objective function G(k̄) and the it-

eration cost
∑k̄

k=1 ck of batch and mini-batch updates for

M = 10 and pb = 0.1. This figure highlights the importance

of designing communication protocol. An improper choice of

Ts may lead to a very bad solution, both in terms of loss

function f and cost
∑

ck. However, with a proper design, the

mini-batch approach can outperform batch updates. The mini-

batch update allows for running more less-expensive iterations

than the batch update counterpart. As a result, we have a faster

convergence to a vicinity of the minimizer w
⋆ until the high

iteration-cost prohibits running more iterations and getting

closer to w
⋆. Moreover, the mini-batch approach is robust

to the straggler worker nodes without any need for adding

redundancy to the optimization problem as done in [18].

V. CONCLUSION

In this paper, we proposed a framework to design cost-aware

distributed optimization for ML over Networks (MLoN). We

characterized the cost of running iterations of a generic

gradient-based distributed solution algorithms over a shared

wireless channel, regulated by a slotted-ALOHA protocol.

We characterized the end-to-end latency, as the iteration-cost

function, and showed that increasing the background traffic

may prohibit the application of MLoN. We optimized the

iteration-termination criteria to minimize the trade-off between

achievable objective value and the overall cost of running the

solver. We concluded that a co-design of distributed optimiza-

tion algorithms and communication protocols are essential for

the success of MLoNs.

REFERENCES

[1] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspec-
tives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[2] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, 2018.

[3] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network
intelligence at the edge,” CoRR, vol. abs/1812.02858, 2018. [Online].
Available: http://arxiv.org/abs/1812.02858

[4] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-
scale machine learning,” SIAM Review, vol. 60, no. 2, pp. 223–311,
2018.
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