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Abstract—This paper considers a general class of iterative
algorithms performing a distributed training task over a network
where the nodes have background traffic and communicate
through a shared wireless channel. Focusing on the carrier-
sense multiple access with collision avoidance (CSMA/CA) as
the main communication protocol, we investigate the mini-batch
size and convergence of the training algorithm as a function of
the communication protocol and network settings. We show that,
given a total latency budget to run the algorithm, the training
performance becomes worse as either the background traffic or
the dimension of the training problem increases. We then propose
a lightweight algorithm to regulate the network congestion at
every node, based on local queue size with no explicit signaling
with other nodes, and demonstrate the performance improvement
due to this algorithm. We conclude that a co-design of distributed
optimization algorithms and communication protocols is essential
for the success of machine learning over wireless networks and
edge computing.

Index Terms—Distributed optimization, machine learning, ef-
ficient algorithm, latency, CSMA/CA.

I. INTRODUCTION

Recent advancements in distributed optimization have en-
abled new applications for large-scale machine learning
(ML) [1]. However, the state-of-the-art algorithms require
powerful computing platforms with vast amounts of compu-
tational and communication resources, which are not avail-
able in wireless networking scenarios due to communication
and energy resources constraints. Use cases include machine
leaning over Internet-of-Things, edge computing, vehicular
networks, mobile communications, or public networks serving
many classes of traffic [2], [3].

We address the problem of distributed machine learning
(ML) over a wireless communication network, where the com-
putations and communications must necessarily be efficient.
We call such a problem “ML over networks” (MLoN). Existing
distributed optimization algorithms alleviate computation and
privacy by parallel computations at worker nodes using their
local private data [4]. However, they often disregard the
communication cost of parameter exchanging (e.g., compu-
tation, privacy, latency, communication resource utilization,
or energy) among the nodes while running iterations. The
communication cost can be orders of magnitude larger than
the computational costs, thus making the iterative procedure
much inefficient [4].

There have been numerous studies on communication-
efficient optimization and distributed ML through gradient
compression/sparsification [5]–[7] or model-averaging [8].

These approaches assume that the complexity of a distributed
ML over networks (MLoN) is given by the number of bits per
communication round, the number of communication rounds,
or the number gradient exchanges. However, the existing
results fail to capture the actual cost of running a distributed
optimization algorithm, like the overall latency and commu-
nication resource consumption for solving an ML problem,
and its adaptation to the underlying communication proto-
col. These costs become of paramount importance when we
implement machine learning on bandwidth or battery-limited
wireless networks, where latency (e.g., in wireless automa-
tion) and energy consumption (e.g., in low power Internet-of-
Things) may render the ultimate solution and consequently the
distributed algorithm useless.

There have been some recent attempts to address the
co-design of optimization problems (in particular federated
learning [4]) and the underlying communication networks [9],
[10]. In particular, Yang at. al. [9] optimized the energy
consumption, and Chen at. al. [10] optimized the convergence
time of running federated learning over a network. Both of
these works assume the existence of dedicated channels to
all the devices, e.g, through cellular connections. In practice,
many machine learning applications will be run over shared
wireless networks where the potential background traffics of
the network devices may affect the available bandwidth for
running iterations of a distributed optimization algorithm.
Our previous paper [11] was among the first to consider
the impact of shared wireless communications and network
settings (number of nodes and their background traffics) on
the performance of a distributed training task. We considered
the slotted-ALOHA protocol and developed a framework for
cost-efficient distributed optimization, where we later modeled
the cost as the latency of running every iteration.

In this paper, we extend [11] for the CSMA/CA medium
access control protocol and experimentally evaluate the im-
pact of this protocol on the performance of distributed ML
training algorithms. We propose to optimize the trade-off
between achievable objective value and the overall cost of
running the training algorithm. We characterize the number
of gradients we receive and to run a minibatch gradient
descent and the queue size of the nodes as a function of the
underlying communication protocol and show that an improper
design of CSMA/CA may hinder the convergence of the
training algorithm. Inspired by these results, we then propose
a lightweight algorithm to regulate the network congestion at



every node, based on the local queue size with no explicit
signaling with other nodes. We show that our congestion
control algorithm substantially reduces the cost of running a
distributed algorithm. Furthermore, we model the iterations
of our algorithm by a stochastic gradient descent where the
so-called gradient noise [12] is a function of the CSMA/CA
protocol, background traffic, and the number of network nodes.
Our extensive results show that, given a total budget to run the
iterations, the ML training performance gets worse as either
the background communication traffic or the dimension of the
optimization problem increases. We conclude that a co-design
of distributed optimization algorithms and communication
protocols are essential for the success of MLoN, including
its applications to edge computing and Internet-of-Things.

The rest of this paper is organized as follows. Section II
describes the general system model, problem formulation,
and our proposed ML algorithm optimized for the underlying
wireless network and communication protocol. In Section III
we characterize the performance of our algorithm over a
wireless channel, regulated by the CSMA/CA protocol, which
we then optimize it in Section IV. We finally conclude the
paper in Section V.

II. PROBLEM STATEMENT AND SOLUTION ALGORITHM

Consider a star network of M computational (worker) nodes
that cooperatively solve a distributed computational problem
involving an objective/loss function f(w). Let tuple (xij , yij)
denote data sample i of worker node j, Nj denote the size of
the dataset of node j, and w denote the ML model parameter
at the master node, with dimension d. The ML problem is
formalized by the following optimization problem

w? ∈ min
w∈Rd

f(w) =
1

M

∑
j∈[M ]

1

Nj

∑
i∈[Nj ]

f(w;xij , yij)︸ ︷︷ ︸
:= fj(w)

. (1)

We assume that the objective function f , is convex and L-
smooth and we use the steps of a gradient descent solver
for obtaining the optimal solution of f [13]. We also assume
that every node has an infinite buffer to keep its information
packets, including gradient vectors. Upon receiving wk, each
worker node j(∈ [M ]) computes its average gradient term ∇j
and puts it in its transmission queue as shown in Fig. 1. In
parallel, each worker generates some background traffic, puts
them in their queue, and sends the packets by the first-in-first-
out queue policy.

The ML optimization problem (1) and its associated solution
algorithm have never been conceived for real networks such as
wireless networks as shown in Fig. 1. Thus, in such networked
cases as in Fig. 1, there are two major technical issues. First,
gradient descent algorithm does not consider any cost associ-
ated with the exchange of the gradients and updated models.
Second, the decision threshold for termination, ε, is input to
gradient descent algorithm which is not optimally set, whereas
it has a major role in determining the number of iterations. To
address these two issues, we propose to solve problem (1) with

Fig. 1: General architecture of Machine Learning over Networks (MLoN)
problem. The BS is the master node and the various terminals are the worker
nodes. They all wish to solve problem (1).

a fundamentally new version of the gradient descent method
by considering ck as the cost associated with each iteration.
We define the general cost as a convex combination of the
iteration-cost function

∑k̄
k=1 ck and the loss function f(wk̄)

where k̄ as the iteration at which the stopping criteria is met
for the first time and assuming a sufficiently large integer K.
Now, we pose the following problem [11]:

minimize
ε

β

∞∑
k=1

ck1k≤k̄ + (1− β)f(wk̄), (2)

where

k̄(ε) := min

k |
∥∥∥∥∥∥ 1

M

∑
j∈[M ]

∇jk

∥∥∥∥∥∥ < ε

 . (3)

where 1x is an indicator function. We make the natural
assumption that the sequence (ck)k=1,2,... is independent of
objective function f , the decision threshold (εk), and param-
eter (wk). Optimization problem (2) addresses the tradeoff
between the iteration-cost function

∑k̄
k=1 ck and the loss

function f(wk̄). On one hand, increasing k̄ (equivalently
reducing ε) requires additional transmissions of parameter and
gradient and vectors among the worker nodes and the master
node, and consequently an increase of the cost of running
gradient descent. On the other hand, the gradient descent
iterations ensure that f(wk̄) decreases with k̄. Optimization
problem (2) addressed this tradeoff by finding the optimal
termination threshold ε.

Consider ε? as a minimizer of optimization problem (2) and
define G(k̄(ε)) := β

∑∞
k=1 ck1k≤k̄ + (1− β)f(wk̄). Let k?

be the solution to the following optimization problem

k? ∈ arg min
k̄∈N

G(k̄(ε)) . (4)

Then, as we have shown in [11], G(k̄(ε?)) = G(k?), namely
the solution to (4) gives the optimal number of iterations that
solves (2). Therefore, we can directly find the optimal stopping
iteration by solving optimization problem (3) and achieve the
same objective value of (2). Furthermore, the optimal point
can be achievable by tracking the sign of derivative of G(k̄+
1)−G(k̄) and terminating the gradient descent iterations once
G(k̄ + 1) ≥ G(k̄), as shown in Algorithm 1 [11].

In this algorithm, the master node receives gradients that
arrive during a window of T time slots and updates wk



Algorithm 1: Minibatch gradient descent algorithm for MLoN [11].

1: Inputs: w0, (xij , yij)i,j , αk, K, M , {Nj}j∈[M ], T , (ck)k, nt

2: Initialize: k?c = K, and Gmin =∞.
3: for k ≤ k?c do
4: Ma = {}
5: while |Ma| < M do
6: for next time slot = 1, 2, . . . , T do
7: Each node j ∈ [M ], j /∈Ma does in parallel
8: Obtain f j

k :=
∑

i∈[Nj ] f(wk;xij , yij)/Nj and
∇j

k := ∇wf
j
k

9: Send f j
k and ∇j

k to the master node
10: Ma ←Ma ∪ {nodes with received gradients}
11: end for
12: Assuming 0/0 = 0, the master node runs

wk+1 ← wk − αk

∑
j∈Ma

∇j
k

|Ma|

13: Calculate f̂(wk) :=
∑

j∈[Ma] f
j
k/|Ma| and Ĝ(k)

14: if Ĝ(k + 1) < Gmin then
15: Master node broadcasts wk+1 to worker nodes
16: Set Gmin ← Ĝ(k) and n← 0
17: Break and go to line 24
18: else if n ≥ nt then
19: Set k?c = k, Break and go to line 25
20: end if
21: n← n+ 1
22: end while
23: Set k ← k + 1
24: end for
25: Return: wk?

c
, k?c , ˆG(k)

afterward with the received gradients. Given that the master
node receives f jk and ∇wf jk from a subset of nodes, it have
access to only a approximation of f(wk), denoted by f̂(wk),
and therefore an approximation of cost function, denoted by
Ĝ(k̄). The approximation error may lead to an improper early
stop from Ĝ(k̄ + 1) ≥ Ĝ(k̄). To address this, Algorithm 1
may wait for some more time slots to get more gradients
and have an update with a smaller gradient noise. Once the
objective is not reduced for nt consecutive iterations, we
stop the mini-batch updates. In Section IV, we show that the
iterations of Algorithm 1 resembles the stochastic gradient
descent algorithm.

III. CONVERGENCE RESULTS FOR CSMA/CA

Here, we characterize the performance of Algorithms 1 to
solve an ML problem over a wireless network regulated by
the CSMA/CA protocol. We simulate a broadcast channel
in the downlink and an uplink channel using CSMA/CA
protocol [14], where nodes utilize a distributed coordination
function (DCF) and some waiting time between data frames to
avoid collisions. Inter-frame waiting time includes short inter-
frame space (SIFS) for receiving the acknowledgment (ACK)
of successful transmission and for sending burst packets and
DCF inter-frame space (DIFS) for sending data packets [14].
To resolve potential collisions, CSMA/CA activates the binary
exponential backoff algorithm (BEB) [15].

We consider solving a regression problem over a wireless
network and extracting a binary dataset from MNIST (hand-

written digits) by keeping only samples of digits 0 and 1 and
then setting their labels to -1 and +1, respectively. We then
randomly split the resulting dataset of 12600 samples among
M worker nodes, each having {(xij , yij)}, where xij ∈ R784

is a vectorized image at node j ∈ [M ] with corresponding
digit label yij ∈ {−1,+1}. Without loss of generality, we
consider a convex loss function [16]

f(w) =
1

M

∑
j∈[M ]

1

Nj

∑
i∈[Nj ]

log
(

1 + e−w
Txijyij

)
(5)

where we distribute, at random, the same number of samples
to every worker node, namely Nj = Nl,∀j, l ∈ [M ].

Running every iteration of gradient descent imposes four
latency components [11], [17] including broadcasting param-
eters by master node (`1), computing ∇jk for every worker
node j (`2), sending ∇jk to master node in a multiple access
channel (`3), and updating parameters at the master node (`4).
Latency terms `1, `2 and `4 are easily computed for a particular
broadcast wireless channel. Also, these terms do not play a
major role in the optimization problem (2) as they do not
change during the optimization process and they are not a
function of the number of computational workers. Therefore,
we just take into account the `3 term to compute the iteration-
cost function

∑
k ck.

We use a network simulation to implement CSMA/CA
with binary exponential backoff (BEB) and M worker nodes
in the network. We assume that each of M worker nodes
generates a new background traffic packet at every time slot
with probability pb/M . We consider heavy (pb = 0.2) and
light (pb = 0.02) traffic, and dense (M = 10) and sparse
(M = 5) networks while setting β = 0.5 and nt = 15. We
also consider the packets to have a length of 10 kb with a
packet rate of 1 k packets per second, leading to a total rate
of 1 Mbps. We set the duration of SIFS and DIFS to be 10 µs
and 50 µs, respectively [18]. Then, we run the network for
1500 times and define ck as the latency required to receive
the gradient vectors by master node and run iteration k.

Fig. 2 characterizes the mean queue length of the worker
nodes and the number of received gradients against iteration
number k̄. From this figure, network congestion (M =
10, pb = 0.2) drastically increases the queue length of the
worker nodes and therefore sending ∇jk for higher k may
involve a higher latency. Consequently, it is likely that after
some iterations, the huge backlogged queue would not allow
for getting enough gradient vectors during T slots. In that
case, although we are paying the cost of running iterations
(exchanging parameters and gradients), there is almost no
progress in the optimization, and the gradient descent can
converge only to a ball around the minimizer w?, whose radius
is determined by the number of missing gradient vectors [12].
This can be addressed by increasing T (to collect more
gradients) at the expense of higher per-iteration latency. Such
extra latency may not be necessary for light background
traffics, e.g., (M = 5, pb = 0.2).
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Fig. 2: Illustration of the mini-batch update Algorithm 1 for CSMA/CA
protocol and T = 70ms.

IV. OPTIMIZING CSMA/CA FOR EFFICIENT MLON

Fig. 2 showed that the contention-level of the channel may
greatly impact the performance of the distributed algorithm.
To address this problem, we apply a p-persistent CSMA/CA
in which every node i independently with probability psi
transmits its packet. The experimental results suggest that
in the light traffic regimes (small pb), where the network is
not congested yet, a temporary increase of the queue size
can be handled by an increase in the transmission probability
psi. However, in a heavy traffic scenario (large pb), a higher
ps may lead to further congestion and ultimately a network
blackout, leading to a very high latency to run the distributed
algorithm. In that case, we should reduce ps with the queue
size. Inspired by these experimental observations as well as the
transport control protocol (TCP) [19], we propose Algorithm 2
in which every worker node i looks at its queue size at the
beginning of iteration k, denoted by Qi,k, and adjust its own
psi independently with no explicit signaling to other nodes.
To adjust the algorithm, we set λa > 0 and λm ∈ (0, 1] for
the light traffic regime and λa < 0 and λm > 1 for the heavy
traffic scenario.

Using the same simulation environment as of Section III,
Fig. 3 demonstrates the performance of our proposed con-
gestion control of algorithm 2 in a network with M = 10,
where we set the hyper-parameter (λa and λm) based on
a grid search. Fig. 3(a) illustrates the cost reduction due to
congestion control of Algorithm 2, compared to a CSMA/CA
with a constant ps for light traffic with λa = 0.05, λm = 0.95.
Fig. 3(b) highlights the same results for a network with high
traffic and λa = −0.01, λm = 1.02. This performance gain is
more prominent in light traffic regimes.

Next, we show that the mini-batch update of Algorithm 1

Algorithm 2: Congestion control algorithm

1: Inputs: pb, ps, K, M , T , (ck)k, λm, λa

2: Initialize: psi = ps, i = 1, 2, . . .M .
3: for k ≤ k?c do
4: if k > 1 then
5: for i = 1, 2, . . .M do do
6: if Qi,k > Qi,k−1 then
7: psi ← psi + λa

8: else
9: psi ← psi × λm

10: end if
11: end for
12: end if
13: Run iteration k in Algorithm 1 with psi-persistent CSMA/CA
14: Report every node’s queue length as Qi,k, i = 1, . . .M
15: end for
16: Return: k?c ,

∑k?
c

k=1 ck, psi, i = 1, . . .M .
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Fig. 3: Comparison of aggregated cost of Algorithm 2 for ps-persistent
CSMA/CA with constant and dynamic ps for M = 10, pb = 0.001 a)
Low traffic pb = 0.001 and T = 10 ms. b) High traffic pb = 0.4 and
T = 70ms.

can be modeled by a stochastic gradient descent process. The
main idea is that a time window T is set, and the gradients
are collected by the master during this time budget. As a
result, some of the gradient vectors are missed so that at each
iteration, the master node updates the shared parameter wk̄+1

by receiving an estimation ∇̂k̄ of the true value of gradient
vector. We consider the error as an additive zero-mean noise
added to the true gradient as ∇̂k̄ = ∇k̄ + nk̄. The noise
variance σk̄

2 shows the deviation from the true gradient in
each iteration and obtained as

σk̄
2 = E[‖∇k̄ − ∇̂k̄‖

2
]. (6)

By this mean, we assume that nk̄ has a distribution function Fn
as nk̄ ∼ Fn(0, σk̄

2). We run the mini-batch Algorithm 1 for
100 times and numerically calculate (6) for CSMA/CA pro-
tocol and consider M = 10, pb = 0.1 with different values of
T = 20, 100, 200 and 1000 ms. Fig. 4(a) illustrates the effect
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Fig. 4: Modeling the interaction between communication protocol and opti-
mization algorithm by a stochastic gradient descent (M = 10, pb = 0.1 by
considering T = 20, 100, 200 and 1000 ms).

of different T values on σk̄
2 and emphasizes that choosing a

larger T leads to a better gradient estimation. We also calculate
the probability density function (PDF) for the number of
successfully-sent gradient vectors, p(Ma; pb, T,M), in mini-
batch update, illustrated in Fig. 4(b) for different time budget
T . From this figure, for a large T , the worker nodes desire
to send about all their gradient data while imposing a higher
latency, see Fig. 4(c). Fig. 4(d) shows that the mean of queue
length decreases noticeably by considering the higher time
budget T while increasing the latency shown in Fig. 4(c).
Consequently, Fig. 4 highlights the importance of choosing
the proper value for time budget T .

V. CONCLUSION

In this paper, we characterized the end-to-end latency of
running iterations of a generic gradient-based distributed train-

ing algorithm over a shared wireless channel, regulated by
the CSMA/CA protocol. We proposed iteration-termination
criteria to minimize the trade-off between achievable objective
value and the overall cost (latency) of running the solver. We
then developed a lightweight solution algorithm for this novel
optimization problem and numerically showed that MLoN may
fail in many cases unless distributed optimization algorithms
and communication protocols are jointly designed.
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