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Abstract

Pharamacovigilance relates to activities involving drug safety monitoring in the post-marketing phase
of the drug development life-cycle. Despite rigorous trials and experiments that drugs undergo before
they are available in the market, they can still cause previously unobserved side-effects (also known
as adverse events) due to drug—drug interaction, genetic, physiological or demographic reasons. The
Uppsala Monitoring Centre (UMC) is the custodian of the global reporting system, VigiBase, for adverse
drug reactions in collaboration with the World Health Organization (WHO). VigiBase houses over 20
million case reports of suspected adverse drug reactions from all around the world. However, not all
case reports that the UMC receives pertains to adverse reactions that are novel in the safety profile of
the drugs. In fact, many of the reported reactions found in the database are known adverse events for
the reported drugs. With more than 3 million potential associations between all possible drugs and
all possible adverse events present in the database, identifying associations that are likely to represent
previously unknown safety concerns requires powerful statistical methods and knowledge of the known
safety profiles of the drugs. Therefore, there is a need for a knowledge base with mappings of drugs to
their known adverse reactions. To-date, such a knowledge base does not exist.

The purpose of this thesis is to develop a deep-learning model that learns to extract adverse reactions
from product labels — regulatory documents providing the current state of knowledge of the safety
profile of a given product — and map them to a standardized terminology with high precision. To
achieve this, I propose a two-phase algorithm, with a first scanning phase aimed at finding regions of
the text representing adverse reactions, and a second mapping phase aiming at normalizing the detected
text fragments into Medical Dictionary for Regulatory Activities (MedDRA) terms, the terminology
used at the UMC to represent adverse reactions. A previous dictionary-based algorithm developed at
the UMC achieved a scanning F; of 0.42 (0.31 precision, 0.66 recall) and mapping macro-averaged F;
of 0.43 (0.39 macro-averaged precision, 0.64 macro-averaged recall). State-of-the-art methods achieve
F, above 0.8 and above 0.7 for the scanning and mapping problems respectively.

To develop algorithms for adverse reaction extraction, I use the 2019 ADE Evaluation Challenge
data, a dataset made by the FDA with 100 product labels annotated for adverse events and their mappings
to MedDRA. This thesis explores three architectures for the scanning problem: 1) a Bidirectional Long
Short-Term Memory (BiLSTM) encoder followed by a softmax classifier, 2) a BILSTM encoder with
Conditional Random Field (CRF) classifier and finally, 3) a BILSTM encoder with CRF classifier with
Embeddings from Language Model (ELMo) embeddings. For the mapping problem, I explore Infor-
mation Retrieval techniques using the search engines whoosh and Solr, as well as a Learning to Rank
algorithm.

The BiLSTM encoder with CRF gave the highest performance on finding the adverse events in the
texts, with an F; of 0.67 (0.75 precision, 0.61 recall), representing a 0.06 absolute increase in F; over
the simpler BiLSTM encoder with softmax. Using the ELMo embeddings was proven detrimental and
lowered the F; to 0.62. Error analysis revealed the adopted Inside, Beginning, Outside (IOB2) labelling
scheme to be poorly adapted for denoting discontinuous and compound spans while introducing ambigu-
ity in the training data. Based on the gold standard annotated mappings, I also evaluated the whoosh and
Solr search engines, with and without Learning to Rank. The best performing search engine on this data
was Solr, with a macro-averaged F; of 0.49 compared to the macro-averaged F; of 0.47 for the whoosh
search engine. Adding a Learning to Rank algorithm on top of each engine did not improve mapping
performance, as both macro-averaged F; dropped by over 0.1 when using the re-ranking approach. Fi-
nally, the best performing scanning and mapping algorithms beat the aforementioned dictionary-based
baseline F; by 0.25 in the scanning phase and 0.06 in the mapping phase. A large source of error for the
Solr search engine came from tokenisation issues, which had a detrimental impact on the performance
of the entire pipeline.

In conclusion, modern Natural Language Processing (NLP) techniques can significantly improve
the performance of adverse event detection from free-form text compared to dictionary-based approaches,
especially in cases where context is important.






Sammanfattning

Farmakovigilans beror de aktiviteter som forbittrar forstéelsen av biverkningar av likemedel. Trots de
stridnga provningar som behovs for lakemedelsutvecklingen finns dndé en del biverkningar som dr okénda
p-g.a. genetik, fysiologiska eller demografiska faktorer. Uppsala Monitoring Centre (UMC), i samarbete
med World Health Organization (WHO) dr vardnadshavare till den globala databasen av rapporter pa
medicinska biverkningar, VigiBase. VigiBase innehéller 6ver 20 miljoner misstdnkta rapporter frén hela
virlden. Dock, en andel av dessa rapporter beskriver biverkningar som &r redan kinda. Egentligen finns
det over 3 miljoner potentiella samband mellan alla likemedel och biverkningar i databasen. Att hitta
den riktiga och okédnda biverkningar behovs kraftfulla statistiska metoder samt kunskap om det kinda
sdkerhetsprofil av likemedlet. Det finns ett behov for ett databas som kartligger likemedel med alla
kinda biverkningar men, inget sddant databas finns idag.

Syftet med detta examensarbete &r att utveckla en djup-lirandemodell som kan ldsa av texter pa
likemedels etiketter — tillsynsdokument som beskriver sidkerhetsprofil av lakemedel — och kartldgga
dem till ett standardiserat terminologi med hog precision. Problemet kan brytas in i tva fas, den fors-
ta scanning och den andra mapping. Scanning handlar om att kartldgga position av text-fragmentet i
etiketter. Mapping handlar om att kartligga de detekterade text-fragmentet till Medical Dictionary for
Regulatory Activities (MedDRA), den terminologi som anvinds i UMC for biverkningar. Tidigare for-
sok, s.k. dictionary-based approach pd UMC uppnédde scanning F, 10,42 (0,31 precision; 0,64 recall)
och mapping macro-averaged F, i 0,43 (0,39 macro-averaged precision; 0,64 macro-averaged recall).
De bista systemen (s.k. state-of-the-art) uppnadde scanning F; 6ver 0,8 och 0,7 for den scanning re-
spektive mapping problemet.

Jag anvinder den 2019 ADE Evaluation Challenge dataset att utveckla algoritmerna i projektet.
Detta dataset innehdller 100 likemedels etiketter annoterad med biverkningar och deras kartliggning i
MedDRA. Denna avhandling utforskar tre arkitekturer till scanning problemet: 1) Bidirectional Long
Short-Term Memory (BiLSTM) och softmax for klassificering, 2) BILSTM med Conditional Random
Field (CRF) klassificering och, till sist, 3) BILSTM med CRF klassificering och Embeddings from Lan-
guage Model (ELMo) embeddings. Med avseende till mapping problematiken utforskar jag metoder
inom Information Retrieval genom anvindning av sokmotorerna whoosh och Solr. For att forbittra pre-
standan i mapping utforskar jag Learning to Rank metoder.

BiLSTM med CRF presterade bist inom scanning problematiken med F; i 0,67 (0,75 precision;
0,61 recall) som ir ett 0,06 absolut 6kning 6ver den BiLSTM encoder med softmax klassificering. Med
ELMo forsamrade F till 0,62. Analys av felet visade att Inside, Beginning, Outside (I0B2) mirkning
som jag har valt att anvinda passar inte till att beteckna diskontinuerliga och sammansatta spans, och
tillfor betydande osékerhet i triningsdata.

Med avseende till mapping problematiken har jag kollat pa sokmotorn Solr och whoosh, med, och
utan Learning to Rank. Solr visade sig som den bést presterande sokmotorn med macro-averaged Fi
i 0,49 jamfort med whoosh som visade macro-averaged F, i 0,47. Learning to Rank algoritmerna
forsdmrade F; med 6ver 0,1 for bada sokmotorer. Den bist presterande scanning och mapping algoritmer
slog den baseline systemets F; med 0,25 i scanning faset, och 0,06 i mapping tasen. Ett stor killa av fel
for den Solr sokmotorn har kommit fran tokeniserings-fel, som hade en forsamringseffekt i prestanda
genom hela pipelinen.

I slutsats, moderna Natural Language Processing (NLP) tekniker kan kraftigt 6ka prestanda inom
detektering av biverkningar fran etiketter och texter, jaimfort med gamla dictionary metoder, sérskilt nidr
kontexten &r viktigt.
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Chapter 1

Introduction

Over the last few decades, the number of drugs and medicines manufactured,
and approved for management of health-related issues has been steadily in-
creasing [1]. At the same time, the clinical trial phase and approval time has
increased for almost all classes of drugs [2], implying that the time-to-market
for new drugs is significantly higher with more rigorous trial and approval
phase.

Phase 11l

250 - 4000 more varied
patient groups. — to determine

Phase |
20 - 50 healthy volunteers
to gather preliminary data

short-term safety and efficacy
Animal experiments for Phase Il hase I
acute toxicity, organ 150 — 350 subjects o Phase IV di
damage, dose dependence, with disease - to os;-apprqva stu _|fgs
metabolism, kinetics, determine safety to ""ti""".'e SPECIIC
carcinogenicity, and dosage safety issues
genicity/teratogenicity recommendations
Preclinical
i Phase IV Spontaneous
Animal Phase | Phase Il Phase lll Post-approval  Reporting

Experiments

Registration
< Devel + > |<— Post Registration =——>

Figure 1.1: Phases for clinical development of medicines (Source: Pharma-
covigilance: Ensuring the Safe Use of Medicines [3])

Ideally, side-effects (known as Adverse Event (AE) in the field of pharma-
covigilance) caused by drugs are detected during the randomised control trial
phases, however due to the number of participants and inclusion or exclusion
criteria (such as demographics, age), combined with the trials being designed
to test the efficacy of the drug in a controlled environment (e.g. untainted by
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previous medical condition or drug—drug interaction) often fail to detect these
unwanted effects in the pre-marketing stage [4]. These adverse events are not
necessarily caused directly by the drugs themselves, but may be indirect effects
of drug—drug interactions, medication errors or dosage issues[5].

This justifies the need for post-marketing surveillance programmes: the
most prominent being spontaneous reporting. Spontaneous case reports can
come from regulatory bodies, manufacturers, or if country regulations allow,
directly from patients and healthcare professionals[6]. The Uppsala Monitor-
ing Centre (UMC) maintains VigiBase, the global database of Individual Case
Safety Reports (ICSRs) on behalf of the World Health Organization (WHO).
As of early 2020, VigiBase contains over 20 million ICSRs which are reviewed
on a case-by-case basis by experts in the National Centres of Pharmacovigi-
lance from countries participating in the WHO Programme for International
Drug Monitoring. In countries with mature pharmacovigilance systems, the
sheer volume of reports makes the review of the cases a time— and resource—
consuming process, if not unfeasible. Thus, there has been an increasing need
for reliable statistical methods to detect patterns in the data that could be rep-
resentative of a previously unknown safety concerns.

In VigiBase, there are more than 20,000 unique drugs and about as many
different kinds of possible adverse events. Every possible drug—adverse event
combination could be a signal of a novel safety concern to be communicated
rapidly with all National Centres in the WHO Programme. However, with
more than three million possible combinations, their manual review is un-
achievable. By comparing the observed number of reported cases to an ex-
pected number based on the drug and adverse event frequencies in the database,
disproportionality analysis has demonstrated great value in deciding the pri-
ority of drug—adverse event combination for review, and a number of metrics
have been proposed to facilitate the ranking of combinations[7, 8]. Among
the top drug—adverse event combinations based on disproportionality, many
of them describe known adverse events to the drugs[9]. While this is reassur-
ing of the sensical nature of disproportionality analysis methods, it means that
manual assessment of the top drug—adverse event combination will rarely lead
to a signal of a novel safety concern. Having a reliable knowledge base linking
every drug to all its known adverse events, based on the current knowledge of
the safety of the drug, would greatly improve the ability to highlight the novel
adverse events.

To date, determining whether a drug is known to cause a given adverse
event is done manually by assessors, using product labels. Product labels are
regulatory documents, usually managed by health authorities. Meant to be
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read by healthcare professionals, product labels provide, in free text form the
important information to be known about a given product (such as indication,
dosage, posology, contra-indications) and in particular, the most definite and
current reference for drug-related adverse reactions identified during the de-
velopment phase and in the post-marketing phase (see fig. 1.1). In the United
States (US), these documents, maintained by the Food and Drugs Adminstra-
tion (FDA), are provided by DailyMed!. Product Labels through DailyMed
are publicly available for download as eXtended Markup Language (XML)
files and are regularly updated as knowledge about drugs change. As a result,
DailyMed provides a good basis for regulary applying text mining algorithms
to extract the current state of knowledge on the safety of drugs approved for
use in the US.

At UMC, a previous attempt has been made to build a knowledge base of
known drug—adverse event combinations. The method employs a dictionary
based algorithm to detect and match adverse events from various databases
[10]. However, the algorithm can be too unspecific since it is matching items
from a dictionary regardless of the context; it is also susceptible to missing
adverse events that are not in the dictionary but may imply an adverse event
due to context (e.g. increase in blood pressure, elevation of liver associated
enzymes) or it may fail to identify that the phrase is referring to an exclusion
criteria as in:

Fewer than 3% of adult patients without mycobacterial infections
and fewer than 2% of pediatric patients without mycobacterial in-
fections discontinued therapy because of drug-related side effects.

In this phrase myobacterial infections is not an adverse event but is provid-
ing information about the drug trial, it is also negated by the term without. The
lack of precision of this dictionary-based method made it unsuitable for auto-
matic use in safety signal detection, as a false positive known drug—adverse
event combination could mean wrongly discarding a combination that could
in fact represent a true safety signal. Due to the complexities of natural lan-
guage, a new approach is needed for reliably detecting adverse events from
product labels that takes into account not just the words themselves but the
context surrounding them. Recent developments in Natural Language Pro-
cessing (NLP) augmented by deep-learning techniques now provide us with
tools to perform such context-based classification.

The purpose of this project is to develop a deep-learning pipeline in or-
der to read product labels, detect known adverse events from their text, map

'"https://dailymed.nlm.nih.gov/dailymed/


https://dailymed.nlm.nih.gov/dailymed/

4 CHAPTER 1. INTRODUCTION

the adverse event to a terminology and improve on the performance of the
dictionary-based baseline algorithm. If demonstrated reliable, such a pipeline
could then be applied regularly to DailyMed and extract the current knowledge
of the safety of many drugs marketed in the US, in a format directly compat-
ible with the analysis activities of the spontaneous reports database used by
UMC. To develop and evaluate this pipeline, I used data from the ADE Eval-
uation Challenge (publication pending?), a Shared Task organized by FDA’s
Office of Surveillance and Epidemiology (OSE) based on manually annotated
DailyMed data and designed to evaluate state-of-the-art (SOTA) systems on
the extraction and normalization of adverse events from product labels.

1.1 Definitions

The terms Adverse Drug Reaction (ADR) and AE have very specific mean-
ings within the field of Pharmacovigilance, here I define the terms that will be
referred to throughout this document.

Adverse Drug Reaction (ADR) A response to a drug that is noxious and un-
intended and occurs at doses normally used in man for the prophylaxis,
diagnosis or therapy of disease, or for modification of physiological
function [11].

Adverse Event (AE) Any untoward medical occurrence in a patient or sub-
ject [in a clinical trial] administered a pharmaceutical product and which
does not necessarily have a causal relationship with this treatment. An
adverse event can therefore be any unfavourable and unintended sign
(including an abnormal laboratory finding), symptom, or disease tem-
porally associated with the use of a medicinal (investigational) product,
whether or not related to the medicinal (investigational) product [12].

1.2 Problem Definition

The particular shared task challenge proposed by the FDA and of interest to
UMC can be divided into two sub-tasks, hereby named as:

1. The Scan problem

2. The Map problem

nttps://sites.mitre.org/adeeval/
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These problems will be illustrated on the following phrase, taken from a
product label description for the drug Belvig*:

Lorcaserin moderately elevates prolactin levels .

The Scan problem concerns the detection of ADRs; in the aforementioned
example, the correct detection would be the sub-phrase elevates prolactin lev-
els.

The Map problem relates to mapping the detected phrase elevates prolactin
levels to Medical Dictionary for Regulatory Activities (MedDRA) which is the
clinically-validated, standard terminology used by regulatory bodies and at the
UMC. The detected phrase in the example above has two possible mappings
in MedDRA:

Phrase ‘ Mapped Term ‘ Term ID
elevates prolactin levels | Blood prolactin increased | 10005780
elevates prolactin levels | Hyperprolactinaemia 10020737

Where Mapped Term is the standard definition in the dictionary and 7erm
ID is a unique identifier (across the dictionary) for the definition. A pairing
of an ADR term and its mapping is called a Mention, in the example above,
the tuple: (elevates prolactin levels, Blood prolactin increased) represents a
single Mention.

Shttps://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=
7cbbbl2f-760d-487d-b789-ae2d52a3e01f
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In order to develop and test the algorithms, I used the dataset and evaluation
metrics provided by the ADE Evaluation Challenge. It is a Shared Task Chal-
lenge designed to evaluate state-of-the-art results for detection and normaliza-
tion of ADR from product labels and is organized by the Office of Surveillance
and Epidemiology (OSE) under FDA (see appendix A.4 for a more detailed
description of the challenge).

I chose to pose the Scan problem as a Named Entity Recognition (NER)
task with Inside, Beginning, Outside (I0OB2) labels for classification [13]. For
the Map problem I attempted to use Bidirectional Encoder Representations
from Transformers (BERT) for re-ranking the normalized candidates from the
search engines Solr! and whoosh?.

2.1 Dataset

The dataset provided by the FDA contains 100 labelled and 2000 unlabelled
Structured Product Label (SPL) documents. The FDA did not release annota-
tions for the 2000 unlabelled documents which they use for internal evaluation.
For development, the 100 annotated files are separated into: 80 training exam-
ples (fig. 2.1) and 20 test examples (fig. 2.2).

The annotated mentions in the labels are categorized into three classes:

OSE_Labelled_AE Category that the evaluation tools consider a valid ADR.

'https://lucene.apache.org/solr/
https://bitbucket.org/mchaput/whoosh/src/default/docs/
source/intro.rst
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AFINITOR.xml
ANDROGEL. xml
ANORO. xml
ARANESP.xml
ARCALYST.xml
ASCLERA.xml
AVASTIN.xml
BELVIQ.xml
BENLYSTA.xml
BRILINTA.xml
CARBOPLATIN.xml
CELEBREX.xml
CYRAMZA. xml
DAYTRANA. xml
DEXAMETHASONE . xm1
DOXIL_LIPOSOMAL_ .xml
EFFEXOR_XR.xml
EFFIENT.xml
ENBREL. xml
ERBITUX.xml

Figure 2.1: Documents in the Training Set

AUBAGIO.xml
BELSOMRA . xml
BIAXIN.xml
CARAC.xml

FOLOTYN.xml
GATTEX.xml
GAZYVA.xml

GENOTROPIN_PRESERVATIVE_FREE.xml

HARVONT . xm1l
IMPAVIDO.xml
INLYTA.xml
INVOKANA. xml
ISTODAX.xml
JANUMET . xm1
KADCYLA. xml
KERYDIN.xml
KIT.xml
KYPROLIS.xml
LASTACAFT.xml
LATUDA.xml
LEVAQUIN.xml
LEXAPRO.xml
LINZESS.xml
LIPITOR.xml

CYTOXAN. xml
EGRIFTA.xml
ELLA.xml
FUROSEMIDE. xml

HETLIOZ.xml
LIORESAL.xml
LIVALO.xml
MEKINIST.xml
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LUMASON . xml
LUZU.xml
LYNPARZA.xml
MOVANTIK.xml
MYRBETRIQ.xml
NATROBA. xml
ONGLYZA . xml
OPSUMIT.xml
PAXIL.xml
PLAVIX.xml
PREMARIN. xml
PREPOPIK.xml
PROGRAF . xm1
RAPIVAB.xml
RAXIBACUMAB. xml
RELISTOR.xml
REMERON . xm1
REMICADE.xml
RENVELA. xml
RISPERDAL.xml

PENNSAID.xml
SIMPONTI. xml
VALIUM.xml

VIEKIRA.xml

Figure 2.2: Documents in the Test Set

RITUXAN.xml
SABRIL.xml
SAVELLA.xml
SENSIPAR.xml
SEROQUEL. xml
SIGNIFOR.xml
SINGULAIR.xml
STRIVERDI.xml
SURFAXIN.xml
THALOMID.xml
TOBI.xml
TRADJENTA. xml
VICTOZA.xml
VIIBRYD.xml
VOTRIENT.xml
VYVANSE. xml
XALKORI . xml
XELODA . xml
XOFIGO.xml
XTANDI.xml

VIMPAT.xml
XARELTO. xml
XELJANZ . xml
ZALTRAP .xml

NonOSE_AE This is the category that may be an ADR but may result from

unapproved use of the drug, occurs in the context of animal exposure,
represents a sign/symptom of an OSE_Labelled_AE, or events resulting

from a drug interaction. This category should not be detected.

Not_AE_Candidate Represent spans that appear to be ADR but are not; it
can describe conditions unrelated to the ADR such as indications, con-
traindications or medical history. This category should not be detected.

Almost half (41%) of the annotated mentions should not be detected (Table
table 2.1) by the system.

Category

OSE_Labelled_AE
NonOSE_AE
Not_AE_Candidate

‘ Total Annotations ‘ Disc. Annotations

36083 (58.63%) 2284 (3.71%)
17787 (28.90%) 975 (1.58%)
7678 (12.47%) 290 (0.47%)

61548 (100%) ‘ 3549 (5.76%)

Table 2.1: Label statistics for the 100 annotated documents
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2.2 Methods for the Scan Problem

In this section, I describe the different approaches I used on the Scan Prob-
lem, as well as the preprocessing steps. My experiments consisted of three
approaches: a sequence-to-sequence model, a Bidirectional Long Short-Term
Memory (BiLSTM) encoder architecture with a softmax classifier, a BILSTM
encoder with a Conditional Random Field (CRF) classifier and a BILSTM en-
coder with CRF classifier and Embeddings from Language Model (ELMo)
embeddings.

2.2.1 Preprocessing

For the Scan problem I performed very little preprocessing on the raw data. For
every document in the training and validation set, I concatenated all the section
text and passed it through the spaCy? tokeniser using the en_core_web_sm
model. An intermediate representation is calculated for each token (algo-
rithm 1) to handle out-of-vocabulary words and improve generalization. The
original token text span index and length are recorded as metadata fields (since
changing the token text changes the span start indices).

Algorithm 1: Token processor
Input: A spaCy segmented token
Result: A transformed representation of token
if token is a drug name then
| Result: "< DRUG >"
else if roken is a number then
| Result: "< NUMBER >"
else if roken is one or more spaces then
| Result: "< SPACE >"
else if token is a linebreak then
| Result: "< BREAK >"
else
| Result: input token

In order to tag the individual tokens according to the IOB2 scheme, I it-
erated through all of them and checked whether they fall within the span of a
mention; if they do, I tagged them according to state transitions illustrated in
fig. 2.3. The algorithm for generating these labels is listed in algorithm 2.

Shttps://spacy.io/


https://spacy.io/
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Figure 2.3: IOB2 state transitions

I also formulated an extended state transition table for the three mention

categories table 2.2.

O B-PADR I-PADR B-NADR I-NADR B-NC I-NC

O O B-ADR B-ADR B-NADR B-NADR B-NC B-NC
B-PADR | O I-ADR I-ADR B-NADR O B-NC O
I-PADR | O [I-ADR I-ADR B-NADR O B-NC O
B-NADR | O B-ADR O I-NADR I[-NADR B-NC O
I-NADR | O B-ADR O I-NADR I-NADR B-NC O

B-NC O B-ADR O B-NADR O I-NC I-NC

I-NC O B-ADR O B-NADR O I-NC  I-NC

Table 2.2: Transition table for extended labels

2.2.2 Embedding

I used pre-trained GloVe [14] and DailyMed token embeddings obtained as
described below. The GloVe embeddings were downloaded from http://

nlp.stanford.edu/data/glove.6B.zip.

I reused the DailyMed embeddings prepared by my supervisor Dr. Lucie
Gattepaille. The embeddings were trained from the Adverse event and warn-
ings and precautions sections of 24727 trade names from DailyMed using
word2vec [15]. The embeddings have a dimension of 100 and were trained
with a context size of 7, a minimum token count of 10 and downsampling pa-
rameter of 1 x 1073 in the skip-gram mode. The library used to generate the
embeddings was gensim and all other settings were kept at their default.


http://nlp.stanford.edu/data/glove.6B.zip
http://nlp.stanford.edu/data/glove.6B.zip
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Algorithm 2: Procedure to generate IOB2 labels
Input: a list of tokens

Result: classifications
O

transitions « (see fig. 2.3) ;

B 1
O B B
B|O I 1
110 I 1
classifications < [];
last label < O;
foreach token in tokens do
current label <+ O ;
if token is within a mention span then
if first span then
| current label < B;
else
| current label + I,
end

current label « transitions [last label ][current label ;
last label < current label

classifications <+ [classifications; current label ];

end

Tokens that are not in the embedding are replaced with an @ RUNKNOWN@ @
token.

2.2.3 Sequence to Sequence Model

My initial approach to the task was to use a sequence-to-sequence model and
approach the task of AE detection as a Language Modelling problem. The
input would be a list of tokens wy, wq, ..., w, and the outputs would be a
sequence of elements from the two classes ¢ € {O, ADR}.

A sequence-to-sequence model consists of two pairs of BiILSTM layers,
called encoder and decoder, respectively. The encoder hidden state s is ini-
tialised with zeros and accepts an embedded sequence {wg, wy,- - ,w,}
{ev,e1, -+ ,e,} € R?, where d is the embedding dimension and passes the
embedded feature vectors through a BiLSTM layer. The final hidden state of
the encoder is called the context vector.

The decoder is another BILSTM layer similar to the encoder but the initial
hidden state h, for the decoder is the context vector from the encoding layer
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Figure 2.4: Schematic diagram of an encoder

sk+1 (fig. 2.5). Additionally, the input features to the decoder is the output from
the previously sampled output of the decoder. Both the encoder and decoder
introduce special START and STOP tokens to seed the decoding process and as
a stop condition for decoding (since the length of the output sequence can be

different than the length of the input sequence).
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Figure 2.5: Schematic diagram of a decoder
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The justification for attempting a sequence-to-sequence model was that,
for every contextual sequence (e.g. a sentence), it would encode the context
into a summary vector which could then be used to identify context-sensitive
features for classifying ADR. The model would have information about all the
tokens in the sentence before trying to find ADRs in the text. This approach
has been applied well in the context of machine translation and augmented
with special attention layers [16] which learn to “focus” on different parts of
the text when decoding.

2.2.4 BILSTM with Softmax

BiLSTM with the softmax classifier is a simple neural model for NER. Similar
to the sequence-to-sequence model, it consists of an encoder that accepts word
embeddings and outputs a concatenated bi-directional feature vector, unlike
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Algorithm 3: Seq2Seq training loop

foreach epoch do
foreach batch do
last output = <START> ;
foreach example do
So 03
contexts «+ [] ;
foreach embedded token do
contexts < [contexts; Encoder (embedded token,
so) 1
end
last output < <START> ;
while last output is not <STOP> do
|y + [y: Decoder (last output, contexts) ] ;
end

end
end
end

the sequence-to-sequence model the BiLSTM hidden states are ignored and its
output features are passed through a fully connected layer followed by softmax.
This is illustrated in fig. 2.6 where f; = Wi[?i_l; <§z‘—1] + b and o is the
softmax function.

One of the major issues with training BiLSTMs is the segmentation bound-
aries of the input text. Since BiLSTMs form a context vector by concatenating
the state vectors from both directions in the text, with bad segmentation the
BiLSTM only observes part of the context before the hidden state is reset for
the next training example. To prevent this, I use spaCy sentence tokeniser to
segment the section texts into smaller “sentence” segments.

In order to improve training speed the sentence segments are batched into
mini-batches b,, € Z™*!, where m is the size of the mini-batch and [ is the
length of the longest sentence in the mini-batch and the integers in the b,,
tensor are indices of the word vector in the embedding. Since sentences don’t
fit neatly into a rectangular matrix (due to varying lengths), sentences shorter
than [ are padded to the right with a special padding token (indexed as 0 in
the word embedding). Passing this tensor into the word embedding returns a
tensor of size e € R™*!*? where d is the word embedding dimension.
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Figure 2.6: Simplest BILSTM with softmax architecture

Special care must be taken when passing the embedded tensor into the
BiLSTM: since we introduced padding tokens at the end of each mini-batch
for sentences < [, we need to introduce a mask to the BiLSTM that indicates
sentence boundaries. Without this, the backward Long Short-Term Memory
(LSTM) will read zeros from the right until the sentence boundary. The output
of the BiLSTM layer is of the dimension s € R™*!*2" where r is the size of
the hidden state of the BILSTM layer (these layers can be stacked), the factor
of two arises from the concatenation operation of the forward and backward
internal states (eq. (A.45)). A dropout layer that randomly zeros some cells of
the hidden state tensor follows the BiLSTM stacks as a regularisation factor.

Finally, the fully connected layer reduces the dimension of the hidden states
into the three classes ¢ € {O, B, I} resulting in tensors of size f € R™**3,
The output of the fully-connected layer are logits which have a large range
[—00, 00], I use the softmax function to compress this range into [0, 1]. The

result tensor is of size y € R™*!x3,
p(Olfij)
yij = | p(B|fij) 2.1)
p(I|fij)

The predicted class is derived by performing an argmax over the vector y;.

All experiments were trained using the Adam optimizer with a learning
rate of 3 x 1073 for 30 epochs and a weight decay of 1 x 10~%. When stacking
the BiLSTM layers, I use a inter-layer dropout factor of 0.6 for each layer. Each
mini-batches are sorted by the largest sequence length in the mini-batch.



14 CHAPTER 2. METHODS

2.2.5 BILSTM with CRF

As mentioned earlier, the softmax classifier does not take into account labels
that come before or after the current time-step. When using a sequential tag-
ging scheme such as IOB2 the softmax classifier does not enforce constraints
on the predicted labels. As a result a possible prediction might be O-O-I-B,
which should not be possible. The idea with the CRF is that it would enforce
transition probabilities from the previous estimations.

The BiLSTM-CREF architecture is very similar to the BILSTM-Softmax
architecture. The only difference between the two is the final classifier layer.

Since the output of the tokenisation process results in all tokens being low-
ercased, it is possible to lose abbreviations such as “ALT” in “ALT levels in-
creases”. In order to mitigate this the 100-dimensional DailyMed embeddings
are concatenated with a bidirectional character RNN (charRNN) feature. The
charRNN output dimension is 80, there are two layers with a 0.25 dropout; the
final embedding dimension is 100 4 2 x 80 = 260.

The bidirectional state from the BiLSTM stack s € R™*!*2" ig reduced
by the fully connected layer which form the emission part of the CRF feature
function, the CRF layer helps constrain the hidden states by predicting the most
likely path given the observations using Viterbi decoding [17].

0] @) O
B| SB|_ - |B
\
| 1 |
f f
CRF
O O O
B B B Emissions
I | I
f 1
Encoder

'Y A '

Figure 2.7: Schematic model of BILSTM—CRF model
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The BiLSTM—-CRF model is also trained with the Adam optimizer with a
learning rate of 1 x 1073 for 10 epochs.

2.2.6 BILSTM with CRF and ELMo embeddings

Finally, the BILSTM—CREF architecture with ELMo embeddings is similar to
the plain BILSTM—CREF architecture. The only difference between these two
architectures is the choice of the embedding layer. The DailyMed embeddings
with charRNN features, are replaced a concatenation of DailyMed embed-
dings with ELMo embeddings. ELMo embeddings have a dimension of 1024
resulting in the final embedding dimension of 1024 + 100 = 1124.

Terms in the product labels are intrinsically contextual, for e.g. the term
reactions in the phrase To report SUSPECTED ADVERSE REACTIONS, con-
tact ... is clearly not an adverse event, however the same term in the phrase
application site reaction represents an adverse event. Using embeddings that
do not take the context into account, both terms would be encoded into the
same vector representation. Due to the contextual nature of ELMo, which is
trained as a language model, the term reactions will be encoded into different
vector representations in the above examples, which should help the system
further differentiate between ADRs and non-ADRs phrases.

This architecture is trained with the same parameters as the BILSTM—CRF
architecture.

2.3 Methods for the Map Problem

This section describes the approach used for the Map Problem. I attempted
to use a search engine followed by BERT based Learning to Rank algorithm
to score the results. Some data preparation is necessary which is described in
section 2.3.1.

2.3.1 Preprocessing

For the Map problem, I used a pre-indexed search index using MedDRA v20.0.
Each document in the index contains a MedDRA Preferred Term (PT) code,
PT term name and Lowest Level Term (LLT) name (see appendix A.2 for a
more detailed description of the terminology and its hierarchical levels).

To train the ranking model with BERT, I extracted all mention texts (i.e.
text fragments encoded by the spans) in the Gold Standard and their associated
PT and LLT codes, as well as the human-readable names associated to the PT
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codes: (q, Pt,ames Pteoge, Utcode)- I combined this data with the MedNorm
dataset [18] and created a mapping from free-text phrases to their PT or LLT
terms. Then, for each query term ¢ € q in this mapping I perform a search
against the indexed search engine for at most 10 documents. For each returned
result, I calculated the relevance by checking the PT or LLT code and created
atuple (¢, m;,r;);1 € [1,10] where m; is the i-th search engine result (hereby
called concept) and r; is the relevance for the i-th concept, which is 1 if the PT
or LLT code for the concept and query match, O otherwise. This query—result
pair is then passed to a pre-trained BERT classifier with the relevance acting
as a label.

2.3.2 Learning to Rank

The learning to rank model requires a pre-indexed search index which was
adapted as described in section 2.3.1. The previously prepared query to con-
cept mapping is then used to train a BERT classifier. The query and concept are
concatenated with the special BERT tokens [CLS] query [SEP] con-
cept for each concept query pair (g, m;), the output of the BERT classifier
is a softmax score which is interpreted as p(r = 1|g, m;) and can be used to
re-rank the results from the search index. This model is adapted from [19] and
illustrated in fig. 2.8.

q mo
Search Index . ~ BERT — p(r = 1|g, m;)
m;

(cLS| a [SEP| mi

Figure 2.8: BERT based re-ranking model

2.4 Evaluation

Evaluation is performed in two phases: for each of the Scan and Map prob-
lems, during training, local evaluation metrics are used (see fig. 2.9). The
full pipeline is then integrated and tested using System Evaluation metrics
provided by the FDA which they use internally for evaluating the results of
submissions.



CHAPTER 2. METHODS 17

MedDRA v20.0

l

Map

« System
7 Evaluation

Y

Y

Dataset Scan

Training Evaluation Training Evaluation

Figure 2.9: Overview of pipeline and evaluation checkpoints

2.4.1 Training Evaluation for Scan problem

During training of the Scan phase, I use the per-token label classification loss
as the evaluation metric. Each token is labelled using the IOB2 labelling
scheme.

This only evaluates whether the Scan system is able to find relevant tokens
in the text. I select the model with the highest classification F; . Training
performance is measured by performing a grid-search over parameter space
and performing k-fold cross validation (k = 5).

2.4.2 Training Evaluation for Map problem

Training for the Map problem only concerns the Learning To Rank system,
since the core system for the Map problem is a search engine and requires no
training. For the Learning To Rank system, the training evaluation metric is
the label classification loss, the labels represent the relevance of the search
results (see section 2.3.2).

2.4.3 System Evaluation

The FDA provides a set of evaluation tools which they use internally for eval-
uating the results of submissions. During testing, I use the provided FDA
evaluation tools to compare against state-of-the-art results and compare it to
the baseline results.
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For the Scan problem, the evaluation performance is defined by the Ex-
act Mention Match metric, which performs a weighted scoring of the overlap
between the detected character offsets (called spans, characterized by a start
offset and length) and the spans in the gold label combined with the MedDRA
match. Overlap is calculated by counting the number of characters that over-
lap between the gold and detected spans divided by the length of the detected
span.

The unweighted Exact Mention Match metric assigns 80% of its weight
to the span overlap and 20% to the MedDRA match (which is 1 if there is a
match, O otherwise).

The weighted Exact Mention Match performs some FDA specific weight-
ing determined by how difficult it is to add or remove a Mention by a human-
in-the-loop (see appendix A.4.4 for more information on how the weights are
defined). This is the primary metric used to compare the results of the Scan
problem in this thesis to the state-of-the-art results*. The weights are defined
in terms of four groups [20]:

exact match mention pairs, which are pairs of gold and submission mentions
where the spans of the gold and submission mentions are identical, and
the submission MedDRA PT code is among the gold mention MedDRA
PT codes

inexact match mention pairs, which are pairs of gold and submission men-
tions which overlap in span, but which either don’t match exactly in span,
don’t match in MedDRA PT code, or both

missing gold mentions, which have no submission counterpart

spurious submission mentions, which have no gold counterpart

For the Map problem, during testing, I use the MedDRA coding metric
macro-averaged along the sections of the product labels, which defines the
Precision/Recall/ F; for mapping the detected spans to their MedDRA entries.

As stated earlier in this chapter, the FDA has not released the 2000 test
labels that they use for internal evaluation. The state-of-the-art results in their
report [20] are tested on these 2000 labels. As a result, the results of this work
are not directly comparable to the state-of-the-art results.

“This is mainly because the unweighted Exact Mention Match metrics are not reported for
the state-of-the-art results.
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Instead, in order to evaluate the results of this thesis directly, I compare
with three previous attempts at UMC (see appendix A.8 for details) whose
results are derived from the same test set as this project:

Baseline This is the baseline dictionary-based approach that the UMC cur-
rently uses, but it suffers from low precision due to its unspecific match-
ing of ADR

Submission 1 This is an ensemble method developed by my supervisor Dr.
Lucie Gattepaille; it combines the dictionary-based approach (see Base-
line) with a BILSTM—softmax classifier for the Scan problem.

Submission 2 This model is similar to Submission 1, but instead uses whoosh
to perform the Map problem.
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Results

For the purpose of the UMC, not all metrics defined by the FDA are impor-
tant. UMC is mostly interested in the unweighted Exact mention match met-
rics and MedDRA retrieval statistics. However the FDA defines the primary
back-office metric to be the weighted Exact mention match. 1 have chosen to
ignore the unweighted "Exact match (discontinuous)" metric because none of
the models achieved any matches in the discontinuous case, resulting in the
scores being 0 for all models.

Using the BERT-based ranking model resulted in MedDRA matches which
were less performant than using traditional Information Retrieval (IR) tech-
niques (table 3.4); as a result, I chose not to use it for evaluating the models.
The MedDRA retrieval figures in table 3.3 are the results without re-ranking.

3.1 Parameter Selection

Parameter selection is done using a grid-search on the encoder hidden size
H € {8,100, 300, 1024} and number of LSTM layers N € {1,3,5}. Batch
size during training is 16 for all models.

3.1.1 BILSTM with Softmax

The best validation F; of 0.752 in the BILSTM-Softmax model was achieved
with a hidden size I = 100 and with a single BiLSTM layer (fig. 3.1 and
id:fd2ff31c intable B.1). H = 1024 is omitted because it was unable to
complete due to memory issues on the GPU device.

20
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Figure 3.1: Validation F; (y-axis) per epoch (x-axis) across hidden size (by
row) and number of layers (by column) of the BILSTM-Softmax model. The
shaded area represents the maximum and minimum F; per epoch across the
5-folds. The solid line represents the average F; across all folds. Red dots
mark the run with the highest F; per epoch.
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Figure 3.2: Training and validation loss for the best BILSTM—Softmax model
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3.1.2 BILSTM with CRF

The best validation F; of 0.795 was achieved with a hidden size H = 1024
and a single BiLSTM layer (fig. 3.3 and id:39c120be in table B.1).
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Figure 3.3: Validation F; (y-axis) per epoch (x-axis) across hidden size (by
row) and number of layers (by column) of the BILSTM—-CRF model. The
shaded area represents the maximum and minimum F; per epoch across the
5-folds. The solid line represents the average F; across all folds. Red dots
mark the run with the highest F; per epoch.
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Figure 3.4: Training and validation loss for the best BILSTM—-CRF model

3.1.3 BIiLSTM with CRF and ELMo

The best validation F; of 0.768 was achieved with H = 1024 and N = 5
(fig. 3.6 and id:25e88b28 in table B.1).

=> Training Loss
Validation Loss

Figure 3.5: Training and validation loss for the best BILSTM—-CRF-ELMo
model
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Figure 3.6: Validation F; (y-axis) per epoch (x-axis) across hidden size (by
row) and number of layers (by column) of the BILSTM—-CRF model with
ELMo embeddings. The shaded area represents the maximum and minimum
F; per epoch across the 5-folds. The solid line represents the average F; across
all folds. Red dots mark the run with the highest F; per epoch.
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3.2 Selection of Embedding

For all three models, the DailyMed embeddings outperformed GloVe embed-
dings. However the differences are marginal and the choice of embedding does
not seem to be the deciding factor in the system performance.

\ BiLSTM+Softmax \ BiLSTM+CRF \ BiLSTM+ELMo+CRF

GloVE 0.743 0.775 0.765
DailyMed 0.752 0.795 0.768
A 0.009 0.020 0.003
A% 1.211 2.581 0.391

Table 3.1: Change in Validation F; with the two different embeddings

3.2.1 Effect of expanding the label space

As stated earlier, the annotated mentions fall into three distinct categories:
OSE_Labeled_AE, NonOSE_AE and Not_AE_Candidate. For all the labelling
tasks, we only consider the OSE_Labeled_AE category and ignore the others,
but it seems to be a waste to ignore almost half of the annotations when trying
to detect spans. In order to make use of most of the annotated data, I intro-
duced extra classes to the best CRF classifier, namely B-, and I- tags for the
three classes PADR (possible ADR), NADR (not ADR) and NC (not candi-
date).

Exact match? ‘ Exact match* ‘

P | R |F | P | R | F | Clc | MM St/s*

Limited 0.88 0.66 0.76 | 0.72 0.59 0.65 | 185/370 648/648 47/187
Extended 0.73 0.79 0.76 | 042 0.68 0.52 | 268/537 251/251 461/1843

fweighted
*unweighted

Table 3.2: Results of using the limited annotations and extended annotations
with the best BILSTM—-CREF classifier

Table 3.2 shows the results of the expanding the label space, here C, M and
S are the inexact match, exact match and spurious metrics, respectively. We
can see precision drops significantly for both weighted and unweighted Exact
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Mention Match metric. There is an increase in spurious matches (detected
spans which are not in the gold labels) and a substantial drop in exact matches.

3.3 Scan Performance

Figure 3.7 presents the precision/recall for the weighted Exact Mention Match
metric. The top state-of-the-art (SOTA) results achieve a F; of 0.89 (0.93
precision, 0.85 recall), which is significantly higher than our results. Submis-
sion 2 is the best performing system with an F; of 0.78 (0.87 precision, 0.70
recall), followed by the BILSTM—-CREF architecture with an F; of 0.76 (0.88
precision, 0.66 recall) marginally outperforming Submission 1 in the recall
metric. All systems presented in this project and Submission 1 and 2 achieve
significantly higher precision, compared to the baseline dictionary-based ap-
proach. The baseline method outperforms our approaches in the recall metric,
which is expected as the systems presented and Submission 1 and 2 are more
selective in their detection.

0.95
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0.85 1 .
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s .
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8 \o
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* SOTA
Baseline
0.70 %  Submission 1
® Submission 2
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® BiLSTM+CRF+ELMo
| € BiLSTM+Softmax
0.60 - - - o

T T T
0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95
recall

Figure 3.7: weighted Exact Mention Match for different architectures, curved
lines show F; iso-curves, diagonal line denotes precision = recall
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NB: The axes have been limited to F; > 0.60 to show the differences more
clearly.

Figure 3.8 shows the precision/recall for the unweighted Exact Mention
Match metric, where the BILSTM—CREF architecture is the top performer with
an F,; of 0.67 (0.75 precision, 0.61 recall) followed closely by Submission 2
with an F; of 0.66 (0.70 precision, 0.64 recall).

Performance of the BILSTM-softmax and BILSTM—CRF-ELMo are sim-
ilar in this metric, while BILSTM—CRF-ELMo was slightly better in the weighted
Exact Mention Match metric.

The baseline approach had the highest recall but has poor precision.
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Figure 3.8: unweighted Exact Mention Match for different architectures,
curved lines show F; iso-curves, diagonal line denotes precision = recall.

3.4 Map Performance

Almost all models performed better than the solutions proposed in this thesis
in Map performance (fig. 3.9). The best performing state-of-the-art system
is again, significantly higher than our models achieving an F,; of 0.79 (0.83
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precision, 0.79 recall). Followed by Submission 1 with an F; at 0.53 (0.71
precision, 0.50 recall).

Among the approaches implemented in this project, BILSTM—-CRF per-
formed the best with an F; of 0.49 (0.61 precision, 0.48 recall) with an increase
in F; of 0.06 over the baseline results. Again, similar to the Scan problem,
the baseline method had a high recall compared to my methods.
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Figure 3.9: MedDRA coding performance, curved lines show F; iso-curves,
diagonal line denotes precision = recall.



Exact mention Match* ‘ Exact Mention Match' ‘ MedDRA coding?

ity
Model Precision ‘ Recall ‘ F1 ‘ Precision ‘ Recall ‘ F1 ‘ Precision ‘ Recall ‘ F1 ‘ Quality
SOTA 1 (Team 2) 0.93 0.85 0.89 - - - 0.83 0.79 0.79 0.93
SOTA 2 (Team 11) 0.92 0.86 0.89 — - - 0.81 0.77 0.76 0.93
SOTA 3 (Team 1) 0.93 0.79 0.86 - - - 0.79 0.68 0.70 0.96
Baseline (Dictionary) 0.65 0.76 0.70 0.31 0.66 042 0.39 0.64 043 0.85
Submission 1 0.88 0.65 0.75 0.71 0.58 0.64 0.71 0.50 0.53 0.92
Submission 2 0.87 0.70 0.78 0.70 0.64 0.66 0.58 0.52 0.51 0.95
Best BiLSTM+Softmax 0.83 0.64 0.72 0.66 0.57 0.61 0.58 0.46 0.46 0.93
Best BILSTM+CRF 0.88 0.66 0.76 0.75 0.61 0.67 0.61 0.48 0.49 0.96
ELMo+BiLSTM+CRF 0.83 0.66 0.73 0.66 0.58 0.62 0.52 043 043 0.93
*weighted
Tunweighted
imacro-averaged by section
$label scope
— unreported

Table 3.3: Evaluation metrics for the different architectures.

S1TNS3H '€ 431dVHO

62



No re-ranking ‘ Bert (bert-base-uncased) ‘ BioBert
Engine Precision ‘ Recall ‘ F, ‘ Precision ‘ Recall ‘ F, ‘ Precision ‘ Recall ‘ F,
Whoosh 0.70 041 047 0.50 0.29 0.32 0.52 0.30 0.34
Solr 0.61 0.48 0.49 0.47 0.37 0.38 0.46 0.36 0.37

Table 3.4: Re-ranking performance for MedDRA retrieval macro-averaged per section on the best BILSTM—CRF model
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Chapter 4

Discussion

4.1 Model Selection

My initial approach to the Scan problem was to use a sequence-to-sequence
model. Sequence-to-sequence model have shown great results in Neural Ma-
chine Translation (NMT) [21], however it is easy to see why this would fail in
this particular formulation of the problem. In a language modelling problem,
the source and target vocabulary have a large number of states, allowing the
decoder to sample from a large probability distribution. In my formulation of
the sequence-to-sequence model where there is a large set of input states and
only two output states, it is not ideal since the neural model can be simplified
into a state diagram with two states where the transitions are conditioned on
the previous output and the hidden state (fig. 4.1).

p(ADR|ys—1 = O; ht_1)
~

pOlyt—1 =0;ht—1) ()

ADR »(ADR|y; 1 = ADR; Ay 1)

™~

p(Olys—1 = ADR; hy 1)

Figure 4.1: Simplified sequence to sequence model

The choice of BILSTM—-CRF model was justified by multiple instances of
previous work where such an architecture was successfully used to perform
NER and relation classification tasks [22-27].

The top performing systems in the ADE Evaluation Challenge [20] also
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used a similar architecture with an additional rule-based system for special
handling of tables and discontinuous mentions.

4.2 Evaluation Metrics

Even though the Scan and Map problems are described as two tasks in this
project, the evaluation script provided by the FDA evaluate them jointly be-
cause the concept of a Mention, in this particular challenge is related both to
the span and the MedDRA mapping.

The two-step validation of the models makes it difficult to evaluate the
models easily. While the k-fold cross-validation hinted that the best model
was the BILSTM—-CRF model with a hidden size H/ = 1024 and number of
layers N = 1, evaluation on the test split reported that the best model was
a BiILSTM-CRF with # = 300 and N = 5 (id:0631efla table B.I).
However, this could be an artefact of the training—test split. I chose to keep the
test split fixed because the previous attempts (“Dictionary”, “Submission 17
and “Submission 2”’) used the same dataset as a test set and would be a good
baseline to compare against.

Additionally, the metrics for the best performing systems in the ADE Eval
challenge results are not directly comparable since the FDA has not released
the annotations for the 2000 test labels that they use internally. So, while they
are useful as an upper-bound reference, only the models “Dictionary”, “Sub-
mission 17, “Submission 2" and the models presented in this thesis are directly
comparable.

4.3 Scan Performance

As I mentioned earlier, I have chosen to ignore the “Exact match (discontin-
uous)” from the results. This is because the unweighted precision and recall
was 0 for all models. This is not surprising for the BILSTM—softmax classifier
since it has no concept of what came before and after the current token. How-
ever, I would have expected the CRF classifier to perform better in this metric.
Closer inspection reveals that this is possibly the result of the transition matrix
formulated in algorithm 2. We see that an O token followed by an I token is
normalized into a B token. Given a phrase such as: "The mean |increases
from baseline for total [chelesterol " where increases cholestrol form a single
mention, the correct labels would be: "O O [B' O O O O [1"; instead the tran-
sition matrix encodes it as "O O [B. O O O O .". This might explain the
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similar performance of the CRF and softmax classifiers. This also affects the
MedDRA coding since the two phrases increases and cholesterol form two
separate queries and are not correctly resolved to their MedDRA concept IDs.
Thus, correct label encoding could boost the classification scores greatly.

Of the three models, BILSTM-CRF had the best overall performance,
marginally beating Submission 2 in the unweighted Exact Mention Match met-
ric.

Due to time constraints I was not able to evaluate parameters for the BILSTM-
CRF-ELMo model. Looking at the Validation F,; across the different param-
eters for the BILSTM—CRF-ELMo model (fig. 3.6) we can see that the model
starts to perform well as I — 1024, this makes sense since the base ELMo
embedding vectors are of size 1024, as a result setting, < 1024 results in
loss of information that is output from the language model. For this partic-
ular model, it would possibly have been beneficial to vary the hidden sizes
> 1024 instead of the same range used for the other models. The variance in
validation F; across folds is also significantly lower for the model with ELMo
embeddings visible in fig. 3.6 compared to fig. 3.1 and fig. 3.3 suggesting that
the introduction of a pre-trained language model adds some stability to the
model performance across different datasets.

4.4 Map Performance

The MedDRA mapping of all three models is poor because it selects only the
first (top-scoring) match to include in the mention, adding subsequent matches
(e.g. the first two matches) could possibly bring it closer to Submission 2
scores. Referring back to the definition of properly grounded as “a correct
MedDRA code is one which is realized in the gold standard by at least one
mention which is paired with a submission mention with the same code” [28],
we can exploit this to possibly boost the MedDRA retrieval scores.

The search engine Solr fails on queries involving ranges “neutrophil count
< 1.5”; involving phrases that denote changes "ALT elevations greater than 3
* ULN®, “elevations in lipid parameters*, ”"Mean LDL cholesterol increased*;
those involving acronyms “GI perforation events*, "APA development* or a
combination “decreases in absolute lymphocyte counts below 500%; this re-
quires augmentation with a language model. A possible solution would be to
use search engine index for simpler queries and use a language model for more
complex queries (perhaps ELMo or BERT) since concepts such as “elevated”,
“increased” should ideally map to similar vectors and it would also be able to
learn representations for ranges.
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Another issue that contributed to poor mapping performance was bad to-
kenisation of the source text and generic matches. Since tokenisation is the
first process in the pipeline, it has a domino effect within the model. The
search engine failed to match cases where numbers and symbols were to-
kenised poorly such as: “pneumoniass]”, “= 150Maintenance”, “elevationss]”,
“crampingt/s]”. It also failed on (possible) ADRs which were too ambiguous

or were acronyms: “Malignancies”, “RVO”, “TMA”.



Chapter 5

Conclusion and Future Work

Despite the issues introduced by data preparation and tokenisation, modern
NLP techniques show promising results in the detection of ADRs in free-form
text. My method performed significantly better than the dictionary-based ap-
proach developed at UMC[10] on the dataset provided by the FDA, with an
increase of 0.25 in F; for the Exact Mention Match evaluation metric and
an increase of 0.06 in macro-averaged F, for the the MedDRA coding eval-
uation. Albeit demonstrating improvements over the UMC baseline, the best
performing pipeline developed in this thesis is still below the state-of-the-art
results (table 3.3) (data received in a personal communication, publication of
these results is pending). The best-performing state-of-the-art system (SOTA
1 in table 3.3) in the ADE Evaluation Challenge was using an ensemble neural
method augmented with a set of rules tailored to the task.

A big source of error in this project arises from the difficulty of labelling
the spans when preprocessing the raw training data. The IOB2 scheme is lim-
ited when there are overlapping and discontinuous tokens. Indeed, almost all
models proposed operate on a token level and disregard the concept of spans,
this means that detection of nested and overlapping entities is not possible with
these models; this is a disadvantage since the classification is being done in
a single pass (each token can only belong to one mention) there are count-
less examples in the dataset where this is not true (i.e. the same token belongs
to multiple spans). Recently, Eberts and Ulges proposed a span-based entity
recognition system that uses a pre-trained BERT transformer, which could be a
possible approach to mitigate this problem [29]. Alternatively, improved span
representation might also lead to better results and would be worth investigat-
ing in future research.

Additional work is also possible within the architecture proposed in this
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thesis. Recent development in attention-based models could be used to aug-
ment and weigh the feature vectors from the BiLSTM layer with a location
based attention layer [30] to improve context retention of BiLSTM layers along
long sequences. This is especially important since sentence tokenisation can
sometimes fail and produce really long sequences. Furthermore, the Sequence-
to-Sequence model I initially proposed could be reformulated to map to w >
w for non ADR tokens and w — {O, B, I} for ADR tokens.

In conclusion, extraction of ADRs from documents is a complex task due
to the structureless-ness of free-form text. While traditional NER might be
one approach to the Scan problem, it cannot solve it entirely due to additional
complexities such as nested entities or shared tokens across mentions. To ad-
dress the Scan problem fully, a system needs to have some idea of a language
model to handle complex formulations (e.g. Latent infections can be reacti-
vated, serum phosphorus levels at least 0.3 mmol/L but less than 0.6 mmol/L)
that don’t fit into the token-level Named Entity framework. Nonetheless, this
work presents a clear improvement over the existing algorithm that was devel-
oped at UMC. Future research should be carried on evaluating how classifica-
tion thresholds could be tailored to UMC’s requirements in precision, instead
of optimizing the algorithm on the more general F; metric, which gives an
equal weight to precision and recall. A more stringent threshold could reduce
the amount of false positives while still leading to substantial time improve-
ments in the safety signal detection process. The ability to automatically and
reliably detect, extract and map ADR from any text data source has a great role
to play in the future of semi-automated pharmacovigilance and, considering
the ever increasing amount of textual information available in the healthcare
sector, will help develop comprehensive knowledge-bases on drugs and their
use in the general population.
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Appendix A

State of the Art

In this chapter, I will further define Pharmacovigilance and its role in Drug
Safety, followed by a brief description of how the results of this project fit into
a larger context at Uppsala Monitoring Centre (UMC). I will then describe
some core conceptual ideas related to this project such as the organization
of the dictionary Medical Dictionary for Regulatory Activities (MedDRA),
shared task challenges and the problems they solve, followed by the description
of the challenge itself that this project is based on, as well as the extensive
metrics that are part of the Shared Task Challenge toolkit.

Next, I will describe the granular technical context of this project: start-
ing with the organization of the challenge, introducing the notion of Structured
Product Label (SPL), its various components and the extensive evaluation met-
rics defined by the challenge organizers. I will then continue describing what
Natural Language Processing (NLP) is, why it is a difficult problem and its
evolution from Classical NLP to Machine Learning (ML) based NLP. For the
latter, I will concretely describe the various ideas related to ML in the context
of NLP. Finally, I will add a brief about information retrieval methods relevant
to this project and conclude with a Literature Review of previous attempts on
similar problems.

A.1 Pharmacovigilance

Adverse events caused by drugs and medicines may manifest themselves as
minor side effects such as a skin rash or an irritation, but it can also cause
long-term damage or death. One notable case is the Thalidomide crisis of
1961, where a drug administered to pregnant mothers resulted in congenitally
deformed infants. This incident highlighted the importance of pharmacovigi-
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lance and continual monitoring, even at the post-marketing phase. The World
Health Organization (WHO) defines pharmacovigilance as [31]:

Pharmacovigilance is the science and activities relating to the
detection, assessment, understanding and prevention of adverse
effects or any other possible drug-related problems.

The main methods used in pharmacovigilance to detect adverse events are
pre-marketing clinical trials, reports from pharmaceutical industry, literature
studies and spontaneous reporting [32].

Academia
T Pharmaceutical
WHO provide data
v Industry
provide data provide data
\ -
UMC
share reports with
National Centres for Pharmacovigilance
P \ S
report to
report to
/ \
. report to Pharamaceutical
Individuals .
- Companies

report to

» Healthcare
Workers

Figure A.1: Reporting structure

The WHO works with a number of partners (fig. A.1) in order to support in-
ternational drug monitoring. Each partnering nation appoints a national phar-
macovigilance centre for post-marketing surveillance. The UMC is an entity
responsible for managing the international database of spontaneous Adverse
Drug Reaction (ADR) reports [31].

A.2 Medical Dictionary for Regulatory Activ-
ities

MedDRA® the Medical Dictionary for Regulatory Activities terminology is
the international medical terminology developed under the auspices of the In-
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ternational Council for Harmonisation of Technical Requirements for Pharma-
ceuticals for Human Use (ICH). It is a clinically-validated, hierarchical med-
ical terminology database used by regulatory bodies and bio-pharmaceutical
industries [33]. Terms in the MedDRA dictionary are organized into five hi-
erarchical levels, from general to specific:

1. System Organ Class (SOC, e.g. Cardiac disorders)

2. High Level Group Term (HLGT, e.g. Cardiac arrhythmias)

3. High Level Term (HLT, e.g. Rate and rhythm disorders NEC)
4. Preferred Term (PT, e.g. Arrhythmia)

5. Lowest Level Term (LLT, e.g. Arrhythmia NOS, Dysrhythmias)

The last class: Lowest Level Term (LLT) is a very fine-grained class that
can contain synonyms, lexical variants and sub-elements of particular terms
and form a many-to-one mapping onto the Preferred Term (PT) class.

System Organ Class
(Cardiac disorders)

v

High Level Group Term
(Cardiac arrhythmias)

v

High Level Term
(Rate and rhythm disorders NEC)

v

Preferred Term
(Arrhythmia)

4 ‘

Lowest Level Term Lowest Level Term
(Dysrhythmias) (Arrhythmia NOS)

Low Specificity

v
High Specificity

Figure A.2: MedDRA hierarchy
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Despite the standardization, drug manufacturers are not required to use
MedDRA terminology in product labels adding further challenges to applying
automation to pharmacovigilance[34].

A.3 Shared Task Challenges

Shared Task Challenges are open invitations for researchers to solve a specific
problem in various fields, including clinical NLP. They are often divided into
tasks and researchers tend to focus on one or more of these tasks. Shared tasks
provide researchers with a few important tools:

* An annotated and reliable Dataset, known as the Gold Standard (and
additional test and validation datasets)

¢ Documentation on annotations, data format and evaluation criteria

Evaluation metrics

Additional tools for visualisation and data verification (optionally)

A compilation of entries and their performance at the end of the chal-
lenge

A.4 FDA Challenge

The UMC is interested in an automated algorithm able to detect ADR men-
tions in product labels and map them to their relevant MedDRA PT codes to
facilitate review and processing of Individual Case Safety Reports (ICSRs).
The Office of Surveillance and Epidemiology (OSE) Food and Drugs Admin-
stration (FDA) challenge provides a standard dataset of drug labels (known as
SPLs) for the same purpose, as described in the challenge homepage':

OSE is interested in a tool that would enable pharmacovigilance
safety evaluators to automate the identification of labelled Adverse
Events (AEs) which could facilitate triage, review and processing
of safety case reports.

'"https://sites.mitre.org/adeeval/


https://sites.mitre.org/adeeval/
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They provide 100 manually annotated Gold Standard SPL files for 100
drugs, 2000 unannotated test documents. Scripts for evaluating and cleaning
the data files (for preparation of test and validation datasets) and for submis-
sion. A document describing the structure of the Gold Standard document,
and a document describing the evaluation metrics.

The FDA defines two separate use cases for detection of ADR in product
labels:

Front Office In this use-case the safety evaluators query the database with a
known MedDRA code and the system should provide all product labels
matching the MedDRA term and provide evidence. In this use-case the
Map problem is the most important.

Back Office In this use-case the system is expected to automatically find and
map the ADR detected in the product labels, possibly with a human
evaluating the quality of the matches. In this use-case, the Span problem
is the most important as any ambiguities can be resolved by a reviewer.

A.4.1 Structured Product Labels

SPL is an eXtended Markup Language (XML) document which is a down-
loadable electronic version of drug labels. They are provided in two formats:
one targeted towards health professionals, and the other towards end-users, all
files provided by the FDA challenge belong to the former category.

The structured in Structured Product Labels, refers only to a formatting
structure of the document. The contents of each document is still free-form
[35]. These documents are freely available for download from the DailyMed
website maintained by the FDA2. The SPL files provided for the FDA chal-
lenge contains a subset of the XML files?, specifically only the Boxed Warning,
Warnings, Precautions and Adverse Reactions section, all of which contain
free-text information. Figure A.3 shows an excerpt of the SPL file provided
by the FDA challenge for the drug Afinitor.

nttps://dailymed.nlm.nih.gov/dailymed/

31t should be noted that the challenge data represents a heavily pre-processed SPL file,
where most of the XML structure is stripped away so that researchers can focus on the task
instead of the details or parsing the complex and extensive SPL format.


https://dailymed.nlm.nih.gov/dailymed/
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2xm
<GoldLabel

g="AFINITOR">

<Text>
<Section id="S1" name="adverse reactions"> 6 ADVERSE REACTIONS

The following serious adverse reactions are discussed in greater detail in another section of

< the label [see Warnings and Precautions (5)

* Non-infectious pneumonitis [see Warnings and Precautions (5.1)]

* Infections [see Warnings and Precautions (5.2)]

* Angioedema with concomitant use of ACE inhibitors [see Warnings and Precautions (5.3)]
*

Stomatitis [see Warnings and Precautions (5.4)]

* Renal failure [see Warnings and Precautions (5.5)]

* Impaired wound healing [see Warnings and Precautions (5.6)]

Because clinical trials are conducted under widely varying conditions, the adverse reaction
< rates observed cannot be directly compared to rates in other trials and may not reflect
< the rates observed in clinical practice.

</Section>
</Text>
<IgnoredRegions>
<IgnoredRegion len="23" name="heading" section="S1" start="2" />
... truncated ...
<IgnoredRegion len="32" name="heading" section="S1" start="56491" />
</IgnoredRegions>
<Mentions>
<Mention id="M135" len="26" reason="from_drug_use" section="S1" start="177"
— type="OSE_Labeled_AE">
<Normalization meddra_llt="Pneumonitis" meddra_l1lt_id="10035742" meddra_pt="Pneumonitis"
< meddra_pt_id="10035742" />
</Mention>
<Mention id="M136" len="10" reason="from_drug_use" section="S1" start="248"
< type="OSE_Labeled_AE">
<Normalization n _llt="Infection" meddra_llt_id="10021789" meddra_pt="Infection"
<> meddra_pt_id="10021789" />
</Mention>

</Mentions>
</GoldLabel>

Figure A.3: Structure of Gold Labelled SPL file provided by the FDA chal-
lenge

SPLs that are manually tagged for adverse events by domain experts are
called Gold Labels, and will be used as a reference standard to train against
and validate the performance of algorithms.

A SPL document consist of one or more sections of text (fig. A.4).

Section

Section

Section

Figure A.4: General structure of an SPL. document
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A.4.2 Mention

A mention is an annotated instance of an ADR within the SPL section. It
can contain one or more spans and association to one or more normalized
MedDRA entry that is represented by the enclosed span. Spans can be disjoint
but still represent a single mention.

SGPT (ALT) < 1%; | SGOT (AST)

Normalization: Alanine aminotransferase increased (10001551)

Figure A.5: A mention with 2 spans (bordered)

A.4.3 Spans

A positively annotated ADR is called a Mention. Each section contains a num-
ber of Mentions specified by one or more Spans which are parametrized by a
start index and length. The index is in reference to the first character of each
section (fig. A.6), and newlines are counted as a character token.

0 Start = & A

Span

1 )
r T

k Length = [;

N

Section

Iy

N

Start=27+p+1

Figure A.6: Spans in Sections
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Let S; = [s;, e;] represent a span with start index s;, length /; and end index
€ = 8; + lz
We define the span separation operation as:

D(S1, S2) = max(sy, s2) — min(ey, ez) (A.1)

And the span length operation as:
1Sill = e; —si =1, (A.2)

Adjacency
Two spans S; and S, are adjacent if D(S;, S3) = 0.

Overlap

Two spans, S; and Sy are overlapping if D(S7,S2) < 0. There can be two
variants of overlapping spans: partial overlaps where |D(S1,S2)| < [|Se],
and complete overlaps where |D(S, S2)| = ||S2||

The SPL documents contain many such overlapping spans that represent
distinct (possibly similar) ADR.

Cases of sensory or [sensorimotor |[axonal polyneuropathy] |

Figure A.7: Examples of completely overlapping span

Most overlaps in the provided training data is in the form of complete over-
laps.

Discontinuity

Discontinuity is the final case described by the separation operation and arises
in cases where D(S1, S2) > 0. This is very common in the provided annotated
dataset, and the separation can span a few words to large sections.

Discontinuous spans come in two variants, the first are spans that represent
a single ADR but are separated by one or more words. For example in fig. A.8
the correct ADR is worsening BPH but they are separated by a number of un-
related words. There are almost 3500 discontinuous annotations in the dataset
[20].
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Patients with BPH treated with androgens are at an increased risk for
worsening | of signs and symptoms of |BPH .

Figure A.8: Example of discontinuous span

The second variant are spans that represent different ADRs but are linked
by acommonroot as in fig. A.9. Here’ the correct ADRs are: fistulae tracheoe-
sophageal, fistulae bronchopleural, fistulae biliary, fistulae vaginal, fistulae
renal, fistulae bladder.

Serious[ﬁstulae](including, [tracheoesophageal,Ibronchop]eural,Ibiliary,[vaginal,[renal]and [bladder] sites) occur at a higher incidence [...]

Figure A.9: Example of discontinuous spans with a common root

Alternatively, the connecting root can also follow the connected spans as in
fig. A.10 where the correct ADRs are: bacterial infections, fungal infections,
viral infections and protozoal infections.

may predispose patients to [bacterial,[fungal, [Viral, ] or [protozoal[infections]

Figure A.10: Example of discontinuous span where the root follows the con-
nected spans

A.4.4 Evaluation

The evaluation metrics provided by the FDA define multiple metrics for both
the Front Office and Back Office use cases, this is illustrated in fig. A.11.

The evaluation is described in terms of two terms: Gold Label and Sub-
mission Label. Gold Label is the annotated label and Submission Label is the
output from the ADR detection systems.
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Front Office Back Office
F, per label Overlap Match
Quality Exact Match
Label scope Continuous
Section Scope Weighted Unweighted
Recall per section Discontinuous

Single Mention

Weighted Unweighted

Multi Mention

Figure A.11: Hierarchy of evaluation metrics

The front and back office metrics are based on the Precision/Recall/F; met-
rics defined as:

TP

Precision = —— (A.3)
TP + FP
TP
Recall = — (A4)
FP + FN

F1:2

‘ ( Precision - Recall ) (AS)

Precision + Recall

Front Office Metrics

The front-office metrics consider the Map problem: evaluating the perfor-
mance of mapping the detected ADR to their correct MedDRA dictionary
entries. For this purpose, they define the term Properly Grounded which is
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the instance where mapped MedDRA code in the Submission Label matches
at least one MedDRA code in the Gold Label.

F; This is the MedDRA mapping metric in the Submission Label, macro av-
eraged in the scope of SPL document.

Quality The Quality metric examines the quality of evidence for a given MedDRA
match that is properly grounded. For each matching MedDRA code in
the submission label, it looks at the proportion of matches in the gold
label. The rationale for this metric is found in those cases where the
Safety Evaluator actually refers to the text of the drug label, rather than
the output of the analysis tool, to confirm the tool’s analysis [20].

Recall This is the recall for mapped MedDRA matches in the Gold Label.

Back Office Metrics

Back-office metrics consider the Scan problem and defines the weighted and
unweighted metrics as well as the concept of a match. It defines four variants
of matches:

Exact Match The Submission Label contains a match that matches both the
span and the mapped MedDRA code is properly grounded.

Overlap / Inexact Match The Submission Label contains a match that over-
laps in span but either don’t match the span exactly, does not match the
MedDRA mapping, or both.

Missing Match The Submission Label does not contain a mention that is
present in the Gold Label.

Spurious Match The Submission Label contains a mention that is not present
in the Gold Label.

Since the Back Office use-case involves a human reviewing the output of
the system, the weighted metrics take into account the difficulty of adding, cor-
recting and removing ADR on the output of the system. The intuition based
on the scoring is that adding a missing match is difficult since it requires read-
ing through the product label and manually annotating the ADRs. Removing
a spurious mention is fairly easy since all the context is provided by the sys-
tem; and correcting an overlapping or inexact match is hard but not as hard as
adding one (since some context is provided but it still requires manual work
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looking up the correct MedDRA codes and/or fixing the spans). Taking this
into account, given M exact matches, C' overlap matches, N missing matches
and S spurious matches:

N=1-N (A.6)
|
.1
— A.
5 CA (A.8)
M=M+C (A.9)

The weighted precision and recall score for the back-office use-cased are
defined in terms of these weighted metrics as [20]:

~

M
Precision = ————— (A.10)
M+C+S
M
Recall = —— (All)
M+C+N

(A.12)

A.5 Natural Language Processing

NLP is a multi-disciplinary field that combines linguistics, computer science,
statistics and artificial intelligence in order to allow machines to understand
and extract useful information from natural languages. Natural Language is
the primary means of human communication, and the majority of clinical texts
are recorded in free-form text narratives [36].

Natural languages are called natural because they evolve naturally through
usage and time [37], in contrast to constructed languages (e.g. Esperanto). Due
to the evolutionary nature of natural languages and since there is no central
authority cataloguing and enforcing the formalisms of languages, they change
over time, develop exceptions and separate into sublanguages and dialects.
This evolutionary aspect gives natural languages efficiency since each evolu-
tion encodes many underlying assumptions intrinsic to the structure of the lan-
guage, and is reliant on external knowledge. The process of language learning
is an attempt to learn these intrinsic assumptions, grammar, rules and excep-
tions.
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While natural languages provide efficiency in human communication, the
efficiency is afforded at the cost of memory in the form of underlying assump-
tions both in the structure of the language, and the knowledge of the receiver®.
This results in language learning to be both a complex and expensive task to
perform algorithmically.

This section discusses briefly a general framework for understanding the
various structures of language, the challenges, and possible solutions in lan-
guage modelling and understanding.

A.5.1 Natural Language Structures

It is generally accepted that natural language understanding can be categorized
into a hierarchical structure [36] as illustrated in fig. A.12. Each structure
builds on the one at a lower level.

Pragmatics

Semantics
Syntax

Morphology

Figure A.12: Hierarchical structure of natural languages

Morphology is the most basic structure and informs how words are con-
structed. An example in English: the root word work can be morphed by the
-ing suffix to form the morpheme: working.

Syntax is related to describing the structures of words and sentences. They
often form the grammar rules of a language, for e.g. : the subject comes before
the verb. Classifying words into classes such as noun and verb is also a part
of syntax.

Semantics concerns itself with the understanding of meaning. A syntacti-
cally correct statement may have no (discernable) meaning. For e.g. the phrase

“Here, the receiver refers to the receiver of the information through speech or text
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Colorless green ideas sleep furiously is syntactically correct, but semantically
incomplete. While the phrases colourless green follow the adjective-noun syn-
tax, it is not possible for something to be both colourless and green.

Pragmatics describes how the given text is understood given some con-
textual reference. For e.g. the term mass can be understood as breast mass in
a mammography report, whereas it is understood as mass in lung in a radio-
logical report of the chest. The meaning of the word mass changes based on
the context. The contextual reference could also be time, for e.g. in a phrase
containing the time reference romorrow additional knowledge is required to
know when the report was written [36].

Morphology and Syntax are often the easy parts of NLP, this is due to
the fact that they require (relatively) small knowledge base and can mostly
be parsed using dictionaries and rulesets, and require very little to no con-
text. They are often solved using low-level text processing techniques and
Finite State Machine (FSM) (e.g. a regular-expression engine) for matching
and cleaning texts [36].

The main challenge of NLP is thus, provided by Semantics and Pragmatics,
since they require significant knowledge accumulation and context and can
result in linguistics structures that are often ambiguous or domain-dependent.
For e.g. the phrase The man put the rabbit in the hat. It jumped., the term it
can refer to either the rabbit or the hat and it is not clear just by looking at the
statement which subject it is referring to. However, with additional knowledge
that hats don’t jump, we can infer that the rabbit is most-likely jumping and
not the hat (although, there is a possibility the hat could have jumped).

A.5.2 Classical NLP

The field of NLP can be partitioned into two eras: the classical NLP era, and
the machine learning NLP era [36]. Machine-learning approaches have dom-
inated the field post-2012 [38].

Classical NLP relies on a number of rule-based, dictionary-based and sta-
tistical approaches. The classical techniques focus on forming pipelines of
operations that can be chained together [36], where each step in the pipeline
produces some structure for the next item in the chain.

Harpaz et al. describe the following sub-tasks related to the extraction of
adverse events using text-mining:

Segmentation Splitting the document into sections and sentence boundaries.

Tokenization Splitting sentences into words and punctuations.
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Part of speech tagging Assigning grammatical labelling to the individual sen-
tences (e.g. noun, verb, etc)

Parsing Inferring the grammatical structure from the labels and surrounding
context

Named Entity Recognition (NER) Detecting and tagging structures of in-
terest (e.g. arintToR iS tagged as a pruc)

Negation Detection Detecting negative phrases (e.g. “arrnrror did not cause

MYOCARDIAL INFRACTION )

Word Sense Disambiguation (WSD) Disambiguate similar words (e.g. “an-
kle strain” vs. “bacterial strain’)

Temporal Inference Inferring temporal hierarchy (e.g. ‘“adverse event oc-
curred after prescription of drug”)

Relation Detection Detecting if any of the entities are related to each other
(e.g. “drug A treats disease B”, “drug A induces disease B”)

A.5.3 Clinical NLP

Clinical NLP is the application of NLP techniques to extract information in a
clinical setting. There are a number of unique challenges in regard to clinical
NLP [38, 39]:

» Unavailability of data due to privacy concerns or data silos
* Lack of reliable annotations because it is expensive
* Lack of standard evaluation metrics

* Lack of reproducibility

Shared task challenges solve some of these problems by providing researchers
with anonymized, well annotated clinical data and a standard evaluation met-
rics. This gives researchers a way to develop state-of-the-art methods and
compare their performance.
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A.6 Machine Learning for NLP

Contrary to the classical approaches, machine learning based approaches to
NLP attempt to have no assumptions about the underlying language model
that are encoded by humans, instead it tries to learn these features through
labelled and unlabelled data. It usually consists of two phases:

1. The training phase where the algorithm is shown a number of examples
for learning.

2. The prediction phase where the algorithm is expected to predict the re-
sults for inputs it has not seen.

A.6.1 Neural Network

A neural network is a computation model inspired by the biology of the brain:
a neural node collects one or more signals and triggers a signal if it exceeds a
given threshold. It consists of a graph of nodes that pass information through
the graph and attempts to minimize a loss function that models how well the
inputs match the prediction.

The most basic unit of a neural network is a node.

1‘0\

Wo
W,
/

Tn

Figure A.13: Computational graph of a basic neuron model

The summation operation performs a weighted combination of the inputs
x = (xg, 21, ,2,) and weights w = (wg,ws,--- ,w,). The function a
models the activation of the neuron.

y=a(w-x) (A.13)

A simple node such as in fig. A.13 can perform an arbitrary linear clas-
sification task if we choose an appropriate activation function. The simplest
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activation function can be a step function:

a(Q):{llfQ>0 N
0 otherwise

A neuron with such a model is called a perceptron and it is able to per-
form a simple binary classification when trained given input data x € R? and
expected output y € {0, 1}. After training, the weights w represent the nor-
mal to the hyperplane that separates the two classes. However, this hyperplane
is often centered around the origin and cannot separate classes which lie far
from the origin, in order to mitigate this issue we often introduce a bias term
by setting o = 1 and wy = b, thus is it more appropriate to write:

y=a(W-X+0D) (A.15)

Where X = (1,29, - ,x,) and W = (wy, wy, - - - , w,, ). However, for the
sake of succinctness and generality, the introduction of the bias term is implied
in the rest of this section.

These units can be stacked together to form complex networks that can
perform more complex classification tasks, taking the output of one layer as
the input to the next:

h = a(wo' -i) (A.16)

o=a(w;" -h) (A.17)

Where i € R%** is the input to the network, o € R™** is the output of the
network, wo € R%™ are the weights mapping from input to the intermediate
layer h°, and w; € R™*" are the weight mapping from the intermediate layer
h to the output y. m and n represent the number of units in each layer.

Equations (A.16) to (A.17) illustrate the importance of the activation func-
tion a being non-linear. Assume the activation is linear, i.e. it satisfies the
additive and homogenous (of degree 1) property:

a(Q+ A) =a(2) + a(A) (A.18)
ala- Q) =a-a(2) Ya (A.19)

We can simplify egs. (A.16) to (A.17) as:

SKnown as the hidden layer because the parameters and output are hidden and never “ob-
served” directly
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o=a(w;" -a(wg'-i)) (A.20)
=a(wi -wo' -a(i)) (A.21)
=wy' - wo' -ala(i)) (A.22)
=W -a(a(x)) (A.23)

The resulting matrix W is a simple linear transformation over the mapped
inputs.

Input Hidden Output

Figure A.14: Simple single-layer neural network with £ = 1, d = 2, m = 4,
n=2ando=1

Networks of the type illustrated in fig. A.14 are known as feed-forward
networks because the flow of information is forward through the network: In-
put — Process — Output. Such a network can approximate any function:
la(w - x) — f(x)| < € for any € > 0 and is known as the Universal Approxi-
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mation Theorem [40]. We can approximate any function arbitrarily closely by
adding more hidden units.

A single-layer neural network is easy to train because they are not suscep-
tible to gradient vanishing/exploding issues that deep neural networks suffer
from. Deeper networks (more than a few layers) require architectural changes
in the neural network formulation that allow us to preserve gradients across
multiple operations. Since single-layer neural networks allow us to approxi-
mate any function, they are still used for dimensionality reduction in the final
layers of deeper architectures.

The network in fig. A.14 can be simplified into a schematic diagram that al-
lows us to represent complex and deeper networks where the intricacies of the
layers are hidden, this is illustrated in fig. A.15 where FCL represents a Fully
Connected Layer representing a layer where all the inputs from the previous
layer are connected to all the nodes of the next layer.

X —>» FCL — FCL — Y

A J

Figure A.15: Schematic diagram of a two-layer network

While feed-forward neural networks have been successfully used to solve a
number of machine learning tasks, they are best suited to tasks where the input
and outputs are of fixed dimensions. They are not naturally suited for sequence
modelling. Textual information is often variable length and sequential (i.e. in
left-to-right scripts, the contents on the left depend on the contents on the right
of the current word).

A.6.2 Embeddings

In order for textual information to be useful for machine learning, we need
some way of converting text into features that we can pass into the network.
Textual data are made of characters, which are grouped into words, sentences
and so on; the first decision is deciding the level of tokenisation.

Choosing to tokenize at the character level is often too fine-grained since it
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does not provide us with any additional semantic information: the characters
themselves have no meaning on their own.

One level higher, words often are the smallest unit of a language that still
carry some meaning. As a result, many deep-learning techniques choose to
encode words into some feature space for machine learning. The result of this
encoding procedure is called an Embedding, and in its simplest form is just a
lookup-table that maps a word in a vocabulary into some n-dimensional space:
velV— R

The simplest possible embedding is the one-hot encoding, where, for each
v; € V there is an embedding matrix E € RIV*IVI such that:

£ — life =7
ij = _ (A.24)
0 otherwise

It is clear to see that the embedding matrix E will be a very sparse matrix
and will scale quadratically with the vocabulary size |)|. For each new word
in the vocabulary, the one-hot encoding introduces a new dimension. The
inefficiency of the one-hot can be illustrated with a simple example: Given the
set V = {cat,dog, bird}, a one-hot encoding would result in the embedding
matrix:

1 0 O] cat
E=0 1 0] dog (A.25)
0 0 1] bird

We can easily find a more efficient and compact embedding:

0| cat
E=| 1] dog (A.26)
2 | bird

However, this embedding has issues because it introduces an order be-
tween the concepts that have no basis in reality. In order to mitigate this, em-
beddings are often multi-dimensional where each dimension encodes some
feature-space encoding the closeness of concepts in the scope of that particu-
lar feature (which may or may not have an interpretation).

word2vec

word2vec is an unsupervised learning algorithm that learns to align similar
words together in a vector space. In its essence it is an auto-encoder which
takes in a one-hot encoded feature vector and learns to embed it into a lower
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dimension. The decoder is discarded and the embedded hidden state is used
as the embedding matrix[15].
word2vec can be trained in one of two modes:

Continuous Bag of Words In this mode, the network learns to predict the
current word given some context within a window.

Skip-gram In this mode, the network predicts the context given a word.

GloVe

GloVe stands for Global Vectors for Word Representations and is another un-
supervised learning algorithm for mapping words to vectors. GloVe uses co-
occurrence statistics to calculate the word vectors, the intuition is that words
that are similar in context appear together across a large dataset. For example,
the word ice is more likely to co-occur with the word solid than with the word
steam or fashion.

GloVe has been shown to outperform word2vec in certain use cases[41].

fastText

fastText® is another embedding method from Facebook that uses morphologi-
cal and sub-word features to handle out of vocabulary words. When encoun-
tering out-of-vocabulary words, it tries to break the word into smaller chunks
and align the chunks, for e.g. given that the word ending in -itis such as pan-
creatitis is in the dictionary but not the word stomatitis, fastText will return
vectors for pancreatitis and stomatitis that are fairly close [42].

ELMo

Embeddings from Language Model (ELMo) is another word embedding tech-
nique that uses a more complex model to learn word representations. The
previous models do not take context into account and map each unique word
in the vocabulary to the same vector representation. For e.g. , the phrase bank
in the river bank is not the same as bank deposit, the words are the same but
the semantic encoding is different based on context.

ELMo uses a two-layer bidirectional language model along with a charac-
ter Convolutional Neural Network (CNN) whose final states are concatenated
into a 1024 dimensional feature vector [14].

Shttps://fasttext.cc/
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A.6.3 Recurrent Neural Network (RNN)

RNN are a form of sequential’ neural networks that can pass information
through layers and in the form of sequential input. As mentioned earlier in
appendix A.5, understanding languages require a form of memory or context.
RNNs allow this by maintaining a state vector that is propagated along with
the inputs into the next sequence-step and used to calculate the new state [21].

ht = O'(thmt + Whhht71> (A27)
Yt = Whyht (A.28)

Recurrent networks can be illustrated as a loop in the network architecture.

Yt
A
W, hy
|
o Win
7 T_h—‘
th t—1
|
Tt

Figure A.16: RNN architecture

The loop can be unrolled to form a feed-forward network if we lay it out
along the sequence dimension for all elements in the sequence (fig. A.17).

y*o yt+—1 y+t yt;i—l
Wy, Wiy Wy, Wy,
I | hy_ 1 | hy | Rt
h0—> < _Whh" _Whh" >
—F 5 5 5
Wmh th Wmh W:ph
| | | |
Zo Ti—1 Tt Tt+1

Figure A.17: RNN architecture unrolled

"They can also be seen as temporal networks due to the inherent sequential nature of time.
Although most literature denote the sequence steps as a temporal variable ¢, this does not need
to be the case. I adopt the same convention here.
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We can now see the recurrent nature of the architecture: the basic unit of
the network remains the same and we are continuously passing the inputs x;
at every sequence step into the network. The state is preserved in h; for all
steps t. It is easy to see why this is a sequential model, each h, depends on the
previous h;_q:

he = 0(Wanae + Whphep) (A.29)
hi1 = 0(Wenti—1 + Whihy o) (A.30)
hi—a = 0(WenTi—a + Whphy_3) (A.31)
hi—s = 0(Wanti—3 + Wanhi_4) (A.32)

Let Xt = Wz, substituting into eq. (A.29) and expanding over the last
few steps, we get:

hy = O'(Xt
+ Whno(X
+ Whno(X,_o
+ Wino(Xi_s

+ Wprhi_4)))) (A.33)

t—1

We can see that we reuse the same matrix Wy, for the hidden layer for
each step. If Wy, < 1, we encounter the vanishing gradients and Wy, > 1
results in the exploding gradients problem. This makes it extremely difficult
to train RNN and retain past information [43].

A.6.4 Long Short-Term Memory (LSTM)

LSTMs are a type of RNN cell that attempts to reduce the vanishing/exploding
gradients problem by introducing gating mechanisms. It introduces a memory
mechanism called the cell state which can be manipulated through gates named
as: input, forget and output gates [44]. The hidden state of the network is a
function of its cell state.
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iv = 0(Wyz: + by + Wiihi—1 + by) (A.34)
Ji =0(Wiszi +bis + Wyrhi1 + bpy) (A.35)
0y = 0(Wioy + bio + Wiphi_1 + by,) (A.36)
g = tanh(W, 2, + by + Wynhy—1 + byy) (A.37)
¢t = froci1+it g (A.38)
hy = o4 o tanh(c;) (A.39)

Where c¢; is the cell state, x is the input to the cell, and h; is the hidden
state; o represents the Hadamard (element-wise) product, o(-) € [0, 1] is the
sigmoid function defined as:

1

= A.40
I+e® ( )

o(x)

1, f; and o; represent the input, forget and output gates respectively and
control the flow of the cell state onto the next step.

A.6.5 Gated Recurrent Unit (GRU)

GRUs is another type of RNN, that aims to solve the same problems that
LSTMs solve, with a simpler model. The intuition behind a GRU unit is that
the forget and input can be combined into a single update gate; and the hidden
state can be simplified to not depend on an auxiliary cell state.

With these changes, a GRU cell can be defined as:

U = 0 W oy + Wyphi—1 + by, (A.41)
re =0Wpxy + Wephi 1 + b, (A.42)
hy = u; o hy_q (A.43)

+ (1 — uy) o tanh(Wy,zy + Wy (1 0 hy—1) + by,) (A.44)

However, LSTM cells have been shown to consistently outperform GRU
cells in language modelling tasks, despite being faster to train (due to the re-
duced number of parameters) [45].
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A.6.6 Bidirectional Recurrent Neural Network (BiRNN)

A major issue of RNN based architectures is the fact that the state at each step
t depends on the previous step ¢ — 1. For sequential modelling tasks, this
means that the model only has information to the left of the current word. The
intuition behind bidirectional RNN is that we can construct better predictions
if we have information about both the upstream (¢ — k) and downstream (¢ + k)
inputs.

This is achieved by running the input sequence first from¢ = 0tot =T
(assuming 7' is the length of the sequence), and running the input sequence
fromt =T tot = 0 on a separate RNN cell.

We call the forward RNN states Ez and the backward RNN states E These
two vectors are then concatenated to form a bidirectional feature vector:

b = (e by (A45)

A.6.7 Conditional Random Field (CRF)

A Conditional Random Field (CRF) is an undirected probabilistic graphical
model similar to Maximum Entropy Markov Model (MEMM) that was de-
signed to solve the label bias problem, where the transitions from a given state
depend only on the outgoing transitions instead of global transition (including
all following transitions), this results in state with only a single transition trans-
ferring all their mass to the next state [46]. This results in state transitions that
are the optimal locally but not globally in the scope of all transitions. CRFs at-
tempt to solve this by normalizing the state transition probability by the global
transition probabilities.

Given the sequence of random variables X conditioned on the hidden states
Y, CRFis defined as a graph G = (V, E') where Y is indexed by the vertices of
G:Y = (Y,)vev. The variables in Y follow the Markov property within the
graph defined as: p(Y,|X, Y;w # v) = p(Y| X, Y w ~ v) where w ~ v
represents neighbourhood in the state graph [46]. A graphical representation
is presented in fig. A.18.

CRFs for sequence modelling are called Linear-chain CRF and are acyclic
(fig. A.19), for the remainder of this thesis CRF refers to Linear-chain CRF.
Note that the chain in fig. A.19 is similar to the field in fig. A.18 except for
the edge between state X, and X5. The Markov property maintains a linear
dependency between the states in the chain.

Given an input sequence x = (x1,Xa,...,X;) € X and its predictions
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Figure A.18: Graphical Representation of CRF
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Figure A.19: Linear Chain CRF

y = (Y1,Y2,---,Yk) € Y, where ) is a finite set. We define the conditional
probability p(y|x) with a log-linear model [47]:

_ exp{o(x,y)}
p(y|x) = S exp (000 y)] (A.46)

The function ¢ : X x Y + R? is known as the feature function. For
logistic regression, we can define ¢(x,y) = w'x + b. However, that would
not give us any discriminative power constrained by the state transitions; we
need to formulate some form of dependency between the state transitions. This
is possible by introducing a state transition matrix A € R(™+2)x(m+2) where
m is the number of hidden states (we introduce special states START which no
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state can transition to and STOP which cannot transition to any other state).

START Sy St e Sm STOP
START | —o0 Wi W13 e W1 m —00
So —00 Wa2 W23 e W2m  W2m+1
A= 5 —00  wzz W33 ... W3m  W3m+1l (A.47)
oo . . . .
S —00  Wpm2 Wm3 .. Wmm  Wmometl
STOP —00  —00 @ —00 =00 —00 —00

We can now define a feature function for linear-chain CRF with dependen-
cies between the previous and next state:

k k
P(xy) = Z U(xi, i) + ZAQ/Fl — ;) (A.48)
i=0

=0

TV
Linear Dependency

Where U(x;,y;) is the emission score estimate that measures how likely
is the prediction given the input x;. However, this estimate does not take into
account valid transitions, e.g. STOP — START. The transition matrix helps
penalize bad transitions: for e.g. A(STOP — START) = —oo adds a large
negative weight to the estimation.

During training, the algorithm is learning the weights of the transition ma-
trix that best minimizes the negative log-likelihood of p(y|x).

Finally, what sets CRF apart from MEMM is the denominator of the log-
linear model, known as the partition function. For MEMM, this is simply an
estimate over all states y € )/, however CRF define it to be an estimate over
all states, over the entire sequence s € )™ (the global normalization property
alluded to earlier).

A.6.8 BERT

Bidirectional Encoder Representations from Transformers (BERT) [48] is a
state-of-the-art language model that is, as its name suggests built on top of the
Transformer model [49]. One of the issues of LSTMs and GRUSs is that, while
they do maintain some sort of memory, its size is fixed. As a result, perfor-
mance of RNNs across longer sequences drops drastically [16]. As a remedy
to this issue, Bahdanau, Cho, and Bengio proposed the attention mechanism,
which introduces an additional layer, called the attention layer which learns to
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selectively weigh and focus on specific parts of the sequence. Bahdanau, Cho,
and Bengio formulated attention in the form of an encoder-decoder model for
Neural Machine Translation (NMT) and is often referred to as additive atten-
tion, it requires both the encoder and decoder state to calculate an attention
score.

However, it was quickly realized that attention mechanism could also ben-
efit in language modelling. Luong, Pham, and Manning formulate additional
attention scoring functions, including dot product attention (as well as many
other varieties), which only required the states of the encoder. This meant that
attention could also be used within a language modelling scenario without a
decoder [30].

The other issue of LSTMs and GRUs is that they are sequential and each
state is dependent on some previous state (see appendix A.6.3), this makes
it difficult to train the models in parallel. Vaswani et al. proposed the Trans-
former model with an idea called Multi-head Self Attention. Here, self-attention
refers to the attention model applied on the input sequence itself (that measures
how similar a given concept is to every other), multi-head refers to a parallel
processing of all sequences (at the expense of a larger memory footprint). Fig-
ure A.20 illustrates a schematic diagram of the Transformer encoder block, the
original model proposed by Vaswani et al. used 6 of these stacked blocks. Posi-
tional encodings are necessary because the parallel nature of the training loses
the sequential information about the sequence.

The standard BERT pre-trained model is provided in two sizes, the smaller
one of which (bert-base) stacks 12 transformer encoders (thus 12 x 6 encoder
blocks) with 12 heads each. It is trained in two modes: the masked language
mode and next sentence prediction mode, both of which are unsupervised. In
the masked-language mode 15% of the words in the training data are masked
with a special [MASK] token and the model learns to predict those words.
In the next sentence prediction mode, the model is provided two candidate
sentences which may or may not follow each other and the network learns to
predict whether sentence B follows sentence A [48]. BERT contains a few
special tokens: every classification task starts with the special token [CLS]
and each sentence fragment is separated by [ SEP ] . The feature vector emitted
by BERT (per token) can then be used for downstream tasks (e.g. classification
using a dense layer) in a process called fine-tuning.
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Figure A.20: Transformer Encoder Architecture

A.7 Information Retrieval

Information Retrieval (IR) is the process of finding and scoring documents by
relevancy. The object to be retrieved is called a document and the intent is
called a guery [50]. The simplest information retrieval process is to scan all
documents with the query, however it not scalable as the number of documents
grow, and it is not efficient to scan through all documents for every query. In
order to mitigate this issue, IR systems build indexes which are precomputed
statistics, heuristics and data structure that allow quick matching of the query
to the document.

IR systems often use NLP techniques to build their indexes. It is common
for IR systems to remove stop words from queries and documents, perform
stemming, lemmatization and n-gram tokenisation into a tree data structure.
When performing a query the IR system traverses this tree to find the most
likely candidates [50].

However, searching is only part of the responsibilities of an IR system. The
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other half is ranking the results. Ranking involves boosting the most likely
candidates to the top of the result list, and many models have been developed
for it.

One of the simplest models is Term Frequency — Inverse Document Fre-
quency (TF-IDF). It relies on the assumption that the number of query-related
words in a document is directly proportional to its relevancy to the query, while
at the same time words that are common across many documents (e.g. “a”,
“the”) are not very discriminative and should not reflect in the ranking. It con-
tains two terms, the tf;, term which counts the number of times a term ¢ occurs
across a particular document d € D. The second term is the inverse document

frequency and defined as:

N
idf, = log - (A.49)
t

Where N is the number of documents in D and df; is the number of doc-
uments containing the term ¢. TF-IDF is defined as a product of these two
terms:

tfidf, = tf,(d € D) - idf,(D) (A.50)

It is easy to see that, for common words like “the”, N ~ df; resulting in
idf; =~ 0.

Another more recent probabilistic ranking model is knows as BM25, where
BM stands for Best Match. It derives from the Probability Ranking Principle
[51] which states that if we rank documents based on p(r|q,d) where r €
{0, 1} is a binary variable representing whether the documents d are relevant
to the queries q or not; then the ranking is the best that can be obtained.

The BM25 model has the general form of the TF-IDF model, but it re-
defines how the TF and IDF terms are calculated, based on probabilistic as-
sumptions [51]. The particular implementation used in this project redefines
the inverse document frequency as [52]:

) N —df, + 0.
idf, = log (1 + —t+()5>

df; + 0.5

The constant 1 is added to the argument of the logarithm to guarantee that
idf, > 0V df,, without which idf, would be negative if a term appears in more
than half of the documents [50].

For the TF term, BM25 introduces tunable parameters k£ and b. The tradi-
tional term frequency used in TF—IDF is unbounded, the score is proportional

(A.51)



76 APPENDIX A. STATE OF THE ART

to the number of times it appears in the document. BM25 aims to introduce
the parameter £ that bounds this score:

(k+1)-tf(d)

th(d € D) = e

(A.52)
We can see that limy, tf, = k + 1; the term frequency score asymptoti-
cally approaches k£ + 1 and the contribution of the term ¢ decreases as the term
frequency increases.
The second parameter b introduces document length normalization, a doc-
ument about “cardiac arrest” has less relevance if it is 10 words longs than if
it is 2 words long (the two words being “cardiac arrest”).

(k+1) - tfi(d)

f,(d € D) =
e ff~((1—b)+b-lld\|-||@|!_1>+tft(d)

(A.53)

Where ||D|| is the average document length Vd € D and ||d|| is the doc-
ument length of the current document. We can see that if we set b = 0, the
document length normalization is disabled. Setting b = 1 enables the docu-
ment length normalization fully.

Finally, the BM25 score is calculated as a product of these scores®:

BM25 = idf; - tf, (A.54)
Typical values for these parameters are k € [1.2,2] and b = 0.75 [50].

A.7.1 Learning to Rank

As stated earlier, the probability ranking principle states that for any given
query g¢;, if we can sort p(r;|g;, d)Vd € D in decreasing order, then the system
performance is the best that can be obtained. Due to the probabilistic formu-
lation of ranking, we can use machine learning to learn to rank matches.

To train such a system, the system first performs traditional IR techniques
to to retrieve at most k£ documents from the index for a query in our training set
¢;. We can now generate a relevancy matrix r € {0, 1}**! using the correct
labels for the true (g;, d;) pairs in our training set. A machine learning system
is trained on these datasets that optimally fits all training pair datasets (g;, d;)
which can be used at testing time to re-rank entries.

8There is an additional term: the query length normalization [50] parameter, but the im-
plementation used in this project does not use it.
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A.8 Related work

Traditional approaches to NLP has been mostly rule-based or use statistical
techniques [53]. However, recently Deep Neural Networks and new techniques
such as word embeddings [15] have steered NLP into data-driven pastures and
deeper understanding of language models. For the purpose of this document,
the former (rule-based and statistical technique) will be called the text-mining
approach, and the latter will be called data-driven NLP.

Harpaz et al. [35] note that most applications of biomedical text mining
for Named Entity Recognition (NER) rely on a dictionary based lookup, but
this requires customizing the dictionary for maximum effectiveness. A rule-
based approach might capture phrases that match the pattern “(pruc; induces
rorsease]” where (pruc] and (prsease] are labels tagged by the NER step. A
more sophisticated approach might use Part Of Speech (POS) tags, for e.g.
matching only proper nouns and correlating it with a disease database.

Duke and Friedlin [54] use text mining techniques to extract AEs from
SPLs using an application written in Java called Structured Product Label In-
formation Coder and ExtractoR (SPLICER). It consists of three modules:

1. SPL Parser: Removes XML tags and deconstructs paragraphs
2. AE Extractor: Extracts all AEs using punctuation and table information
3. MedDRA Mapper: Maps matched AEs to MedDRA dictionary

Similarly, Smith et al. [55] use regular expression string matching against
various data sources, and integrating them to match drugs against clinical man-
ifestations in order to build a drug evidence database.

Igbal et al. [56] develop a “semantically-enriched pipeline” for extracting
ADRs from Electronic Health Record (EHR) that uses rule-based NLP pro-
cedure to detect ADRs in psychiatric health records. However, their approach
is limited because they only consider 19 ADRs specific to antipsychotic and
antidepressant medications.

More recently, approaches based on Deep Neural Networks have been de-
veloped by Dandala, Joopudi, and Devarakonda, Yang et al. [23, 57, 58]. A
key difference between the traditional NLP approach (Segmentation, Tokeni-
sation, etc.) and the data-driven approach is that the data-driven approach
requires much less pre-processing of data (such as stop-word removal, part of
speech tagging) and the feature engineering phase is often unsupervised (i.e.
it learns the features of the language independently) at the cost of an increase
in complexity. All three [23, 57, 58] approaches use a Bidirectional Long
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Short-Term Memory (BiLSTM) coupled with a CRF. The free-form text to be
parsed is passed through the BiLSTM layer both forward and backward. The
CREF layer is an undirected graphical model that jointly models the probabil-
ity of relationship between the output of the BiLSTM layer through sequential
inputs. This allows efficient association of inter-term dependencies. All three
approaches operate on clinical notes instead of SPLs to handle the noisy format
(due to patient history, family history, differential diagnosis) of clinical notes.
Wunnava et al. [58] use an additional rule-based layer that rely on traditional
NLP techniques.

Most previous work on entity normalization fall into three categories: In-
formation Retrieval/dictionary-based methods, neural network models and hy-
brid approaches. IR methods generally make use of a full-text search engine
with some form of text processing [10, 59]. Hybrid approaches use Informa-
tion Retrieval with a neural ranking model [19].

Previous attempts

UMC uses a dictionary and rule based system for detection of ADRs devel-
oped as a part of a Master’s Thesis project [10] whose performance was eval-
uated on the FDA provided dataset. Its results are summarized in table A.1
labelled Dictionary. The dictionary based approach performs stop word re-
moval (such as a, the, in), synonym expansion (e.g. decrease — lower, con-
vulsion — seizure), stems words (e.g. hepatitis — hepatit) and performs word
permutations on multi word phrases in order to expand its vocabulary.

Dr. Lucie Gattepaille, my supervisor and Data Scientist at UMC partici-
pated in the original challenge and made two submissions, whose scores are
also stated in table A.1 labelled Submission 1 and Submission 2.

Submission 1 uses the dictionary based approach to scan and map all ADR
in the dataset, then uses a trained BiLSTM with a sigmoid classifier with a pre-
determined threshold to filter whether the ADR detected by the rule-based
system is a valid ADR or not. The embedding is a pre-trained embedding
extracted from the Adverse event and warnings and precautions sections of
24727 trade names from DailyMed (not part of the provided data). The embed-
ding with dimension of 100, a context size of 7, a minimum token count of 10
and downsampling parameter of 1 x 1073 is generated using the python pack-
age gensim with the word2vec model in the skip-gram mode. The BiLSTM
hidden size is 128 with a dropout of 0.7 and is followed by a fully connected
layer with a sigmoid activation function.

Submission 2 uses the same BiLSTM model but on the label text, and does
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not use the dictionary method. For the Map problem, it uses a full-text search
engine with n-gram and stemming indices with a custom scoring function.

It is noteworthy that the dictionary based approach leads in recall, while
Submission 1 leads in precision and Submission 2 has higher F; across the
different metrics. It is not surprising that the dictionary based approach has a
high recall and low precision, as its formulation makes it an unspecific classi-
fier since it tries to match as many ADR are possible.

Submission 1 uses the BiLSTM classifier to filter out many false positive
matches from the results of the dictionary based algorithm, this reduction in
false positive rate increases the precision.

Submission 2 seems the most balanced (as visible with the highest F,
across many metrics) with precision similar to Submission 1 (only a few points
lower) in the Scan problem. Its performance is comparable to Submission 1
for the Map problem, this is possibly because Submission 1 depends on the
dictionary-based algorithm for mapping which is essentially a mini search en-
gine (since it performs many functions that search-engines perform such as
stop word removal, stemming and edit-word / Levenstein distance calcula-
tions as well as soundex analysis). Submission 2 also has the highest front-
office quality which measures how good the evidence for a particular MedDRA
query is, the search engine with the n-gram, stemming and basic filters provide
a lot of features in the search space which is not possible with the dictionary
approach which does not consider sub-word matches.



‘ Dictionary ‘ Submission 1 ‘ Submission 2

‘ Precision ‘ Recall ‘ F, ‘ Precision ‘ Recall ‘ F, ‘ Precision ‘ Recall ‘ F,
Exact mention match - unweighted 0.31 0.66 | 0.42 0.71 0.58 | 0.64 0.70 0.64 | 0.66
Exact mention match (discontinuous) - unweighted 0.00 0.00 | 0.00 0.00 0.00 | 0.00 0.00 0.00 | 0.00
Overlap mention match - unweighted 0.34 0.74 | 0.47 0.78 0.64 | 0.70 0.72 0.66 | 0.69
Exact mention match - weighted 0.65 0.76 | 0.70 0.88 0.65 | 0.75 0.87 0.70 | 0.78
Exact mention match (discontinuous) - weighted 0.50 0.28 | 0.36 0.50 0.23 | 0.32 0.50 0.36 | 0.42
MedDRA Retrieval (macro-averaged Label scope) 0.45 0.71 | 0.54 0.78 0.63 | 0.69 0.71 0.69 | 0.69
MedDRA Retrieval (macro-averaged Section scope) 0.39 0.64 | 0.43 0.71 0.50 | 0.53 0.58 0.52 | 0.51

‘ Label ‘ Section ‘ Label ‘ Section ‘ Label ‘ Section
Front Office Quality | 0.85 | 0.78 | 0.92 | 0.90 | 0.95 | 0.93

Table A.1: Results of Dictionary based matching, the first and second submissions; bold figures highlight highest precision,
recall, F; across all models

08

14V 3H1 40 31VILS 'V XIAN3ddV



Appendix B

Trained Model Parameters

ID Githash | H|N

bilstm-crf-char-dailymed

0631efla-644e-11ea-9072-b0c090be5a88 | €2169d8 | 300 | 5
300beb22-6321-11ea-a9b9-b0c090be5a88 | 18f2c3f 100 | 3
39¢120be-646¢e-11ea-a9b9-b0c090be5a88 | €2169d8 | 1024 | 1
51aeeele-6303-11ea-a9b9-b0c090be5a88 | 18f2c3f 100 | 1
545ef81c-62c1-11ea-a9b9-b0c090be5a88 | 18f2c3f 813
981b22d8-6380-11ea-a9b9-b0c090be5a88 | 18f2c3f 300 | 3
9aa41bd8-62el1-11ea-a9b9-b0c090be5a88 | 18f2c3f 815
a469649c-6362-11ea-a9b9-b0c090beS5a88 | 18f2c3f 300 | 1
c8a31b54-64b2-11ea-a9b9-b0c090be5a88 | €2169d8 | 1024 | 5
e3f8e078-62a2-11ea-9a91-b0c090be5a88 | 18f2c3f 811
£8604c76-6340-11ea-a9b9-b0c090be5a88 | 18f2c3f 100 | 5
ff93121c-648b-11ea-a9b9-b0c090be5a88 e2169d8 | 1024 | 3

elmo-dailymed

0824b028-66d6-11ea-9465-b0c090be5a88 | c8841fa 811
09862386-68fd-11ea-8eef-b0c090be5a88 | c8841fa | 1024 | 3
09961b5¢c-6778-11ea-8eef-b0c090be5a88 | c8841fa 100 | 1
25e88b28-68c4-11ea-8eef-b0c090be5a88 | c8841fa | 1024 | 1
Scb6fefac-67ac-11ea-8eef-b0c090be5a88 c8841fa 100 | 3
618046e8-670a-11ea-8eef-b0c090be5a88 | c8841fa 813
6bb06d7a-681a-11ea-8eef-b0c090be5a88 | c8841fa 300 | 1
7cb9beda-6740-11ea-8eef-b0c090be5a88 | c8841fa 81 5
91d8elf8-67e2-11ea-8eef-b0c090beS5a88 | c8841fa 100 | 5

81
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ID Githash | H|N
98713f38-684f-11ea-8eef-b0c090be5a88 | c8841fa 300 | 3
a8e8d840-6888-11ea-8eef-b0c090be5a88 | c8841fa 300 | 5
cb7e6200-693e-11ea-8eef-b0c090be5a88 | c8841fa | 1024 | 5
bilstm-softmax-dailymed
09a3c6be-61f4-11ea-925¢-b0c090be5a88 | cedledb | 300 | 1
2a530b26-61a7-11ea-925¢-b0c090be5a88 | cedledb 8|5
2bf4ad52-61ca-11ea-925¢-b0c090be5a88 | cedledb 100 | 3
5a7cd5ba-611F-11ea-925¢-b0c090beS5a88 cedledb | 300 | 3
72b4c35e-618a-11ea-ba89-b0c090be5a88 | cedledb 81 1
954dfac2-6195-11ea-925¢-b0c090be5a88 | cedledb 8|1 3
d11233e2-6211-11ea-925¢-b0c090be5a88 | cedledb 300 | 5
ecal4014-61db-11ea-925¢-b0c090be5a88 | cedledb 100 | 5
fd2ff31c-61be-11ea-925¢c-b0c090be5a88 cedledb 100 | 1
crf-char-glove

0a38e7f6-59a8-11ea-a9b9-b0c090be5a88 | f2b991 300 | 3
2e303fde-59c¢7-11ea-a9b9-b0c090be5a88 | ff2b991 300 | 5
3d55151c-58ef-11ea-a9b9-b0c090be5a88 | 12b991 8|1 3
41104398-5a07-11ea-a9b9-b0c090be5a88 | ff2b991 | 1024 | 3
4f49e0ee-58d2-11ea-84d8-b0c090be5a88 | ff2b991 8| 1
5c1c6e78-596a-11ea-a9b9-b0c090beSa88 | f2b991 100 | 5
6¢c4cff68-59¢e8-11ea-a9b9-b0c090beS5a88 ff2b991 | 1024 | 1
867e5676-594b-11ea-a9b9-b0c090be5a88 | 12b991 100 | 3
87¢61638-592¢-11ea-a9b9-b0c090be5a88 | f2b991 100 | 1
b3e2793e-5a2e-11ea-a9b9-b0c090be5a88 | fi2b991 | 1024 | 5
fb727878-598a-11ea-a9b9-b0c090beS5a88 | ff2b991 300 | 1
fbe307b4-590d-11ea-a9b9-b0c090beSa88 | ff2b991 8|5
elmo-glove

0f5a879¢e-5e69-11ea-8eef-b0c090beS5a88 1£24153 | 1024 | 1
14333bca-5db9-11ea-8eef-b0c090be5a88 | 1f24153 300 | 1
3e6al3b0-5e2c-11ea-8eef-b0c090be5a88 | 1£24153 300 | 5
48afb358-5ee6-11ea-8eef-b0c090be5a88 1£24153 | 1024 | 5
58639546-5ea3-11ea-8eef-b0c090beS5a88 | 124153 | 1024 | 3
5b719738-5d43-11ea-8eef-b0c090beSa88 | 1f24153 100 | 3
9461dd4a-5¢97-11ea-8eef-b0c090be5a88 | 124153 813
951a089c¢-5¢60-11ea-bae5-b0c090be5a88 | 1£24153 8| 1
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ID Githash | H|N
9bd94f8c-5df1-11ea-8eef-b0c090be5a88 124153 300 | 3
ea698cdc-5d7c-11ea-8eef-b0c090be5a88 1124153 100 | 5
f2a064be-5d0b-11ea-8eef-b0c090be5a88 1£24153 100 | 1
f3declle-5¢d0-11ea-8eef-b0c090be5a88 1£24153 815
softmax-glove

1327147a-5b3c-11ea-925¢-b0c090be5a88 | 445fd62 100 | 1
453d801a-5b6d-11ea-925¢-b0c090be5a88 | 445fd62 | 300 | 1
52e5dc22-5b46-11ea-925¢-b0c090be5a88 | 445fd62 100 | 3
9388cf06-5b77-11ea-925¢-b0c090be5a88 | 445fd62 | 300 | 3
971f911d2-5b0b-11ea-8ba6b-b0c090be5a88 | 445fd62 811
ab946594-5b56-11ea-925¢-b0c090be5a88 | 445fd62 100 | 5
b5dd7712-5b15-11ea-925¢c-b0c090be5a88 | 445fd62 813
b97f6400-5b88-11ea-925¢c-b0c090beSa88 | 445fd62 | 300 | 5
d89c6d2e-5b25-11ea-925¢-b0c090be5a88 | 445fd62 815
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Acronyms

WHO World Health Organization

UMC Uppsala Monitoring Centre

ICSR Individual Case Safety Report

NLP Natural Language Processing

EHR Electronic Health Records

SRS Spontaneous Reporting System

FDA Food and Drugs Adminstration

OSE Office of Surveillance and Epidemiology
SPL Structured Product Label

XML eXtended Markup Language

MedDRA Medical Dictionary for Regulatory Activities

ICH International Council for Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use

AE Adverse Event

ADE Adverse Drug Event

ADR Adverse Drug Reaction
NER Named Entity Recognition
RI Relation Inference

FCL Fully Connected Layer

84
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FFNN Feed-Forward Neural Network

WSD Word Sense Disambiguation

POS Part Of Speech

SPLICER Structured Product Label Information Coder and ExtractoR
EHR Electronic Health Record

SOC System Organ Class

HLGT High Level Group Term

HLT High Level Term

PT Preferred Term

LLT Lowest Level Term

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

BiLSTM Bidirectional Long Short-Term Memory
BiRNN Bidirectional Recurrent Neural Network
CRF Conditional Random Field

HMM Hidden Markov Model

MEMM Maximum Entropy Markov Model
FSM Finite State Machine

IOB2 Inside, Beginning, Outside

NMT Neural Machine Translation

IR Information Retrieval

ELMo Embeddings from Language Model
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BERT Bidirectional Encoder Representations from Transformers
NMT Neural Machine Translation

charRNN character RNN

TF-IDF Term Frequency — Inverse Document Frequency

ML Machine Learning

US United States
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