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Abstract

Nuclear power technology is currently experiencing a revolutionary develop-
ment process and its utilization is researched and debated throughout the world
whereas sustainability is one of the most important topics in the material sci-
ence arena. Some components in a nuclear power plant are subject to an irra-
diating environment which will cause significant damage to the material over
time. Thus, it is of utmost importance that the affected materials are well-
designed for enduring such conditions because of the extensive lifetime of a
nuclear power plant. The highly energetic particles that are inherent with nu-
clear reactions will generate point defects in the microstructure of the material
which will alter its macroscopic behavior.

Managing heat is crucial in a nuclear power plant and therefore this thesis is
devoted to modeling the degradation effect on the lattice thermal conductivity
as a result of the point defects, and to establish the intervening relation. This is
achieved by ab initio simulations on supercells where the quantum-mechanical
forces are calculated with density functional theory and with the generalized
gradient approximation for the exchange-correlation term. The phonon Boltz-
mann equation is solved by linearization and by using the relaxation-time ap-
proximation which allows the lattice thermal conductivity to be calculated for
the model. The phonon band modes and the phonon density of states is exam-
ined as well.

To date there are no reports currently found in the literature where this topic
is approached with similar methods.
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Sammanfattning

Kärnkraftsteknologin genomgår just nu en revolutionerande utvecklingspro-
cess och dess användning debatteras över hela världen där hållbarhet är en av
de viktigaste ståndpunkterna i materialvetenskapsområdet. Vissa komponenter
i ett kärnkraftverk blir utsatta för en bestrålande miljö vilket orsakat stor skada
på materialet över tid. Det är därför av högsta vikt att dessa material är desig-
nade för att motstå sådana miljöer på grund av kärnkraftverkens långa livstid.
De högenergetiska partiklarna som är förekommande vid kärnreaktioner gene-
rerar punktdefekter i materialets mikrostruktur vilka ändrar de makroskopiska
egenskaperna hos materialet.

Värmehantering är kritiskt i ett kärnkraftverk och därför är detta arbete de-
dikerat till att modellera effekten av försämring av värmeledningsförmågan i
kristallgittret, som resultat av punktdefekterna, och att definiera sambandet.
Detta uträttas genom ab initio simuleringar av superceller där de kvantme-
kaniska krafterna beräknas med täthetsfunktionalsteori med en generaliserad
approximation av täthetsgradienten för den tillhörande utbytes- och korrela-
tionstermen. Boltzmann ekvationen löses med hjälp av linjärisering och med
en approximation av relaxationstiden vilket används för att beräkna värme-
ledningen i gittret för modellen. Fononernas band-moder och tillståndstäthet
undersöks därtill.

För närvarande finns det inga rapporter bland litteraturen där detta ämne be-
handlas med samma metoder.
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Chapter 1

Introduction

A nuclear energy power plant is a safe and efficient facility for production of
electricity. With its high and stable delivery capacity, and absence of green-
house gas emissions, it is a top contender for solving our climate challenges.

In nuclear energy facilities, it is natural that some structural components will
be in contact with high levels of radiation, e.g. in segments of the reactor
core, or in the spent fuel storage containers. This will cause radiation damage
to the metal components which will affect the mechanical properties of the
metal in several ways. The radiation contains large amounts of energy which
gets absorbed by some of the atoms, causing them to get displaced from their
equilibrium state. This is resulting in vacancy and self-interstitial build-up in
the lattice structure, which will, amongst other things, dampen the transport
properties in the lattice, both on the electronic subsystem and for the phonons.

For pure, perfect metals, and for temperatures near absolute zero, electronic
conduction is the main factor for thermal transport, but as soon as the tempera-
ture rises or a material microstructure develops due to irradiation, the phonons
will take over as the main heat-conducting mechanism. Consecutively, the
thermal conduction ability will be reduced as a function of absorbed dose of
radiation. This event is very important because managing heat fluxes and local
temperatures is crucial in a nuclear energy power plant.

The aim of the work is to establish a relation between the phonon contribution
to the lattice thermal conductivity (LTC) and the effects of a vacancy, repre-
senting the most basic effect of irradiation. This is investigated by perform-
ing ab initio simulations on large supercells where the Schrödinger equation
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CHAPTER 1. INTRODUCTION

is solved with the Vienna Ab-Initio Simulation Package (VASP) that applies
density functional theory (DFT). The phonon Boltzmann transport equation
(BTE) is solved by linearization and with the relaxation-time approximation
in the phono3py software. Comparisons will be made between models of a
16 atom supercell, and a 15 atom supercell with a vacancy in the central po-
sition. The simulated models reveal the phonon interactions throughout the
whole supercell by calculating both the frequencies and the group velocities
of the phonons. The LTC is calculated in a temperature range from 0 to 1000
K. These properties will be investigated relative to each other in order to de-
termine the effects of a vacancy.

To date there are no reports currently found in the literature where the vacancy
effects on the LTC are approached by simulation of atomic-scale models.
As a conclusion, the knowledge of this phenomenon on the atomic scale is fun-
damental for further utilization onmicro andmacro scale applications. So, this
report will act as a stepping-stone for a more sustainable design of materials
in radiation zones, and ultimately, more durable and safer nuclear reactors.

1.1 Theoretical background
The information that is presented in this section is meant to give the reader
a fundamental background of the various topics treated in the report, and to
act as a support for apprehending the results and conclusions. The details are
broadened to provide a fuller understanding of each topic as a whole, and not
only for the narrow scope of the report.

1.1.1 Radiation damage and point defects
Radiation of different types are present in the nuclear reactor core, namely
alpha-, beta-, gamma-, and neutron radiation. The range of the alpha- and
beta radiation is short and rarely reaches out of the fuel rods, which makes it
being of no concern considering the radiation damage aspect of the surround-
ing metal components. The range of gamma- and neutron radiation is longer,
which makes them both capable of causing damage to the structures surround-
ing the reactor core. The majority of the radiation damage is caused by neu-
trons since the momentum of the neutrons is generally orders of magnitude
higher than of the photons in gamma radiation.
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CHAPTER 1. INTRODUCTION

Radiation damage event

Neutrons are relatively heavy in mass and can cause structural changes in the
bulk of the material which is referred to as radiation damage. The event of ra-
diation damage and its consequences in metals will be briefly worked through
in this section with a focus on point defects since it is of high interest. The
definition of the radiation damage process is the transfer of the energy from
an incident particle to its collision point in the solid and the resulting damage
debris in the otherwise perfect crystal lattice, as an effect from the collision.
In order to describe the event in detail, it is preferably divided into a number of
distinct processes. The first being the incident particle colliding with an atom
in the crystal lattice, causing a transfer of kinetic energy from the particle to
the lattice atom and by that, generating a primary knock-on atom (PKA). This
collision is considered to be quasielastic because some energy is lost to the
surrounding electrons, but that amount is negligible due to the weak neutron-
electron scattering cross-section. Further, the PKA gets displaced from its
original lattice site and travels through the lattice creating additional knock-
on atoms in the process. Until the PKA has come to rest as an interstitial
atom, the concluding result of this event is a cluster of point defects consist-
ing of empty lattice sites (vacancies) and atoms that settles in between lattice
sites (interstitials), which in combination is known as a Frenkel-pair (FP). For
radiation-induced interstitials in metals it is documented that instead of taking
the regular interstitial position (octahedral for BCC and tetrahedral for FCC),
the atom shares the lattice orientation of an already present atom [1]. This
leaves the atoms in a metastable state formed as a dumbbell at the resident
lattice position. It is classified as a point defect called a self-interstitial atom
(SIA), which can be reviewed in figure 1.1.

Threshold displacement energy and displacements per atom

In order for the incident particle to create a FP, its kinetic energy needs to
surpass a certain level defined as the threshold displacement energy (TDE),
which is the minimum needed kinetic energy transferred by the incident parti-
cle to the PKA to create a stable FP. The TDE varies for different materials and
is widely studied starting from Milton Burton’s report in 1946 [2] continuing
with applications by Frederick Seitz in 1949 [3]. Typical values of the TDE
ranges from 20 to 100 eV for various materials. For example, the average value
referenced by ASTM for the TDE in iron is 40 eV [4]. If the PKA receives less
energy than the TDE, it will stay in its lattice site and the absorbed energy will
transmit as heat in the material. Since the kinetic energy of a fast neutron sur-
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CHAPTER 1. INTRODUCTION

(a) Vacancy (b) Dumbbell

Figure 1.1: The components of a Frenkel-Pair in BCC generated by radia-
tion damage where (a) shows a vacancy and (b) a self-interstitial atom. An
additional atom in the centre lattice position, retaining a metastable state.

passes 1 keV, in fact, it is often in levels of MeV, thus containing sufficient
kinetic energy to surpass the TDE by a few orders of magnitude. This is the
explanation of the cluster of point defects that are produced in the radiation
damage event and is shown in figure 1.2.

It is of certain interest to measure the amount of point defects created in the
radiation damage event, whereby the Kinchin-Pease model [6] has been de-
veloped. The Kinchin-Pease (KP) model is a simplification of the number of
point defects created in the event by assuming that all collisions are fully elas-
tic, the number of point defects generated is proportional to the energy transfer
of the incident particle to the PKA, and that no point defects annihilates during
the process. Equation 1.1 is describing the number of point defects generated
by the PKA based on its kinetic energy, T , and the number of point defects
generated, vKP(T ), is given by:

vKP(T ) =


0 , T < Ttde

1 , Ttde < T < 2Ttde

T
2Ttde

, 2Ttde < T < Tlim

Tlim
2Ttde

, T ≥ Tlim

(1.1)

with the threshold displacement energy, Ttde, and Tlim being an upper limit for
the number of displacements which is an assumption made in the KP model
which states that that the number of generated point defects is constant above
a certain temperature.
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CHAPTER 1. INTRODUCTION

Figure 1.2: Shows the trajectory of the PKA and the secondary and tertiary
knock-on particles, the thermal spike occurring in mid-event and the remain-
ing point defects when the PKA has come to rest. The lower right image shows
the annihilation process. [5]

Based on this model; Norgett, Robinson and Torrens developed a model [7]
that includes inelastic collisions with electrons, and crystallographic direc-
tions for the TDE which forms a more general model of the number of point
defects generated in the radiation damage event. This model is referred to as
the Norgett-Robinson-Torrens (NRT) model and the number of point defects
generated by the PKA is given by:

vNRT(T ) = κ
Tdam

2〈Ttde〉
(1.2)

where κ is the displacement efficiency and Tdam is the elastic component of T.
〈Ttde〉 is the mean value of the TDE over all crystallographic directions.
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CHAPTER 1. INTRODUCTION

The NRT model is useful for calculating the displacements per atom (dpa),
which is a useful unit in research of irradiated metals [8, 9, 10]. It is achieved
by normalizing the NRT value with the total number of atoms, which will
yield a unitless expression for the concentration of displaced atoms in a mate-
rial volume [11].

Thermal spike

The radiation damage affects the material in a three-dimensional region in
which the point defects perturbs its density (this event can be viewed in fig-
ure 1.3). In comparison to the equilibrium density, the region of the cluster is
dense in its outer rim as a result of the local increase in self-interstitial atoms,
and simultaneously sparse in the vacancy-rich area. The affected region as a
whole is referred to as a thermal spike (or sometimes heat spike) due to the
fact that the average kinetic energy of the atoms compares to a temperature in
the range of 10 000K.
This happens in a time-interval of tens of picoseconds and the local aggre-
gation state of the material could potentially be considered liquid or even
gaseous. The energy is relaxed in the same range of time as it was built up
[13]. During this time, the high temperature and high diffusion rates permit
most of the vacancies and SIA’s to annihilate, which is shown in figure 1.2,
or simply diffuse to a stable location which could be described as a form of
local recrystallization. At the end of the radiation damage event, there will be
only a few point defects left that have not yet reformed, which will thus be the
residual effect of the whole event [14].

Effects on microstructure and mechanical properties

The radiation damage event has subsequent effects on the physical properties
of the material. The most direct consequences are radiation-induced segre-
gation, phase-changes, swelling, hardening, embrittling and degradation of
thermal transport properties, which will briefly be concluded in order of ap-
pearance in this text.

The rearrangement of atoms during the radiation damage event can cause con-
centration differences of the alloying elements. Due to the different mobility
of the various atom species, the mobile atoms may relocate and form an en-
riched region, whereby the adjacent region will be depleted. This radiation-
induced segregation tends to occur in regions near structural extremities e.g.
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CHAPTER 1. INTRODUCTION

Figure 1.3: The collision cascade event simulated by use of molecular dy-
namics. It shows the thermal spike and the following energy distribution over
a time interval of 55ps (public domain images made by Kai Nordlund [12]).

near grain boundaries, dislocations, or the surface of the material. By altering
the concentrations of the present atom species in the microstructure, phase-
changes can also take place where precipitates may form if the solubility limit
is exceeded in the enriched regions, or preceded in the depleted regions. The
radiation-induced segregation and phase-changes are more common at higher
temperatures since they are governed by the mobility of the atoms and thus the
diffusion rate, which increases exponentially with temperature.

As stated earlier, vacancies will form due to irradiation of the material and
if the vacancy concentration rises above the saturation limit, i.e. the vacan-
cies becomes supersaturated, a driving force will emerge for the vacancies to
agglomerate and thus create voids and bubbles. Void and bubble formation
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CHAPTER 1. INTRODUCTION

are two separate phenomena that are somewhat similar. The main difference
is that voids are an agglomeration of vacancies whereas the bubbles are voids
that contain inert gaseous particles, often a product from the nuclear reaction
process. Voids and bubbles significantly affect the properties of the material in
several ways. They may cause the material to swell, meaning that the volume
may increase by tens of percent. They may also act as crack initiation points
which makes brittle fractures more apparent.

Irradiation has a significant effect on themechanical properties. A set of stress-
strain curves of body-centered cubic (BCC) and face-centered cubic (FCC)
steel are shown in figure 1.4 at different doses of irradiation.

Strain

S
tr

es
s

Increasing dose

(a) Austenitic FCC steel
Strain

S
tr

es
s

Increasing dose

(b) Ferritic BCC steel

Figure 1.4: Irradiation effects on the stress-strain curve of a (a) FCC stainless
steel and (b) BCC steel [15].

Uniform for both materials are that the yield stress, (σy), and ultimate tensile
stress, (σUTS), increases with increasing irradiation dose. This is due to the
point-, line-, and bulk defects that are formed in the microstructure as a result
of the radiation damage. The defects act as obstacles for any dislocations to
glide freely in the lattices and thus hardens the material.

The Young’s modulus remains constant, but the ductility is degraded for the
ferritic BCC steel, showing that the irradiation severely embrittles the steel.
The major mechanism for this behavior is the segregation dependent precipi-
tates that form as a consequence of irradiation. It is believed that the formation
of phosphorous phases is the most harmful for the material [16, 17].

It is known that materials under stress in elevated temperatures will experi-
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ence creep, i.e. slowly deform plastically over time. Creep is dependent on
stress and temperature, and the creep rate will increase with increased stress
and temperature. The radiation damage event usually has little effect on the
creep mechanism, shown by Ghosh et.al. [18], but the creep rate is affected
by the absorbed dose of radiation. The irradiation creep rate is a well-studied
topic and many experiments have been conducted throughout history [19, 20].
The phenomenon is often described by equation 1.3 which was developed by
Foster et.al. in 1972 [21]. This general equation describes the irradiation creep
rate, ε̇, as a function of dpa:

ε̇

σ
= B0 +DṠ (1.3)

where σ is the applied stress,B0 the creep compliance,D is the creep-swelling
coupling coefficient, and Ṡ is the dpa dependent swelling-rate. Irradiation
creep is most significant at lower temperatures in the range of approximately
0.2-0.45Tmelt, where the thermal creep rate is still inhibited by the low diffu-
sion rates [22]. In this temperature region, irradiation creep can magnify the
creep deformation rate by orders of magnitude higher than for thermal creep
alone since the radiation-induced supersaturation of defects greatly enhances
diffusion in the lattice. However, for higher temperatures, thermal creep tend
to take over which can be reviewed in figure 1.5.

1.1.2 Thermal transport and Phonons
For macroscopic investigation on thermal conductivity (κ), Fourier’s law is
applicable and describes the diffusive heat transport in the material. But in or-
der to study the radiation damage effects on an atomic length scale, scattering
effects will be dominant and Fourier’s law will be insufficient. The ab initio
transfer of heat energy in metals is more favorably described by a combination
of two separate mechanisms where the first being electron thermal conduc-
tivity, κe, which is energy transport via electrons. And the second one being
lattice thermal conductivity (LTC), κl, which is transport through inter-atomic
vibrations. The two contributions do not generally interfere with one another,
they simply sum up as the total thermal conductivity:

κ = κl + κe (1.4)

The electrons contribute to heat transport by the induced diffusion of heat en-
ergy amongst the electrons due to a thermal gradient. It is comparable to the
electrical conductivity according to the Wiedemann-Franz law which states
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Figure 1.5: A schematic graph over the effect of irradiation creep on the total
creep rate. The experiment is performed on a cold-worked stainless steel by
E. Gilbert and J. Bates in 1977 [23].

that the relation between the thermal and electrical conductivity (σ) is propor-
tional to the temperature [24]:

κe = LTσ (1.5)

where L is a proportionality factor known as the Lorenz number.

Lattice thermal conductivity

As stated earlier, the lattice thermal conductivity is the transport of vibrations
in the lattice, where the atoms reach excited vibrational states which spread to
neighboring atoms. These excitations are known as phonons. When consid-
ering lattice thermal conductivity, phonons are preferably viewed as pseudo-
particles containing discrete wave packets in the same manner that photons
are described in the wave-particle dualism, and the heat transfer corresponds
to phonon particle propagation that counteracts the thermal gradient. The en-
ergy of the phonons is quantified in discrete steps as: E = h̄ω where h̄ being
the reduced Planck’s constant and ω = ω(k) is the angular frequency which
depends on the wave vector k.

The phonons are classified in normal modes which correspond to their specific
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CHAPTER 1. INTRODUCTION

vibration frequency and can be separated into acoustic and optical modes. The
phonons in the acoustic mode will have its neighboring atoms oscillating in
phase and the same direction as the regarded atom. And in the Gamma point,
i.e. center of the Brillouin zone, the frequency will be zero: k −→ 0 =⇒
ω −→ 0. The optical modes have their neighboring atoms move in the opposite
direction and will have a finite value in the Gamma point. Both acoustic and
optical waves have longitudinal and transverse wave counterparts. The optical
and acoustic wave modes can schematically be seen in figure 1.6.
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Acoustic modes

Figure 1.6: Optical and Acoustic wave modes

To derive a schematic expression for the point defects effect on the lattice ther-
mal conductivity, one begins with the equation for the lattice thermal conduc-
tivity which can be written as:

κl =
1

3

∑
µ

Cµv
2
µτµ (1.6)

where C, v and τ corresponds to the lattice specific heat, the group velocity
and the phonon lifetime which are summed over all phononmodes, µ. Now the
mean free path between collisions, λ, can be described as the group velocity
multiplied with the phonon lifetime: λ = vτ which is further summed over all
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phonons as equation 1.7 to get the net mean free path.

λ =
1∑
i

1
λi

(1.7)

This will render the lattice thermal conductivity as:

κl =
1

3
CV〈vλ〉 (1.8)

where CV is the isochoric heat capacity and the brackets indicate the average
value over all phonon modes [25, 26].

We now see that the lattice thermal conductivity is directly dependent on the
specific heat capacity, phonon group velocity, and their mean free path. The
specific heat capacity is temperature-dependent and will partly be responsi-
ble for the change in lattice thermal conductivity resulting from the change in
temperature, while the group velocity is dependent on the density of phonon
modes and the inter-atomic bond strength. The mean free path is affected by
all forms of lattice distortions (e.g. bulk-, line- and point defects) and phonon-
phonon scattering which all severely shortens the mean free path.

There are two different types of phonon-phonon scattering: normal- and Umk-
lapp scattering. In normal scattering, two phonons may collide which com-
bines to a single phonon that preserves the crystal momentum and does not
affect the lattice thermal conductivity. This type of scattering is only present
at low temperatures where the phonons are sparsely distributed in the lattice.
However, the Umklapp scattering is the scattering process when two colliding
phonons are merging into a phonon with a wave vector that stretches beyond
the first Brillouin zone into the second zone, and thus the resulting vector can
be described as a vector in the opposite directionwithin the first Brillouin zone.
The crystal momentum is not preserved in this case because of the translation
between Brillouin zones, and consecutively the lattice thermal conductivity
will be affected. The Umklapp scattering scales with temperature and is a
significant contributor to the degradation of lattice thermal conductivity at el-
evated temperatures.

1.1.3 Boltzmann Transport Equation
Phonons are classed as bosons and thus, the arrangement of phonons in a sys-
tem in equilibrium is described by the Bose-Einstein distribution (eq. 1.9)
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which is a quantum-statistic expression on the distribution of phonons in a
system in equilibrium.

n0
qα(ωqα , T ) =

1

eh̄ωqα/kBT − 1
(1.9)

Here, n0
qα is the number of phonons with wave vector q in branchα and angular

frequency ωqα at equilibrium temperature, T . The reduced Planck’s constant
and Boltzmann’s constant are denoted by h̄ and kB respectively.

When the system deviates from equilibrium, the phonons will diverge from the
Bose-Einstein distribution and their behavior can be described by the Boltz-
mann transport equation (BTE). The BTE was originally developed in 1872
by Ludwig Boltzmann in his study of the "kinetic theory of gases" as an at-
tempt to describe the properties of dilute gases by analyzing the interactions
between two colliding particles [27]. The equation concludes in a probability
distribution for the said particles and ends up being broadly utilized in several
applications.

The distribution of phonons (nq = nq(r, t)) in the non-equilibrium system
will change primarily due to diffusion caused by a thermal gradient which
will account for a concentration gradient of phonons and secondarily by colli-
sion interactions amongst them. Hence, the total change in the distribution is
described by:

∂nq

∂t
=
∂nq

∂t

∣∣∣∣
drift

+
∂nq

∂t

∣∣∣∣
collision

(1.10)

The distribution of the system in equilibrium will be constant with respect to
time,

∂nq

∂t
= 0 (1.11)

and thus the total change in the distribution will become zero. This will render
the BTE:

∂nq

∂t

∣∣∣∣
drift

= − ∂nq

∂t

∣∣∣∣
collision

(1.12)

The diffusion driven operator that is a functional of the change in distribution
is fairly straight-forward and can generally be expanded as:

∂nq

∂t

∣∣∣∣
drift

≡ ∂nq

∂t
+ vq

∂nq

∂r
+ Fq

∂nq

∂v
(1.13)

where vq denotes the velocity and Fq is the external forces experienced by
the particles. The term regarding the external forces is negligible in this case
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since phonons can not be affected by any external forces. However, the crux
in solving the BTE lies in the collision term, which is a non-linear intergro-
differential equation and is a rather difficult problem to solve. To grasp the
complexity in resolving the collision term it will be viewed upon as the most
standard example when two phonons, q and q′ collides and forms a third
phonon, q′′. This would give the collision term the following form:

∂nq

∂t

∣∣∣∣
coll

=

∫ ∫ (
nqnq′(nq′′ +1)− 1

2
nq(nq′ +1)(nq′′ +1)

)
Ωq,q′,q′′

dq′dq′′

(2π)3

(1.14)
whereΩq,q′,q′′ is the probability of the transformation of phonons q and q′ to
the adaptive phonon q′′ from the collision. This example will continue with
in equation 1.17 with the linearized form of the BTE.

Linearized Boltzmann transport equation

For systems that does not concern large deviations from equilibrium, the BTE
can be linearized by using the equilibrium distribution with a deviation term
which will form the linearized Boltzmann transport equation (LBTE):

nq = n0
q + δnq (1.15)

and if the only deviation in the system is assumed being the temperature gra-
dient,∇T , the deviation term, δnq, is expanded as [28]:

δnq =
∂nq

∂εq
· ∂εq
∂A
∇T ·∆r =

∂nq

∂εq
Φq =

n0
q(n0

q + 1)

kBT
Φq (1.16)

where n0
q refers to the equilibrium distribution and Φq represents the total de-

viation from equilibrium.

To continue the example with the three phonons by using equation 1.15 and
1.16 in the collision operator (equation 1.14), the following expression is re-
trieved:

∂nq

∂t

∣∣∣∣
collision

=

∫ ∫
(Φq−Φq′−Φq′′)Pq,q′,q′′

dq′q′′

(2π)3
(1.17)

where Pq,q′,q′′ is a term for the rate of the transformation process. And as a
clarification, this example is not a complete derivation of the problem, it sim-
ply acts as a mathematical tool for better understanding the process.
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With the BTE in a linearized form, the collision- and drift operator can be
expressed as matrices functioning on the phonon distribution as in equation
1.12, and one achieves the following equation:

Cn = Dn (1.18)

where C and D corresponds to the collision and the drift operator respec-
tively. Now the problem becomes a search for eigenfunctions to the operator
matrices. This is still a profound challenge to solve analytically, and requires
further simplifications. Several methods have been developed over the years
for approaching this problem. Amongst those are the relaxation time approx-
imation (RTA) which will be briefly assessed.

Relaxation time approximation

The assumption that is made in RTA is that the relaxation time for the ex-
cited phonon to return to its equilibrium state is not dependent of other excited
phonon collisions, only collisions with phonons in equilibrium. This would
transfer to the example asnq′ = n0

q′ andnq′′ = n0
q′′ meanwhile equation 1.15

is still useful. With these assumptions, the BTE can be described functioning
on the relaxation time, τq, as:

vq∇n0
q = −

nq − n0
q

τq

(1.19)

with the phonon group velocity, vq, and the relaxation time, which can be
expressed as:

1

τq

= Φq

∫ ∫
Pq,q′,q′′

dq′q′′

(2π)3
(1.20)

This equation is solvable without much effort and by applying thermodynamic
descriptions of heat flux, the lattice thermal conductivity can be obtained:

κl =

∫
Cµv

2
qτqD(ω)dω (1.21)

where Cµ is the specific heat of the phonon mode, µ, and D(ω) is the density
of states (DOS) [29, 30, 31]. Make sure to note the similarity with equation
1.6.

1.1.4 Density Functional Theory
To be able to perform simulations on quantum mechanic determined systems,
one needs to address the Schrödinger equation which is the key to unlock the
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enigma of quantum mechanics. As of the last 40 years, the most used method
to solve the Schrödinger equation (Eq. 1.22) is by Density Functional Theory
(DFT) which is also used in this thesis. It is more safe to say that DFT does
not explicitly solve the Schrödinger equation, it rather uses a set of approxima-
tions which will be briefly described in this section. The Schrödinger equation
contains the wave function, Ψ, which is a functional of the electron position,
ri. And now the time-independent many-body Schrödinger equation, which
is of interest in this thesis, is written:

ĤΨ(r1, r2, ...) = EΨ(r1, r2, ...) (1.22)

where the Hamiltonian operator, Ĥ , is a functional of Ψ, and can be separated
into three terms as of:

Ĥ = T + Vee + Vext (1.23)
where T is the kinetic energy, Vee the interactions between electrons, and Vext
the external potential, which in this material-related thesis will correspond
to the interactions between electrons and ions in the crystal structure. The
Hamiltonian operator on each term in equation 1.23 is expanded as:

Ĥ = − h̄2

2mi

∑
i

∇2
i +

∑
i

∑
j>i

Vee(ri, rj)−
∑

i

Vext(ri) (1.24)

where each term corresponds to their respective term in equation 1.23. Note
that the spin properties of the electrons will be excluded in this report because
the subjected atom is tungsten, which has four valence atoms in separate orbits,
thus the electron spin polarization can be neglected.
The movement of the electrons and ions can be separated from one another.
This is described mathematically as:

Ψ(Ri, ri) = Ψ(Ri)Ψ(ri) (1.25)

and is an approximation derived by Max Born and Robert Oppenheimer in
1927 [32]. It states that since the masses of the ionic nuclei are significantly
higher than that of the electrons, and because the difference in velocity is thus
scaling by several orders of magnitude, the electrons are considered to move in
a space of fixed ions. This can be objectively described by classic mechanics
where one can consider to compare the momentum of each particle via:

p = m · v (1.26)

where p is the momentum of the particle with mass, m, and velocity, v. The
masses of the electrons and ions are considered fixed and that leaves the veloc-
ity as the only variable which will account for the difference in magnitude. To
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find the ground-state energy of the system, the energy term in equation 1.22
needs to be minimized by finding the particular Ψ that does this in:

E[Ψ] =

∫
Ψ∗H̄Ψdr ≡ 〈Ψ|H̄|Ψ〉 (1.27)

and this Ψ can not transcend below the absolute ground-state energy E0 ac-
cording to the variational principle (Eq. 1.28).

E[Ψ] ≥ E0 (1.28)

The practical complexity for solving the Schrödinger equation escalates quickly
since the dimensions of the problem scales by three times the number of elec-
trons, N . For example, Tungsten has 74 electrons and a cluster of 54 atoms
would result in a near 12000 dimensional highly correlated problem, which
would require more computational power than what currently exists on the
planet.

The Hohenberg-Kohn theorems

In 1964, Hohenberg and Kohn presented two groundbreaking theorems, which
they in the year 1998 achieved the Nobel price for [33]:

Theorem 1 The ground state of a many-body system with inter-particle in-
teractions is a unique functional of the electron density, E = E[ρ(r)], where
ρ(r) is the electron density.

Theorem 2 The electron density that minimizes the total energy functional
E[Ψ], with the condition that

∫
ρ(r)dr = N , is the true electron density of

the system.

This significantly reduces the complexity of the problem and allows equation
1.23 to be determined by the electron density rather than the interactions be-
tween each and every electron in the system. This means that from the example
stated earlier, the dimensions would reduce from near 12000 to only three di-
mensions for the single electron. However, the theorems do not state what the
functional actually is, only that it does exist. So, if one were to find the true
electron density of the system it would be possible to determine the ground
state energy. With these theorems applied to the Schrödinger equation, the en-
ergy functional can be expressed in terms of electron density in the same form
as equation 1.23:

E[ρ(r)] = T [ρ(r)] + Vee[ρ(r)] + Vext[ρ(r)] (1.29)
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Kohn-Sham equations

To progress in solving the Schrödinger equation, Kohn and Sham proposed in
year 1965 amethod for solving the associated energy functional by simplifying
the kinetic energy term and electron interaction term while introducing a new
term accounting for the simplifications [34]. Equation 1.29 evolves to:

E[ρ(r)] = Ts[ρ(r)] + VH[ρ(r)] + Vext[ρ(r)] + EXC[ρ(r)] (1.30)

presuming that Ts[n(r)] is the non-interacting kinetic energy of the system
which defines it as the product of the orbital densities as:

Ts[ρ(r)] = −1

2

N∑
i

〈φi|∇2|φi〉 (1.31)

where φi is the specified orbital, thus the ground state density will be:

n(r) =
N∑
i

|φi|2 (1.32)

As stated earlier, the term Vext accounts for the electron-nuclei interaction and
is addressed as the external potential. It is described mathematically as:

Vext[ρ(r)] =

∫
V̂extρ(r)dr (1.33)

The term Vee in equation 1.29 is describing the single electrons Coulomb in-
teractions with the electron density meanwhile the single electron is included
in the electron density. This means that the electron is interacting with itself,
which is a flaw in the calculations and is accounted for in the correction term,
EXC [35]. The now correlated electron-electron interaction term consists of
classical Coulomb interactions with the density and can be defined as a Hartree
energy potential:

VH[ρ(r)] =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 (1.34)

Now the energy functional is defined in equation 1.29 with the only unknown
term being the exchange correlation energy:

EXC[ρ(r)] = (T [ρ(r)]− Ts[ρ(r)]) + (Vee[ρ(r)]− VH[ρ(r)]) (1.35)

which accounts for the flaws of using the classical approach on the electron-
electron interaction and for using the non-interacting model of the kinetic en-
ergy.
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Local density approximation

There are several approaches for computing EXC, and one of the most widely
used and also simpler methods is called Local Density Approximation (LDA).
LDA is a set of approximations derived from the Thomas-Fermi homogeneous
electron-gas (HEG) model in the 1920s [36] where the exchange-correlation
energy,EXC, is considered to depend solely on the local density of the electron-
gas. Generally in LDA the total exchange-correlation energy is described as
the integral of the exchange-correlation energy within every particle (εxc) as:

EXC(ρ) =

∫
ρ(r)εxc(ρ(r))dr (1.36)

and is also linearly separated in to two exchange and correlation terms respec-
tively.

εxc = εx + εc (1.37)

It is achieved from the HEG model that εx is proportional to ρ1/3 by a free
constant while εc is unknown. However, several reports has utilized Monte-
Carlo methods for calculating εc which have all yielded similar results [37, 38,
39]. The combined functional εxc has proven to be useful and is since referred
to as the LDA functional.

Generalized gradient approximation

The LDA regards the electron density as being constant in all locations, which
has a tendency to lead to errors where the energy in the correlation term tends
to overwhelm the exchange term in equation 1.37. This is corrected in equa-
tion 1.35 by introducing the gradient of the electron density for the exchange-
correlation energy as:

EXC(ρ) =

∫
ρ(r)εxc(ρ(r,∇r))dr (1.38)

which improves the already accurate results from LDA. This is called the gen-
eralized gradient approximation (GGA) and is one of the most commonly used
methods for approximating the exchange-correlation term.

1.1.5 Vienna Ab-Initio Simulation Package
Vienna Ab-Initio Simulation Package (VASP) is a computer program devel-
oped by Georg Kresse and his colleagues [40, 41], made for modeling mate-
rials based on first-principle methods. It uses the DFT method for computing
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approximate solutions to the many-body Schrödinger equation (eq. 1.22) i.e.
determine the ground state energy of the electrons. But as of today, more ad-
vanced methods are also implemented in VASP for more accurate models.

VASP requires four different input files to be able to conduct the calculations.
the first file containing the pseudo-potential for the specific element. A sec-
ond file for setting up the basis orientations of the lattice where the amount of
atoms, positions, and lattice spacing is determined. This is the basis for the
model and the boundary conditions is set according to these parameters. The
third file describes the resolution of the Brillouin zone and how the program
will render it. And the fourth file concludes all the specifications for the model
and tells VASP how the simulation should be made.

In this work, VASP uses the projector-augmented wave potential (PAW) [42]
to compute the electron-ion interactions which are expressed in plane-wave
basis sets. VASP uses a very efficient iterative process for reaching the ground
state, which makes it very effective in the use of computer power.

When using VASP it is often more beneficial to work in the reciprocal space
than in real space. To render the reciprocal space in VASP, the term k-points is
used which refers to the resolution that the first Brillouin zone is rendered in.
Here, aN3 number of k-points would refer to the division of the first Brillouin
zone into a NxNxN grid of k-points, where the dimension of k is of inverse
length:

k =
n2π

L
(1.39)

where n is an integer and L is the length of the crystal in one direction. Note
that the value of Lwill determine the number of k-points needed for executing
accurate simulations where a larger crystal will need fewer k-points to return
accurate simulations.

1.1.6 Phono3py
This is a software developed by Atsushi Togo [43] which uses a supercell ap-
proach to calculate the phonon-phonon interactions in a crystal lattice. From
these calculations, several physical properties can be obtained, e.g. lattice
thermal conductivity and the phonon lifetime. The calculations are made by
using either the RTAmethod or a direct solution to solve the LBTE. Phono3py
generates a set of displaced supercells where another independent computer
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program needs to be applied to make DFT calculations in order to calculate
the forces. The displacements in the supercells cause anharmonicity in the
lattice which is needed for phonons and other thermodynamical phenomena
to be present. The force calculations made on the displaced supercells are
accumulated in phono3py which it uses to calculate the desired properties.

1.1.7 Phonopy
In addition to phono3py, another software is used which is also developed by
Atsushi Togo. Phonopy [44] is a software for phonon calculations and it is used
in this work to calculate the phonon band structure and density of states (DOS).
It can be used to retrieve additional thermodynamic properties but this is not
utilized in this thesis. The work-flow for phonopy is identical to phono3py in
that a separate force calculator is needed.
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Methods

This thesis uses computational methods for conducting research on the topic
and the chosen software for these simulations is VASP. And since computers
use numerical, discrete values over finite intervals for making the calculations,
and because the time usage scales with the number of data points, it is of ut-
most importance that the initiating values are set properly. This is because the
aim is to get as accurate results on as low computer time usage as possible.
When performing simulations of a new system in VASP, convergence testing
needs to be made to define some fundamental parameters and to make sure the
model is working properly.

Throughout the report, the PAW-PBE potential is used for Tungsten with an
energy cut-off value set to 400 eV for the plane-wave basis set. Calculations are
made using non spin-polarization and first-order Methfessel-Paxton smearing
of the electron waves with the default smearing width of 0.2 eV. The recipro-
cal grid is centered around the Γ-point (Gamma (0 0 0)) and the number of
k-points is set to 11x11x11 if not stated otherwise.

2.1 Convergence tests
In this context, convergence testing is the iterative process of refining param-
eters to achieve a converged result in the calculations where successively in-
creased precision is desired. There are a vast amount of parameters to adjust
in VASP, in which most are left at the default setting and should not be al-
tered unless the experiment requires it to be changed. In this thesis, the lattice
parameter, energy cutoff parameter, vacancy formation energy and the lattice
thermal conductivity are subjected to convergence tests.
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2.1.1 Lattice parameter
In order to perform accurate simulations and to achieve proper interactions in
the models, the lattice parameter needs to be defined as accurate as possible.
To construct this value, a perfect crystal is simulated in VASP with the cell
volume set as a degree-of-freedom, while the shape and atomic positions are
locked. This will allow the atoms to move respective to one another to settle
at the most stable spacing. A relaxation simulation is initiated with a starting
estimation of the lattice parameter. While consecutively updating the lattice
parameter and letting the system relax once again, the system will converge to
the most stable value for the lattice parameter. For more complete accuracy,
this method is iterated while having finer spacing of the integral paths in the
reciprocal space (k-points) until the error is minimized.

2.1.2 Energy cut-off parameter
The basis-set of the system is built up by a set of plane waves which contains
different amounts of energy. The plane waves that contain low amounts of en-
ergy generally contributes to a large effect in the total energy of the system,
while the more energetic plane waves have smaller effect. VASP uses a pa-
rameter for limiting the amount of plane waves included in each basis set by
excluding the plane waves that contain a higher kinetic energy than the limit
is set to be. This is a way of optimizing the computer time usage against the
preferred precision of the simulations. The PAW-PBE potential that are used
in this thesis has a preset energy cut-off value which is manually altered to
tailor the precision of the simulations. To establish a suitable value for the
energy cut-off parameter, a convergence test is made similar to the previous
one of the lattice parameter. But instead of varying the k-points, the cut-off
energy is varied to set what cut-off energy is needed for the lattice parameter
to converge.

2.1.3 Vacancy formation energy
The presence of vacancies in a lattice will hinder the system from reaching
equilibrium by introducing asymmetry in the lattice and thus asymmetrical
forces will occur. Ultimately, these asymmetrical forces result in a higher total
energy of the system which can be measured, and by equation 2.1 a value for
the rise in total energy caused by a single vacancy can be achieved.

Evac
form = Evac

tot −
N0 − 1

N0

Eref
tot (2.1)
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Here, Evac
form is the vacancy formation energy, Evac

tot is the total energy of the
supercell containing a vacancy and Eref

tot being the total energy of a perfect
supercell with N0 number of atoms. A perfect supercell in this context refers
to a cell with no point defects. Here, a perfect supercell containing 54 atoms
is simulated in VASP with conditions that the cell volume is constant and the
atoms positions is free to move. The same settings is made for a supercell
containing 53 atoms with the central atom removed. This will act as a vacancy,
and the VASP simulations will let the system relax to find equilibrium. The
total energy calculations returned from the simulations are used in equation
2.1 which in turn yields the vacancy formation energy.

2.1.4 Lattice thermal conductivity
In this thesis, phono3py is used to calculate the LTC which uses the force cal-
culations performed by VASP on a set of displaced cells to achieve the results.
The resulting LTC is thus highly dependent on the accuracy of the VASP sim-
ulations, it is in fact the most important aspect of the entire simulation. These
simulations all regard a supercell of 16 Tungsten-atoms in BCC structure.

VASP parameters

Several parameters are investigated in VASP to bring more accurate results.
For the force calculations in VASP, the following parameters are compared to
see any effects in the accuracy:

• K-Points

• Energy cut-off

• Minimum energy difference

• Smearing method

The k-points are investigated separately by utilizing a convergence test. In
this test, five calculations of the LTC is plotted with different settings for the
number of k-points. The results of this simulation can be viewed in figure 3.4.
In addition, the cut-off energy, minimum energy difference and the smearing
method is investigated in figure 3.5
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Phono3py parameters

Although phono3py is oriented to a specific task, it is a versatile program and
many parameters can be adjusted to fit the problem under investigation. One
parameter that is experimented with in this project is the second order force
constant (fc2) option. Phono3py regularly uses the DFT calculations on the
third-order force constants (fc3) to describe the phonon interactions in the sys-
tem. Generally, this is very sensitive to perturbations that may be included in
the force calculations, and can as a consequence return inaccurate values. This
can be complemented by introducing a larger supercell in which only the sec-
ond order force constants are calculated. However, it implies in this case that
the DFT calculations that are first made on 16 atoms will now have to be made
on 128 atoms, which is a very time-consuming process. In order to view the
effects on the LTC by adding fc2 (figure 3.6), the simulations are made with
lower number of k-points.

2.2 Effects of a vacancy
This section reviews the methods that has been used to evaluate the effects of
a vacancy in a supercell of 16 atoms. Generally, the comparisons are made on
two different models, where the only difference is the amount of atoms. The
first model contains 16 atoms in a BCC structure with the lattice parameter
set from the previous convergence test (figure 3.1). The second model has its
central atom replaced by a a vacancy, which is the only difference. In reality,
the concentration of vacancies in a irradiated metal is rarely above the magni-
tude of one per million meanwhile in these models, a vacancy concentration
of 1/16 is used, which is not close to realistic. However, the aim with these
models is not to evaluate any numerical values but only to view the effects of
one vacancy which is considered to be a feasible task.

2.2.1 Lattice thermal conductivity
In the first experiment of this section, the LTC is calculated over a temperature
range from zero to 1000 degrees Kelvin in the two models. The settings that
are used in the simulations are a result from the convergence test series. A
number of displacements of the supercell is generated by phono3py which are
each placed in separate folders. Each folder contains a supercell with some
displacements, which are then subjected to force calculations in VASP. VASP
creates a document containing all information gathered from the force calcu-
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lation, and this document is assembled from all folders and put into phono3py.
Now phono3py has received all information required for conducting calcula-
tions on the LTC.

2.2.2 Phonon band structure and density of states
The calculations the phonon band structure and density of states in phonopy
follows the exact samemethod as for phono3py. For description of the phonopy
methods, the reader is therefore directed to the previous subsection (2.2.1).
The phonon band structure and total density of states is retrieved from the
phonopy calculations.
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Results

In this chapter the results from the work will be divided in to two sections. The
first section will display the convergence tests and resulting values compared
with reference values from the literature. The aim with the simulations in
this section is to confirm that the results are reliable and to tailor the altered
parameters to their optimal settings.
The second section will regard all simulations that are aimed to compare the
effects of vacancies in the supercell and are thus the goal-oriented results for
this work. As stated in the previous chapter, the numerical results obtained in
the simulations of this sections are not expected to coincide with reality. It is
simply the differences that are of interest. In order for the numerical values to
be more accurate, more computer power and more time is needed.

3.1 Convergence tests
Several convergence tests has been performed throughout this work and those
results are presented in this section, where the effects of changing certain pa-
rameter values is studied. The conclusions made by studying these results are
fundamental to the models in the next section because their parameter settings
will be based on this investigation.

To make a clarification regarding some figures in this section, at the instances
where the k-points are assigned to an integer N (e.g. in figure 3.1 and 3.3), it
simply implies that the k-space is rendered in NxNxN number of k-points.
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3.1.1 Lattice parameter
This is the results from the convergence test on the lattice parameter of Tung-
sten. The values can be viewed in table 3.1 where the extracted value from
figure 3.1 is compared with the reference value. The value achieved in the
results are used for the remaining calculations in this report.
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Figure 3.1: Relaxation of two Tungsten atoms at different spacing in the re-
ciprocal grid. The lattice parameter is converging.

Table 3.1: Comparison between the calculated lattice parameter in this work
and a reference value achieved from x-ray diffraction [45].

Lattice parameter
This work 3.1666 Å
Reference 3.1652 Å
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3.1.2 Energy cut-off parameter
The potential used in this experiment has a preset energy cut-off value at
223eV but a convergence test is made to act as a basis for determine what
value for the cut-off energy that will be used further in the report. In figure 3.2
the lattice parameter converges over increasing value for the cut-off energy.
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Figure 3.2: Convergence test of the energy cut-off parameter.

The curve in figure 3.2 reaches a plateau and is converging to a finite value
of the lattice parameter. it is determined that a energy cut-off value of 350 eV
is sufficient for the required precision throughout this report.
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3.1.3 Vacancy formation energy
In this experiment the simulations are executed on 54 atoms which will limit
the amount of k-points used because of the limitations in computer power.
Figure 3.3 shows that the vacancy formation energy converges at 7x7x7 k-
points.
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Figure 3.3: Vacancy formation energy converging over finer k-point grid

When comparing the point of convergence in figure 3.3 and 3.1, one notices
a difference. This is explained by equation 1.39 where a larger cell requires
fewer k-points to return accurate results.

Table 3.2: The vacancy formation energy (Evac
form) calculated in this work com-

pared to similar work conducted by Medasani et.al. using the PBE potential
[46] and to specific heat experiments performed by Kraftmakher [47].

This work Other work Experiment
Evac

form 3.19 eV 3.31 eV 3.15 eV
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3.1.4 Lattice thermal conductivity
Several attempts has been made to converge the lattice thermal conductiv-
ity closer to its reference value by refining certain parameters that affects the
force calculations in both VASP and phono3py. The accuracy of the simula-
tions conducted on the LTC is most easily reviewed by comparing the results
against the LTC at room temperature found in the literature. At room temper-
ature (300 K) the thermal conductivity is measured (by Laser Flash Method)
to be 130W/mK [48]. Note that this is the total thermal conductivity which
includes the electron contribution. Beginning with refinement of the k-point
grid which starts at a 3x3x3 grid with iterative increase by two integers at a
time to a 11x11x11 grid yields the results presented in figure 3.4.
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Figure 3.4: Lattice thermal conductivity as a function of temperature with
different k-points (kp N refers to a NxNxN grid).

The results in figure 3.4 seems to converge but the computer performance
limits usage of increased k-points.

The energy cut-off parameter, minimum energy difference and the smear-
ing method is investigated to reflect on their effect on the lattice thermal con-
ductivity. The parameters of the models in figure 3.5 are set according to table
3.3 and the number of k-points are set to 11x11x11 for the entire set of simu-
lations.
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Table 3.3: Parameters for the simulations in figure 3.5

Model Energy cut-off Energy difference Smearing
Reference 350 10−6 Gaussian

Encut 400 10−6 Gaussian
Ediff 350 10−8 Gaussian

Smear 350 10−6 Methfessel-Paxton
All 400 10−8 Methfessel-Paxton
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Figure 3.5: The effect of altering parameters in the force calculations.

This shows that no further improvement is made by increasing the param-
eters in table and justifies the usage of the reference settings.

Figure 3.6 shows the effects of executing the fc2 calculations on a larger su-
percell to reduce the numerical noise in the force calculations.
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Figure 3.6: The effects of adding second order force calculations on a 2x2x2
dimension supercell.

3.2 Effects of a vacancy
This section displays all results from the experiments conducted on the effects
of a vacancy on the lattice thermal transport phenomena that is concerned in
this thesis. The lattice thermal conductivity is investigated by evaluating the
results in figure 3.7 where the LTC of the two models are plotted over a tem-
perature interval. The phonon band structure is also modeled together with
the total density of states for the phonons, and their results are displayed in
figure 3.8 for the pristine supercell and in figure 3.9 for the supercell with one
vacancy.

The twomodels referred to in this section are the pristine model corresponding
to a perfect 16 atom supercell, and the vacancy model with 15 atoms where
the center atom is replaced by a vacancy.

33



CHAPTER 3. RESULTS

3.2.1 Lattice thermal conductivity
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Figure 3.7: The LTC over a temperature range for the two models.

The curve marked pristine shows the LTC of a perfect 16 atom supercell,
and the curve marked vacancy shows the LTC of a 15 atom supercell with one
vacancy which yields a vacancy concentration of 6.25%.
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3.2.2 Phonon band structure and density of states

H P N
Wave vector

0

1

2

3

4

5

6

7

F
re

qu
en

cy
 [T

H
z]

0 20 40
Phonon DOS

Figure 3.8: The phonon band structure together with the total density of states
for the pristine model.
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Figure 3.9: The phonon band structure together with the total density of states
for the model containing a vacancy.
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Discussion

When reviewing the results of the convergence tests of the LTC in the last
chapter, it is clear to see that the values are converged in itself, but far from
converged towards the reference value and the only parameter that appears to
have a positive effect is the addition of the second-order force constant calcu-
lations on a larger supercell. The discussion chapter will begin by evaluating
these results.

The results of the experiment where the LTC is compared over an interval
of k-points in figure 3.4 seem to converge to a higher value than expected. The
reason for this is not known by the author and one theory is that the size of the
supercells is too small in the models and this renders the boundary conditions
set in the force calculators to be too narrow. This has not yet been thoroughly
investigated, but there have been strong indications during the research that
increasing the supercell size and therefore increasing the range of the plane-
wave basis set would yield a more realistic value of the LTC.

The simulations where the fc2 is added show a positive effect on the LTC (fig-
ure 3.6) but unfortunately the computer performance limited further use of the
setting. The standard setting in phono3py only calculates the obligatory fc3
which is sensitive to numerical noise in the force calculations, and by adding
the fc2 calculations, the numerical noise is reduced. The fc2 is calculated by
using the same settings as for the fc3 which makes it very time-consuming and
the experiments on this are not thoroughly examined since the calculations are
limited by computer performance. What is left to be tested, and believed by
the author to give better results, is to reduce the number of k-points solely for
the fc2 calculations. This should reduce both the requirements in performance
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and amount of time. It is feasible since the fc2 calculations render a larger su-
percell than of the fc3 calculations. And by the fact that the reciprocal space is
inversely proportional to real space, the reciprocal space of the larger supercell
will be smaller than the original supercell and thus the number of k-points can
be reduced for the fc2 calculations.

The central results of this work are the effects of a vacancy on the LTC which
is displayed in figure 3.7. Although the accuracy of the LTC is unsatisfactory,
the effects of a vacancy is still displaying the right trend which confirms the
feasibility of the model. The LTC is roughly degraded by a factor of ten as a
result of the vacancy and themagnitude of the degradationmost likely depends
on the vacancy concentration of the model. A vacancy concentration of 1

16
is

not realistic and no numerical conclusions should be taken from these results
since the distortions yielded from a vacancy is interacting with its neighboring
vacancies. But if the model were to be expanded to isolate the effects of one
vacancy, the obtained values should be more trustworthy since the plane-wave
basis set would return to its unperturbed nature in between the vacancy inter-
actions.

The phonon band structure that is displayed in figure 3.8 and 3.9 together with
the phonon density of states reveals that a vacancy affects the phonon fre-
quency modes. The vacancy seems to have a splitting effect of the symmetry
in the frequency bands since the simulation of the vacancy seems to contain
a higher number of activated bands, and it has a canceling effect on the high
frequency modes which degrades the heat capacity. And according to equa-
tion 1.21, the lattice thermal conductivity is dependent on the heat capacity.
Besides the reduction of the mean-free path by the vacancy in the lattice, this
could be an explanation to the degradation of the lattice thermal conductivity.

4.1 Social and ethical aspects
Nuclear power is considered being a reliable energy sourcewith very lowwaste
production and nearly complete absence of greenhouse gas emissions. These
are two of the aspects that are of the highest focus when debating energy pro-
duction and infrastructure expansion. On the other hand, a nuclear power plant
is financially expensive and the energy production process comes with great
risks that are in constant need to be managed.

The power generation process is a chain reaction of fission events where heavy
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atoms (e.g. 235U ) split and release heat which is transformed into electricity.
Chain reactions are inherently unstable, but in nuclear power plants there are a
number of passive safety systems. Still, the number of reactions per time unit
needs to be controlled at all times. One of the greatest risks in operating a nu-
clear reactor is losing control of the heat management. If the cooling-process
ceases to operate, the temperature in the reactor core would rise to extreme
temperatures which could cause the core to melt.

Today, nuclear power-plants have emergency cooling-systems and are often
contained in a concrete structure that protects the surrounding environment
from the consequences of an accident. However, parts of the the public gen-
erally have an irrational fear for nuclear science arguably because it is easy to
associate it with the accidents that have taken place or even nuclear weapons.
This point of view is seemingly hard to change because it is emotionally an-
chored to the public ideologies and political affiliations.

In spite of the current reputation of nuclear power amongst the public, it is still
believed by experts and specialists that nuclear technology is well worth being
developed throughout the world to improve our society and infrastructure to
make them more efficient, sustainable, and safer. This thesis is relevant to the
safety and sustainability aspects of nuclear technology by providing knowl-
edge on the irradiation effects and the thermal transport in metals.
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Conclusions and Future Work

5.1 Conclusions
The conclusions that can be drawn from this work is that this model shows that
a vacancy has a substantial effect in degrading the lattice thermal conductivity
but, to date, this model is not developed sufficiently enough to be able to draw
any quantitative conclusions. The unrealistic vacancy concentration and the
small supercell yielding too narrow boundary conditions are some reasons for
the inaccuracy in the model.

One setting that gives a large positive effect in respect to computer cost is
the setting that allows the second-order force constants to be calculated on a
larger supercell. This is an option that should be subjected to a convergence
test before utilizing further, but appears to have a very positive effect on the
experiments performed in this work.

The effects of a vacancy on the lattice thermal conductivity is displaying the
right trend which confirms that the model is feasible. A vacancy is also per-
turbing the nature of the phonons in the supercell by canceling some of the
high-frequencymodes. This suggests that phonons in the high-frequencymodes
are more effective in transporting heat which implies that the heat capacity in-
creases with the phonon frequency.

The model is feasible, but more computer power and time is required to de-
velop it further in order to make it numerically accurate.
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5.2 Future work
For future work on this topic it is favorable to increase the supercell size in
order to isolate the vacancy. In the current model of this work, the vacancy
concentration is unrealistically large and the vacancies are interacting with its
neighbors. If instead a larger supercell is built with 128 atoms, for instance, it
is believed that the plane-wave basis would return to its undistorted nature in
between vacancy interactions and thus the vacancy would be essentially iso-
lated.

As seen in this report, the effects of the second-order force constants have
a substantial effect on the LTC and it is highly suggested to use this setting in
the future.

This model is also applicable to investigate the effects of a self-interstitial
atom, namely the other part of the Frenkel-pair, which is also a product of the
radiation damage process. And ultimately, if enough computer power and time
is available, it is possible to investigate the effects of the whole thermal spike
volume that is generated in the radiation damage process. What would also be
interesting is to investigate the differences between BCC and FCC structures
when it comes to degradation of the lattice thermal conductivity.

Hopefully this model can be expanded and used for research to aid the de-
velopment of materials that better endures the radioactive environments in a
nuclear power plant.
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